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Abstract

For non-stationary times series, the main di�cult is to identify the nature of

non-stationarity. In macroeconomic and �nancial modelling, there are two kinds of

non-stationarity. The �rst one is due to the presence of a deterministic trend and

generally modeled by a d-order polynomial of time. The second is due to the presence

of a stochastic trend which is modeled by integrating a stationary process up to a

suitable order d. In this paper we propose a simple test to decide between these two

kinds of trend. Simulations show that the test has a good empirical size and power.

The test is �nally applied to some real macroeconomic and �nancial datasets.
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1 Introduction

For non stationary times series, deterministic and stochastic trends were suggested by Nel-

son and Plosser(1982) to model such non stationary evolution in time. In macroeconomic

modelling, there are two competing theories. Following the Monetarist theory of the busi-

ness cycle, Friedman (1968), Lucas Jr (1972) and Lucas Jr (1975), the Gross Domestic

Product (GDP) is characterised by stationary movements around a deterministic trend

(low frequencies are dominant), the monetary shocks are the main sources of growth and

have transient e�ects, therefore the GDP returns to its natural path. Following the Real

Business Cycle, Kydland and Prescott (1982), Long Jr and Plosser (1983), Hénin (1989b),

Hénin (1989a) and Hairault and Hénin (1995), the GDP is an accumulation of random

permanent shocks generated at each observation period, i.e. the GDP is a stochastic trend

governed by permanent productivity shocks (technology, economic policy, demographics, )

which are dominant sources of economic �uctuations.

In �nance, Black and Scholes (1973) suggested that �nancial assets can be modelled by a

geometric Brownian motion. This implies that the logarithm of �nancial asset is a random

walk (or unit root process) and hence the non-stationarity is due to a stochastic trend. The

assumption of Black and Scholes (1973) implies also that the random walk is governed by

a gaussian white noise, but in practice many authors have pointed out the heteroskedastic

behaviour of returns, therefore the normality assumption of returns does not hold. Fortu-

nately, Engle (1982) and Bollerslev (1986) have proposed ARCH and GARCH speci�cation

to returns. Such speci�cation does not alter the martingale properties of the �nancial assets

and hence does not contradict the market e�ciency theory. Many authors proposed to test

the presence of unit root, the popular tests are the Augmented test of Dickey and Fuller

(1979) (noted here by ADF), the test of Kwiatkowski et al. (1992) (known as KPSS), and

the test of Ouliaris et al. (1989) (noted here as OPP). However these tests look for the
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presence of unit root around a linear trend (this is the case of ADF and KPSS), OPP have

extended the ADF test to test unit root around a d-order polynomial trend (d = 1, .., 5).

Boutahar and Royer-Carenzi (2024) provided a procedure, based on KPSS and OPP tests

with a polynomial trends with degrees d = 1, ..., 5, they also pointed out that the Dickey-

Fuller test detects the presence of spurious unit root for series with a quadratic deterministic

trend.

In this paper we propose a new test to decide between a deterministic trend and a stochas-

tic one. For a given time series (Yt), 1 ≤ t ≤ n, the paper develops the test of the null

hypothesis

H0 : Yt = a0 + a1t+ ...+ adt
d + Zt (1)

against the alternative

H1 : (1− L)dYt = ad + Zt (2)

where L is a back shift operator, LYt = Yt−1, and (Zt) is assumed to be an invertible moving

average process, MA(q):

Zt = B(L)εt, B(z) = 1 + b1z + ...+ bqz
q, (3)

d and q are assumed to be known, and (εt) is an i.i.d. sequence of random variables with

zero mean and variance σ2.

In section 2, we de�ne the test statistic and study the limiting distribution under the

null of deterministic trend and its consistency against the alternative of stochastic trend.

In section 3, we perform some simulations by computing the empirical size and power of

the proposed test. We propose a strategy to decide the kind of trend (deterministic or

stochastic) when (d, q) are unknown; and we study also other kinds of deterministic trend
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to illustrate how our strategy works. In section 4 we apply our test to Gross Domestic

Product and to the Standard & Poor's 500 index datasets.

Remarks

1. Contrary to the papers cited above, we do not impose any restriction on the degree d of

the polynomial for deterministic trend or the integration order d of the stochastic trend.

2. The assumption (3) on the process (Zt) seems to be more restrictive, however it is known

that every stationary process can be approximated by an MA(q) for q large enough, for

short memory time series q is small, but for long memory times series we need q to be large

(see Boutahar (2009) and the references therein to decide if a given time series is short or

long memory).

3. In practice the degrees d and q are unknown, in section 3 we will de�ne empirical esti-

mators of them.

2 The new test statistic

To de�ne the test statistic we consider the di�erenced time series

Xt = (1− L)dYt,

and its empirical autocorrelation function ρ̂:

ρ̂(j) =
γ̂(j)

γ̂(0)
, γ̂(j) =

1

n

n−|j|∑
t=1

(Xt+|j| −X)(Xt −X), X =
1

n

n∑
t=1

Xt.

The test statistic is given by

Tn =
√
n ∗

(
d+q∑
j=1

ρ̂(j) +
1

2

)
, (4)

4



2.1 The limiting distribution of Tn under the null hypothesis

Theorem 1. Under the null hypothesis H0 we have

Tn
L−→ T =

d+q∑
j=1

vj (5)

where V = t(v1, ..., vd+q) is a (d+ q) random gaussian vector with 0 mean and a matrix of

variance-covariance W with the (i,j)-th term given by:

wi,j =
∞∑
k=1

(ρ(k + i) + ρ(k − i)− ρ(i)ρ(k)) (ρ(k + j) + ρ(k − j)− ρ(j)ρ(k)) ,

ρ(j) = 0, ∀ |j| > d+ q. (6)

L−→ denotes the convergence in law and tX denotes the transpose of the vector (or matrix)

X.

For the proof, we need the following lemma

Let γ(k) (resp. ρ(k)) denote the autocovariance (resp. autocorrelation) function of the

process (Xt)

γ(k) = E ((Xt+k − µ)(Xt − µ)) , µ = E(Xt), ρ(k) =
γ(k)

γ(0)
.

Lemma 2. Under the null hypothesis H0 and (3) we have

q+d∑
j=1

ρ(j) = −1

2
(7)

Proof of the lemma.

Let f(λ) denote the spectral density of (Xt), it's well known that the link between the

spectral density and the autocovariance function is given by

γ(k) =

∫ π

−π

eikλf(λ)dλ, for all k ∈ Z

f(λ) =
1

2π

∑
k∈Z

e−ikλγ(k), for all λ ∈ [−π, π].
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Now since Xt = ad+(1−L)dB(L)εt, it follows that (Xt) is a stationary and non invertible

MA(d+ q) with the spectral density

f(λ) =
σ2

2π
|1− eiλ|2d|B(eiλ)|2,

hence

f(0) = 0 =
1

2π

d+q∑
k=−(d+q)

γ(k),

consequently

0 = γ(0) + 2

d+q∑
k=1

γ(k)

and then we obtain (7).

Proof of the theorem.

From theorem 7.2.1 of Brockwell and Davis (1991) we have that

√
n t (ρ̂(1)− ρ(1), ..., ρ̂(d+ q)− ρ(d+ q))

L−→ V. (8)

Let E1 =
t(1, ..., 1), dim E1 = d+ q.

By a continuous mapping theorem it follows that

√
n (ρ̂(1)− ρ(1), ..., ρ̂(d+ q)− ρ(d+ q))E1

L−→ tV E1;

=

d+q∑
j=1

vj

= T

The desired conclusion holds since by the above lemma we have that

√
n (ρ̂(1)− ρ(1), ..., ρ̂(d+ q)− ρ(d+ q))E1 = Tn.

2.2 The consistency of Tn against the alternative H1

Theorem 3. Under the alternative hypothesis H1 we have

|Tn|
P−→ +∞. (9)

P−→ denotes the convergence in probability.
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Proof. Under the alternative hypothesis H1 the process Xt is an invertible MA(q),

therefore

d+q∑
j=1

ρ(j) +
1

2
=

q∑
j=1

ρ(j) +
1

2

̸= 0. (10)

Tn can be written as

Tn =
√
n ∗

(
q+d∑
j=1

ρ̂(j)− ρ(j)

)
+
√
n ∗

(
q+d∑
j=1

ρ(j) +
1

2

)
= T1,n + T2,n. (11)

Moreover

T1,n
L−→ T =

d+q∑
j=1

vj (12)

where V = t(v1, ..., vd+q) is a (d+ q) random gaussian vector with 0 mean and a matrix of

variance-covariance W with the (i, j)-th term given by:

wi,j =
∞∑
k=1

(ρ(k + i) + ρ(k − i)− ρ(i)ρ(k)) (ρ(k + j) + ρ(k − j)− ρ(j)ρ(k)) ,

ρ(j) = 0, ∀ |j| > q. The desired conclusion holds since from (10) we have that

|T2,n| −→ +∞ as n → +∞.

2.2.1 Particular case

In this section, we explore the case of linear trend, we test the null hypothesis

H0 : Yt = a0 + a1t+ Zt (13)

against the alternative

H1 : (1− L)Yt = a1 + Zt, (14)
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and we suppose that the process Zt is an i.i.d.(0, σ2). Such situation can happened when

after di�erencing Yt, the the time series Xt = (1 − L)Yt is a white noise, this usually the

case for some �nancial time series. Autocorrelation tests (Box and Pierce (1970), Ljung

and Box (1978) can be used to decide if Xt is a white noise or not).

Under the null hypothesis H0, Xt = a1 + Zt − Zt−1 in a non-invertible MA(1), then we

have ρ(1) = −1
2
, ρ(j) = 0, ∀ |j| > 1, therefore from (8) we get

√
n ∗
(
ρ̂(1) +

1

2

)
L−→ N(0, w1,1)

w1,1 =
∞∑
k=1

(ρ(k + 1) + ρ(k − 1)− ρ(1)ρ(k))2 =
1

2
,

the test statistic is given by Tn =
√
n ∗
(
ρ̂(1) + 1

2

)
, and satis�es under H0:

√
2 ∗ Tn

L−→ N(0, 1). (15)

Under the alternative H1, Xt = a1 + Zt is an i.i.d sequence, hence ρ(j) = 0, ∀|j| ≥ 1.

Tn =
√
n ∗
(
ρ̂(1) +

1

2

)
=

√
nρ̂(1) +

√
n

2
P−→ +∞

since
√
nρ̂(1)

L−→ N(0, 1).

Note that in this case the limiting distribution of Tn is free of parameters, however if Zt is

an MA(q), this limiting distribution depends on the correlation function of the process Xt

and the exact quantiles of this limiting distribution cannot be computed. We will discuss

on the next section how to resolve this problem by using the classical method of plug in

(i.e. by replacing ρ(j) by ρ̂(j)) and by using Monte Carlo simulations.
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3 Simulation study

First we present the Monte Carlo procedure to compute empirical quantiles of the limiting

distribution of Tn.

Let W 1/2 be an arbitrary square root of the matrix W given by (6): W 1/2W t/2 = W. From

(8) it follows that

ρ̂(j)
P−→ ρ(j), ∀ 1 ≤ j ≤ d+ q,

moreover the in�nite summations in terms wi,j are reduced to

wi,j =

d+q+max(i,j)∑
k=1

(ρ(k + i) + ρ(k − i)− ρ(i)ρ(k)) (ρ(k + j) + ρ(k − j)− ρ(j)ρ(k)) ,

which implies that

Ŵ
P−→ W

where Ŵ is obtained from W by replacing ρ(j) by ρ̂(j).

It follows that the asymptotic distribution of
√
n t (ρ̂(1)− ρ(1), ..., ρ̂(d+ q)− ρ(d+ q)) is

the same as Ŵ 1/2N where N is a Gaussian random vector (dimN = d + q) with 0 mean

and variance the identity matrix Id+q.

Hence the test statistic Tn =
√
n (ρ̂(1)− ρ(1), ..., ρ̂(d+ q)− ρ(d+ q))E1 has the same

asymptotic distribution as tE1Ŵ
1/2N, tE1 = (1, ..., 1), consequently we compute the em-

pirical quantiles of the limiting distribution of Tn as follows:

We drawM realisations of a Gaussian random vector with 0 mean and variance the identity

matrix Id+q, N
∗
m,m = 1, ....,M, we compute

T ∗
m = tE1Ŵ

1/2N∗
m, m = 1, ...,M.

For a �xed nominal size α, the empirical quantile of order α of the limiting distribution of

Tn is given by

q̂α = T ∗
([αM ])
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[x] denotes the integer part of x, and T ∗
(i) are the order statistics of T

∗, i.e.

T ∗
(1) ≤ T ∗

(2) ≤ ... ≤ T ∗
(M).

The critical region of the test statistic Tn is then given by

]−∞, q̂α/2] ∪ [q̂1−α/2,+∞[ (16)

In order to evaluate the �nite-sample performance of our test Tn we run Monte-Carlo

simulations for several models. For each model we run R = 10000 realisations and for four

sample sizes, n = 50, 100, 200 and 500. We compute the empirical size and empirical power

for three nominal levels α = 1%, 5% and 10%. To compute the empirical quantiles of the

limiting distribution of Tn we simulate M = 10000 realisations of T ∗
m.

We consider the two models (1) and (2) and the four cases:

Case 1: Zt in an i.i.d N(0, 1) and d known.

Case 2: Zt in an MA(q), (d, q) known.

Case 3: Zt in an MA(q), q unknown, and d known.

Case 4: Zt in an MA(q), (d, q) unknown.

1. Case 1, with q = 0, d = 1

We consider the following Data Generating Process(DGP):

Yt = 1 + 0.05t+ Zt, 1 ≤ t ≤ n (17)

to study the empirical size and the following DGP

(1− L)Yt = 0.05 + Zt, 1 ≤ t ≤ n (18)

to study the empirical power, Zt = εt ; N(0, 1).

The DGP corresponds to the particular speci�cation discussed in paragraph 2.2.1. In the
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simulations (d, q) = (1, 0) is assumed to be known, hence the test statistic is given by

Tn =
√
n ∗
(
ρ̂(1) + 1

2

)
.

Recall that in this case we do not need to compute empirical quantiles of limiting distribu-

tion of Tn.

Table 1: Empirical size (left) and power (right) of Tn. Case 1

α n 50 100 200 500

1 1.48 1.23 1.07 0.97

5 5.66 5.39 5.37 5

10 10.40 10.31 10.14 10.18

α n 50 100 200 500

1 100 100 100 100

5 100 100 100 100

10 100 100 100 100

From Table 1, we see that the test statistic Tn has a good size and power even for small

sample size.

2. Case 2, d = 1, q = 1

The DGPs are the same as (17) and (18) with:

Zt = εt + 0.8εt−1, εt ; N(0, 1).

In the simulations (d, q) = (1, 1) is assumed to be known, hence the test statistic is given

by Tn =
√
n ∗
(∑2

j=1 ρ̂(j) +
1
2

)
.

Table 2: Empirical size (left) and power (right) of Tn. Case 2

α n 50 100 200 500

1 0.04 0.22 0.51 0.84

5 0.99 2.96 3.71 4.30

10 4.85 7.76 8.45 9.21

α n 50 100 200 500

1 33.29 74.97 99.89 100

5 49.28 88.39 100 100

10 58.49 92.78 100 100
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From Table 2, if the di�erenced times series is correlated, then the test Tn has a size

and power distortion for small size sample. However such bias disappears as the sample

size increases.

3. Case 3, d = 1, q unknown

The DGPs are the same as in the preceding case (Case 2), and q is assumed to be unknown.

In this case, we need to de�ne an empirical estimator for q. Note that under the DGP (17)

the process Xt = (1 − L)Yt is a stationary MA(q + 1); therefore ρ(j) = 0, ∀ |j| > q + 1.

By applying (8), it follows that an empirical estimator of q can be given by

q̂n = argmax
1≤k≤qmax

{
k, ρ̂(k) ̸∈

[
− 1√

n
uα/2

√
v̂k,

1√
n
uα/2

√
v̂k

]}
− 1 (19)

where v̂k = 1+2 ∗ ρ̂2(1) + ...+2 ∗ ρ̂2(k), ρ̂(k) is the empirical autocorelation of the process

Xt, uα is the quantile of order α of the standard normal distribution N(0, 1), and qmax

is a given large integer, a suitable choice may be qmax = [nγ] , 0 < γ < 1, where n is the

sample size.

In the simulations q is assumed to be unknown, hence the test statistic is given by Tn =

√
n ∗
(∑q̂n+1

j=1 ρ̂(j) + 1
2

)
, where q̂n is given by (19).

Table 3: Empirical size (left) and power (right) of Tn. Case 3

α n 50 100 200 500

1 5.66 0.09 0.25 0.33

5 7.43 2.01 2.65 3.4

10, 10.4 9.96 6.95 7.7

α n 50 100 200 500

1 92.27 97.87 99.98 100

5 93.19 98.99 100 100

10 95 99.57 100 100

From Table 3, we observe that when we need to estimate the order q then the test

statistic Tn has a size and power distortion, the bias in the size is more severe than the one

of the power. However such biases disappear for n large enough.
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4. Case 4, (d, q) unknown

This case is the more realistic one, which is often encountered in practice. The classical

procedure in Box et al. (2015) time series modelling is to identify �rst the parameter d.

The well-known approach is to apply a test to check stationarity, take di�erences if the

time series is non stationary and repeat the procedure until stationarity, i.e. the empirical

estimator of d is given by:
Algorithm 1

Step 0 : d = 0, Y
(0)
t = Yt

Step 1: Apply the KPSS test to Y
(d)
t

Step 2: If the null is rejected d = d+ 1, Y
(d)
t = (1− L)Y

(d−1)
t ,

go to the Step 1,

else end.

The empirical estimator is simply the number of di�erentiations needed to achieve

stationarity of (Yt).

Remark. Note that the process Xt

Xt = (1− L)dYt =


ad + (1− L)dZt under H0, (1)

ad + Zt under H1, (2)

is stationary, hence application of the KPSS test helps us to achieve stationarity, but no

information is obtained about the kind of the trend.

To estimate the moving average order q of Zt, let qX denotes the order of the process Xt

which may be d + q (resp. q) under H0 (resp. under H1). To estimate qX we use the

following estimator

q̂X = argmax
1≤k≤qmax

{
k, ρ̂(k) ̸∈

[
− 1√

n
uα/2

√
v̂k,

1√
n
uα/2

√
v̂k

]}
(20)
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where v̂k = 1+2 ∗ ρ̂2(1)+ ...+2 ∗ ρ̂2(k), ρ̂(k) is the empirical autocorrelation of the process

Xt = (1 − L)d̂nYt, d̂n is computed by the use of Algorithm 1 and uα is the quantile of

order α of the standard normal distribution N(0, 1).

Since the test statistic will be computed under the null H0, an estimator of the order q of

Zt will be given by

q̂n = q̂X − d̂n (21)

To compute the test statistic we adopt the following strategy:

Strategy:

Step 1: Apply the Algorithm 1 to time series Yt to compute an

estimator d̂n of d

Step 2: Apply (21) to time series Xt = (1 − L)d̂nYt to compute an

estimator q̂n of q

Step 3: Compute the test statistic Tn =
√
n ∗

(∑d̂n+q̂n
j=1 ρ̂(j) + 1

2

)
,

where ρ̂(j) is the autocorrelation function of Xt.

We consider the following Data Generating Process(DGP):

Yt = 1 + 0.05t+ 0.02t2 + Zt, 1 ≤ t ≤ n (22)

to study the empirical size and the following DGP

(1− L)2Yt = 0.05 + Zt (23)

to study the empirical power,

Zt = εt + 0.8εt−1, εt ; N(0, 1). (24)
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Table 4: Empirical size (left) and power (right) of Tn. Case 4

α n 50 100 200 500

1 0.71 5.9 12.70 0.92

5 11.11 29.96 23.72 4.29

10 28.70 47.26 28.54 8.52

α n 50 100 200 500

1 91.23 85.51 90.39 93.71

5 92.31 87.90 92.84 93.98

10 92.78 89.65 93.78 94.40

From Table 4, we observe the same behaviour of Tn as in the preceding case when we

need to estimate (d, q).

3.0.1 Extension to non-polynomial trend

In this subsection we will study the empirical size of the test statistic Tn when under the

null hypothesis the deterministic trend is not a polynomial of time. The null hypothesis is

H0 : Yt = m(t) + Zt, 1 ≤ t ≤ n (25)

(Zt) is assumed to be an invertible moving average process, MA(q), with q unknown:

Zt = B(L)εt, B(z) = 1 + b1z + ...+ bqz
q, (26)

wherem(t) is an arbitrary function of time t. Ifm(t) is in�nitely di�erentiable with bounded

derivatives on t = 0, then a Taylor expansion of m(t) is given by

m(t) =
∞∑
j=0

ajt
j, aj =

1

j!

djm(0)

dtj
.

Since

an −→ 0 as n → ∞,

the function m(t) can be well approximated by a �nite polynomial

Pd(t) = a0 + a1t+ ...+ adt
d, for d large enough
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.

To illustrate how our strategy can be extended to a more general deterministic trend, we

consider the two following DGPs under the null hypothesis

Yt = 1 + log(1 + t) + Zt, 1 ≤ t ≤ n (27)

Yt = 1 + et/100 + Zt, 1 ≤ t ≤ n (28)

where Zt is given by (24). The linear trend moves between these two trends since log(1+t) ≤

t ≤ et/100 for large t.

Table 5: Empirical size (left: DGP (27)) and (right: DGP (28)) of Tn

α n 50 100 200 500

1 5.66 0.05 0.33 0.43

5 7.28 2.07 4.44 4.86

10 10.10 7.66 10.17 9.98

α n 50 100 200 500

1 5.29 0.07 0.28 0.84

5 7.21 2.22 3.61 3.85

10 9.88 7.35 9.07 7.83

Table 5 shows that if the deterministic trend is not a polynomial of time, then Tn

has a size distortion but the bias disappears as the sample size increases. Simulations

not reported in this paper indicate that the number of di�erantiations needed to obtain

stationarity is smaller for the DGP (27) than (28). Morever the number d of di�erentiations

needed to achieve stationarity of (Yt) increases with the sample size n.

4 Application to real data

For a given non stationary real data Yt, 1 ≤ t ≤ n, we apply the strategy presented in the

preceding section to decide if the trend is deterministic or stochastic.
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1) Macroeconomic data

We consider the logarithm of the annual GDP (given on trillion of dollars) of USA (data

source : https://data.worldbank.org) ) on the period 1960-2023, the time series is plotted

in �gure 1. We obtain d̂n = 2, i.e. we need to di�erentiate two times to achieve stationarity

of GDP . Hence the process

Xt = (1− L)2 log(GDP )t =


is an MA(2 + q) under H0, (1)

is an MA(q) under H1, (2)

If we denote by qX the order of the process Xt then by using (20) we obtain the estimator

q̂X = 1. This in turn indicates that the log(GDP ) is generated by a stochastic trend, since

under the null of deterministic trend we have that qX ≥ 2.

Hence our �nding is in accordance with several previous studies, for example Nelson and

Plosser (1982) showed that the GDP is an ARIMA(0,1,1), based on historical data 1909-

1977, however we �nd that the GDP is an ARIMA(0,2,1), based on a recent historical data

1960-2023, more precisely we obtain the following model

(1− L)2 log(GDP )t = Zt, Zt = εt − 0.6885εt−1,

εt is a white non-gaussian noise with mean 0.000645 and variance 0.0005.

2) Financial data

We consider the Standard and Poor's (SP500) �nancial time series data, i.e. the daily

closing from 2000 to December 2023 (currency in USD).The data was obtained from Yahoo

Finance. The time series is plotted in �gure 1. We obtain d̂n = 1, i.e. we need to

di�erentiate only once to achieve stationarity of SP500. Hence the process Xt satis�es

Xt = (1− L) log(SP500)t =


is an MA(1 + q) under H0, (1)

is an MA(q) under H1, (2)
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We obtain q̂X = 1, as the order of the process Xt which implies, by using (21), that the

order of the process Zt is q̂n = 0 (i.e. the same as the DGP in case 1 in the simulation

study).

By applying our test, we obtain Tn = 30.91 and from (15) we obtain P − value = 0.

Consequently the null hypothesis of deterministic trend is strongly rejected, therefore the

log(SP500) is generated by a stochastic trend, and our conclusion is in accordance with

market e�ciency theory.

(a) GDP (b) Daily evolution of SP500, 2000-2023

Figure 1: plots of GDP and SP500
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