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ABSTRACT This paper addresses the stabilization of a general class of linear single-input/single-output
(SISO) second-order non-minimum phase systemswith input channel delays using Proportional-Integral (PI)
controllers. Such systems arise in various applications, including power electronic circuits and biochemical
reactors. The primary goal is to enhance system performance by determining optimal control gains that shift
the spectral abscissa of the closed-loop system as far to the left as possible, thereby improving its decay rate.
To achieve this, we introduce a geometric framework that characterizes the stability region of the closed-
loop system in three distinct cases. Our main contribution is a systematic tuning approach to achieve the
desired decay rate when feasible. Additionally, we discuss the controller’s fragility and the delay margin
of the closed-loop system to ensure practical applicability. The effectiveness of the proposed method is
demonstrated through numerical simulations for each scenario. Finally, two practical case studies—a boiler
steam drum and a DC-DC boost converter—are presented to illustrate the results’ relevance in practice.

INDEX TERMS Linear systems, Non-minimum phase, PI control, Quasi-polynomials, Spectral abscissa,
Time-delay

I. INTRODUCTION

IT is well known that second-order systems can model a
wide variety of industrial processes [1]. One of the most

common characteristics of such systems is the presence of
unstable zeros, commonly referred to as non-minimum phase
(NMP). When subjected to a classical step input, these NMP
systems are characterized by an undershoot in the initial
response, making them more challenging to control than
those of minimum phase behavior. Additionally, dynamical
systems often operate with input/output delays, which can
arise from various sources such as material transport, delayed
sensing, communication lags, and control decisions, among
others [2]–[5]. Typical examples of second-order NMP sys-
temswith time delays include biochemical reactors, hydraulic
turbines, airplanes, and power electronics converters, to name
a few [6]–[10]. Therefore, given the large array of real-world
processes that second-order NMP time-delay systems can

model, the problem of stabilizing them and improving their
performance is of theoretical and practical interests.
Both phenomena mentioned above require special treat-

ment when studying the closed-loop stability of the system.
On the one hand, the presence of time delays makes the sys-
tem infinite-dimensional, and the stability analysis becomes
more challenging. More precisely, in the linear case, the
characteristic function has an infinite number of characteristic
roots, and the location of the roots depends on the system’s
parameters (including the delay). The problem of stabilizing
a linear system in the presence of constant delays has been
of interest in the last 70 years [11]–[15], and the use of the
classical Proportional-Integral-Derivative controllers (PID)
has proven to be effective in most cases [16]–[20]. On the
other hand, the presence of unstable zeroes also increases
the difficulty of controlling the system; in particular, in some
cases, its control often requires the inclusion of the derivative
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action.
This last requirement is especially challenging in the pres-

ence of time delays. Indeed, due to the system’s structure
under consideration, the inclusion of the derivative action will
produce a closed-loop system of neutral type1. This situation
requires additional considerations and restricts the derivative
gain by |kd | < 1. Furthermore, recent research has focused
on the improperly-posedness of the implementation of the
derivative operator [21], [22], that is, even if the closed-loop
system with the PID controller is stable, stability might be
lost after replacing the derivative operator by the correspond-
ing delay-difference approximation. This problem, as well
as the well-known high-frequency noise amplification, can
sometimes be tackled with the inclusion of low-pass filters.
However, when the relative degree of the system equals one,
as in the case of a second-order NMP system, it should be
mentioned that the presence of the filter may destabilize the
system (for further details, we refer to [23]). Moreover, in
many real-world systems, measuring the derivative of the
state might be unfeasible, and the corresponding controller
cannot be explicitly implemented. Alternative approaches
exist, but they lead to increasing complexity of the control
scheme by increasing the number of parameters to be tuned,
making the analysis more involved. In order to avoid such
problems, we decided to drop the derivative action and, in-
stead, look to optimize the performance of the system under
the utilization of a classical PI controller.

It should be mentioned that considering a PI controller
implies that only some of the systems with the proposed
structure can be stabilized. It is essential to mention that this
problem has been previously discussed in the literature. In
fact, since the delay appears in the input-output channels, the
simplest method was to exploit the structure of the intercon-
nection by approximating the delay by a Padé approximation
(see, for instance, [24]), that is:

e−τs ≈
∑N

k=0(−τs/2)k/k!∑N
k=0(τs/2)

k/k!
,

where N corresponds to the order of the approximation (for
further details on this kind of analysis, see [4] and [5]). While
such an approximation makes the system finite-dimensional,
thereby simplifying the system’s stability analysis, it may
strongly affect the location of the characteristic roots of
the original dynamical systems with respect to parameters’
changes. Thus, it can result in mistuning the control parame-
ters and making it difficult to estimate the closed-loop system
decay rate.

It is worth noting that recent research efforts have also
focused on the case of time-varying delays (see, for exam-
ple, [25]). However, under such configurations, imposing a
desired decay rate become more challenging. Fortunately, in
some scenarios, one can consider an averaging approach to
this problem (see, for instance, [26]). Moreover, as described
in [27], one can impose a constant delay by inducing an

1that is, a system with a delay in the highest order derivative

additional delay whenever the given delay is inferior to a
certain upper bound τ̄ , with the existence of such a bound
as the only restriction. Given these observations, we opted to
consider only static delays in our analysis.
The contribution of this paper is threefold:
First, the geometrical properties of the stability region in

the control parameter space (kp, ki) are studied. In particular,
the space is partitioned in several domains, each of them
characterized by a fixed number of unstable roots. Therefore,
the region of interest corresponds to the one characterized
by zero unstable roots. Such a methodology, known as the
D-partition method, goes back to the pioneering work of
Neimark (see, for instance, [28]). Similar ideas were also
proposed by [29] with a detailed discussion of scalar and
second-order delay systems in the corresponding parameter-
space, but without any attempt to optimize the decay rate.
It is worth mentioning that studying the stability properties
of a system based on its parameters is an approach that has
been deeply explored. Indeed, works such as [30] and [31]
look to robustify the control scheme by studying the control
parameter space. Others, such as [32], study the stability
properties of time-delay systems with respect to the delay
parameter, and the corresponding method is known as the τ -
decomposition method. We refer to [33] for further details
on such a methodology and, in particular, the idea to use the
delay as a control parameter.
Second, we propose a methodology that allows finding,

whenever it exists, the point inside the stable region that
places the right-most root of the closed-loop system as far
left as possible, improving its decay rate. A similar approach
can be found in [34], where the system under consideration is
also a second-order LTI system, but without addressing NMP
behavior nor input/output delays). One interesting property is
that one can optimize the spectral abscissa, thus the perfor-
mance, of the closed-loop system using a low-order and low-
complexity control law, such as a PI controller, even when the
system is infinite-dimensional.
Third, the robustness of the closed-loop system with re-

spect to (i) uncertainty of the control gains and (ii) the delay
parameter are analyzed for the sake of applicability, with the
remark that, as mentioned above into a different frame, one
case further use the delay as a control parameter.
Finally, it should be mentioned that a first version of some

of the results can be found in [35]. However, in contrast to the
mentioned paper, a deeper discussion concerning the geomet-
rical properties of the system’s stability region is proposed.
In particular, it is shown that whenever such a region exists,
it is also unique. To the best of the authors’ knowledge, such
a finding represents a novelty in the open literature. Further-
more, a discussion around the maximum possible multiplic-
ity of the system’s characteristic roots under the considered
configuration is also presented. Moreover, new results are
discussed: first, the fragility problem of the PI controller is
studied, that is, how robust the controller is with respect to
control parameters uncertainties. Next, but in a similar spirit,
the margin delay of the closed-loop system is also explicitly
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computed. Finally, new numerical and practical examples
were included to illustrate the presented results, as well as
the corresponding proofs of the given results.

The structure of this paper is as follows: Section II defines
the problem to be solved and outlines the necessary prereq-
uisites. In Section III, we characterize the stability region of
the closed-loop system within the control parameter space.
Section IV presents the main results on the optimization of
the spectral abscissa of the closed-loop system. Section V
examines the robustness of the closed-loop system against
uncertainties in the control gains, while Section VI addresses
the delay margin of the system. To illustrate the presented
results, Section VII includes several numerical examples. Fi-
nally, SectionVIII provides two practical examples to demon-
strate the effectiveness of the proposed results in real-world
applications.

A. NOTATIONS
Throughout this paper, the following standard notations are
used: the set of real numbers is denoted by R. In particular,
R+ := {x ∈ R : x > 0}, and for any given setA,A∗ := A\
{0}. Next,C (C+,C−) represents the set of complex numbers
(with strictly positive/negative real parts) and i :=

√
−1. For

a complex number z ∈ C, z̄ represents its complex conjugate.
For a real number x, sign(x) denotes its sign, with sign(x) ∈
{0,±1}. For two vectors x⃗ and y⃗ of the same dimensions,
⟨⃗x, y⃗⟩ represents the scalar product between them. Finally, for
a given set A, its cardinality is denoted by card{A}.

II. PROBLEM FORMULATION AND PREREQUISITES
Consider a continuous Linear Time-Invariant (LTI) Single-
Input/Single-Output (SISO) dynamical system of the form:

Σ :

{
ẋ(t) = Ax(t) + Bu(t − h),
y(t) = Cx(t),

(1)

including a delay in the input channel. The transfer function
of the system writes as:

Hyu(s; h) :=
P(s)
Q(s)

e−hs ≡ C(sI − A)−1Be−hs, (2)

where h ∈ R∗
+ denotes the input delay, P(s) and Q(s) are

polynomial functions in the complex variable s given by:

P(s) = s− z, (3)

and
Q(s) = s2 + as+ b, (4)

where s = z is an unstable zero with z > 0making the system
NMP, (a, b) ∈ R2, and Q(z) ̸= 0. This last condition rewrites
as z2+az+b ̸= 0 and simply states that the system realization
is minimal in the sense that there is no pole-zero cancellation.

Consider now the system (2) in closed-loop with a standard
PI controller K (s). Its representation in frequency-domain
writes as:

K (s) = kp +
ki
s
, (5)

where (kp, ki) ∈ R2 are the controller’s gains. With no lack
of generality, we assume that kpki ̸= 0, but the proposed
approach also covers the limit cases when kp = 0 or ki = 0.
In particular, ki = 0 corresponds to a proportional gain. In
this last case, a detailed discussion of the stability regions of
LTI SISO systems in the parameter space defined by the gain
kp and the delay h can be found in [33].
With the notations and remarks above, the characteristic

function of the closed-loop system ∆ : C × R2 × R+ → C
can be written as a function of the controller gains (kp, ki) and
the delay h as follows:

∆(s; kp, ki, h) := s3+as2+bs+ e−hs (s− z) (kps+ ki), (6)

which is a quasi-polynomial due to the presence of the expo-
nential term. In other words, as discussed in the Introduction,
we can further interpret the delay h as a system parameter.
It is well-known that ∆ has an infinite number of char-

acteristic roots, and, as in the finite-dimensional case, the
stability properties follow from the location of such roots
with respect to the imaginary axis of the complex plane.
More precisely, the closed-loop system is stable iff all the
characteristic roots have negative real parts. Furthermore,
such roots depend continuously on the systems’ parameters.
For a deeper discussion of such quasi-polynomials, we refer
to [11], [33] and the references therein.
The quasi-polynomial ∆ has the following property:

Property 1: Let Ψ ⊂ R2 denote the set of all pairs (kp, ki)
such that ki < 0 and kp ≥ 0, and consider the quasi-
polynomial ∆(s; kp, ki, h) given by (6). Then, for any given
tuple (a, b, z, h) ∈ R2×R2

+ \ {(0, 0)} and (kp, ki) /∈ Ψ, there
exist at least one r ∈ R such that the following holds:

∆(r ; kp, ki, h) = 0. (7)

Proof.We start by noting that for s = 0, the following holds:

sign(∆(0; kp, ki, h)) = −sign(ki). (8)

Additionally, for some sufficiently large s = r∗ >> 0, it
is clear that ∆(r∗; kp, ki, h) > 0. Therefore, if ki ≥ 0, by
the Intermediate Value Theorem, it is clear that there exists
at least one r ∈ [0, r∗) that is a root of ∆. Next, if ki < 0
and kp < 0, then ∆(s; kp, ki, h) → −∞ as s → −∞, and
by the same arguments, we know that there must exist some
r ∈ (−∞, 0) that is a root of∆. QED.
Remark 1: Let ∆(s; kp, ki, h) given by (6). Then, ki < 0
is a necessary condition for the stability of the closed-loop
system.
Remark 2: Although the delay-free closed-loop system al-
ways has at least one real root, it is possible to have configura-
tions such that in the time-delay case, for a given delay value,
the closed-loop system does not present any real character-
istic root. Consider, for example, the following closed-loop
characteristic function (with h = 1):

∆(s) = f1(s)+e−sf2(s) = s(s+1)(s−0.1)+e−s(s−1)2 (9)

It is clear that e−sf2(s) is positive for any s ∈ R, except for s =
1, for which it is also easy to observe that ∆(1) > 0. Next,
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f1(s) is negative for s ∈ (0, 0.1) and for any s ∈ (−∞,−1),
therefore, any solution of ∆(s) = 0 has to be in those
intervals. One can also note that, as s→ −∞, e−sf2(s)→∞,
and that for s = −1 we have ef2(−1) = 4e. The plot of
∆(s) for s ∈ (−1, 0.1) and (−6,−1) is depicted in Figure
1. This particular behavior can be explained by observing the
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(a) Behavior of∆(s) for s < −1.
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(b) Behavior of∆(s) for s ∈ (−1, 0.1).

FIGURE 1. Behavior of quasi-polynomial (9) for s real.

evolution of the system roots as we increase the parameter h
from 0 to 1/3, as shown in Figure 2. More precisely, when
the delay h is increased from 0 to 1/3, there is a splitting of a
double real (negative) characteristic root in a pair of complex
conjugate roots.

Next, before stating the problem formulation, we introduce
the notions of spectral abscissa (that is, the rightmost charac-
teristic root) and σ-stability:
Definition 1 (Spectral abscissa [33]): For the closed-loop
system (2)-(5) with associated characteristic function∆ given
by (6), its spectral abscissa is defined by the real number:

ρ(∆) = max {ℜ(s0) : s0 ∈ C, ∆(s0; kp, ki, h) = 0}

Remark 3: As discussed in [33], in the retarded case, the
spectral abscissa function is continuous, bounded, and finite.
For a given set of parameters (kp, ki, h), the stability of the
closed-loop function holds iff the spectral abscissa satisfies
the inequality ρ(∆) < 0.
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FIGURE 2. Roots of quasi-polynomial (9) as h increases in (0, 1/3).

Definition 2 (σ-stability [33]): Let σ ∈ R∗
+ be a strictly

positive real number. Then the closed-loop system (2)-(5) is
said to be σ−stable if its spectral abscissa ρ(∆) verifies the
inequality ρ(∆) ≤ −σ.
Remark 4: It is easy to observe that, in the limit case, σ = 0,
the closed-loop may have characteristic roots on the imagi-
nary axis corresponding to a marginally stable system if the
characteristic roots are simple.
It is worth bearing the following definition in mind:

Definition 3 (Quasi-polynomial degree [36]): Consider a
quasi-polynomial ∆ : C→ C of the following form:

∆(s) :=
m∑

j=0

Pj(s)e−hjs,

where Pj for j ∈ {0, 1, . . . ,m} are polynomials in s with real
coefficients, and hj ∈ R+ such that h0 = 0 < h1 < h2 <
· · · < hm. The degree of ∆ is given by:

deg(∆) = m+

m∑

j=0

dj,

where dj = deg(Pj), for all j = 0, 1, . . . ,m.
In our case, it is easy to observe that deg(∆) = 3+2+1 = 6.
From previous works, such as [34], [37], and Remark 8 from
[38], one could imagine that the optimal spectral abscissa
always corresponds to a root with maximum multiplicity.
However, this is not always the case. It is also known from
[39] that for a given quasi-polynomial ∆ with deg(∆) = d ,
a root with maximum multiplicity always corresponds to a
dominant one, but whether or not this implies that such a
spectral abscissa is optimal needs a better understanding of
the underlying mechanism.

A. PROBLEM FORMULATION
Bearing in mind the above definitions, observations, and
remarks, the problem we aim to address is the following:
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Problem 1: For a second-order NMP LTI SISO system with
transfer function given by (2) in closed-loop with a PI con-
troller given by (5), find the gains (k̂p, k̂i) ∈ R2 such that
the spectral abscissa of the closed-loop system achieves its
minimal value.

B. MOTIVATING EXAMPLE
To illustrate the main idea of the problem that is addressed in
this paper, consider the NMP second-order system described
by the following transfer function:

Hyu(s; h) =
s− 2

(s+ 1)2
e−s, (10)

which corresponds to an open-loop stable system. Taking the
PI controller K (s) = kp + ki/s, it is easy to see that, despite
the presence of the unstable zero, there exist certain pairs
(kp, ki) ∈ R2 such that the stability is preserved in closed-
loop. Nonetheless, not all the stabilizing controllers will pro-
duce the same response. Indeed, consider the two following
pairs (kp1, ki1) = (−0.1031,−0.0819) and (kp2, ki2) =
(−1/2,−1/6), both preserving closed-loop stability. Figure
(3) depicts the error signal e(t) = r(t) − y(t) with r(t) = 1
for all t > 0 and r(t) = 0 otherwise.
Note that the closed-loop system under consideration is a

linear time-delay system of the retarded type; therefore, if all
its characteristic roots have negative real parts, the system is
exponentially stable. It is easy to conclude that the exponential
decay rate, that is, the velocity with which the error signal
goes to zero, is a function of the particular choices of the
controller gains. More precisely, such a decay rate depends
on the location of the closed-loop system spectral abscissa,
which in this case corresponds to ρ(∆) = −0.5043 for
(kp1, ki1) and ρ(∆) = −0.1270 for (kp2, ki2).
In the following, we aim to find a systematic procedure

that allows finding the optimal values of the controller gains,
such that spectral abscissa is as far left as possible, that is,
optimizing the spectral abscissa as a function of the controller
gains.

III. GEOMETRY OF THE STABILITY REGION
Bearing to mind the continuity property of the characteristic
roots of the closed-loop system (2)-(5) with respect to the
system’s parameters 2, we note that a characteristic root can
only cross from the left-half plane to the right-half plane
(stability to instability), or from the right-half plane to the left-
half plane (instability to stability), by crossing the imaginary
axis. We introduce the notions of frequency sweeping set and
curves in a similar way as in [40]:
Definition 4 (Frequency crossing set):The frequency crossing
setΩ ⊂ R is the set of all ω such that, for a given h, there exist
at least one pair of control gains (kp, ki) ∈ R2 such that

∆(iω; kp, ki, h) = 0. (11)

2More precisely, these roots are continuous functions of the system param-
eters [33]
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FIGURE 3. Error signal produced by two different controllers (kp, ki ).

Remark 5: Note that ∆(iω; kp, ki, h) = 0 implies that
∆(−iω; kp, ki, h) = 0, therefore in the remaining part of the
paper we will consider only positive frequencies.
Definition 5 (Stability crossing curves): The stability crossing
curve K is the set of all pairs [kp, ki]T ∈ R2 for which there
exist ω ∈ Ω. Any point k⃗ ∈ K is referred to as a crossing
point.
Proposition 1 (Crossing points characterization): Consider
the system described by the transfer function (2) in closed-
loop with the PI controller (5). Then, the crossing points
k⃗ = (kp(ω), ki(ω)) ∈ R2 are given by:

kp(ω) =
ω sin(hω)α1 + cos(hω)α2

ω2 + z2
, (12)

ki(ω) =
ω (sin(hω)α3 + ω cos(hω)α4)

ω2 + z2
, (13)

where α1 =
(
ω2 − az− b

)
, α2 =

(
bz− ω2(a+ z)

)
, α3 =(

ω2(a+ z)− bz
)
and α4 =

(
ω2 − az− b

)
. Furthermore, if

ω = 0, we have ki = 0.
Proof. The proof follows straightforwardly by noting that if
∆(iω; kp, ki, h) = 0 then:

ℜ{∆(iω; kp, ki, h)} = ℑ{∆(iω; kp, ki, h)} = 0.

QED.

Corollary 0.1: Consider the system described by the transfer
functionHyu(s; h) given by (2) in closed-loop with the PI con-
troller in (5), then the stability crossing curve K = Kω ∪ K0

is given by:

Kω :=
{
k⃗ ∈ R2 : k⃗ := (kp(ω), ki(ω)),∀ω ∈ Ω

}
,

K0 :=
{
k⃗ ∈ R2 : k⃗ := (kp, 0), kp ∈ R

}
.

It is worth mentioning that the crossing curve K decomposes
the parameter space into disjoint regions characterized by the
same number of unstable roots. We refer to the region, if any,
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FIGURE 4. Positive direction of the curve K.

for which there are no unstable roots as the stable region,
denoted by S.

A. CROSSING DIRECTIONS

In the following, we refer to the direction of the curve K that
corresponds to increasing ω as the positive direction of the
curve, and we illustrate this idea in Figure 4. We have the
following result:
Proposition 2: Consider the system described by the transfer
function Hyu(s; h) in (2) in closed-loop with the PI controller
(5). Then, a pair of characteristic roots cross the imaginary
axis from C+ to C− (C− to C+) if k⃗ traverses the stability
crossing curve K from left to right (right to left) with respect
to the positive direction of the curve.
Proof. The proof is given constructively. Consider the char-

acteristic function ∆(s; kp, ki, h). Next, consider the change
of variable s → s − σ, with σ ∈ R. Note that, under this
change of variable, we can produce two different crossing
curves. First, the crossing curve Kω , corresponding to fixed
σ = σ∗ ∈ R+, and second, Kσ , this time with respect to σ
and for ω = ω∗ ∈ R+ fixed. Now, the tangent to the crossing
curve Kω is given by t⃗ = (dkp/dω, dki/dω)T , while the
tangent to the curve Kσ is given by t⃗σ = (dkp/dσ, dki/dσ)T .
Since the curve Kω considers ω ∈ R+, there exists a point
where both curves cross each other. At that exact point,
consider the inner product between the normal to the tangent
t⃗ , pointing to the left, with respect to the positive direction of
the curve, that is n⃗t = (−dki/dω, dkp/dω), and the tangent
t⃗σ , leading to:

〈
n⃗t , t⃗σ

〉
=
dkp
dω

dki
dσ
− dki
dω

dkp
dσ

.

Next, if the crossing is always occurring in the same direc-
tion, sign(

〈
n⃗t , t⃗σ

〉
) must remain constant. Consider the total

derivative w.r.t. ω on∆(iω − σ∗; kp, ki, h) = 0, that is:

i
∂∆

∂ω
+

∂∆

∂kp

dkp
dω

+
∂∆

∂ki

dki
dω

= 0,

and consider the following definitions:

R0 + iI0 = i
∂∆

∂ω
, (14)

R1 + iI1 = −∂∆

∂kp
, (15)

R2 + iI2 = −∂∆

∂ki
, (16)

from which we obtain the following representation:

(
R1 R2

I1 I2

)



dkp
dω
dki
dω


 =

(
R0

I0

)
,

which allows us to write t⃗ = (dkp/dω, dki/dω)T in the
following way:

t⃗ =
1

R1I2 − R2I1

(
R0I2 − R2I0
R1I0 − I1R0

)
,

provided that R1I2 − R2I1 ̸= 0. Similarly, we consider the
total derivative w.r.t. σ on∆(iω∗ − σ; kp, ki, h) = 0, and by a
similar procedure, one can arrive at the following definitions:

Rσ + iIσ = i
∂∆

∂σ
, (17)

R1 + iI1 = −∂∆

∂kp
, (18)

R2 + iI2 = −∂∆

∂ki
. (19)

Note that at the point where both curves cross Rσ = −I0 and
Iσ = R0, therefore:

t⃗σ =
1

R1I2 − R2I1

(
R0R1 + I0I1
−R0R2 − I0I2

)
,

provided thatR1I2−R2I1 ̸= 0. One then can compute ⟨n⃗t , t⃗σ⟩:

⟨n⃗t , t⃗σ⟩ =
R2
0 + I20

R1I2 − R2I1
,

which implies that sign(⟨⃗nt , t⃗σ⟩) = sign(R1I2−R2I1), which
is easy to compute:

R1I2 − R2I1 = −ω
(
e2hσ

) (
ω2 + (σ + z)2

)

=⇒ sign(R1I2 − R2I1) = −1.
The sign is not only constant but negative; this ends the proof.
QED.

Remark 6: Note that Proposition 2 implies that the stable
region S, if any, will always be the most inner region.
Proposition 3: Consider the system described by the transfer
function Hyu(s; h) in (2) in closed-loop with the PI controller
(5). Then, a real characteristic root crosses from C+ to C−
(C− toC+) if k⃗ traverses the stability crossing curveK0 from
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up to down at any crossing point located to the right (left) of
k⃗0 given by:

k⃗0 =

[
kp0
ki0

]
=

[
b/z
0

]
.

Proof. First, note thatK0 is given by the horizontal axis of the
parameters plane (kp, ki), i.e., it is defined by ki = 0. Next,
employing the implicit function theorem (see, for instance,
[41]), we have:

ds
dki

=
z− s

d1sehs + behs + hki(z− s)− kpd2 + ki
,

where d1 = 2a+3s, d2 = (s(h(s− z)− 2)+ z), and we have
∆(s = 0, kp, ki = 0, h) = 0, thus:

sign
(
ds
dki

)∣∣∣∣
s=0,ki=0

= sign(b− kpz).

By definition, z > 0; therefore, the crossing changes its sign
exactly at kp = b/z. This last observation ends the proof.
QED.

B. DIRECTION OF MOVEMENT
Now that the crossing curves have been characterized, we are
interested in characterizing the direction in which the given
curves move as the imaginary axis is shifted to the left on the
complex plane. We have the following result:
Proposition 4: Consider the system described by the transfer
function Hyu(s; h) in (2) in closed-loop with the PI controller
(5) with characteristic function ∆(s; kp, ki, h) given by (6).
Then, if a region exists inside the control parameter space
(kp, ki) such that all the characteristic roots are located inside
C−, then such a region is unique.
Proof. Consider the change of variable s → s − σ; when
evaluating over the imaginary axis, the produced equation has
the following form:

Q(iω − σ) + ((iω − σ)− z)(kp(iω − σ) + ki)e−h(iω−σ) = 0.

This equation can be rewritten in the following way:

ehσ(cos(hω)− i sin(hω))(kp(iω − σ) + ki)

=
Q(iω − σ)(z+ σ + iω)
σ2 + ω2 + z2 + 2σz

,

which implies:

ehσ(cos(hω)(ki − kpσ) + kpω sin(hω))

= ℜ
{
Q(iω − σ)(z+ σ + iω)
σ2 + ω2 + z2 + 2σz

}
=: γ,

and

ehσ(sin(hω)(kpσ − ki) + kpω cos(hω))

= ℑ
{
Q(iω − σ)(z+ σ + iω)
σ2 + ω2 + z2 + 2σz

}
=: β,

leading to:

kp(ω, σ) =
e−hσ(γ sin(hω) + β cos(hω))

ω
, (20)

and

ki(ω, σ) =
e−hσ cos(hω)(tan(hω)(γσ − βω) + γω + βσ)

ω
.

(21)
Finally, we can express the curve composed by the corre-

sponding points (kp, ki) ∈ R2 as:

K(ω, σ) :=



kp(ω, σ)

ki(ω, σ)


 ≡ e−hσ

ω



k11 k12

k21 k22





γ

β


 ,

where

k11 = sin(hω), k21 = cos(hω)(σ tan(hω) + ω),

k12 = cos(hω), k22 = cos(hω)(σ − ω tan(hω)).

Now that we have this representation, we introduce the fol-
lowing functions u : R+×R2×R+ → R and v : R+×R2×
R+ → R:

u(ω; kp, ki, σ) := ehσ(cos(hω)(ki − kpσ) + kpω sin(hω))− γ,

v(ω; kp, ki, σ) := ehσ(sin(hω)(kpσ − ki) + kpω cos(hω))− β

such that:∆(iω−σ; h) = u(ω; kp, ki, σ)+iv(ω; kp, ki, σ). The
total derivatives of u and v write as follows:

ehσ(ω sin(hω)− σ cos(hω))dkp

+ ehσ cos(hω)dki +
∂u
∂σ

dσ +
∂u
∂ω

dω = 0,

ehσ(σ sin(hω) + ω cos(hω))dkp

− ehσ sin(hω)dki +
∂v
∂σ

dσ +
∂v
∂ω

dω = 0.

which leads to the following representation of (dkp, dki):


dkp

dki


 = −cos(hω)

ehσω



dk11 dk12

dk21 dk22






∂u
∂σ

∂u
∂ω

∂v
∂σ

∂v
∂ω





dσ

dω


 ,

where

dk11 = tan(hω), dk21 = ω + σ tan(hω),

dk12 = 1, dk22 = σ − ω tan(hω).

From Cauchy-Reimann equations we have the following re-
lations:

∂u
∂σ

=
∂v
∂ω

and
∂u
∂ω

= − ∂v
∂σ

.

Therefore we can write [dkp, dki]T in the following way:


dkp

dki


 =

−1
ehσω



a11 a12

a21 a22






∂u
∂σ

∂u
∂ω

− ∂u
∂ω

∂u
∂σ





dσ

dω


 ,

where:

a11 = sin(hω), a21 = ω cos(hω) + σ sin(hω),

a12 = cos(hω), a22 = σ cos(hω)− ω sin(hω).
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Computing the Jacobian determinant one obtains:

det (J(K(ω, σ))) = −e
−hσ

ω

(
−ω sin2(hω)− ω cos2(hω)

)

×
[(

∂u
∂σ

)2

+

(
∂u
∂ω

)2
]

= e−hσ

[(
∂u
∂σ

)2

+

(
∂u
∂ω

)2
]
,

which is always positive, indicating that the curve K(ω, σ)
always preserves orientation as (ω, σ) change. This last ob-
servation ends the proof. QED.

C. STABILITY INDEX COMPUTATION
In the following, we aim to compute the stability index of
a given region in the space of parameters (kp, ki), that is,
for a given k⃗∗ = [k∗p , k

∗
i ]
T /∈ K compute the number of

unstable characteristic roots n, which we know to be invariant
inside a region. For such a task, we also define n0 as the
number of unstable roots associated with the origin O, that
is, the number of unstable roots when k⃗ = [0, 0]T . Note
that n0 ∈ {0, 1, 2} is given by the number of unstable roots
of Q(s). Next, consider the line segment Ok⃗∗ connecting O
and k⃗∗. Such a line intersects the stability crossing curve Kω

whenever k⃗ = εk⃗∗ with ε ∈ (0, 1), i.e. whenever the vector
defining the corresponding crossing point and k⃗∗ are parallel.
Moreover, since the line containing the segmentOk⃗∗ is given
by ki = (k∗i /k

∗
p )kp, the corresponding ω = ω∗ ∈ Ω for which

the intersection occurs must fulfill the following equation:

k∗p ki(ω
∗)− k∗i kp(ω∗) = 0, (22)

and we will refer to the set of all ω∗ for which (22) holds as
Ω∗ ⊆ Ω. Additionally, we consider the following indicator
function I : R× R2 × Ω∗ → {0,±1}:

I(ε, k∗p , k∗i , ω∗) :=

{
sign (δ) , if ε ∈ (0, 1)

0, if ε /∈ (0, 1),
(23)

where:

δ =
ds
dki

∣∣∣∣
s=iω∗,kp=εk∗p ,ki=εk∗i

,

where ds/dki can be obtained via the implicit function theo-
rem. Next, we have three possible cases:

1) The crossing curve Kω starts at the origin O if b = 0
since at ω = 0 the crossing points are given by:

ki(0) = 0 ∧ kp(0) =
b
z
.

Therefore, in this case n0 = 1 if a < 0 and n0 = 0
otherwise.

2) The crossing curve Kω passes through the origin O at
ω ̸= 0 if a = 0 and b > 0, since the crossing points
read:

kp(ω) =

(
b− ω2

)
(z cos(hω)− ω sin(hω))

ω2 + z2
,

and

ki(ω) =
ω
(
ω2 − b

)
(ω cos(hω) + z sin(hω))
ω2 + z2

,

therefore kp(ω) = ki(ω) = 0 at ω =
√
b.

3) The crossing curveKω never touches the originO, and
n equals the number of unstable roots of Q(s).

With this in mind, we have the following result.
Proposition 5: Let k⃗∗ := [k∗p , k

∗
i ] /∈ K be an arbitrary pair

in the parameter plane (kp, ki). Then, for any given k⃗∗, the
number of unstable characteristic roots n is given by:

n = n0 + 2
∑

ω∈Ω∗

I(ε, k∗p , k∗i , ω). (24)

Proof. Consider the characteristic quasi-polynomial
∆(s; kp, ki, h). It is clear that for kp = 0 and ki = 0, the
characteristic roots will correspond to those of Q(s), and
by continuity arguments, the number of unstable roots of
the closed-loop characteristic quasi-polynomial will remain
constant unless a crossing of the stability crossing curve K
occurs. Next, sinceK corresponds to the horizontal axis of the
parameter plane (kp, ki), it is clear that, as we move over the
line segment Ok⃗∗ every crossing, if any, will be through Kω ,
which by the D-departition theory correspond to a complex
conjugate root crossing. Finally, it is clear that I characterizes
the direction of the crossing depending on the sign of the
derivative. QED.

IV. OPTIMIZATION OF THE SPECTRAL ABSCISSA
Before presenting the main result, we introduce the following
notion:
Definition 6 (Self-intersection): We say that the stability
crossing curve K has a self-intersection if there exist a pair
(ω−, ω+) ∈ R2

+ such that ω− < ω+ and:

kp(ω−) ≡ kp(ω+) ∧ ki(ω−) ≡ ki(ω+), (25)

where kp(·) and ki(·) are crossing points given by (12) and
(13), respectively.
Next, from the Routh-Hurwitz criterion, we note that in the
delay-free case, the following inequalities must hold to stabi-
lize the system:

0 < z(az+ b), (26)

−a < kp <
b
z
, (27)

(a+ kp)(kpz− b)
a+ kp + z

< ki < 0. (28)

In the rest of this paper, we have the following assumptions:
A1 There exists a pair (kp, ki) ∈ R2 such that inequali-

ties (26)-(28) hold.
Remark 7: Note that even in the delay-free case, the stability
region is bounded, similar to what we expect in the time-delay
case. In Figure 5, an example of the difference in the stability
boundaries between the delay-free system and the time-delay

8 VOLUME 11, 2023



Torres-García et al.: Stabilization of second-order non-minimum phase system with delay via PI controllers

FIGURE 5. Comparison of the stability borders of the system when we
consider the delay and when we assume it to be free of input delay.

FIGURE 6. Stability with respect to the σ-axis.

one is depicted. As expected intuitively in our case, we can
observe that the stability region of the time-delay system
lies inside the delay-free one, emphasizing the importance of
considering the delay term in the stability analysis.

A. COLLAPSE OF THE STABILITY REGION
In the following, we aim to detect the exact point inside
the stability region at which the spectral abscissa reaches
its minimal value. Note that by considering the change of
variable s → s − σ, one can study the σ-stability of the
closed-loop system. In other words, we study the system’s
stability with respect to the σ-axis (see Figure 6). The main
idea of this section is to propose a methodology that allows
the identification of the maximum possible value of σ such
that there exists at least one pair of control parameters (kp, ki)
that σ stabilize a system with the form of (2).
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(a) Stability region of the closed-loop system.
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(b) σ-stable region for σ∗ < σ̂.
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(c) Point of collapse.

FIGURE 7. Change in the stability region as σ increases.

In this spirit, we have the following result.

Theorem 1 (Optimal σ in the self-intersection free case):Con-
sider the system described by the transfer function Hyu(s; h)
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in (2) in closed-loop with the PI controller (5), and assume
that the corresponding crossing curve K does not have self-
intersections, then the spectral abscissa ρ(∆) achieves its
minimum value σ̂ at the smallest real positive root of the
following fifth-order polynomial:

p(σ) := σ5 + a4σ4 + a3σ3 + a2σ2 + a1σ + a0, (29)

where:

a4 = 2z− a−
4

h
, a3 = z(z− 2a) + b+

2

h2
−

2(a− 5z)

h
,

a2 =
z
(
−hz(ah+ 6) + 6ah+ 2bh2 + 6

)
h2

,

a1 =
z(2z(2ah+ 3) + bh(hz− 2))

h2
, a0 = −

2z(az+ bhz+ b)

h2
.

Moreover, the point corresponds to a triple real root.
Remark 8: Note that in the case where both roots of Q(s) are
negative (open-loop stable system), we have a > 0 and b > 0.
Therefore, a0 < 0, and since p(σ) in (29) is monic, there
would be at least two coefficients with different signs, and
from the Descartes’ rule (see [42]), we will have at least one
real positive root.
Proof. From a geometrical observation and the

D−decomposition theory [43], the collapse of the σ-stable
region must occur at a triple real root, leading to the following
system of equations:

∆|
(−σ;h)

= 0, (30a)

d∆
ds

∣∣∣∣
(−σ;h)

= 0, (30b)

d2∆
ds2

∣∣∣∣
(−σ;h)

= 0. (30c)

The proof ends by solving the given system (30a)-(30c) for σ
under the restriction σ ∈ R+. QED.

Corollary 1.1: Consider the system described by the transfer
function Hyu(s; h) in (2) in closed-loop with the PI controller
in (5), and assume that the corresponding curve K does not
have self-intersections, then optimal control gains (k̂p, k̂i) ∈
R2 that place the spectral abscissa ρ(∆) as far left as possible
are given by:

k̂p =

(
−hσ̂4 + c1σ̂3 − c2σ̂2 − c3σ̂ + bz

)

ehσ̂(σ̂ + z)2
, (31)

where

c1 = ah− hz+ 2, c2 = −z(ah+ 3) + a+ bh,

c3 = z(2a+ bh),

and

k̂i =
σ̂2(σ̂(c4 + c5z+ σ̂)− az− b(h(σ̂ + z) + 1))

ehσ̂(σ̂ + z)2
, (32)

where

c4 = hσ̂(a− σ̂), c5 = ah− hσ̂ + 2.

Proof. The proof is straightforward by solving the system of
equations (30a)-(30c) for kp and ki. QED.
Theorem 1 allows us to explicitly find the minimal achievable
spectral abscissa, while Corollary 1.1 allows us to compute
the control gains that guarantee the spectral abscissa to be
as far left as possible. However, it also requires the curve
to be free of self-intersections. Such a restriction is a major
one since we do not have an analytical result that helps us
determine when the curve will present such auto-intersection.
Nonetheless, we can still find optimal control gains when the
curve has this geometrical behavior. More precisely, there are
three possible scenarios:

Case I. The collapse of the stability region occurs at a triple
real root, and the control gains can be computed
employing Theorem 1.

Case II. The collapse of the stability region occurs at a dou-
ble complex conjugate root.

Case III. The collapse of the stability region occurs at a
complex conjugate root + a simple real root.

Figure 8 depicts the behavior of the σ-stable region as the
value of σ changes until achieving its maximum value.
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(a) Stability region collapse in Case I.

-0.4 -0.2 0 0.2

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(b) Stability region collapse in Case II.
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(c) Stability region collapse in Case III.

FIGURE 8. Different types of stability region collapse.

It is also interesting to observe how the roots behave in the
complex plane as the control parameters change inside the
stability region until the collapse point, as depicted in Figures
9(a)-9(c).
Based on the different cases, the following algorithm al-

lows us to find the maximum value of σ such that the stability
region S exists. In order to perform such a task, the algorithm
starts by considering an interval of σ values and an interval
of crossing frequencies. The results rely on the fact that, for
the maximum value of σ, if the crossing curve presents self-
intersections, the region S must be composed of either one
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(a) Root behavior and minimum spectral
abscissa for Case I.

(b) Root behavior and minimum spectral
abscissa for Case II.

(c) Root behavior and minimum spectral
abscissa for Case III.

FIGURE 9. Roots behavior as the stability region collapses.

crossing frequency ω ̸= 0 or by two, one of them being
ω = 0. The algorithm is the following:

First, we take an increasing sequence (σj), and define a σ-
stability crossing curve Kσj,ω corresponding to each of the
given σ and ω ∈ Ωωj the set of crossing frequencies for the
given σj. Next, we verify the existence of a σ-stable region
Sσj . If it exists, then we compute both the cardinality of the re-
gion Sσj and the cardinality of the set of intersections between
the curve for ω ̸= 0 and the line that corresponds to ω = 0.
Then, if the cardinality of the region is card

{
Sσj
}
= 1, that

means the region has already collapsed to a point. Then, we
verify what of the different cases the collapse corresponds to
by checking the number of intersections. In other words, we
are in Case II if there are no intersections since it implies a
double complex root. If, on the contrary, there is one intersec-
tion, that means that the line corresponding to ω = 0, which
at the same time corresponds to a real root, is also part of the
collapse, and therefore, we are in Case III. Finally, the σj for
which the region collapses is the corresponding σ̂. If we do
not find any collapse after computing the region for each σj
inside the sequence, we reinitialize the procedure considering
a larger sequence. The formalization of the Algorithm can be
found in Appendix A.

V. PI CONTROLLER FRAGILITY
Just as common as input/output delays and NMP behavior,
control systems always have to deal with control fragility,
which measures ’’how robust a controller is with respect
to control parameters uncertainties’’. Such a problem plays
an essential role when we consider the implementation of
the controller in a real plant. The problem can be stated as

follows:
Problem 2: For a second-order NMP LTI SISO system with
transfer function given by (2) in closed-loop with a PI con-
troller given by (5), with given stabilizing control gains
(k∗p , k

∗
i ) ∈ R2, find the maximum controller parameter de-

viation d , such that the closed-loop system preserves stability
as long as the following inequality holds:

√
(kp − k∗p )2 + (ki − k∗i )2 < d . (33)

Consider the following function γ : R+ → R+:

γ(ω) :=

{√
(kp(ω)− k∗p )2 + (ki(ω)− k∗i )2 if ω ∈ R∗

+

|k∗i | if ω = 0,
(34)

Proposition 6: Let k⃗∗ be a stabilizing controller. Then the
maximum controller parameter deviation d , such that the
closed-loop system preserves stability, is given by:

d = min
ω∈Ωc

⋃{0}
{γ(ω)} , (35)

whereΩc ⊆ R+ is the set of roots of the function f : Ω→ R+

given by:

f (ω) =

〈
k⃗(ω)− k⃗∗, dk⃗

dω

〉
. (36)

Proof. By assumption k⃗∗ is a stabilizing controller, that is,
k⃗ ∈ S. Therefore, the only possibility to lose stability is by
crossing K, which could be either through Kω or K0. First,
it is clear that the euclidean distance to K0 from any k⃗∗ with
k∗i ̸= 0 is given by γ(0). Next, the minimal distance from k⃗∗

to Kω is given by the distance to the points where the vector
k⃗(ω) − k⃗∗ is perpendicular to the tangent to the crossing
curve Kω , that is, whenever f (ω) = 0. It is important to
recall that the tangent to the crossing curve is well-defined
for any ω ̸= 0. Finally, it is clear that for any ω ̸= 0, the
distance from k⃗∗ to the crossing curve is given by γ(ω). This
last observation ends the proof. QED.

Example 1 (Illustrative example): From [35], we consider the
system with transfer function representation given by:

s− 1

s2 + s+ 1
e−s, (37)

for which the optimal gains are depicted in Figure 10. In this
figure, it is easy to observe the fragility of the given controller.
It is also clear that the optimal gains, in terms of the spectral
abscissa, do not necessarily correspond to those with less
fragility. Moreover, it is not clear if the less fragile controller
ever matches the optimal one.

VI. DELAY MARGIN OF STABILIZED CLOSED-LOOP
SYSTEMS
Similar to the fragility of the controller, the delay margin
of the closed-loop system is a measure of ’’how large of a
delay can the closed-loop system tolerate’’. Until this point,
the delay parameter h ∈ R+ has been considered known
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FIGURE 10. Fragility of the optimal controller.

and constant. However, as has already been mentioned, the
stability region of the closed-loop system depends on the
delay. Therefore, it is interesting to know how much the
delay parameter can vary before losing stability for a given
stabilizing controller k⃗∗ ∈ S . With this in mind, we have the
following definition:
Definition 7 (Delay margin): Consider the closed-loop char-
acteristic function ∆(s; kp, ki, h) and its spectral-abscissa
ρ(∆). Assume that the controller K (s) with gains k⃗∗ =
(k∗p , k

∗
i ) is a stabilizing controller. Then the delay margin of

the closed-loop system is defined by

hmax := sup{β ∈ R+ : ρ (∆) < 0 ∀h ∈ [h∗, β)},

where h∗ is the corresponding delay parameter of the system.
Consider the function F : R3 × R+ → R given by:

F(ω, kp, ki, h) := a2ω4 +
(
ω3 − bω

)2 − (
ω2 + z2

) (
k2i + k2p ω

2) .
(38)

We also introduce the set Ξ ⊂ R × R+ as the set of all
pairs (ω∗, h∗) such that, for a given pair (k∗p , k

∗
i ) the following

system of equations hold:

F(ω∗, k∗p , k
∗
i , h

∗) = 0, (39)

h∗ω∗ = arg

{
ω∗(ω∗(ω∗ − ia)− b)
(z− iω∗)(k∗p ω∗ − ik∗i )

}
. (40)

We have the following result:
Proposition 7: Consider the system described by the transfer
function Hyu(s; h) in (2) in closed-loop with the PI controller
K (s) in (5), and let k⃗2 be a stabilizing pair. Then, the delay
margin hmax of the closed-loop system is given by:

hmax := min
(ω,h)∈Ξ

h. (41)

Moreover, for h = hmax a characteristic root crosses from C−
to C+ at ω = ω∗, where ω∗ correspond to the given pair
(ω∗, hmax) ∈ Ξ.

Proof First, it is clear that if ∆(iω; kp, ki, h) = 0, the
following must hold:

(iω)3 + a(iω)2 + biω = e−hiω((iω)− z)(ki + kp(iω)),

which leads directly to (39) and (40). Next, since the closed-
loop system is assumed to be stable and by the continuity
property of the characteristic roots w.r.t. the delay parameter
h, the only possible way to lose stability is by crossing
the imaginary axis. Moreover, by the same arguments, the
smallest h for which there exists such a crossing must be from
C− to C+. This last observation ends the proof. QED.

VII. NUMERICAL EXAMPLES
Example 2 (Unstable NMP time-delay plant): Consider the
open-loop system described by the following transfer func-
tion:

Hyu(s; h) =
s− 1

(s+ 1)(s− 1/10)
e−s. (42)

Computing the stability region allows us to observe that we
are in Case I, as depicted in Figure 11(b), whichmeans that we
can compute the optimal gain bymeans of Theorem 1. Indeed,
considering the control gains (k̂p, k̂i) = (−0.18,−0.0035)
the spectral abscissa of the system is located at a triple real
root at s = −0.1344, while the gains (−0.4,−0.02) place it
at s = −0.015± 0.4i.
For the sake of comprehensiveness, we consider another

arbitrary pair of control gains to compare the performance
and robustness with. Table 1 summarizes each selected con-
troller’s different aspects.

TABLE 1. Different controllers performance for system (42)

k⃗ ρ(∆) d = min(γ(ω)) hmax
(k̂p, k̂i) = (−0.18,−0.0035) −0.1344 0.0035 3.69
(kp, ki) = (−0.4,−0.02) −0.015 0.015 1.15

It is worth mentioning that, despite being the optimal con-
trol gains in terms of the spectral abscissa, selecting k⃗ =
(−0.18,−0.0035) makes the system more fragile. However,
when we consider instead the delay margin, which can be
easily computed using Proposition 7, we can easily observe
that considering (k̂p, k̂i) makes the system more resilient to
delay variations. Therefore, the selection of the corresponding
controller will, in general, depend on the application require-
ments.
Example 3 (NMP oscillator): Consider the open-loop system
with associated transfer function given by:

Hyu(s; h) =
s− z
s2 + ω2

n
e−hs, (43)

where ωn is the oscillator frequency. Let us consider z = 1/2
and ωn =

√
2 with a delay h = 2/3. Figure 12(b) depicts the

presence of a self-intersection on the corresponding crossing
curve K. Therefore, the collapse corresponds either to Case
II or III. Algorithm 1 allows us to identify the collapse as
Case II and find the minimum of the spectral abscissa, which
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(a) Time response of the closed-loop system.
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FIGURE 11. System (42) in closed-loop with the optimal PI controller vs
an arbitrary stabilizing controller.

in this case corresponds to ρ(∆) = −0.8 achieved with the
control gains (k̂p, k̂i) = (0.34,−0.71). The closed-loop sys-
tem response for the optimal gains and an additional pair of
control gains is shown in Figure 12(a). We can also appreciate
the fragility of both considered controllers in Figure (12(b)).
Table 2 summarizes the different aspects of the optimal PI
controller and the arbitrary controller (kp, ki) = (1,−1/2).
One interesting observation is that although both controllers
have similar robustness with respect to uncertainties in the
control gains and similar tolerances with respect to changes
in the delay parameter, the performance in terms of velocity
is large.

TABLE 2. Different controllers performance for system (43)

k⃗ ρ(∆) d = min(γ(ω)) hmax
(k̂p, k̂i) = (0.34,−0.71) −0.8 0.49 1.60
(kp, ki) = (1,−0.5) −0.24 0.5 1.03
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(a) Time response of the closed-loop system.
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FIGURE 12. System (43) in closed-loop with the optimal PI controller vs
an arbitrary stabilizing PI controller.

Example 4 (NMP time-delay system with complex unstable
roots):Consider described by the following transfer function:

Hyu(s; h) =
s− 2

s2 − s
2 + 9

16

e−2s. (44)

The system open-loop characteristic roots are located at s =
1
4 ± 1

2 i. Before finding the corresponding optimal gains, one
interesting behavior arises. In Figure 13, we observe changes
in the stability region as the input delay decreases. Indeed,
first, when the delay decreases from h = 2 to h = 0.5,
we observe a smaller stable region, also implying that any
stabilizing controller will be very fragile, that is, with very
small variations on its value, stability might be lost. Second,
when the delay parameter h value decreases to h = 0.1, there
is no stable region; in other words, a PI controller cannot
stabilize the system for the given delay. This means that
the delay parameter has a stabilizing effect. In this sense,
it would also be natural to consider the input delay as a
control parameter [44], producing a delayed PI controller of
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the form:K (s) = e−τs(kp+ki/s), where τ is seen as a control
parameter.
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FIGURE 13. Closed-loop stability crossing curve for different delays.

Algorithm 1 reveals that the maximum achievable decay
rate corresponds to σ̂ = 0.055, which is a very slow system.
The corresponding gains are (k̂p, k̂i) = (−0.15,−0.05),
placing the right-most characteristic root at s = −0.05± 1

2 i.
Example 5 (Brief discussion on the maximum multiplicity of a
characteristic root):Consider the following transfer function:

Hyu(s; h) =
s− z

s2 + as+ b
e−s, (45)

with the following set of parameters:

z = 6
√
15−23
11 , a = −10

7 , b = 19
7 ,

and consider the PI control K (s) = kp + ki/s with the
following control parameters:

kp =
−11
7e

, ki =
−(6
√
15 + 23)

7e
,

where e = exp(1). Then, the spectral abscissa of the closed-
loop system corresponds to a real root of multiplicity five at
s = −1, which is the largest over-order multiplicity smaller
than the degree of the quasi-polynomial. Indeed, it is known
from [45] that by achieving the maximum multiplicity of the
root, we also guarantee that such a root is the right-most root.
Note also that, as was mentioned in Section II, the maximum
multiplicity of any root is deg(∆) = 6. However, in this case,
the characteristic quasi-polynomial is of the following form:

∆(s; kp, ki, h) = P0(s) + e−hsP1(s),

where:
P0(s) = s3 + as2 + bs.

Thus, the lack of a free term makes it impossible to achieve
the multiplicity six.

VIII. PRACTICAL EXAMPLES
Example 6 (Boiler Steam Drum): This process consists of
adjusting the boiler feed water to regulate the level in the
boiler steam drum. The process transfer function, as by [46],
is the following:

Hyu(s; h) :=
−0.2155(s− 2.39)

s2 + 0.93s− 0.009
e−0.1s. (46)

In [5] and [46], the exponential term is substituted by the Padé
approximation, and a PID controller is proposed. Note that the
system presents an unstable real root in open-loop. It is worth
mentioning that, due to the structure of the transfer function,
we will have ki > 0, due to the negative open-loop gain
k = −0.2155, which can be absorved by the controller. In
this case, the optimal gains (k̂p, k̂i) = (0.4583, 0.0374) place
the spectral abscissa of the closed-loop system at a triple root
located at s = 0.2673. Table 3 indicates the gains proposed
in [5] and [46] for the PID controllers considered.

TABLE 3. Considered controllers

Controller kp k i kd

Optimal PI 0.4583 0.0374 -

Patil et al. 2.341 0.523 2.1616

Shamsuzzoha et al. 3.2306 0.9215 2.5783

In Figure 14, it can be observed that, on the one hand,
the proposed controller reduces the undershoot compared to
the PID controllers. However, its response is slower due to
the absence of the derivative action3. Another feature worth
mentioning is the difference in control effort, as well as the
use of small gains in the proposed PI controller. Indeed,
Figure 15 depicts the control output of the three controllers,
and it is easy to observe that including a derivative action
dramatically increases the control effort, a situation that often
wants to be avoided.
Example 7 (The DC-DC Boost Converter): As a final exam-
ple, consider the standard DC-DCBoost Converter consisting
of a voltage source E , a switching componentM , an inductor
L, a capacitor C , and a load resistor R as depicted in Figure
16. PI controllers represent an ideal solution to the control
problem of this kind of circuit for two main reasons (for fur-
ther details on the control of DC-DC boost converters via PI
controllers, we refer to [47]–[50]). On the one hand, electrical
systems often have to work in the presence of high-frequency
noise; consequently, the use of derivative controllers is often
avoided. On the other hand, one common requirement of the
control design for this kind of application is the elimination of
steady-state error, which justifies using an integral action. For
these reasons, even though the system is open-loop stable, the

3The derivative action was implemented using a filter; therefore, it in-
creases the number of control parameters by two.
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FIGURE 14. Output of system (46) in closed-loop with the proposed PI
controller and the PID controllers proposed by Patil et al [5] and
Shamsuzzoha et al [46].
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FIGURE 15. Control output the proposed PI controller (up) and the PID
controllers proposed by Patil et al. [5], and Shamsuzzoha et al. [46]
(down).

design of a closed-loop control strategy remains necessary.
One can easily show that the following transfer function
describes the output voltage due to the duty cycle:

Hyu(s) = −
Kω2

0(zs− 1)

s2 +
ω0

Q
s+ ω2

0

e−hs. (47)

The constant K > 0 corresponds to a DC gain, ω0 > 0 is
known as the natural frequency, the unstable zero is located
at 1/z > 0, h is an input delay, and Q > 0 is referred to as a
quality factor. These parameters are characterized by:

K =
E
η2

, ω0 =
η√
LC

, z =
L
η2R

,

Q = ηR

√
C
L

, h = 8x10−3

Proposition 7: Let h > 0 be a fixed value, σ > 0, and
Ωσ :=

⋃
ℓ

Ωσ,ℓ, where the subsets Ωσ,ℓ are defined as

Ωσ,ℓ :=
{
ω ∈ R+

∣∣∣ω ∈ Ωℓ ∧ tan(ωh) ̸= ω

σ

}
.

Then, the set Tσ can be characterized as

Tσ = Tσ
⋃
Tσ,0 (16)

with

Tσ,0 ≜
{
k∈R2 : −kp + ki = σehσ

σ2 + 2ζωn + ω2
n

Kω2
n(1 + zσ)

}
,

Tσ ≜
{
k∈R2 : k = [kp(ω, σ), ki(ω, σ)]

T
}
,

and kp(ω, σ), ki(ω, σ) ∈ R are defined by

kp(ω, σ)≜
tan(ωh)ℜ{F (ξ)}+ ℑ{F (ξ)}

ω − σ tan(ωh)
, (17a)

ki(ω, σ)≜
e−hσ(ωℜ{F (ξ)}+σℑ{F (ξ)})sec(ωh)

ω − σ tan(ωh)
, (17b)

where ξ := −σ + iω, and F (s) := s/G(s).
In some situations, it will be necessary to fix the gain kp

and derive the parameter space in terms of h and ki. Under
such an approach, we derive the following result:

Proposition 8: Let kp ∈ R be a fixed value. Then, ω > 0,
ω ∈ Ω is a crossing frequency if and only if k(ω, σ) :=
[h(ω, σ) ki(ω, σ)]

T

h(ω, σ)≜− 1

ω

(
tan−1

(
zω

1+σz

)
−Arg

{
α̃(ω, σ)+iωβ̃(ω, σ)

}

−(2m+ ε)π

)
, (18)

ki(ω, σ)≜±e−σh

√
α̃2(ω, σ) + ω2β̃2(ω, σ)

Kω2
n

√
(1 + σz)2 + z2ω2

, (19)

where, m ∈ Z, ε ≜
{
1, if ki ≥ 0

0, if ki < 0
, and

α̃(ω, σ)≜−σ3+(2ζωn−Kkpω
2
nz)σ

2+(3ω2−ω2
n−Kkpω

2
n)σ

+Kkpω
2
nzω

2−2ζωnω
2,

β̃(ω, σ)≜ 3σ2+(2Kkpω
2
nz−4ζωn)σ+Kkpω

2
n+ω2

n−ω2.

Furthermore, the line

ki(σ)≜
e−hσKω2

n(1 + zσ)

σ3−(2ζωn−Kkpω2
nz)σ

2+(ω2
n+Kkpω2

n)σ
, (20)

belongs to T0.

IV. NUMERICAL EXAMPLES

In order to illustrate the effectiveness of the proposed re-
sults, in this section, we will apply them to several numerical
examples.

E

L

M C R

i

V

+

−

Fig. 4: DC-DC Boost converter.

A. DC-DC Boost Converter

The traditional DC-DC Boost Converter consists of a
voltage source E, a switching component M , an inductor
L, a capacitor C, and a load resistor R as shown in Fig. 4.
After some simplifications, the following transfer function
describes the output voltage due to the duty cycle:

G(s) =
Kω2

0(1− zs)

s2 +
ω0

Q
s+ ω2

0

. (21)

The system has a DC gain K > 0, a natural frequency
ω0 > 0, an unstable zero 1/z > 0, and a quality factor
Q > 0, given by:

K ≜ E

η2
, ω0 ≜ η√

LC
, z ≜ L

η2R
, Q ≜ ηR

√
C

L
,

where η := 1 − D. In this example we consider E = 12
V, V = 24 V, D = 0.5, C = 10µF, L = 7.05 mH, and
R = 44Ω. Next, by setting h = 8 × 10−3, and considering
Propositions 1 and 2, we derive the stability crossing curves
depicted in Fig. 5. Now, to identify stable zones, we utilize
the crossing direction outlined in Proposition 6. In this
regard, as a first step, let us consider the controller (k1–
k8) depicted in Fig. 5 and summarized in Table I. One
of the primary challenges in analyzing the stability of ∆
arises from the fact that it has an uncountable number
of roots. Proposition 6 becomes particularly valuable in
this context, as it serves to distinguish between stable and
unstable regions. To illustrate this mechanism, consider that
when ki = 0, ∆ reduces to a polynomial with a finite number
of roots. For instance, setting ki = 0 and kp = 0.0085
yields the closed-loop characteristic function of (21) with
roots at {0,−672.72± i2130.80}. Consequently, according
to Proposition 6, (14) is negative, indicating that R0 repre-
sents a stable region (since s = 0 is crossing toward C−).
Similarly, other regions can be classified in a similar manner.

To improve the convergence decay rate of the system’s
response, let us consider Proposition 7. We will exemplify
its application by considering two distinct scenarios: one
where the delay value h remains fixed at h = 8 × 10−4

and another where it is set to h = 5 × 10−5. Under these
conditions, Figs.6a and 6b depict the corresponding stability
regions. As can be seen from both figures, the shape of the
stability region may change. Observe that as σ increases,
the region shrinks. Consequently, one advantageous aspect
of such shaping is that, under certain circumstances, it
enables us to avoid introducing additional unstable zeros

FIGURE 16. DC-DC Boost converter. Circuit described by (47).

where η := 1 − D, with D being the duty cycle. In this
example we consider E = 12 V, D = 0.5, C = 10µF,
L = 7.05 mH, and R = 44Ω, which are all standard in the
field. By considering Theorem 1, it is easy to observe that the
optimal pair corresponds to (k̂p, k̂i) = (0.00278, 1.21478).
The closed-loop time response of the system is depicted in
Figure 17(a). It is worth mentioning that, as observed in
Figure 17(b), and in that the optimal value of ki = 1.21,
the stable region in this case corresponds to a region where
ki > 0. Indeed, this change of sign is due to the negative sign
in the transfer function (47).

IX. CONCLUSIONS AND PERSPECTIVES
In this note, we presented a systematic procedure that allows
optimizing the performance of a second-order non-minimum
phase LTI SISO system in terms of its spectral abscissa and,
thus, in terms of its decay rate. In this sense, the result was
divided into two parts: 1) the case of a triple real root, for
which we propose an analytical result that allows finding
the exact values of (kp, ki) that optimizes the spectral ab-
scissa, under the assumption of a crossing curve with no self-
intersections. 2) the case where the stability crossing curve
presents self-intersection, leading to two possible scenarios,
for which we propose an algorithm that allows finding the
optimal gains and distinguishing between the two possible
cases. It is worth mentioning that some discussion about the
maximum multiplicity of the characteristic roots was also
included. Additionally, results regarding the robustness of
the controller, both in terms of control parameters and delay
uncertainties, were also presented.
The applicability of the presented results to real-world

problems was also shown through a pair of practical exam-
ples, which included a boiler steam drum and a DC-DC boost-
converter.
In particular, one interesting perspective is finding the re-

lationship between the multiplicity of a root and its dominant
behavior, as discussed in Example 5. Future work may also
consider a parametric analysis that allows us to determine a
priori whether or not a stability region exists and the possible
existence and location of self-intersections in the stability
crossing curve.
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(a) Time response of system (47) in closed-loop with the optimal PI controller.

(b) Stable region of the closed-loop system with the location of the optimal controller.

FIGURE 17. (a) Time-domain response of the optimal PI controller. (b)
Location of the optimal PI controller in the stability region.
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