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We compute the F- and D-term potential energy for the dilaton, complex structure, and Kähler moduli of
realistic vacua of heterotic M-theory compactified on Calabi-Yau threefolds where, for simplicity, we choose
h1;1 ¼ h2;1 ¼ 1. However, the formalism is immediately applicable to the “universal” moduli of Calabi-Yau
threefolds with h1;1 ¼ h1;2 > 1 as well. The F-term potential is computed using the nonperturbative
complex structure, gaugino condensate and “world sheet instanton” superpotentials in theories in which the
hidden sector contains an anomalous Uð1Þ structure group. The Green-Schwarz anomaly cancellation
induces inhomogeneous “axion” transformations for the imaginary components of the dilaton and Kähler
modulus—which then produce a D-term potential. VD is a function of the real components of the dilaton and
Kähler modulus (s and t) that is minimized and precisely vanishes along a unique line in the s-t plane.
Excitations transverse to this line have a mass manom which is an explicit function of t. The F-term potential
energy is then evaluated along the VD ¼ 0 line. For values of t small enough that manom ≳MU—whereMU

is the compactification scale—we plot VF for a realistic choice of coefficients as a function of the Pfaffian
parameter p. We find values of p for which VF has a global minimum at negative or zero vacuum density or
a metastable minimum with positive vacuum density. In all three cases, the s, t, and associated “axion”
moduli are completely stabilized. Finally, we show that, for any of these vacua, the large t behavior of the
potential energy satisfies the “large scalar field” Swampland conjecture.

DOI: 10.1103/PhysRevD.109.126004

I. INTRODUCTION

In this paper, we calculate and discuss the potential
energy for the complex structure moduli, the Kähler moduli
and the dilaton in heterotic M-theory vacua [1–4] whose
hidden sector contains a line bundle with an anomalous
Uð1Þ structure group appropriately embedded into E8 [5].
The Green-Schwarz cancellation [6] of this Uð1Þ anomaly
induces an inhomogeneous transformation of the imaginary
components of the dilaton and each of the complex Kähler
moduli. Thus, these imaginary components act as moduli
“axions.” The formalism introduced here is valid for any
Calabi-Yau threefold with h1;1 ¼ h2;1 ≥ 1. However, for

simplicity, we present our specific results for Calabi-Yau
threefolds X with h1;1 ¼ h2;1 ¼ 1. These results are
immediately applicable to the “universal” Kähler and
complex structure moduli of Calabi-Yau compactifications
with h1;1 ¼ h2;1 > 1 as well. We note that moduli stabili-
zation has been discussed in a number of papers whose
contexts differ from the present work—see [7–10] for
example.
The Kähler potential, K, and superpotential, Wflux, for

the complex structure moduli of a Calabi-Yau threefold
with any h2;1 ≥ 1 are well known for “large” values of these
moduli [11,12]. However, these quantities are not known
analytically for “small” values. Hence, for specificity, we
will conduct our analysis using the large modulus formal-
ism. We do not expect this to change the basic results of the
potential energy calculation. In Sec. II, assuming h2;1 ¼ 1,
we compute the F-term potential energy Vflux for the
complex structure modulus alone and show that there
exists an infinite number of local minima that do not
spontaneously break N ¼ 1 supersymmetry. Our complete
extended calculation including both the dilaton and Kähler
modulus will be carried out under the assumption that the
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complex structure modulus has been fixed to any one of
these supersymmetric minima.
Having done this, in Sec. III we extend the calculation of

VF to include the dilaton. This is accomplished under the
assumption that the commutant of the anomalous Uð1Þ
structure group contains a non-Abelian group that becomes
strongly coupled at a high scale, thus leading to gaugino
condensation [13–16]. This produces a nonperturbative
superpotentialWG which, to lowest order, depends only on
the complex dilaton field S. Using this, and the associated
dilaton Kahler potential KS, we extend our calculation of
the VF potential energy using W ¼ Wflux þWG.
The cohomology H1;1 is associated with the homology

group H2. For h1;1 ¼ 1, H2 contains a single homology
class. We denote this by [C], where C is an isolated, genus-
zero holomorphic curve. It is well known that the string can
wrap itself around such a curve, producing a nonperturba-
tive “instanton” superpotential [17–19] given by an expo-
nential of the Kähler modulus T multiplied by the “Pfaffian”
associated with the Dirac operator. The Pfaffian is a
holomorphic function of a subset of the vector bundle
moduli evaluated at the curve C [20,21]. Generically, C is
not unique—with the number of such isolated, genus-zero
curves in [C] given by the Gromov-Witten invariant. As
shown by Beasley and Witten [22], under a range of
circumstances, the instanton superpotentials generated by
all such curves can cancel exactly. However, for a wide set
of vacua [23–26], such as those whose Calabi-Yau three-
fold has a finite isotropy group [27], this cancellation does
not occur. Such theories then have an additional non-
perturbative superpotential which is the sum of the
instanton potentials over all isolated curves. We denote
this superpotential, which depends on T, as WT . Using
this, and the associated Kähler potential KT , in Sec. IV we
extend our calculation of the potential energy VF further
by using W ¼ Wflux þWG þWT .
Having computed the F-term potential, we recognize that

the inhomogeneous transformation of the S and T moduli
axions under the anomalous Uð1Þ structure group [28,29]
leads to a second contribution to the potential energy—a
D-term potential VD—that must be added to VF to obtain
the total potential energy V. The exact form of VD was
derived in previous work [28,30]. In Sec. V we present this
potential and show that it is minimized, and N ¼ 1
supersymmetry is left unbroken, in a specific direction in
field space with s ¼ const × t—where s ¼ ReS, t ¼ ReT
and the constant is a fixed function of various parameters of
the chosen vacuum. Along this direction, described as
setting the Fayet-Iliopoulos term FI ¼ 0, the potential VD
is minimized and exactly vanishes. For any given pair of hsi
and hti satisfying FI ¼ 0, we can expand both S and T
around the associated local minimum. As discussed in detail
in [28,29], the complex fluctuations around this minimum
can be unitarily rotated to two new complex fields that have
canonical kinetic energy and are mass eigenstates. We show

that one of these new complex fields has a mass manom, that
is, the mass of the anomalous Uð1Þ gauge field [5].
For sufficiently small values of hti, this mass satisfies
manom ≳MU, where MU is the compactification scale.
Hence, both the gauge field and this diagonalized complex
scalar can be integrated out of the low energy theory.
However, the second diagonalized complex scalar, with real
and imaginary components η and ϕ respectively, has
canonical kinetic energy and, with respect to VD only,
has vanishing mass. When VF is included, each of η and ϕ
get a nonvanishing mass substantially smaller than MU.
Hence, they remain in the low energy effective theory. In
Sec. V we present the expressions for these lower mass
scalars.
In Sec. VI, we now combine the results from both VF and

VD and search for minima. We first impose the relation
s ¼ const × t along which VD is minimized and equal to
zero; then we search for local extrema of VF along that
specific direction. For sufficiently small values of t, where
manom ≳MU, we insert the results for the single light
complex scalar field derived in the previous section.
Even with this reduced number of scalar fields, VF is a
complicated function which we plot numerically using
Mathematica. We find that the VF potential can have a
unique minimum along s ¼ const × t for a wide range of
input parameters. Specifically, we find that the potential
energy can have a global minimum at hti and, hence, hsi
with a vanishing or negative cosmological constant or a
metastable minimum with positive vacuum density—
depending on the explicit values of the input parameters.
In this paper, for specificity, we choose an explicit set of
physically motivated parameters and present the potential
energy function for various choices of the instanton Pfaffian
parameter p. Within this context, we present a plot of VF for
five different choices of p which exhibit these character-
istics. In addition to stabilizing the real components s, t
respectively, we show that the imaginary, axionic compo-
nent of the light scalar is simultaneously stabilized.
Finally, in Sec. VII, using the complete expression for

VF valid at large values of t where manom ≪ MU, we show
that VF easily satisfies the conjectured Swampland lower
bound on the potential gradient [31–36]. This is the case for
a wide range of values of Pfaffian parameter p, including
cases where VF has a metastable minimum with positive
vacuum energy.
In conclusion, we have shown that in heterotic M-theory

vacua compactified on Calabi-Yau threefolds with h1;1 ¼
h2;1 ¼ 1 and, more generically, for the universal Kähler and
complex structure moduli of compactifications on any
Calabi-Yau threefold with h1;1 ¼ h2;1, the dilaton and
geometric moduli can be completely stabilized. These vacua
can have positive, zero, or negative vacuum density depend-
ing on the precise parameters chosen for the theory. It is
clear that these hidden sector vacua, in combination with the
vacuum of the observable sector, will lead to a range of
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values for the cosmological constant. For hidden sector
vacua that have positive, but small, vacuum density, one can
expect a cosmological constant that can be adjusted to give
the experimentally observed value. This will be discussed in
detail in [37]. When redefined so as to have canonical
kinetic energy, we find that the fluctuations around these
vacua have positive definite masses with values sufficiently
below the unification scale so as to allow these moduli fields
to be in the low energy theory. Finally, we show that at large
values of t, the Swampland “large moduli field” conjecture
is satisfied—even when the V has a metastable minimum at
small t with positive vacuum density.

II. COMPLEX STRUCTURE MODULI

We begin our analysis by considering the Kähler
potential, superpotential, and potential energy function
for the complex structure moduli of a Calabi-Yau threefold
X within the context of heterotic M-theory. As discussed in
the Introduction, in this paper we will restrict our analysis
to Calabi-Yau threefolds with cohomology h2;1 ¼ 1; that is,
to a single complex structure modulus. However, it is
instructive to begin our discussion by presenting the Kähler
potential and superpotential for an arbitrary number of
complex structure moduli, which we then restrict to the
h2;1 ¼ 1 case.

A. Kähler potential

The Kähler potential for an arbitrary number of complex
structure moduli za;a¼ 1;…;h2;1 ≥ 1was presented in [11]
and given by

κ24KðzÞ ¼ − ln
�
2iðG− ḠÞ− iðza − z̄aÞ

�
∂G
∂za

þ ∂Ḡ
∂z̄a

��
; ð1Þ

where

G ¼ −
1

6
d̃abczazbzc; ð2Þ

d̃abc are the intersection numbers for the threefold X,

κ24 ¼
8π

M2
P

ð3Þ

and

MP ¼ 1.22 × 1019 GeV ð4Þ

is the unreduced Planck mass.
Limiting the Calabi-Yau threefolds to those with h2;1 ¼ 1,

that is, with a single complex modulus z only, one can
then write

d̃111 ¼ 6d̃; ð5Þ

where d̃ is a positive integer. The prepotential G then
becomes

G ¼ −d̃z3: ð6Þ

It follows that the expression for the Kähler potential in (1)
simplifies to

κ24KðzÞ ¼ − ln
h
id̃ðz − z̄Þ3

i
: ð7Þ

B. Superpotential

The flux generated superpotential in heterotic M-theory
is given, at the classical level, by the Gukov-Vafa-Witten
expression

Wflux ¼
ffiffiffi
2

p

κ24

1

πρv1=2

Z
X×S1=Z2

Ω ∧ G; ð8Þ

where Ω is the holomorphic three-form on the Calabi-Yau
threefold X and G is the four-form G flux. Generically,
Wflux can depend on both the dilaton S and the complex
structure moduli za; a ¼ 1;…; h2;1 ≥ 1. However, Wflux
was explicitly calculated within the context of heterotic
M-theory in [12] and found to be independent of S and
given by

Wflux ¼ C
�
1

6
d̃abczazbzcn0 −

1

2
d̃abczazbnc − zana − n0

�
;

ð9Þ

where n0; na; n0; na are units of flux and arbitrary inde-
pendent integers in Z,

C ¼
ffiffiffi
2

p
v1=6ϵ0

κ24ðπρÞ2
ð10Þ

and

ϵ0 ¼ ð2
ffiffiffi
2

p
πÞ2=3 ðπρÞ4=3

v1=3M2=3
P

: ð11Þ

The parameters v and πρ set the scale for the volume of the
Calabi-Yau threefold X and the length of the fifth dimen-
sion, respectively. We will choose these parameters as
follows. First, let

v1=6 ¼ 1

MU
; ð12Þ

where MU is the unification scale of the effective low
energy theory in the observable sector. As discussed in
[38,39], a canonical value forMU, which we will use in this
paper, is given by
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MU ¼ 3.15 × 1016 GeV: ð13Þ

Second, we set

πρ ¼ 5Fv1=6; ð14Þ

where F is, at the moment, an arbitrary real number. To
conform to standard values for πρ in the literature, see for
example [40,41], we will generically restrict

0.6≲ F ≲ 2: ð15Þ

However, as discussed in detail at the beginning of
Sec. VI D, both larger and smaller values for F are
acceptable for the specific vacua analyzed in this paper.
Note that the “physical” volume of the Calabi-Yau
threefold and the physical length of the fifth dimension
are given by

V ¼ vV; L ¼ πρR̂; ð16Þ

where Vand R̂ are the moduli for the Calabi-Yau volume and
fifth dimensional length, respectively. Using (12) and (14),
as well as the values of MP and MU given in (4) and (13),
one can calculate the dimensionless coefficient ϵ0 in (11).
We find that

ϵ0 ¼ 0.690F4=3: ð17Þ

Again using (4), (12), (13), and (14) as well as (17), we find
that coefficient C in (10) is given by

C ¼ 232

F2=3 M3
U: ð18Þ

We have written C as proportional to M3
U to emphasize that

C and, hence, Wflux has mass dimension three set by the
compactification scale. Finally, let us restrict the above
superpotential to Calabi-Yau threefolds with h2;1 ¼ 1.
Expression (9) then reduces to

Wflux ¼ Cðd̃z3n0 − 3d̃z2n1 − zn1 − n0Þ; ð19Þ

where all coefficients remain unchanged and n0, n1, n0, n1
are independent, arbitrary elements of Z.
Before continuing on to the potential energy function for

the complex structure modulus, we first compute the
covariant derivative of Wflux in (19) with respect to z
defined by

DzWflux ¼
∂Wflux

∂z
þ κ24

∂K
∂z

Wflux: ð20Þ

Using (7) and (19), we find that

DzWflux ¼
C

z − z̄

�
3d̃z2n1 þ 2zn1 − 3d̃z2z̄n0

þ 6d̃zz̄n1 þ n1z̄þ 3n0
�
: ð21Þ

In order for a complex structure moduli vacuum to preserve
N ¼ 1 supersymmetry, it must satisfy

DzWflux ¼ 0 ð22Þ

and, hence, from (21) that

3d̃z2n1þ2zn1−3d̃z2z̄n0þ6d̃zz̄n1þn1z̄þ3n0¼ 0: ð23Þ

Defining

z ¼ rþ ic; ð24Þ

we find that this will be the case if and only if

r ¼ −
3n0n0 þ n1n1

2ð3d̃ðn1Þ2 þ n0n1Þ
ð25Þ

and

c ¼ �
�
−r2 þ 2n1r

n0
þ n1
3d̃n0

�
1=2

: ð26Þ

There are, of course, an infinite number of solutions to r and
c of this form, indexed by the choices of integers n0, n1, n0,
n1. As a simple example, let us consider solutions where

r¼ 0⇒ 3n0n0 ¼−n1n1 and c¼�
�

n1
3d̃n0

�
1=2

: ð27Þ

Furthermore, by taking

n1 ¼ n0 ¼ −n1 ⇒ c ¼ � 1ffiffiffiffiffiffi
3d̃

p

and 3n0 ¼ n1 ¼ n0 ¼ −n1: ð28Þ

Therefore, any choice of this one parameter set of integers
gives a unique complex structure modulus, with r ¼ 0 and
a simple value of c, which satisfies DzWflux ¼ 0.
As we proceed, it will become essential to know the

value ofWflux at a point whereDzWflux ¼ 0. It follows from
(19), (20), (22), and (7) that at a supersymmetric point

Wflux ¼ Cd̃c
�
−4ðn0r − n1Þc

þ i

�
2n0ðr2 − c2Þ − 4n1r −

2n1
3d̃

��
: ð29Þ

Using (26), this simplifies to
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Wflux ¼ −4Cd̃c2ððn0r − n1Þ þ in0cÞ: ð30Þ

We find it convenient to reexpress this as

Wflux ¼ −4Cd̃ðAþ iBÞ; ð31Þ

where

A¼ c2ðn0r−n1Þ; B¼ c3n0; C¼ 232

F2=3M
3
U ð32Þ

and r and c are given in (25) and (26), respectively. As a
concrete example, consider the choice of integer parameters
given in (28). Then

r ¼ 0; c ¼ � 1ffiffiffiffiffiffi
3d̃

p ⇒ A ¼ n0

3d̃
;

B ¼ � n0

3d̃
ffiffiffiffiffiffi
3d̃

p for n0 ∈Z: ð33Þ

C. Complex structure F-term potential energy

In this subsection, we want to discuss the part of the
F-term potential energy function arising from the flux
superpotentialWflux only. To do this, however, it is essential
to include contributions that arise from terms associated
with the Kähler potentials of the dilaton S and the h1;1 ¼ 1
Kähler modulus T, as well as the complex structure z. That
is, the relevant terms in the potential energy function are

Vflux ¼ eκ
2
4
K½Kzz̄DzWfluxDz̄W̄flux þ KSS̄DSWfluxDS̄W̄flux

þ KTT̄DTWfluxDT̄W̄flux − 3κ24jWfluxj2�; ð34Þ

where

κ24K ¼ κ24ðKS þ KT þKÞ
κ24KS ¼ − lnðSþ S̄Þ; κ24KT ¼ −3 lnðT þ T̄Þ;
κ24K ¼ − lnðid̃ðz − z̄Þ3Þ ð35Þ

and

DiWflux ¼ ∂iWflux þ κ24ð∂iKÞWflux for i ¼ S; T; z: ð36Þ

We emphasize that here, and throughout this paper, we
always use the tree level expressions—given in (35)—for
the Kähler potentials. This is motivated by the fact that, in
the absence of five-branes—which we are assuming—the
leading order string perturbative corrections vanish. See, for
example, [29]. Evaluating KSS̄ and KTT̄ and using the fact
that Wflux is independent of both S and T, expression (34)
becomes

Vflux ¼ eκ
2
4
K½Kzz̄DzWfluxDz̄W̄flux þ κ24jWfluxj2

þ 3κ24jWfluxj2 − 3κ24jWfluxj2�; ð37Þ

which, noting the cancellation of the last two jWfluxj2 terms,
simplifies to

Vflux ¼ eκ
2
4
K½Kzz̄DzWfluxDz̄W̄flux þ κ24jWfluxj2�: ð38Þ

Finally, using

eκ
2
4
K ¼ −i

ðSþ S̄ÞðT þ T̄Þ3d̃ðz− z̄Þ3 ; Kzz̄ ¼ −
κ24ðz− z̄Þ2

3
;

ð39Þ

it follows that

Vflux ¼
1

ðSþ S̄ÞðT þ T̄Þ3
�

−i
d̃ðz − z̄Þ3

×

�
−
κ24ðz − z̄Þ2

3
DzWfluxDz̄W̄flux þ κ24jWfluxj2

��
:

ð40Þ

Note that this is the potential energy function for arbitrary
values of complex structure modulus z. Hence, Dz̄W̄flux
does not generically vanish.
Although complex structure moduli satisfying con-

straints (25) and (26) have vanishing covariant derivative
DzWflux, it is essential to determine whether or not they are
local minima of Vflux. We begin by considering the first
derivative of the potential function (40). We find that

∂Vflux

∂z
¼ −iκ24

ðSþ S̄ÞðT þ T̄Þ3d̃ðz − z̄Þ3

×

�
∂Wflux

∂z
−

3

ðz − z̄ÞWflux

�
W̄flux: ð41Þ

Using (7) and (20), it follows that

∂Wflux

∂z
−

3

ðz − z̄ÞWflux ¼ DzWflux ð42Þ

and, hence,

∂Vflux

∂z
¼ −iκ24

ðSþ S̄ÞðT þ T̄Þ3d̃ðz − z̄Þ3 ½DzWflux�W̄flux: ð43Þ

Therefore, all complex structure moduli with vanishing
covariant derivative DzWflux ¼ 0 satisfy

∂Vflux

∂z
¼ 0: ð44Þ
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Since Vflux is real, this implies that

∂Vflux

∂r
¼ ∂Vflux

∂c
¼ 0: ð45Þ

Are these extrema with DzWflux ¼ 0 also local minima of
Vflux? The answer is yes, provided c > 0. This can be
proven by a tedious but straightforward evaluation of the
second derivatives of Vflux at the extrema which shows that

∂
2Vflux

∂
2r

> 0;
∂
2Vflux

∂
2c

> 0; and
∂
2Vflux

∂r∂c
¼ 0 for hci> 0:

ð46Þ

This suffices to prove that the determinant of the Hessian
and the second derivative Vflux with respect to r are both
positive at the extrema and, therefore, the extrema must be
minima.
Henceforth, we will choose the vacuum expectation

value hzi of the complex structure modulus to be at one
of the local minima of Vflux. It follows from (31), (32), and
(40) that, at any such minimum,

Vflux ¼
M4

U

st3hci3
�
1.14

F4=3

�
d̃ðA2 þ B2Þ: ð47Þ

D. Nonrenormalization of Wflux

The Gukov-Vafa-Witten formula in (8) gives the tree
level expression for Wflux. Can Wflux receive string and α0
perturbative corrections? Within the context of heterotic
M-theory, the answer is no. As shown in [42], low energy
Peccei-Quinn symmetry forbids Wflux from containing the
dilaton S both at the tree level—thus explaining why S does
not appear in (9)—and at any perturbative level—thus
ensuring that Wflux receives no corrections in string pertur-
bation theory. Similarly, axionlike symmetries of the Kähler
moduli preclude Wflux from acquiring a T dependence.
Hence, Wflux can receive no α0 corrections. That is, the
expression for Wflux in (9) can receive no string and α0
perturbative corrections.
Be that as it may, these arguments no longer apply to

nonperturbative corrections toWflux, to which we now turn.

III. GAUGINO CONDENSATION AND N = 1
SUPERSYMMETRY BREAKING

To spontaneously break N ¼ 1 supersymmetry, follow-
ing, for example, the approach in the heterotic M-theory
B − L MSSM vacuum [5,43], we consider theories con-
taining a line bundle with an anomalous Uð1Þ structure
group in the hidden sector. Furthermore, we assume that the
commutant subgroup of Uð1Þ contains a non-Abelian
group which becomes strongly coupled at a mass scale
Λ near MU.

A. Gaugino condensate superpotential

As is well known [13–16], the condensation of the
associated gauginos at scale Λ produces a nonperturbative
superpotential which, to lowest order, is given by

WG ¼ M3
Ue

−bS; ð48Þ

where

b ¼ 6π

bLα̂GUT
; α̂GUT ¼ ð8πðπρÞκ24Þ2=3

v1=3
ð49Þ

and bL is the renormalization group coefficient associated
with the specific non-Abelian commutant. Using (3), (12),
(13), and (14), we find that

α̂GUT ¼ 0.0762 F2=3; ð50Þ

where F can run over the range given in (15). The value of
bL depends on the specific commutant non-Abelian group
in the hidden sector. For example, in [5,39], the non-
Abelian group is E7 with the renormalization group
coefficient

bL ¼ 6: ð51Þ

The nonperturbative superpotential WG leads to sponta-
neous breaking of N ¼ 1 supersymmetry in the S and T
moduli, which is then gravitationally mediated to the
observable matter sector. The scale of SUSY breaking in
the low-energy observable sector is of order

msusy ∼ κ24Λ3 ¼ 8π
Λ3

M2
P
: ð52Þ

Let us now extend the superpotential to include both the
complex structure and gaugino condensate superpotentials.
That is, take

W ¼ Wflux þWG: ð53Þ

B. F-term potential including gaugino condensation

Generically, the F-term potential energy function is
given by

VF ¼ eκ
2
4
K½Kij̄DiWDj̄W̄ − 3κ24jWj2�; ð54Þ

where

DiW ¼ ∂iW þ κ24ð∂iKÞW; ð55Þ

the Kähler potential is given in (35) and the indices i, j run
over S, T, and z. In this section, we choose the super-
potential to be that given in (53).
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In our evaluation of VF we will, henceforth, assume that
the complex structure modulus z is always fixed to be a
local minimum hzi of Vflux satisfying DzWflux ¼ 0. For
example, the evaluation of the z covariant derivative in (54)
is given by

DzW ¼ ∂zðWflux þWGÞ þ κ24∂zKðWflux þWGÞ

¼ DzWflux þ
�

−3
ðz − z̄Þ

�
WG

¼ −3
hz − z̄iWG; ð56Þ

where we have used the fact that the gaugino condensate
superpotential (48) is independent of complex structure.
Then, using Wflux given in (31) and (32), the gaugino
condensate superpotentialWG in (48), the Kähler potentials
in (35), and defining

S ¼ sþ iσ; T ¼ tþ iχ; ð57Þ

we find, after a moderate calculation, that

VF ¼ M4
U

st3hci3
��

1.1376

F4=3

�
d̃ðA2 þ B2Þ

þ 1.32 × 10−6d̃−1
�
ð1þ 2bsÞ2 þ 3

�
e−2bs

−
�
2.43 × 10−3

F2=3

�
ð1þ 2bsÞe−bs

×
�
A cosðbσÞ − B sinðbσÞ

��
: ð58Þ

Once again, note that we are using the tree level expressions
for the Kähler potentials given in (35).
We conclude that adding the nonperturbative super-

potential WG substantially alters the F-term effective
potential VF presented in (47) based on Wflux alone and
evaluated at DzWflux ¼ 0. It is important, therefore, to
search for and include any other nonperturbative super-
potentials in the calculation of the F-term potential energy.

IV. WORLD SHEET INSTANTON
SUPERPOTENTIAL

It is well known [17–19] that a nonperturbative con-
tribution to the superpotential can also be generated by the
superstring wrapping around isolated, genus zero, holo-
morphic curves in the Calabi-Yau compactification three-
fold. The leading order contribution to this superpotential
arises from the superstring wrapping once around each
such curve. In this section, we introduce this leading order,
nonperturbative “world sheet instanton” contribution.

A. Single isolated, genus-zero curve

Let C be a holomorphic, isolated, genus zero curve in the
Calabi-Yau threefold X with h1;1 ¼ 1. Then, as discussed
in [44], the general form of the instanton superpotential
induced by a string wrapping C is given by

WI ¼ Pe−τT; ð59Þ

where

τ ¼ 1

2
TMðπρÞvC; ð60Þ

vC is the volume of the holomorphic curve C and TM is the
string membrane tension

TM ¼ 1

ðvρκ24Þ1=3
: ð61Þ

Using (3), (12), (13), and (14), one finds

TM ¼ 15.5

F1=3M
3
U ð62Þ

and, hence, that

τ ¼ 38.8F2=3 vC
v1=3

: ð63Þ

The factor P in (59) is given by

P ∝ PfaffðD−Þ; ð64Þ

where PfaffðD−Þ is the Pfaffian of the chiral Dirac operator
constructed using the Hermitian Yang-Mills connection
associated with the holomorphic vector bundle on both
the observable and hidden sectors evaluated at the curve C.
For a generic bundle, one expects the Pfaffian to be
proportional to a holomorphic, polynomial function of a
subset of the vector bundle moduli, as shown in several
contexts in [20,21,27]. In the previous section, we specified
that the vector bundle in the hidden sector must contain a
line bundle with an anomalous Uð1Þ structure group. If the
hidden sector bundle is strictly a single line bundle L (more
exactly, its extension to L ⊕ L−1 whose structure group is
embedded in E8), we note that it will have no vector bundle
moduli and, hence, vanishing Pfaffian. However, it is
important to note that the “string instanton” arises from
all bundle gauge connections in both the hidden and the
observable sectors. That is, P is the Pfaffian associated with
the gauge connections of the vector bundles of both the
observable and hidden sectors, which, as a rule, will have
multiple vector bundle moduli and, potentially, a non-
vanishing Pfaffian. Finally, we note that the proportionality
factor in (64) was defined in detail, for example in [27,45],
and shown to be an explicit function of the complex
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structure moduli. In this paper, since the value of the
complex structure modulus has been fixed to be at a
supersymmetry preserving minimum of Vflux, this function
becomes a constant that could, in principle, be explicitly
computed. However, for simplicity, we will simply absorb it
into the expression for the Pfaffian and write

P ¼ PfaffðD−Þ: ð65Þ

B. Multiple isolated, genus-zero curves

When the Calabi-Yau threefold has h1;1 ¼ 1, there is a
single homology class in H2 which, given the above
discussion, we denote by [C]. It is well known that, in
general, this class can contain a finite number of holomor-
phic, isolated, genus zero curves in addition to C. The total
number of such curves is specified by the Gromov-Witten
invariant, which can be computed given a specific Calabi-
Yau threefold—see, for example [27,46,47]. Denote the
number of such curves by n½C� and write them as
Ci; i ¼ 1;…n½C�. All such curves in the same homology
class have the same area, the same classical action and the
same exponential factor as in (59). However, their Pfaffians
are, in general, different. Hence, the contribution to the
superpotential from all curves Ci in the homology class [C]
is given by

WI ¼
�Xn½C�

i¼1

Pi

�
e−τT: ð66Þ

An important theorem of Beasley andWitten [22] proved
that, under a range of circumstances, the sum over the
Pfaffians in any given homology class must vanish. It then
follows that the associated instanton superpotential in (66)
would be zero. However, as shown in a number of papers—
see [23–26] for example—there are a substantial number of
phenomenologically acceptable vacua that violate one or
more of the assumptions in the Beasley-Witten theorem.
For example, in the heterotic M-theory B − L MSSM
vacuum in [27], the existence of Z3 × Z3 discrete torsion
violates the Beasley-Witten theorem and has nonvanishing
instanton superpotential WI. Henceforth, we will assume
that the vacua we are considering violate the Beasley-
Witten theorem; that is, that

Pn½C�
i¼1 Pi ≠ 0.

The exact functional form of
Pn½C�

i¼1 Pi has only been
calculated in a few specific examples, see [20,21,27], and
is unknown for most physically acceptable heterotic
vacua. This is also the case for the vector bundle moduli
Kähler potential. Hence, the precise formalism for com-
puting the supersymmetry preserving vector bundle
moduli vacua is unknown. Be that as it may, we will
now assert—similarly to the complex structure modulus—
that the values of the vector bundle moduli are independ-
ently fixed to be constants in a vacuum state that does

not break N ¼ 1 supersymmetry. It follows that the
Pfaffian factor is simply a complex number, which we
will express as

Xn½C�
i¼1

Pi ¼ peiθp ; ð67Þ

where, since it is unknown how to compute the Pfaffian
for the theories discussed in this paper, the values of p and
θp are, a priori, unrestricted. That is, in this paper, we
simply parametrize the Pfaffian factor in terms of the real
coefficients p and θp and deduce what their values must be
in order to stabilize the dilaton, real Kähler modulus and
the T axion respectively within our context.
In summary, we will henceforth assume thatWI ≠ 0, and

simply denote (66) as

WI ¼ M3
Upe

iθpe−τT; ð68Þ

where, using the fact that the Calabi-Yau threefold in this
paper has a mass scale of order MU, we have restored
natural units.

C. F-term potential function with string instantons

In this subsection, we extend the F-term potential energy
function given in (58) to include contributions from the
instanton superpotential. That is, we evaluate the potential
energy function in (54) and (55) but now taking the
superpotential to be

W ¼ Wflux þWG þWI; ð69Þ

where Wflux, WC, and WI are given in (31), (48), and (68),
respectively. As above, the Kähler potential is presented in
(35) and the indices i, j run over S, T, and z. We emphasize
once again that throughout this paper we always use the tree
level expressions for the Kähler potentials. Importantly, as
we did in the previous section, we will assume in our
evaluation of VF that the complex structure z is always fixed
to be a local minimum hzi of Vflux satisfying DzWflux ¼ 0.
Again defining

S ¼ sþ iσ; T ¼ tþ iχ ð70Þ

we find, after a detailed calculation, that
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VF ¼ M4
U

st3hci3
��

1.14

F4=3

�
d̃ðA2 þ B2Þ þ 1.32 × 10−6d̃−1

�
ð1þ 2bsÞ2 þ 3

�
e−2bs

−
�
2.43 × 10−3

F2=3

�
ð1þ 2bsÞe−bssgnðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos

�
bσ þ arctan

�
B
A

��

þ 2.62 × 10−6pd̃−1
�
1þ 2bsþ 3

�
τtþ 3

2

��
e−bs−τt cosðbσ − τχ þ θpÞ

þ 4.36 × 10−7p2d̃−1ð3þ ð2τtþ 3Þ2Þe−2τt

−
�
2.43 × 10−3

F2=3

�
pð1þ 2τtÞe−τtsgnðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos
�
τχ − θp þ arctan

�
B
A

���
; ð71Þ

where A, B, and hci are defined in (32), F is defined in (14) and (15), b and τ are given in (49) and (63), respectively, and p
and θp arise in (68). In addition, we have used the trigonometric relation

A cosðxÞ − B sinðxÞ ¼ sgnðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos
�
xþ arctan

�
B
A

��
: ð72Þ

We conclude that adding the “string instanton” super-
potential WI greatly alters the F-term potential energy
function—which, for Wflux þWG, was presented in (58).
The potential VF in (71) is—to lowest order—the most
general expression for the F-term potential energy for the
dilaton and Kähler modulus when the complex structure z
is evaluated at a local minimum of Vflux for which
DzWflux ¼ 0.

V. ANOMALOUS Uð1Þ AND σ, χ AXIONS

In the previous sections, we have considered only the
superpotentials and the F-term potential energy associated
with the dilaton, complex structure, and Kähler moduli.
This was motivated by the fact that none of these moduli
fields transform homogeneously under any low-energy
gauge group. However, as we discuss in this section, the
anomalous Uð1Þ gauge group does produce an inhomo-
geneous transformation of the imaginary component of
both the dilation and the Kähler modulus—thus inducing a
D-term potential energy VD. In this section, we define and
discuss this D-term potential only. In Sec. VI, we will
reintroduce VF in combination with VD and discuss the
associated moduli vacua.

A. Inhomogeneous Uð1Þ transformations

As discussed in Sec. II, in this paper we will assume that
the hidden sector vector bundle contains a line bundle L
with an anomalous Uð1Þ structure group. Within the
context of compactification on a Calabi-Yau threefold with
h1;1 ¼ 1, it was shown in [29] that the Green-Schwarz
mechanism [6] cancels this anomaly by producing an
inhomogeneous transformation of the dilaton S and the
Kähler modulus T. It was shown in [28,29] that, for a Uð1Þ
parameter θ, these transformations are given by

δθS¼ 2iπaϵ2Sϵ
2
Rβlθ≡ kSθ; δθT ¼ −2iaϵSϵ2Rlθ≡ kTθ;

ð73Þ

where

ϵS ¼
2πρ4=3

v1=3M2=3
P

; ϵR ¼ v1=6

πρ
ð74Þ

are strong coupling expansion parameters. The integer l
defines the line bundle asOXðlÞ ¼ L, β is the gauge charge
on the hidden sector and

a ¼ 1

4
trE8

Q2 ð75Þ

is determined given the embedding matrix Q of Uð1Þ into
E8 in the hidden sector.
Using (3), (12), (13), and (14), one can determine the

expansion parameters in (74). We find that

ϵS ¼ 0.220F4=3; ϵR ¼ 0.2
F

: ð76Þ

Note that the ϵS often occurs multiplied by π, so we
introduce

ϵ0S ¼ ϵSπ ¼ 0.690F4=3: ð77Þ

For simplicity, we will assume henceforth that the line
bundle structure group embeds into the SUð2Þ subgroup of
E8 in the hidden sector. It follows that a ¼ 1. Finally, we
will defer a discussion of the values of l and β until later in
the paper.
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We see from (73) that these Uð1Þ transformations are
purely imaginary and, hence, represent inhomogeneous
transformations of the σ and χ imaginary components of S
and T, respectively. That is, the σ and χ fields behave as
axions under the anomalous Uð1Þ transformation.

B. Anomalous Uð1Þ induced potential energy VD

In addition to the canonical D-term potential energy
involving all hidden sector matter fields carrying non-
vanishing Uð1Þ charge, the inhomogeneous Uð1Þ trans-
formations of S and T presented in (73) induce a potential
energy for the dilaton and modulus fields even though they
are neutral under linear Uð1Þ transformations. As discussed
in detail in Dumitru:2022apw, assuming the vacuum expect-
ation values for all hidden matter scalars are zero, then these
matter scalars “decouple” from the S and T moduli D-term
potential energy. We will assume that this is the case in this
paper. Then, as shown in [29,30], ignoring the matter
scalars, the D-term potential energy is given by

VD ¼ 1

2s
P2; ð78Þ

where

P ¼ ikS∂SK þ ikT∂TK: ð79Þ

It follows from (35) that

∂SK ¼ −κ−24
1

Sþ S̄
¼ −κ−24

1

2s
;

∂TK ¼ −3κ−24
1

T þ T̄
¼ −3κ−24

1

2t
ð80Þ

and from (73) that

kS ¼ i2πϵ2Sϵ
2
Rβl; kT ¼ −i2ϵSϵ2Rl: ð81Þ

Inserting these results into (79), we find that

P ¼ −
ϵSϵ

2
R

κ24

�
−
1

s
ϵ0Sβlþ

3l
t

�
: ð82Þ

Using (76) and (77) as well as (3) and (13), we can reexpress
P as

P ¼ −
�
53.4

F2=3

�
M2

U

�
−
1

s
ð0.690F4=3Þβlþ 3l

t

�
: ð83Þ

Hence, it follows from (78) that

VD¼
�
1.42×103

F4=3

�
M4

U

s

�
−
1

s
ð0.690F4=3Þβlþ3l

t

�
2

: ð84Þ

Note that VD is a function of s and t (the real parts of
S and T, respectively) and is independent of the axions
σ and χ.
Finally, we note that the part of P which is independent

of the charged matter scalars, that is, P given in (82), when
evaluated for some fixed values of hsi and hti is custom-
arily referred to as the Fayet-Iliopoulos (FI) term. We will
do so, henceforth, in this paper.

C. Supersymmetry preserving vacua of VD

Minimizing the D-term potential (84) defines D-flat,
N ¼ 1 supersymmetry preserving vacuum states hsi,hti for
which

hPi ¼ FI ¼ 0: ð85Þ

It follows from (82) that this will be the case for

hsi ¼ ϵ0Sβ
3

hti ð86Þ

or, using (77), for

hsi ¼ 0.230F4=3βhti: ð87Þ

Integer l which defines the line bundle L has canceled out
of this expression. Importantly, note that the values of
hsi,hti are not completely determined by requiring that
FI ¼ 0. Rather, they form a straight one-dimensional line in
s and t space where VD ¼ 0. That is, a priori, hti can take
any value whereas hsi is constrained to satisfy (87). The
value for hti will be fixed to be a minimum of the F-term
potential VF in Sec. VI. Finally, note that since VD is
independent of the axions σ and χ, there is, as yet, no
constraints on their vacuum expectation values.
Let us choose any point along the D-flat direction and

expand the complex fields S and T around the associated
vacuum expectation values. Expanding

S ¼ hsi þ δS; T ¼ hti þ δT; ð88Þ

one finds that the Lagrangian for δS and δT has off-diagonal
kinetic energy and mass terms. However, as shown in [29],
one can define two new complex fields ξ1 and ξ2 which
have canonically normalized kinetic energy and are mass
eigenstates.
Following [29], we define

�
ξ1

ξ2

�
¼ U

�
δS

δT

�
; ð89Þ

where
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U ¼ 1

hΣi

 
hgSS̄k̄Si hgTT̄ k̄TiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihgSS̄gTT̄i

p hk̄Ti −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihgSS̄gTT̄i

p hk̄Si

!
ð90Þ

and

Σ2 ¼ gSS̄kSk̄S þ gTT̄kTk̄T: ð91Þ

It then follows that the Lagrangian for ξ1 and ξ2 is given by

L ¼ −∂μξ̄1∂μξ1 − ∂
μξ̄2∂μξ

2 −m2
anomξ̄

1ξ1; ð92Þ

where

manom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hg22Σ2i

q
ð93Þ

and ξ2 is massless. As discussed below, manom is the mass
of the gauge connection of the anomalous Uð1Þ struc-
ture group.
Let us evaluate manom. The gauge coupling is defined by

g22 ¼
πα̂GUT

s
: ð94Þ

Using (50) and (87), we find that in the chosen FI ¼ 0
vacuum

hg2i ¼
:489F1=3

hsi1=2 ¼
�

1.02

F1=3β1=2

�
1

hti1=2 : ð95Þ

Computing Σ2 in (91) using (35), (76), and (81) we find that

Σ2 ¼ M2
P

8π
l2
�
3.68 × 10−5F4=3β2

s2
þ 2.32 × 10−4

t2F4=3

�
: ð96Þ

Now evaluate this for the chosen FI ¼ 0 vacua. Using (87),
we find that the coefficient β exactly cancels out of the
expression. Finally, using (3) and (13), we find

hΣi ¼
�
2.35l

F2=3

�
MU

hti : ð97Þ

It then follows from (93), (95), and (97) that

manom ¼
�
3.39l

Fβ1=2

�
MU

hti3=2 : ð98Þ

Note that manom is a function of the expectation value hti.

Since complex fields ξ1 and ξ2 are mass eigenstates with
canonical kinetic energy, it is useful to express both S and T
in terms of ξ1 and ξ2. This can be done by inverting
expression (89). Then

�
δS

δT

�
¼ U−1

�
ξ1

ξ2

�
; ð99Þ

where

U−1 ¼ 1

hΣi

0
BBB@

hkSi
ffiffiffiffiffiffiffiffiffiffiffiD
gTT̄
gSS̄

Er
hkTi

hkTi −
ffiffiffiffiffiffiffiffiffiffiffiD
gSS̄
gTT̄

Er
hkSi

1
CCCA: ð100Þ

Using (35), (76), (77), (81), and (97), as well as (3), and
(13), we find that

U−1 ¼ ihti
MP

�
2.00F4=3β −1.15F4=3β

−2.90 −5.00

�
: ð101Þ

Writing

δS ¼ δsþ iσ; δT ¼ δtþ iχ; ð102Þ

it follows from (99) and (101) that

δsþ iσ ¼ ihti
MP

ð2.00F4=3β ξ1 − 1.15F4=3β ξ2Þ;

δtþ iχ ¼ ihti
MP

ð−2.90 ξ1 − 5.00 ξ2Þ: ð103Þ

To proceed, we recall that ξ1 is a massive complex field
with mass manom given in (98), while ξ2 is massless.
Defining

ξ1 ¼ η1 þ iϕ1; ð104Þ

it was shown in detail in [5,28,29] that the anomalous Uð1Þ
hidden sector gauge group is spontaneously broken such
that: (1) the Uð1Þ gauge field AUð1Þ attains a mass manom;
(2) the real scalar ϕ1 obtains the same massmanom based on
(92); and (3) real scalar η1 acts as the zero mass Goldstone
boson associated with this spontaneous breaking. In com-
bination with the fermionic superpartner ψ1 which also, by
supersymmetry, must obtain mass manom, the combination
(ϕ1, AUð1Þ, ψ1) forms a vector supermultiplet with mass
manom. As we will demonstrate in a concrete example
presented below, physically realistic values of F, β, l, and
hti are typically such that
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manom ≳MU: ð105Þ

It follows from (12) that MU sets the Calabi-Yau threefold
mass scale. In this paper, we are interested only in the
effective low-energy theory composed of fields with mass
substantially less than this scale, Hence, we will integrate
out all fields with mass greater than or approximately equal
toMU. Thus, it follows from (105) that we will integrate the
anomalous Uð1Þ massive vector superfield, which includes
the scalar field component ϕ1, out of the theory. Recalling
that the Goldstone boson η1 can be gauged away, it follows
that the entire complex scalar field ξ1 can be integrated out
of the low energy theory.
Therefore, in the low energy effective theory, the

expressions in (103) simplify to

δsþ iσ ¼ −
ihti
MP

ð1.15F4=3β ξ2Þ;

δtþ iχ ¼ −
ihti
MP

ð5.00 ξ2Þ: ð106Þ

Writing

ξ2 ¼ ηþ iϕ; ð107Þ

it follows that

δs ¼ hti
MP

1.15F4=3β ϕ; σ ¼ −
hti
MP

1.15F4=3β η

δt ¼ hti
MP

5.00ϕ; χ ¼ −
hti
MP

5.00 η: ð108Þ

It then follows from (88), (102), and (108) that

s ¼ hsi þ hti
MP

1.12F4=3β ϕ; t ¼ hti þ hti
MP

5.00ϕ

σ ¼ −
hti
MP

1.15F4=3β η; χ ¼ −
hti
MP

5.00 η: ð109Þ

Now recall from (87) that

hsi ¼ 0.230F4=3βhti: ð110Þ

Inserting this into (109) we obtain finally that

s¼ htiF4=3β

�
0.230þ 1.15

ϕ

MP

�
; t¼ hti

�
1þ 5.00

ϕ

MP

�

σ ¼−hti1.15F4=3β
η

MP
; χ ¼−hti5.00 η

MP
: ð111Þ

It is important to note that s and t in this expression satisfy

s ¼ 0.230F4=3β t; ð112Þ

that is, the same relationship as in (89). Hence, the
expansion of s and t around vacuum expectation values
hsi and hti satisfying FI ¼ 0, and integrating out the heavy
scalar ξ1 while keeping the light scalar ξ2 in the effective
theory, restricts all values of s and t to lie along the D-flat
direction

s ¼ ϵ0Sβ
3

t ¼ 0.230F4=3β t ð113Þ

in which VD ¼ 0.

VI. DETERMINING THE MODULI VACUA

In the previous section, we constructed the D-term
potential energy VD for the dilaton and Kähler modulus
induced by their inhomogeneous transformations under the
anomalous Uð1Þ gauge group. The minima of this D-term
potential energy was shown to lie along a one-dimensional
line in s and t space for which VD ¼ 0. Specifically, FI ¼ 0
and, hence, N ¼ 1 supersymmetry is preserved for s and t
satisfying relation (113).
In this section, we will explicitly assume that parameters

F, β, l, and the values of hti are restricted so that
manom ≳MU. It then follows from (98) that, for fixed
values of F, β, and l, there is a maximum value of hti,
which we denote htibound, given by

htibound ¼
�
3.39l

Fβ1=2

�
2=3

: ð114Þ

Below this bound, one can integrate complex scalar ξ1 out
of the low energy theory, leaving s, t, σ, and χ to be
expressed in terms of hti, ϕ, and η as in (111). In this
section, we analyze the F-term potential given in (71) along
the VD ¼ 0 line for hti≲ htibound using (111). We will
discuss the case where hti ≫ htibound in the next section.
Finally, for concreteness, we henceforth assume that the

commutant subgroup to the anomalous Uð1Þ is E7 and,
therefore, that bL ¼ 6—as stated in (51). Using the
expression for ˆαGUT in (50), it follows that the parameter
b in (49) is given by

b ¼ 41.2

F2=3 : ð115Þ

A. The F-term potential along the VD = 0 line

Inserting expressions (111) for s, t, σ, and χ into the
F-term potential energy VF given in (71), and using b given
in (115), we find
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VFðhti; η̃; ϕ̃Þ ¼
M4

U

F4=3βhti4hci3ð0.230þ 1.15ϕ̃Þð1þ 5.00ϕ̃Þ3
�
1.138F−4=3d̃ðA2 þ B2Þ

þ 1.32 × 10−6d̃−1ðð1þ 19.0F2=3βhtið1þ 5.01ϕ̃Þ2 þ 3Þ exp½−19.0F2=3βhtið1þ 5.01ϕ̃Þ�
− ð2.43 × 10−3F−2=3Þð1þ 19.0F2=3βhtið1þ 5.01ϕ̃ÞÞ exp½−9.48F2=3βhtið1þ 5.00ϕ̃Þ�

× sgnðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos

�
47.5F2=3βhtiη̃ − arctan

�
B
A

��

þ 2.62 × 10−6d̃−1p

�
5.50þ htið19.0F2=3βð1þ 5.01ϕ̃Þ þ 3τð1þ 5.00ϕ̃ÞÞ

�
× exp½−ð9.49F2=3βð1þ 5.01ϕ̃Þ þ τð1þ 5.00ϕ̃ÞÞhti� cos½ð−47.5F2=3β þ 5.00τÞhtiη̃þ θp�

þ 4.36 × 10−7d̃−1p2

�
3þ ð3þ 2τhtið1þ 5.005ϕ̃ÞÞ2

�
exp½−2τhtið1þ 5.00ϕ̃Þ�

− 2.43 × 10−3F−2=3pð1þ 2τhtið1þ 5.00ϕ̃ÞÞ exp½−τhtið1þ 5.00ϕ̃Þ�

×sgnðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos

�
5.00τhtiη̃þ θp − arctan

�
B
A

���
; ð116Þ

where η̃ ¼ η=MP and ϕ̃ ¼ ϕ=MP are dimensionless. As
in (71), coefficients A, B, and hci are defined in (32), F is
defined in (14) and (15), τ is given in (63), and p; θp arise
in (68).
This is a rather complicated expression which is difficult

to analyze analytically. We find it most illuminating to
simply choose some fixed values for the flux parameters A,
B, hci, and the coefficients F, β subject to the constraints on
them discussed above. We will also choose a realistic fixed
value for τ and set d̃ ¼ 1. The potential VF will then be
evaluated at these fixed parameters, initially allowing
parameters p and θp to take arbitrary values. The choices
of F, β, and l will also, using (114), determine a fixed value
for htibound. We then plot VF in the range 0 ≤ hti≲ htibound
for various values of p and θp.

B. Stabilizing the axion

It is important to note that the “light” axion η̃ enters VF
in (116) via three cosine terms, specifically in the third,
fourth, and sixth terms, each with a different coefficient that
depends on the parameters listed above as well as on hti.
Therefore, before discussing the stabilization of hti, it is
essential to determine the vacuum expectation value of η̃.
To do this, we first note that the coefficient of each of the
three cosines has an exponentially suppressed multiplica-
tive factor. For the third, fourth, and sixth terms in (116)—
that is, the terms containing the cosines—these factors are

exp½−9.49F2=3βhti�; exp½−ð9.49F2=3β þ τÞhti�;
exp½−τhti�; ð117Þ

respectively, where we have ignored the ϕ̃ field contribu-
tion which simply enhances the suppression of each term
equally. For the physically acceptable range of parameters
F, β, and τ discussed above, we find that the value of hti is
such that the first two exponentials in (117) are greatly
suppressed relative to the third entry—typically by a factor
of 10−6 or smaller. Hence, a very good approximation
for determining hη̃i is to drop the third and fourth terms
in (116) and to evaluate hη̃i using the sixth term only. Then,
using the fact that there is a minus sign in front of the sixth
term, we find

∂VF

∂η̃
¼ 0;

∂
2VF

∂
2η̃

> 0 ⇒ hη̃i ¼ 2πnþ arctanðBAÞ − θp
5.005τhti ;

ð118Þ

where n∈Z. We conclude that once we have found the
local minimum for hti in the next subsection, substituting
its value into (118) gives one a very good approximation for
the local minima of η̃ as a function of the Pfaffian parameter
θp. As a check, we calculated the minima for η̃ including
all three cosine terms using Mathematica. We find that
expression (118) is indeed the correct expression for hη̃i to
a very high degree of accuracy. That is, for any value of θp
we have stabilized the light axion. Having done this, we
now proceed to computing the vacuum expectation value
for hti which minimizes the VF potential energy.

C. Stabilizing hti: An explicit example

In this paper, we will present only a single, but physically
representative, set of parameters as an example. A much
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more comprehensive discussion of VF will be presented
elsewhere.
First, recall that VF is a function of hti, ϕ̃, and η̃. It is

clear from the (111) that ϕ̃ is simply the fluctuation around
hti in the t direction. Hence, to evaluate hti one can simply
set ϕ̃ ¼ 0. Furthermore, as stated above, to a very high
degree of accuracy, one can approximate η̃ by the vacuum
expectation value given in (118)—which sets the associated
cosine factor to unity for any value of θp. Having done this,
VF becomes a function of hti only. We emphasize that,
although we have used (118) as an approximation to hη̃i, the
following calculation uses all terms for VF given in (116).
In Fig. 1, we show a sequence of potentials VF correspond-
ing to fixed flux coefficients A ¼ 2=3, B ¼ A=

ffiffiffi
3

p
, c ¼ 1ffiffi

3
p ,

as well as choosing β ¼ 2, l ¼ 2, F ¼ 2, and τ ¼ 2.
However, we allow the Pfaffian coefficient p to vary over
a range of values. It follows from (114) that, for this choice
of parameters,

htibound ¼ 1.79: ð119Þ

Therefore, we plot these curves in the region where
0 ≤ hti ≤ 1.79. From bottom to top, the shapes range from
having a global minimum with VF < 0; a global minimum

with VF ¼ 0; a local minimum with VF > 0; an inflection
point; and no extremum at all. We find that a similar range
of potential shapes satisfying these same approximation
conditions can be obtained for 1 < τ < 3.75 (keeping all
other parameters fixed).
Whether there is a VF extremum at a given hti depends

on the value of p. Choosing an explicit value of p, one
can attempt to solve dVF=dhti ¼ 0 over the range
0 ≤ hti ≤ htibound. For some choices of p, there will be
no solution and, hence, there are no extrema of the potential
VF over the allowed range of t. This is the case for the green
curve in Fig. 1. For a special choice of p, there will be a
solution of dVF=dhti ¼ 0 at a single value of hti in the given
range. This leads to an inflection point in the potential
energy. This is the case for the dashed purple curve in Fig. 1.
For a finite range of values of p, we find solutions with two
extrema, one corresponding to a minimum and the other to a
local maximum of the potential energy. This is the case for
the blue, red, and solid purple curves in Fig. 1. The values of
p leading to each of these results are given in the caption for
Fig. 1. Note that the value of p is progressively decreasing
from the bottom curve (blue, with a negative energy global
minimum) through the red curve (zero energy global
minimum), solid purple curve (positive energy local mini-
mum), dashed purple curve (positive energy inflection
point), and green curve (no extremum). Experimenting over
a substantial range of parameters p, we find that a large
number give a potential energy with a negative global
minimum while a smaller, but substantial, number lead to
a zero or positive potential energy minimum. Finally, as a
check on these results, we performed the above calculations
using all three cosines to determine hη̃i, rather than simply
inserting (118). The results are identical to the above to at
least decimal places.
Given potential energy (116), one can determine the

masses of the dimensionful fluctuation fields ϕð¼ ϕ̃MPÞ
and ηð¼ η̃MPÞ by computing ∂

2VF=∂2ϕ and ∂
2VF=∂2η

evaluated at the minima at hti < htibound for the blue, red,
and solid purple curves, respectively. These masses, along
with the associated value of manom computed at each such
hti using (98), are presented in Table I. Note that all values
ofmanom exceedMU, as they must. Importantly, in all three
cases the values of the mϕ andmη are each over an order of
magnitude smaller than MU ¼ 3.15 × 1016 GeV. Hence,
the ϕ and ηmoduli remain in the low energy effective field
theory.

FIG. 1. Range of potential shapes for fixed A ¼ 2=3,
B ¼ A=

ffiffiffi
3

p
, c ¼ 1ffiffi

3
p as well as l ¼ 2, β ¼ 2, F ¼ 2, τ ¼ 2, and

an arbitrary parameter θp, but varying the Pfaffian coefficient p.
The values of p for the curves from the bottom to the top are
p ¼ ð370; 347; 333; 316; 307Þ, respectively. htibound represents
the value of hti above which manom < sMU and so the potential
shape may not be precise.

TABLE I. The values for manom and mϕ, mη at the minima of the blue, red, and solid purple curves in Fig. 1.

manom mϕ mη

Blue (Vmin < 0) 1.5 × 1017 GeV 1.6 × 1015 GeV 1.2 × 1015 GeV
Red (Vmin ¼ 0) 1.4 × 1017 GeV 1.3 × 1015 GeV 1.7 × 1015 GeV
Solid purple (Vmin > 0) 1.0 × 1017 GeV 1.1 × 1015 GeV 1.4 × 1015 GeV
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D. Finding the range of the Pfaffian coefficient p

Note that the coefficient F ¼ 2 chosen for VF associated
with Fig. 1 is the largest value of F in the “standard” range
given in (15). However, as alluded to in Sec. II B, it is
possible in specific vacua for the value of the coefficient F
to either exceed or be less than the upper and lower bounds
respectively presented in (15). The vacua discussed in this
paper are exactly of this type. The reason is the following. It
has been shown [4,48] that in generic heterotic M-theory
vacua, the “effective” expansion parameter is given by

ϵeffS ¼ 2ϵ0S
t
s
; ð120Þ

where we have used the fact that s ¼ V and that, in the
h1;1 ¼ 1 case, R̂ ¼ 2t. It then follows from (113) that

ϵeffS ¼ 6

β
: ð121Þ

We conclude that in the vacua we are considering—that is,
the h1;1 ¼ 1 case where s and t satisfy FI ¼ 0, thus setting
VD ¼ 0—the size of the effective strong coupling parameter
is set by parameter β, but is independent of the coefficientF.
Hence, F need not be bounded by the constraints in (15) and
can, in principle, take any value—including values larger
than 2 and smaller than 0.6.
However, in considering possible shapes of the potential

energy curve VF, the value of F cannot be made arbitrarily
large. This is because the condition manom ≥ MU has been
assumed in deriving VF, and this can only be satisfied for
0 ≤ hti ≲ htibound where, from (114), htibound ∝ 1=F2=3. To
be sure of potentials with stable or metastable minima and
local maxima, like the bottom three curves in Fig. 1, it
must be that htibound exceeds hti at the local maximum for
each curve, which sets an upper bound for F. As a concrete
example, let us consider the blue curve in Fig. 1. This
curve was determined using F ¼ 2, leading to htibound ¼
1.79 given in (119). It will be shown in a subsequent
publication [37] that the values of hti at both the minima
and maxima of any VF curve will remain unchanged under
a change in parameter F, as long as the Pfaffian parameter
is appropriately adjusted.
Let us denote the value of hti at the local maximum of the

blue curve by htimax. We see from Fig. 1 that htimax ¼ 1.1.
Let us now gradually raise the value of F to lower the value

of htibound—but appropriately adjusting p at each stage so
that the extrema of the blue curve remain at the same values
of hti. We can continue until we reach the point where

htibound ¼ htimax ¼ 1.1: ð122Þ

This occurs when F reaches F ¼ 4, in accordance with
(114) (and using the values of l and β cited in the caption of
Fig. 1). Note that this is significantly larger than the
conventional upper bound F ¼ 2 given in (15) and used
in constructing Fig. 1. As will be shown in [37], the
appropriate adjustment of p is to rescale, p ∝ F−2=3. In
other words, in changing from F ¼ 2 to F ¼ 4, the values
of hti at the minima and maxima do not change if one
adjusts the corresponding value of Pfaffian parameter
substantially from p ¼ 370 to p ¼ 233. A similar adjust-
ment is required for the two higher curves—that is, the red
and solid purple curves—in Fig. 1. The values of hti at their
maxima, the values of Fmax, and the associated values of p
for each of these three curves are given in Table II. Having
done this, it is important to check that the masses of the
fields ϕ and η at the local minima of each of these three
curves continue to be considerably smaller than the value of
manom evaluated at each such local minimum. This turns out
to be the case, as is shown explicitly in Table III.
We conclude that by lowering htibound to the values of

the local maxima for each of the blue, red, and solid purple
curves in Fig. 1, the values of the Pfaffian coefficient p
vary through a substantial range. As a second example, a
red curve with vanishing potential energy at the same value
of hti is possible for the Pfaffian coefficient range
205 < p < 347. The ability to stabilize the expectation
values of dilaton and geometric moduli at the same value
for a wide range of the Pfaffian coefficient p has an
important implication. As mentioned in Sec. IV, when

TABLE II. The values of hti at the local maximum and the
associated values for Fmax and p when htibound is set equal to hti
maximum, for the blue, red, and solid purple curves in Fig. 1,
respectively.

hti at max Fmax p

Blue (Vmin < 0) 1.1 4.0 233
Red (Vmin ¼ 0) 1.0 4.4 205
Solid (Vmin > 0) 0.97 4.8 185

TABLE III. The values ofmanom andmϕ,mη for each of the three curves defined in Table II. Note that, in all cases,
mϕ and mη are each ≪ manom.

manom mϕ mη

Blue (Vmin < 0) 7.1 × 1016 GeV 6.5 × 1014 GeV 4.7 × 1014 GeV
Red (Vmin ¼ 0) 6.5 × 1016 GeV 5.8 × 1014 GeV 4.2 × 1014 GeV
Solid purple (Vmin > 0) 5.9 × 1016 GeV 5.1 × 1014 GeV 3.7 × 1014 GeV
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fixed at a supersymmetry preserving minimum of the
vector bundle moduli, the Pfaffian becomes a complex
number specified in (67) by an amplitude p and a phase θp.
As discussed above, it is not known how to explicitly
calculate their values. However, it is trivial to show that the
values of hsi and hti at the potential minimum do not
depend on θp at all; and now, as we have demonstrated,
their values can also be obtained for a wide range of p. The
fact that the dilaton and geometric moduli can have the
same expectation values for a wide range of Pfaffian
parameter p means there is more likely to be some vector
bundle moduli vacuum that produces a p in that range and
stabilizes those values. The explicit method for determin-
ing the Pfaffian parameter p for each type of potential
in Fig. 1 will be presented in detail in a subsequent
publication [37].

VII. SWAMPLAND BOUND ON THE POTENTIAL
AT LARGE VALUES OF t

Our explicit construction of potentials for heterotic
M-theory compactified on Calabi-Yau threefolds with
h1;1 ¼ h2;1 ¼ 1 provides interesting test cases for the
Swampland conjectures [31–36]. Among the different
conjectures, the trans-Planckian censorship conjecture
[35] and the strong de Sitter conjecture [36] both postulate
that, for large values of the moduli fields (with canoni-
cally normalized kinetic energy), there is a positive lower
bound on the gradient of the potential when V > 0,
namely,

j∇Vj
V

≥
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p ; ð123Þ

where d is the spacetime dimension. Since d ¼ 4 in our
case, the Swampland lower bound is equal to

ffiffiffi
2

p
.

To evaluate whether our potential satisfies this
Swampland conjecture we first recall that the total potential
energy density is V ¼ VD þ VF, where VD is the function
of s and t given in (84). Since we are interested in the large t
limit where t ≫ tbound, VF is given in (71) [and not by (116),
which assumes t≲ tbound]. Now, as discussed in Sec. V C,
VD ¼ 0 for s ¼ 0.2301F4=3βt, which we assume hence-
forth. Inserting this into (71), it follows that VF is a function
of the modulus field t and the axions σ and χ. Although this
VF has numerous terms, the task of evaluating its large field
limit is straightforward. Except for the first term, all other
terms in VF are suppressed by a factor of expð−ctÞ for some
positive coefficient c (which differs for each of the terms).
This includes all three terms containing the axions σ and χ,
so it is not necessary to consider their large field limits.
Hence, the first term dominates all other terms in the large t
limit. Keeping only the first term in VF, we have

VF ∝
1

st3
∝

1

t4
; ð124Þ

where we have imposed the condition that s ∝ t along the
D-flat direction. We do not need to use the exact propor-
tionality constant because the Swampland condition uses
the logarithmic derivative of VF, so any constant factors
drop out.
To proceed, we note that the Swampland condition (123)

requires the moduli fields to have canonically normalized
kinetic energy. The kinetic energy for t ¼ ReT is given by

κ24
∂
2K

∂T∂T
ð∂T∂T̄ÞjImT¼0 ¼

3

4

ð∂tÞ2
t2

; ð125Þ

where κ24K ¼ −3 lnðT þ T̄Þ is the Kähler potential given
in (35). To rewrite this kinetic energy in terms of a field Φ
with canonical kinetic energy, we use the ansatzΦ≡ q ln t,
where q is a constant to be determined by the condition that
Φ has canonical kinetic energy. That is, we set

1

2
ð∂ΦÞ2 ¼ q2

2

ð∂tÞ2
t2

ð126Þ

equal to Eq. (125) and obtain

q2

2
¼ 3

4
⇒ q ¼

ffiffiffiffiffiffiffiffi
3=2

p
: ð127Þ

Hence,

Φ ¼
ffiffiffiffiffiffiffiffi
3=2

p
ln t: ð128Þ

What remains, then, is to rewrite VF in terms of
canonical field Φ in the limit of large t and to check if
the Swampland constraint (123) is satisfied. Using (128),
we can rewrite the potential in (124) as

VF ∝ e−4
ffiffiffiffiffiffi
2=3

p
Φ; ð129Þ

from which we obtain

j∇Vj
V

¼ jdVF=dΦj
VF

¼ 4
ffiffiffiffiffiffiffiffi
2=3

p
>

ffiffiffi
2

p
: ð130Þ

That is, our theory exceeds the Swampland lower bound offfiffiffi
2

p
in the large field limit [35]. A discussion of how our

results relate to Swampland conjectures concerning con-
ditions at small values of the hti field near the center of
moduli space will be presented elsewhere [37].
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