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An SDE Perspective on Stochastic Convex Optimization

Rodrigo Maulen S.∗ Jalal Fadili† Hedy Attouch‡

Abstract. In this paper, we analyze the global and local behavior of gradient-like flows under stochastic
errors towards the aim of solving convex optimization problems with noisy gradient input. We first study
the unconstrained differentiable convex case, using a stochastic differential equation where the drift term is
minus the gradient of the objective function and the diffusion term is either bounded or square-integrable. In
this context, under Lipschitz continuity of the gradient, our first main result shows almost sure convergence
of the objective and the trajectory process towards a minimizer of the objective function. We also provide
a comprehensive complexity analysis by establishing several new pointwise and ergodic convergence rates in
expectation for the convex, strongly convex, and (local)  Lojasiewicz case. The latter involves a challenging
local analysis which requires non-trivial arguments from measure theory. Then, we extend our study to
the constrained case and more generally to nonsmooth problems. We show that several of our results have
natural extensions obtained by replacing the gradient of the objective function by a cocoercive monotone
operator. This makes it possible to obtain similar convergence results for optimization problems with an
additively ”smooth + non-smooth” convex structure. Finally, we consider another extension of our results
to non-smooth optimization which is based on the Moreau envelope.

Key words. Convex optimization, Stochastic Differential Equation, Stochastic gradient descent,  Lojasiewicz
inequality, KL inequality, Convergence rate, Asymptotic behavior.
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1 Introduction

1.1 Problem statement

We aim to solve convex minimization problems by means of stochastic differential equations whose
drift term is driven by the gradient of the objective function. This allows for noisy (inaccurate)
gradient input to be taken into account. Consider the minimization problem

min
x∈Rd

f(x), (P)

where the objective f satisfies the following standing assumptions:{
f is convex and continuously differentiable with L-Lipschitz continuous gradient;

S def
= argmin(f) ̸= ∅.

(H0)

∗Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, France. E-mail: rodrigo.maulen@ensicaen.fr
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‡IMAG, CNRS, Université Montpellier, France. E-mail: hedy.attouch@umontpellier.fr

1



We will also later deal with the constrained case, and more generally with additively structured
”smooth + nonsmooth” convex optimization.

Let us first recall some basic facts about the deterministic case. To solve (P), a fundamental
dynamic to consider is the gradient flow of f , i.e. the gradient descent dynamic with initial condition
x0 ∈ Rd: {

ẋ(t) = −∇f(x(t)), t > 0

x(0) = x0.
(GF)

It is well known since the founding papers of Brezis, Baillon, Bruck in the 1970s that, if the
solution set argmin f of (P) is non-empty, then each solution trajectory of (GF) converges, and its
limit belongs to argmin f . In fact, this result is true in a more general setting, simply assuming
that the objective function f is convex, lower semicontinuous (lsc) and proper (in which case we
must consider the differential inclusion obtained by replacing in (GF) the gradient of f by the
sub-differential ∂f).

In many cases, the gradient input is subject to noise, for example, if the gradient cannot be
evaluated directly, or due to some other exogenous factor. In such scenario, one can model the
associated errors using a stochastic integral with respect to the measure defined by a continuous
Itô martingale. This entails the following stochastic differential equation as a stochastic counterpart
of (GF): {

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t), t > 0

X(0) = X0,
(SDE)

defined over a complete filtered probability space (Ω,F , {Ft}t≥0,P), where the diffusion (volatility)
term σ : R+×Rd → Rd×m is matrix-valued measurable function, W is a Ft-adapted m-dimensional
Brownian motion, and the initial data X0 is an F0-measurable Rd-valued random variable.

Our goal is to study the dynamic of (SDE) and its long time behavior in order to solve (P). To
identify the assumptions necessary to hope for such a behavior to occur, remember that when the
diffusion term σ is a positive real constant, it is well-known that X(t) in this case is a continuous-
time diffusion process known as Langevin diffusion, and has a unique invariant probability measure
πσ with density ∝ e−2f(x)/σ2

[10]. In fact, (SDE) can be interpreted as the pathwise solution to the
Fokker-Planck equation (see [28]). It is also very well known that the measure πσ gets concentrated
around argmin f as σ tends to 0+ with limσ→0+ πσ(argmin f) = 1; see e.g. [14].

Motivated by this last observation, our paper will then mostly focus on the case where σ(·, x)
vanishes sufficiently fast as t→ +∞ uniformly in x, and some guarantees will also be provided for
uniformly bounded σ. Therefore, throughout the paper, the entries σik are assumed to satisfy:{

supt≥0,x∈Rd |σik(t, x)| < +∞,

|σik(t, x′) − σik(t, x)| ≤ l0∥x′ − x∥,
(H)

for some l0 > 0 and for all t ≥ 0, x, x′ ∈ Rd. The Lipschitz continuity assumption is mild and
required to ensure the well-posedness of (SDE).

1.2 Contributions

We study the properties of the process X(t) and f(X(t)) for the stochastic differential equation
(SDE) from an optimization perspective, under the assumptions (H0) and (H). When the diffusion
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term is uniformly bounded, we show convergence of E[f(X(t))−min f ] to a noise-dominated region
both for the convex and strongly convex case. When the diffusion term is square-integrable, we
show in Theorem 3.1 that X(t) converges almost surely to a solution of (P), which is a new result
to the best of our knowledge. Moreover, in Theorem 3.3 and Proposition 3.4, we provide new
ergodic and pointwise convergence rates of the objective in expectation, again for both the convex
and strongly convex case.

Then we turn to a local analysis relying on the  Lojasiewicz inequality and its strong ties with
error bounds. Since this property is most often satisfied only locally, we deepen the discussion on
the long time localization of the process. This is fundamental, because in the recent literature on
local convergence properties of stochastic gradient descent, strong assumptions are imposed, such as
X(t) or f(X(t)) is locally bounded almost surely. Such assumptions are unfortunately unrealistic
due to the presence of the Brownian Motion. We manage to circumvent this problem by using
arguments from measure theory, in particular Egorov’s theorem. In turn, under the  Lojasiewicz
inequality assumption with exponent q ≥ 1/2, this allows us to show local convergence rates of the
objective and the trajectory itself in expectation over a set of events whose probability is arbitrarily
close to 1 (see Theorem 4.5).

Table 1 summarizes the local and global convergence rates obtained for E[f(X(t)) − min f ]. In
this table, δ > 0 is a parameter which is intended to be taken arbitrarily close to 0 but different
from it, σ∗ > 0 and σ∞(·) are defined as

∥σ(t, x)∥2F ≤ σ2∗, ∀t ≥ 0, ∀x ∈ Rd, and σ∞(t)
def
= sup

x∈Rd

∥σ(t, x)∥F , (1)

and σ∞(·) is a non-increasing function.  Lq(S) is the class of functions satisfying the  Lojasiewicz
inequality with exponent q ∈ [0, 1] at each point of S (see Definition 4.1)1.

Property of f Gradient Flow SDE (supt≥0 σ∞(t) ≤ σ∗) SDE (σ∞ ∈ L2(R+))

Convex t−1 t−1 + σ2∗ t−1

µ-Strongly Convex e−2µt e−2µt + σ2∗ max{e−2µt, σ2∞(t)}
Convex ∩  L1/2(S) (coef. µ) e−µ2t ✘ max{e−µ2t, σ2∞(t)} +

√
δ

Convex ∩  Lq(S), q ∈ (12 , 1) t
− 1

2q−1 ✘ t
− 1

2q−1 2+
√
δ

Table 1: Summary of local and global convergence rates obtained for E[f(X(t)) − min f ].

Although it is natural to think that we can take the limit when δ goes to 0+, the time from
which these convergence rates are valid depends on δ and increases (potentially to +∞) as δ ap-
proaches 0+. Assuming only the boundedness of the diffusion and the  Lojasiewicz inequality, we
could not find better results (cells marked with ✘) than those presented in the convex case. Since
the  Lojasiewicz inequality is local, a natural approach would be to localize the process in the long
term with high probability. However, it is not clear how to achieve this.

1Semialgebraic functions, and more generally, functions based on the class of analytic functions is a typical family
of functions that verify the  Lojasiewicz inequality at each point [38, 39].

2This is not yet proven, our conjecture is that it is true when σ∞ = O((t + 1)
− q

2q−1 ) (see the detailed discussion
in Conjecture 4.11).
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In Section 5, we turn to extending some of the preceding results to the structured convex mini-
mization problem

min
x∈Rd

f(x) + g(x), (Pc)

where f : Rd → R satisfies (H0), g : Rd → R∪{+∞} is proper, lsc and convex and argmin(f+g) ̸= ∅.
This obviously covers the case of constrained minimization of f over a non-empty closed convex
set. We take two different routes leading to different SDEs.

The first approach consists in reformulating (Pc) as finding for zeros of the operator Mµ : Rd →
Rd

Mµ(x) =
1

µ

(
x− proxµg(x− µ∇f(x))

)
,

where µ > 0 and proxµg is the proximal mapping of µg. It is well-known that the operator Mµ

is cocoercive [4], hence monotone and Lipschitz continuous, and Mµ = ∇f when g vanishes. The
idea is then to replace the operator ∇f in (SDE) by Mµ leading to an SDE which will have many
of the convergence properties obtained in the smooth convex case. This approach is in accordance
with the deterministic theory for monotone cocoercive operators (see [11, 1, 4]).

The second approach regularizes the nonsmooth component g of the objective function using its
Moreau envelope

gθ(x) = min
z∈Rd

g(z) +
1

2θ
∥x− z∥2.

This leads to studying the dynamic (SDE) with the function f+gθ, which has a continuous Lipschitz
gradient. This approximation method leads to an SDE with non-autonomous drift term. Note,
however, that the noise in this case can be considered on the evaluation of ∇f(x), while it is on
Mµ(x) in the first approach.

1.3 Relation to prior work

The gradient system (GF), which is valid on a general real Hilbert space H, is a dissipative dynam-
ical system, whose study dates back to Cauchy [15]. It plays a fundamental role in optimization: it
transforms the problem of minimizing f into the study of the asymptotic behavior of the trajecto-
ries of (GF). This example was the precursor to the rich connection between continuous dissipative
dynamical systems and optimization. Its Euler forward discretization (with stepsize γk > 0) is the
celebrated gradient descent scheme

xk+1 = xk − γk∇f(xk). (GD)

Under (H0), and for (γk)k∈N ⊂]0, 2/L[, then we have both the convergence of the values f(xk) −
min f = O(1/k) (in fact even o(1/k)), and the weak convergence of iterates (xk)k∈N to a point in
argmin f . Moreover, if the  Lojasiewicz inequality (24) (see [40]) is satisfied, then we can ensure
the strong convergence of (xk)k∈N to a point in argmin f and faster convergence rates than those
ensured by the simple convexity hypothesis (see [12, 18]).

Now, let us focus on the finite-dimensional case (H = Rd). Although the Gradient Descent is a
classical algorithm to solve the convex minimization problem, with the need to handle large-scale
problems (such as in various areas of data science and machine learning), there has become necessary
to find ways to get around the high computational cost per iteration that these problems entail.
The Robbins-Monro stochastic approximation algorithm [52] is at the heart of Stochastic Gradient
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Descent (SGD), which, roughly speaking, consists in cheaply and randomly approximating the
gradient at the price of obtaining a random noise in the solutions. Given an initial point x0 ∈ Rd,
γ > 0, (SGD) updates the iterates according to

xk+1 = xk − γ(∇f(xk) + ξk), (SGD)

where ξk denotes the (random) noise term on the gradient at the k-th iteration.

The SDE continuous-time approach is motivated by its relations to (SGD), where the latter
can be viewed as a Euler forward time discretization, and the noise ξk ∼ N (0, σkId) (hence not
necessarily bounded). In fact, several recent works (see e.g. [36, 46, 29, 55, 37, 56, 21]) have linked
algorithm (SGD) with dynamic (SDE), showing the context under which (SDE) can be seen as an
approximation (under a specific error) of (SGD) and vice-versa. The continuous-time perspective
offers a deep insight and unveils the key properties of the dynamic, without being tied to a specific
discretization. This in turn enlightens the behavior of the sequence generated by some specific
algorithm such as (SGD). One may also wonder whether (SDE) is a better continuous-time model
for (SGD) than (GF). The answer is affirmative as has been shown recently in [21, Proposition 2.1].
There, the trajectory of the sequence (xk)k∈N of (SGD), with ξk ∼ N (0, σkId), was proved to be
accurately approximated by (SDE) with σ(t,X(t)) =

√
γσ(t). The approximation error is of order

O(γ) which is much better than that of (GF) which is only O(
√
γ).

The Euler forward discretization (with stepsize γ > 0) of (SDE) when d = m and σ =
√

2Id is
the following algorithm

Xk+1 = Xk − γ∇f(Xk) +
√

2γξk, (LMC)

where ξk ∼ N (0, Id) (multivariate standard normal distribution). This algorithm, which is known
as Langevin Monte Carlo (see [49]), is a standard sampling scheme, whose purpose is to generate
samples from an approximation of a target distribution, in our case, proportional to e−f(x). Under
appropriate assumptions on f , when γ is small and k is large such that kγ is large, the distribution
of Xk converges in different topologies or is close in various metrics to the target distribution with
density ∝ e−f(x). Asymptotic and non-asymptotic (with convergence rates) results of this kind
have been studied in a number of papers under various conditions; see [20, 19, 24, 25, 16, 30]
and references therein. By rescaling the problem, relation between sampling (i.e. (LMC)) and
optimization (i.e. (SGD)) has been also investigated for the strongly convex case in e.g. [20].

Concerning (SDE), one can easily infer from [9, Proposition 7.4] that assuming supx∈Rd ∥σ(t, x)∥F =
o(1/

√
log(t)), and conditioning on the event that X(t), we have almost surely that the set of limits

of convergent sequences X(tk), tk → +∞ is contained in argmin f . Using results on asymptotic
pseudo-trajectories from [9], the work of [43, 51, 5] analyzed the behavior of the Stochastic Mirror
Descent dynamics:

dY (t) = −∇f(X(t))dt+ σ(t,X(t))dW (t),

X(t) = Q(ηY (t)),
(SMD)

where X ⊂ Rd is a closed convex feasible region, f is convex with Lipschitz continuous gradient
on X , Q : Rd → X is the mirror map induced by some strongly convex entropy, and η > 0 is a
sensitivity parameter. In [43, Theorem 4.1], it is shown that if X is also assumed bounded, that
supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)), and Q satisfies some continuity assumptions3, then the process

3Compactness of X and the condition on σ(·, ·) are clearly reminiscent of [9, Proposition 7.4], though the latter is
not discussed in [43].
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X(t) (SMD) converges to a point in argmin f almost surely. Similar assumptions can be found in
[5] to obtain almost sure convergence on the objective. Let us observe that all these results do
not apply to our setting. Indeed, if X = Rd (unconstrained problem), Q(x) = x and η = 1, we
recover (SDE). Our work does not assume any boundedness whatsoever to establish our results.
This comes however at somewhat stronger assumptions on σ(·, ·).

While finalizing this work, we became aware of the recent work of [22], which analyzes the
behavior of (SDE) for f ∈ C2(Rd) not necessarily convex and which satisfies supx∈Rd ∥σ(·, x)∥F ∈
L2(R+). Conditioning on the event that lim supt→+∞ ∥X(t)∥ < +∞, they showed that ∇f(X(t)) →
0 almost surely, almost sure convergence of f(X(t)), and if the objective f is semialgebraic (and
more generally tame), they also showed almost sure convergence of X(t) towards a critical point
of f . They also made attempt to get local convergence rates under the  Lojasiewicz inequality that
are less transparent than ours. Our analysis on the other hand leverages convexity of f to establish
stronger results.

1.4 Organization of the paper

Section 2 introduces notations and reviews some necessary material from convex and stochastic
analysis. Section 3 states our main convergence results in the case of a convex differentiable ob-
jective function whose gradient is Lipschitz continuous. We first show the almost sure convergence
of the process towards the set of minimizers, then we establish convergence rates for the values.
Section 4 introduces further geometric properties of the objective functions, namely  Lojasiewicz
property and related error bound, which allows to obtain improved (local) convergence rates. This
covers in particular the (locally) strongly convex case. In section 5, we extend some results to the
nonsmooth case by considering the additively structured ”smooth + nonsmooth” convex minimiza-
tion. We develop new stochastic differential equations that naturally lend themselves to splitting
techniques. Technical lemmas and theorems that are needed throughout the paper are collected in
the appendix.

2 Notation and preliminaries

We will use the following shorthand notations: given d, n ∈ N, [n]
def
= {1, . . . , n}, Rd×n is the set of

real matrices of size d×n, and Id is the identity matrix of dimension d. For M ∈ Rd×n, M⊤ ∈ Rn×d

is its transpose matrix and ∥M∥F is its Frobenius norm. For M,M ′ ∈ Rd×d, M ≼ M ′ if and only
if u⊤(M ′ −M)u ≥ 0 for every u ∈ Rd. The notation A : Rd ⇒ Rd means that A is a set-valued
operator from Rd to Rd. Consider f : Rd → R, the sublevel of f at height r ∈ R is denoted
[f ≤ r]

def
= {x ∈ Rd : f(x) ≤ r}. For 1 ≤ p ≤ +∞, Lp([a, b]) is the space of measurable functions

g : R → R such that
∫ b
a |g(t)|pdt < +∞, with the usual adaptation when p = +∞. Functions

obeying
∫ +∞
0 |g(t)|pdt < +∞ belong to Lp(R+). On the probability space (Ω,F ,P), Lp(Ω;Rd)

denotes the (Bochner) space of Rd-valued random variables whose p-th moment (with respect to
the measure P) is finite. Other notations will be explained when they first appear.

2.1 On convex analysis

Let us recall some important definitions and results from convex analysis in the finite-dimensional
case; for a comprehensive coverage, we refer the reader to [53].
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We denote by Γ0(Rd) the class of proper lsc and convex functions on Rd taking values in R∪{+∞}.
For µ > 0, Γµ(Rd) ⊂ Γ0(Rd) is the class of µ-strongly convex functions, roughly speaking, this means
that there exists a quadratic lower bound on the growth of these functions. We denote by Cs(Rd)
the class of s-times continuously differentiable functions on Rd. For L ≥ 0, C1,1

L (Rd) ⊂ C1(Rd) is
the set of functions on Rd whose gradient is L-Lipschitz continuous.

The following Descent Lemma which is satisfied by this class of functions plays a central role in
optimization.

Lemma 2.1. Let f ∈ C1,1
L (Rd), then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
∥y − x∥2, ∀x, y ∈ Rd.

Corollary 2.2. Let f ∈ C1,1
L (Rd) such that argmin f ̸= ∅, then

∥∇f(x)∥2 ≤ 2L(f(x) − min f), ∀x ∈ Rd.

Proof. Proof. Use Lemma 2.1 for an arbitrary x ∈ Rd and y = x− 1
L∇f(x). Then bound

f

(
x− 1

L
∇f(x)

)
≥ min f.

The subdifferential of a function f ∈ Γ0(Rd) is the set-valued operator ∂f : Rd ⇒ Rd such that,
for every x in Rd,

∂f(x) = {u ∈ Rd : f(y) ≥ f(x) + ⟨u, y − x⟩ ∀y ∈ Rd}.

When f is continuous, ∂f(x) is non-empty convex and compact set for every x ∈ Rd. If f is
differentiable, then ∂f(x) = {∇f(x)}. For every x ∈ Rd such that ∂f(x) ̸= ∅, the minimum norm

selection of ∂f(x) is the unique element ∂0f(x)
def
= argminu∈∂f(x) ∥u∥.

2.2 On stochastic differential equations

For the necessary notation and preliminaries on stochastic processes, see Section A.2 in the ap-
pendix.

We emphasize that Theorem A.7 in the appendix provides us with sufficient conditions to ensure
the existence and uniqueness of the solution to (SDE). These conditions are met in our case under
assumptions (H0) and (H).

Let us now present Itô’s formula which plays a central role in the theory of stochastic differential
equations.

Proposition 2.3. [44, Chapter 4] Consider X a solution of (SDE), ϕ : R+×Rd → R be such that
ϕ(·, x) ∈ C1(R+) for every x ∈ Rd and ϕ(t, ·) ∈ C2(Rd) for every t ≥ 0. Then the process

Y (t) = ϕ(t,X(t)),
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is an Itô Process such that for all t ≥ 0

Y (t) = Y (0) +

∫ t

0

∂ϕ

∂t
(s,X(s))ds−

∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

+

∫ t

0

〈
σ⊤(s,X(s))∇ϕ(s,X(s)), dW (s)

〉
+

1

2

∫ t

0
tr
(
σ(s,X(s))σ⊤(s,X(s))∇2ϕ(s,X(s))

)
ds. (2)

Moreover, if E[Y (0)] < +∞, and if for all T > 0

E
(∫ T

0
∥σ⊤(s,X(s))∇ϕ(s,X(s))∥2ds

)
< +∞,

then

∫ t

0

〈
σ⊤(s,X(s))∇ϕ(s,X(s)), dW (s)

〉
is a square-integrable continuous martingale and

E[Y (t)] = E[Y (0)] + E
(∫ t

0

∂ϕ

∂t
(s,X(s))ds

)
− E

(∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

)
+

1

2
E
(∫ t

0
tr
(
σ(s,X(s))σ⊤(s,X(s))∇2ϕ(s,X(s))

)
ds

)
. (3)

The C2 assumption on ϕ(t, ·) in Itô’s formula is crucial. This can be weakened in certain cases
leading to the following inequality that will be useful in our context.

Proposition 2.4. Consider X a solution of (SDE), ϕ1 ∈ C1(R+), ϕ2 ∈ C1,1
L (Rd) and ϕ(t, x) =

ϕ1(t)ϕ2(x). Then the process

Y (t) = ϕ(t,X(t)) = ϕ1(t)ϕ2(X(t)),

is an Itô Process such that

Y (t) ≤ Y (0) +

∫ t

0
ϕ′1(s)ϕ2(X(s))ds−

∫ t

0
ϕ1(s) ⟨∇ϕ2(X(s)),∇f(X(s))⟩ ds

+

∫ t

0

〈
σ⊤(s,X(s))ϕ1(s)∇ϕ2(X(s)), dW (s)

〉
+
L

2

∫ t

0
ϕ1(s)tr

(
σ(s,X(s))σ⊤(s,X(s))

)
ds. (4)

Moreover, if E[Y (0)] < +∞, then

E[Y (t)] ≤ E[Y (0)] + E
(∫ t

0
ϕ′1(s)ϕ2(X(s))ds

)
− E

(∫ t

0
ϕ1(s) ⟨∇ϕ2(X(s)),∇f(X(s))⟩ ds

)
+
L

2
E
(∫ t

0
ϕ1(s)tr

(
σ(s,X(s))σ⊤(s,X(s))

)
ds

)
. (5)

Proof. Proof. Analogous to the proof of [43, Proposition C.2] using Rademacher’s theorem instead
of Alexandrov’s.
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3 Convergence properties for convex differentiable functions

We consider f (called the potential) and study the dynamic (SDE) under hypotheses (H0) (i.e. f ∈
C1,1
L (Rd) ∩ Γ0(Rd)) and (H). Recall the definitions of σ∗ and σ∞(t) from (1). Observe that from

(H) one can take σ2∗ = md supi∈[d],k∈[m] supt≥0,x∈Rd |σik(t, x)|2. Throughout the rest of the paper,
we will use the shorthand notation

Σ(t, x)
def
= σ(t, x)σ(t, x)⊤.

3.1 Almost sure convergence of trajectory

Our first main result establishes almost sure convergence of X(t) to an S-valued random variable
as t→ +∞.

Theorem 3.1. Consider the dynamic (SDE), where f and σ satisfy the assumptions (H0) and
(H), respectively. Additionally, let ν ≥ 2, X0 ∈ Lν(Ω;Rd) and is F0-measurable. Then, there exists
a unique solution X ∈ Sν

d of (SDE). Moreover, if σ∞ ∈ L2(R+), then the following holds:

(i) E[supt≥0 ∥X(t)∥ν ] < +∞.

(ii) ∀x⋆ ∈ S, limt→+∞ ∥X(t) − x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s..

(iii) limt→∞ ∥∇f(X(t))∥ = 0 a.s.. As a result, limt→∞ f(X(t)) = min f a.s..

(iv) In addition to (iii), there exists an S-valued random variable X⋆ such that limt→+∞X(t) =
X⋆ a.s..

Remark 3.2. (i) The assumptions on the noise variance are compatible with the theory of
asymptotic pseudotrajectories (APT) [9] and their weak version (WAPT) [8]. As we have
already discussed in Section 1.3, the theory of APT can indeed be used to study convergence
properties of X(t). For instance, using [9, Proposition 7.4] one can show easily that assuming
supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)) and that X(t) is bounded almost surely, one has almost

sure subsequential convergence of X(t) to points in S. Our work leverages convexity, does not
need any boundedness assumption and shows almost sure global convergence of the process
(not just subsequentially).

(ii) Ergodic properties of X(t) can be derived from the theory of WAPT as developed in [8] under
the weaker assumptions that ∥σ(x, t)∥ ≤ α(t), for some decreasing function α such that α(t) →
0 as t → +∞. For instance, an immediate consequence of [8, Proposition 1 and Corollary 1]
and Theorem 3.1(i) is that the fraction of time spent by X in an arbitrary neighborhood
of S goes to one with probability one. We also have by combining [8, Corollary 2] and
Theorem 3.1(i), and since S is convex in our case, that the average process 1

t

∫ t
0 X(s)ds

converges almost surely to a point in S.

Proof. Proof. The existence and uniqueness of a solution follows directly from the fact that the
conditions of Theorem A.7 are satisfied under (H0) and (H). The architecture of the proof of
Theorem 3.1 consists of three steps that we briefly describe:

9



• The first step is based on Itô’s formula (Proposition 2.3) and Burkholder-Davis-Gundy in-
equality (Proposition A.10) that let us prove a uniform bound (on time) for the ν−moment
of X(t).

• The second step is also based on Itô’s formula. Instead of the previous step, we use The-
orem A.9 that allows us to conclude that for every x⋆ ∈ S, limt→+∞ ∥X(t) − x⋆∥ exists
a.s.. Then, a separability argument is used to conclude that almost surely, for all x⋆ ∈ S,
limt→+∞ ∥X(t) − x⋆∥ exists.

• The third step consists in using another conclusion of Theorem A.9 to conclude that ∥∇f(X(·))∥2 ∈
L1(R+) a.s.. After proving that this function is eventually uniformly continuous, we proceed
according to Barbalat’s Lemma (see [26]) to conclude that limt→+∞ ∥∇f(X(t))∥ = 0 a.s.. As
a consequence of the convexity of f we deduce that limt→+∞ f(X(t)) = min f a.s..

• Finally, the fourth step consists in using Opial’s Lemma to conclude that there exists an
S-valued random variable X⋆ such that limt→+∞X(t) = X⋆ a.s..

(i) Let x⋆ be taken arbitrarily in S. Let us define the corresponding anchor function ϕ(x) =
∥x−x⋆∥2

2 . Using Itô’s formula we obtain

ϕ(X(t)) =
∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ=ϕ(X0)

+
1

2

∫ t

0
tr (Σ(s,X(s))) ds︸ ︷︷ ︸

At

−
∫ t

0
⟨∇f(X(s)), X(s) − x⋆⟩ ds︸ ︷︷ ︸

Ut

+

∫ t

0

〈
σ⊤(s,X(s)) (X(s) − x⋆) , dW (s)

〉
︸ ︷︷ ︸

Mt

. (6)

Let us now embark from (6) and use that

0 ≤ tr (Σ(s,X(s))) ≤ σ2∞(s) and ⟨∇f(X(s)), X(s) − x⋆⟩ ≥ 0,

where the second inequality is due to the convexity of f , to get

ϕ(X(t)) ≤ ϕ(X0) +
1

2

∫ +∞

0
σ2∞(s)ds+Mt.

Taking power ν
2 at both sides and using that (a+ b+ c)

ν
2 ≤ 3

ν−2
2 (a

ν
2 + b

ν
2 + c

ν
2 ), we have that

∥X(t) − x⋆∥ν ≤ 3
ν−2
2

[
∥X0 − x⋆∥ν +

(∫ +∞

0
σ2∞(s)ds

) ν
2

+ 2
ν
2 |Mt|

ν
2

]
.

Let T > 0, applying the supremum over t ∈ [0, T ] and then taking expectation, we obtain

E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

+ 2
ν
2E

(
sup

t∈[0,T ]
|Mt|

ν
2

)]
.
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Letting g(s) = σ⊤(s,X(s))(X(s) − x⋆) and p = ν
2 in Proposition A.10, we get

E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

]

+ 3
ν−2
2 2

ν
2C ν

2
E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥

ν
2

(∫ +∞

0
σ2∞(s)ds

) ν
4

)
.

Using that ab ≤ a2

2K + Kb2

2 for every K > 0,

E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

]

+
1

2
E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥ν

)
+ 6

ν−2
2 C ν

2

(∫ +∞

0
σ2∞(s)ds

) ν
2

.

And we end up with

E

(
sup

t∈[0,T ]
∥X(t) − x⋆∥ν

)
≤ 3

ν−2
2 2

[
E(∥X0 − x⋆∥ν) + (1 + 2

ν−2
2 C ν

2
)

(∫ +∞

0
σ2∞(s)ds

) ν
2

]
.

Since the right-hand side is independent of T , we take lim infT→+∞ on the previous expression
and apply Fatou’s Lemma to show the first claim.

(ii) Observe that, since ν ≥ 2, we have that E(supt≥0 ∥X(t)∥2) < +∞. Moreover σ∞ ∈ L2(R+),
and therefore

E
(∫ +∞

0
∥σ⊤(s,X(s)) (X(s) − x⋆) ∥2ds

)
≤ E

(
sup
t≥0

∥X(t) − x⋆∥2
)∫ +∞

0
σ2∞(s)ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local
martingale (see [41, Theorem 1.3.3]), which implies that E(Mt) = 0.

On the other hand, At and Ut defined as in (6) are two continuous adapted increasing processes
with A0 = U0 = 0 a.s.. Since ϕ(X(t)) is nonnegative and supx∈Rd ∥σ(·, x)∥F ∈ L2(R+), we
deduce that limt→+∞At < +∞. Then, we can use Theorem A.9 to conclude that∫ +∞

0
⟨∇f(X(s)), X(s) − x⋆⟩ds < +∞ a.s. (7)

and

∀x⋆ ∈ S, ∃Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→+∞

∥X(ω, t) − x⋆∥ exists ∀ω ∈ Ωx⋆ . (8)
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Since Rd is separable, there exists a countable set Z ⊆ S, such that cl(Z) = S. Let Ω̃ =⋂
z∈Z Ωz. Since Z is countable, a union bound shows

P(Ω̃) = 1 − P

(⋃
z∈Z

Ωc
z

)
≥ 1 −

∑
z∈Z

P(Ωc
z) = 1.

For arbitrary x⋆ ∈ S, there exists a sequence (zk)k∈N ⊆ Z such that zk → x⋆. In view of (8),
for every k ∈ N there exists τk : Ωzk → R+ such that

lim
t→+∞

∥X(ω, t) − zk∥ = τk(ω), ∀ω ∈ Ωzk . (9)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωzk for any k ∈ N, and using the triangle inequality and (9), we
obtain that

τk(ω) − ∥zk − x⋆∥ ≤ lim inf
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t) − x⋆∥ ≤ τk(ω) + ∥zk − x⋆∥.

Now, passing to k → +∞, we deduce

lim sup
k→+∞

τk(ω) ≤ lim inf
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t) − x⋆∥ ≤ lim inf
k→+∞

τk(ω),

whence we deduce that limk→+∞ τk(ω) exists on the set Ω̃ of probability 1, and in turn
limt→+∞ ∥X(ω, t) − x⋆∥ = limk→+∞ τk(ω).

Let us recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·) is contin-
uous for every ω ∈ Ωcont. Now let x⋆ ∈ S arbitrary, since the limit exists, for every
ω ∈ Ω̃ ∩ Ωcont there exists T (ω) such that ∥X(ω, t) − x⋆∥ ≤ 1 + limk→+∞ τk(ω) for every
t ≥ T (ω). Besides, since X(ω, ·) is continuous, by Bolzano’s theorem supt∈[0,T (ω)] ∥X(ω, t)∥ =

maxt∈[0,T (ω)] ∥X(ω, t)∥ def
= h(ω) < +∞. Therefore, supt≥0 ∥X(ω, t)∥ ≤ max{h(ω), 1+limk→+∞ τk(ω)+

∥x⋆∥} < +∞.

(iii) Let Mt =

∫ t

0
σ(s,X(s))dW (s). This is a continuous martingale (w.r.t. the filtration Ft),

which verifies

E(|Mt|2) = E
(∫ t

0
∥σ(s,X(s))∥2Fds

)
≤ E

(∫ +∞

0
σ2∞(s)ds

)
< +∞,∀t ≥ 0.

According to Theorem A.8, we deduce that there exists a random variable M∞ w.r.t. F∞,
and which verifies: E(|M∞|2) < +∞, and there exists ΩM ∈ F such that P(ΩM ) = 1 and

lim
t→+∞

Mt(ω) = M∞(ω) for every ω ∈ ΩM .

Besides, by convexity of f and (7), we have that there exists Ωf ∈ F such that P(Ωf ) = 1
and (f(X(ω, ·)) − min f) ∈ L1(R+) for every ω ∈ Ωf . By Corollary 2.2, we obtain that
∥∇f(X(ω, ·))∥ ∈ L2(R+) for every ω ∈ Ωf .
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Let Ωconv
def
= Ω̃ ∩ Ωcont ∩ Ωf ∩ ΩM , hence P(Ωconv) = 1. Let ω ∈ Ωconv ⊆ Ωf arbitrary, then

lim inft→+∞ ∥∇f(X(ω, t))∥ = 0. If lim supt→+∞ ∥∇f(X(ω, t))∥ = 0 then we conclude. Sup-
pose by contradiction that there exists ω0 ∈ Ωconv such that lim supt→+∞ ∥∇f(X(ω0, t))∥ > 0.
Then, by Lemma A.3, there exists δ(ω0) > 0 satisfying

0 = lim inf
t→+∞

∥∇f(X(ω0, t))∥ < δ(ω0) < lim sup
t→+∞

∥∇f(X(ω0, t))∥,

and there exists (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞,

∥∇f(X(ω0, tk))∥ > δ and tk+1 − tk > 1, ∀k ∈ N.

We allow ourselves the abuse of notation X(t)
def
= X(ω0, t) and δ

def
= δ(ω0) during the rest of

the proof from this point.

Let ε ∈
]
0,min

(
δ2

4L2 , 1
)[

. Note that this choice entails that the intervals
(
[tk, tk + ε

2 ]
)
k∈N are

disjoint. On the other hand, according to the convergence property of Mt and the fact that
∥∇f(X(·))∥ ∈ L2(R+), there exists k′ > 0 such that for every k ≥ k′

sup
t≥tk

|Mt −Mtk |
2 <

ε

4
and

∫ +∞

tk

∥∇f(X(s))∥2ds ≤ 1

2
.

Besides, for every k ≥ k′, t ∈ [tk, tk + ε
2 ]

∥X(t) −X(tk)∥2 ≤ 2(t− tk)

∫ t

tk

∥∇f(X(s))∥2ds+ 2|Mt −Mtk |
2 ≤ (t− tk) +

ε

2
≤ ε.

Since f ∈ C1,1
L (Rd) and L2ε ≤

(
δ
2

)2
by assumption on ε, we have that for every k ≥ k′ and

t ∈ [tk, tk + ε
2 ]

∥∇f(X(t)) −∇f(X(tk))∥2 ≤ L2∥X(t) −X(tk)∥2 ≤
(
δ

2

)2

.

Therefore, for every k ≥ k′, t ∈ [tk, tk + ε
2 ]

∥∇f(X(t))∥ ≥ ∥∇f(X(tk))∥ − ∥∇f(X(t)) −∇f(X(tk))∥︸ ︷︷ ︸
≤ δ

2

≥ δ

2
.

Finally, ∫ +∞

0
∥∇f(X(s))∥2ds ≥

∑
k≥k′

∫ tk+
ε
2

tk

∥∇f(X(s))∥2ds ≥
∑
k≥k′

δ2ε

8
= +∞,

which contradicts ∥∇f(X(·))∥ ∈ L2(R+). So,

lim sup
t→+∞

∥∇f(X(ω, t))∥ = lim inf
t→+∞

∥∇f(X(ω, t))∥ = lim
t→+∞

∥∇f(X(ω, t))∥ = 0, ∀ω ∈ Ωconv.

Let x⋆ ∈ S and ω ∈ Ωconv taken arbitrary. By convexity and Cauchy-Schwarz inequality:

0 ≤ f(X(ω, t)) − min f ≤ ∥∇f(X(ω, t))∥∥X(ω, t) − x⋆∥.

The claim then follows because we have already obtained that limt→+∞∥X(ω, t)−x⋆∥ exists,
and limt→∞ ∥∇f(X(ω, t))∥ = 0.
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(iv) Let ω ∈ Ωconv and X̃(ω) be a sequential limit point of X(ω, t). Equivalently, there exists an
increasing sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

lim
k→+∞

X(ω, tk) = X̃(ω).

Since limt→+∞ f(X(ω, t)) = min f and by continuity of f , we obtain directly that X̃(ω) ∈ S.
Finally, by Opial’s Lemma (see [45]) we conclude that there exists X⋆(ω) ∈ S such that
limt→+∞X(ω, t) = X⋆(ω). In other words, since ω ∈ Ωconv was arbitrary, there exists an
S-valued random variable X⋆ such that limt→+∞X(t) = X⋆ a.s..

3.2 Convergence rates of the objective

Our first result, stated below, summarizes the global convergence rates in expectation satisfied by
the trajectories of (SDE).

Theorem 3.3. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and (H).
Additionally, X0 ∈ L2(Ω;Rd) and is F0-measurable. The following statements are satisfied by the
solution trajectory X ∈ S2

d of (SDE):

(i) Let f ◦X(t)
def
= t−1

∫ t

0
f(X(s))ds and X(t) = t−1

∫ t

0
X(s)ds. Then

E
(
f(X(t)) − min f

)
≤ E

(
f ◦X(t) − min f

)
≤

E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t > 0. (10)

Besides, if σ∞ is L2(R+), then

E
(
f(X(t)) − min f

)
≤ E

(
f ◦X(t) − min f

)
= O

(
1

t

)
. (11)

(ii) Moreover, if f ∈ Γµ(Rd) with µ > 0, then S = {x⋆} and

(a)

E
(
∥X(t) − x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
, ∀t ≥ 0. (12)

Besides, if σ∞ is non-increasing and vanishes at infinity, then for every λ ∈]0, 1[:

E
(
∥X(t) − x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
e−µ(1−λ)t + σ2∞(λt), ∀t ≥ 0. (13)

(b) Furthermore,

E (f(X(t)) − min f) ≤ E (f(X0) − min f) e−2µt +
Lσ2∗
4µ

, ∀t ≥ 0. (14)

Besides, if σ∞ is non-increasing and vanishes at infinity, then for every λ ∈]0, 1[:

E (f(X(t)) − min f) ≤ E (f(X0) − min f) e−2µt +
Lσ2∗
4µ

e−2µ(1−λ)t +
L

2
σ2∞(λt), ∀t ≥ 0.

(15)
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Proof. Proof.

(i) Let x⋆ ∈ S. Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 and G(t) = E(g(t)). By applying Proposition 2.3

with ϕ, and using the convexity of f , we obtain

G(t) −G(0) = E
(∫ t

0
⟨∇f(X(s)), x⋆ −X(s)⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
≤ −E

(∫ t

0
(f(X(s)) − min f)ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
(16)

≤ −E
(∫ t

0
(f(X(s)) − min f)ds

)
+
σ2∗
2
t.

Then rearranging the terms in (16), using G(t) ≥ 0, and dividing by t > 0, we obtain

1

t
E
(∫ t

0
(f(X(s)) − min f)ds

)
≤

E
(
∥X0 − x⋆∥2

)
2t

+
σ2∗
2
, ∀t > 0. (17)

Since x⋆ is arbitrary, by taking the infimum with respect to x⋆ ∈ S in (17), we obtain

1

t
E
(∫ t

0
(f(X(s)) − min f)ds

)
≤

E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t > 0. (18)

Moreover, if σ∞ ∈ L2(R+), then using inequality (16), we have

G(t) −G(0) ≤ −E
(∫ t

0
(f(X(s)) − min f)ds

)
+

1

2

(∫ +∞

0
σ2∞(s)ds

)
.

Rearranging as before, we conclude that

1

t
E
(∫ t

0
(f(X(s)) − min f)ds

)
≤

E
(
dist(X0,S)2

)
2t

+
1

2t

∫ +∞

0
σ2∞(s)ds, ∀t > 0. (19)

Then complete the result with the inequality

E
(
f(X(t)) − min f

)
≤ E

(
f ◦X(t) − min f

)
which follows from convexity of f and Jensen’s inequality.

(ii) (a) Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 , G(t) = E(g(t)). By Proposition 2.3 with ϕ, we obtain

G(t) −G(0) = E
(∫ t

0
⟨−∇f(X(s)), X(s) − x⋆⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
. (20)

Using that f ∈ Γµ(Rd), we deduce that

G(t) ≤ G(0) − µ

∫ t

0
G(s)ds+

∫ t

0

σ2∗
2
ds, ∀t ≥ 0. (21)
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In order to invoke Lemma A.2, we solve the ODE y′(t) = −µy(t) + σ2
∗
2 , ∀t > 0,

y(0) = E
(
∥X0−x⋆∥2

2

)
.

Solving it by the integrating factor method, we conclude that

G(t) ≤ E
(
∥X0 − x⋆∥2

2

)
e−µt +

σ2∗
2µ
, ∀t ≥ 0.

Suppose now that σ∞ is non-increasing and vanishes at infinity. We can bound the trace
term by σ2∞ in (20). To use Lemma A.2, we need to solve y′(t) = −µy(t) + σ2

∞(t)
2 , ∀t > 0,

y(0) = E
(
∥X0−x⋆∥2

2

)
.

Let λ ∈]0, 1[, using the integrating factor method, we get

y(t) ≤ y(0)e−µt + e−µt

∫ t

0

σ2∞(s)

2
eµsds

≤ y(0)e−µt + e−µt

(∫ λt

0

σ2∞(s)

2
eµsds+

∫ t

λt

σ2∞(s)

2
eµsds

)
≤ y(0)e−µt + e−µt

(
σ2∗
2

∫ λt

0
eµsds+

σ2∞(λt)

2

∫ t

λt
eµsds

)
≤ y(0)e−µt + e−µt

(
σ2∗
2µ
eµλt +

σ2∞(λt)

2
eµt
)
, ∀t ≥ 0.

According to Lemma A.2, we deduce that

G(t) ≤ E
(
∥X0 − x⋆∥2

2

)
e−µt +

σ2∗
2µ
e−µ(1−λ)t +

σ2∞(λt)

2
, ∀t ≥ 0,

which is our claim (13).

(b) Since f ∈ Γµ(Rd), it is well known that f satisfies the Polyak- Lojasiewicz inequality, i.e.

2µ(f(x) − min f) ≤ ∥∇f(x)∥2, ∀x ∈ Rd,

(see Section 4 for an explanation of this inequality). Besides, since f ∈ Γ0(Rd)∩C1,1
L (Rd)

and X0 ∈ L2(Ω;Rd), we have that E(f(X0) − min f) < +∞.

We take the function ϕ̂(x) = f(x) − min f and apply Proposition 2.3. Then, defining
ĝ(t) = f(X(t)) − min f and Ĝ(t) = E(g(t)), we obtain

Ĝ(t) − Ĝ(0) ≤ −E
(∫ t

0
∥∇f(X(s))∥2ds

)
+
L

2

∫ t

0
σ2∞(s)ds.

Using the Polyak- Lojasiewicz inequality, we end up having

Ĝ(t) − Ĝ(0) ≤ −2µ

(∫ t

0
Ĝ(s)ds

)
+
L

2

∫ t

0
σ2∞(s)ds. (22)

And we conclude by continuing the analysis as in the previous item after arriving to
(21).
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Under a stronger assumption on σ∞, we also have the following pointwise sublinear convergence
rate in expectation.

Proposition 3.4. Consider the dynamic (SDE) where f and σ satisfy the assumptions (H0) and
(H), respectively. Additionally, X0 ∈ L2(Ω;Rd) and is F0-measurable. Assume that there exists
K ≥ 0, β ∈ [0, 1[ such that ∫ t

0
(s+ 1)σ2∞(s)ds ≤ Ktβ, ∀t ≥ 0. (23)

Then the solution trajectory X ∈ S2
d of (SDE) satisfies

E (f(X(t)) − min f) = O(tβ−1).

Proof. Proof. Given x⋆ ∈ S, let us apply Proposition 2.4 successively with V1(t, x) = t(f(x) −
min f), then with V2(x) = 1

2∥x− x⋆∥2. Taking the expectation and adding the two results, we get

E (V1(t,X(t)) + V2(X(t))) ≤ E
(
∥X0 − x⋆∥2

2

)
+
L

2

∫ t

0
sσ2∞(s)ds+

1

2

∫ t

0
σ2∞(s)ds

≤ E
(
∥X0 − x⋆∥2

2

)
+

max{1, L}
2

(∫ t

0
(s+ 1)σ2∞(s)ds

)
,

where we have used the convexity of f in the first inequality. Then we conclude that

E(f(X(t)) − min f) ≤
E
(
∥X0 − x⋆∥2

)
2t

+
K max{1, L}

2
tβ−1 = O(tβ−1).

When f is also C2 and the first order moment of σ2∞ is bounded, we get an improved o(t−1)
global convergence rate on the objective in almost sure sense.

Theorem 3.5. Consider the dynamic (SDE). Assume that f ∈ C2(Rd) and σ satisfy the assump-
tions (H0) and (H), respectively. Additionally, X0 ∈ L2(Ω;Rd) and is F0-measurable, and that
t 7→ tσ2∞(t) ∈ L1(R+). Then, the solution trajectory X ∈ S2

d of (SDE) obeys:

(i) t 7→ t∥∇f(X(t))∥2 ∈ L1(R+) a.s..

(ii) f(X(t)) − min f = o(t−1) a.s..

Proof. Proof. By applying Itô’s formula in Proposition 2.3 with ϕ(t, x) = t(f(x) − min f) we get

t(f(X(t)) − min f) =

∫ t

0
(f(X(s)) − min f)ds+

1

2

∫ t

0
tr[Σ(s,X(s))∇2 f(X(s))]sds

−
∫ t

0
s∥∇f(X(s))∥2ds+

∫ t

0
⟨sσ⊤(s,X(s))∇f(X(s)), dW (s)⟩.

By (7) and convexity of f , we deduce that f(X(·)) − min f ∈ L1(R+) a.s.. Moreover,∫ +∞

0
str[Σ(s,X(s))∇2 f(X(s))]ds ≤ L

∫ +∞

0
sσ2∞(s)ds < +∞.

Then by Theorem A.9, we have that limt→+∞ t(f(X(t))−min f) exists a.s. and
∫ +∞
0 t∥∇f(X(t))∥2dt <

+∞ a.s.. Finally, by Lemma A.1, we conclude that limt→+∞ t(f(X(t)) − min f) = 0 a.s..
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4 Convergence rates under  Lojasiewicz inequality

The local convergence rate of the first-order descent methods can be understood using the  Lojasiewicz
property and the associated  Lojasiewicz exponent, see [3, 27]. The  Lojasiewicz property has its
roots in algebraic geometry, and it essentially describes a relationship between the objective value
and its gradient (or subgradient).

Definition 4.1 ( Lojasiewicz inequality). Let f : Rd → R be a differentiable function with
S = argmin(f) ̸= ∅ and q ∈ [0, 1[. f satisfies the  Lojasiewicz inequality with exponent q at x̄ ∈ S
if there exists a neighborhood Vx̄ of x̄, r > min f and µ > 0 such that

µ(f(x) − min f)q ≤ ∥∇f(x)∥, ∀x ∈ Vx̄ ∩ [min f < f < r]. (24)

The function f has the  Lojasiewicz property on S if it obeys (24) at each point of S with the same
constant µ and exponent q, and we will write f ∈  Lq(S).

Error bounds have also been successfully applied to various branches of optimization, and in
particular to complexity analysis, see [47]. Of particular interest in our setting is the Hölderian
error bound.

Definition 4.2 (Hölderian error bound). Let f : Rd → R be a proper function such that
S = argmin(f) ̸= ∅. f satisfies a Hölderian (or power-type) error bound inequality with exponent
p ≥ 1, and we write f ∈ EBp, if there exists γ > 0 and r > min f such that

f(x) − min f ≥ γdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r]. (25)

For a given r > min f such that (25) holds, we will use the shorthand notation f ∈ EBp([f ≤ r]).

A deep result due to  Lojasiewicz states that for arbitrary continuous semi-algebraic functions, the
Hölderian error bound inequality holds on any compact set, and the  Lojasiewicz inequality holds
at each point; see [38, 39]. In fact, for convex functions, the  Lojasiewicz property and Hölderian
error bound are actually equivalent.

Proposition 4.3. Assume that f ∈ Γ0(Rd) ∩ C1(Rd) with S = argmin(f) ̸= ∅. Let q ∈ [0, 1[,

p
def
= 1

1−q ≥ 1 and r > min f . Then f verifies the  Lojasiewicz inequality (24) at x̄ ∈ S if and only if
the Hölderian error bound (25) holds on Vx̄ ∩ [min f < f < r].

Proof. Proof. Combine [12, Lemma 4 and Theorem 5].

We are now ready to state the following ergodic local convergence rate.

Proposition 4.4. Consider the hypotheses of Theorem 3.3 and let ε > 0. If f ∈ EBp([f ≤ rε]) for

rε > min f + σ2
∗
2 + ε, then ∃tε > 0 such that

dist
(
E(X(t)), S

)
= O(t

− 1
p ) + O

(
σ

2
p
∗

)
, ∀t ≥ tε.
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Proof. Proof. There exists tε > 0 such that for all t ≥ tε,
E(dist(X0,S)∈)

2t < ε. Thus, from (10) and
Jensen’s inequality, we have

f
(
E[X(t)]

)
≤ E[f(X(t))] ≤ min f +

σ2∗
2

+ ε ≤ rε, ∀t ≥ tε.

This reflects the fact that, E[X(t)] ∈ [f ≤ rε] for t ≥ tε. Using Theorem 3.3 and that f ∈ EBp([f ≤
rε]), letting γ > 0 the coefficient of the error bound, we have

γdist(E(X(t)),S)p ≤ f(E[X(t)]) − min f ≤
E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t ≥ tε.

Dividing by γ > 0, then taking the power 1
p on both sides of the previous inequality, and finally

using the subadditivity of the power function (·)1/p on [0,+∞[ (recall p ≥ 1), we obtain

dist(E(X(t)),S) ≤

(
E
(
dist(X0,S)2

)
2γ

) 1
p

t
− 1

p +

(
σ2∗
2γ

) 1
p

, ∀t ≥ tε.

4.1 Discussion on the localization of the process

Let us take a moment to elaborate on the localization of the process X(t) generated by (SDE) when
f ∈ C1,1

L (Rd) ∩ Γ0(Rd) and σ∞ ∈ L2(R+). This discussion is essential to understand the challenges
underlying the analysis of the local convergence properties and rates in a stochastic setting under
(local) error bounds. First, observe that the hypothesis of Lipschitz continuity of the gradient is
incompatible with a global hypothesis of error bound or  Lojasiewicz inequality unless the exponent
is p = 2 or q = 1

2 , respectively. Therefore, we can only ask for these inequalities to be locally
satisfied. Even though, thanks to convexity, we could introduce a global desingularizing function
(see [12, Theorem 3]), this function would not be concave nor convex, a fundamental property
usually at the heart of the local analysis. In recent literature on stochastic processes and local
properties, it is usual to find hypotheses about the almost sure localization of the process or that
it is essentially bounded. Nevertheless, these assumptions are unrealistic or outright false due to
the behavior of the Brownian Motion. Hence, we will avoid making these kinds of assumptions.

What we will do is to consider that by Theorem 3.1 we have that limt→+∞ f(X(t)) = min f a.s.,
which means that there exists Ωconv ∈ F such that P(Ωconv) = 1, and (∀r > min f, ∀ω ∈ Ωconv),
(∃tr(ω) > 0) such that (∀t > tr(ω)), X(ω, t) ∈ [f ≤ r]. However, one should not infer from this that
X(t) ∈ [f ≤ r] a.s. for t large enough. Indeed, tr is a random variable which cannot be in general
bounded uniformly on Ωconv. Rather, in this paper, we will invoke measure theoretic arguments
to pass from a.s. convergence to almost uniform convergence thanks to Egorov’s theorem (see
Theorem A.4). More precisely, we will show that

(∀δ > 0, ∀r > min f), (∃Ωδ ∈ F s.t. P(Ωδ) ≥ 1 − δ and ∃t̂r,δ > 0), (∀ω ∈ Ωδ,∀t > t̂r,δ),
X(ω, t) ∈ [f ≤ r].

Hence, this property will allow us to localize X(t) in the sublevel set of f at r for t large enough
with probability at least 1 − δ. In turn, we will be able to invoke the error bound (or  Lojasiewicz)
inequality.
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4.2 Convergence rates under  Lojasiewicz Inequality

Let σ∞ ∈ L2(R+), L > 0, δ > 0, β ∈ [0, 1[ and some positive constants C∗, C∗∗, CK . Consider the
functions hδ, lδ, kδ : R+ → R defined by:

hδ(t) = σ2∞(t) + C∗
√
δ

σ2∞(t)

2
√∫ t

t̂δ
σ2∞(u)du

, (26)

lδ(t) =
L

2
σ2∞(t) + C∗∗

√
δ

σ2∞(t)

2
√∫ t

t̂δ
σ2∞(u)du

, (27)

kδ(t) =
L

2
σ2∞(t) + CK

√
δ

σ2∞(t)tβ−1

2
√∫ t

t̂δ
σ2∞(u)uβ−1du

. (28)

We are now ready to state our main local convergence result.

Theorem 4.5. Consider (SDE) where f and σ satisfy the assumptions (H0) and (H), respectively.
Additionally, X0 ∈ L4(Ω;Rd) and is F0-measurable. Let X ∈ S4

d the unique solution trajectory of

(SDE). Suppose also that σ∞ ∈ L2(R+) (C∞
def
= ∥σ∞∥L2(R+)). Let p ≥ 2 and q

def
= 1 − 1

p ∈ [12 , 1[,
and assume that f ∈  Lq(S). Consider also the positive constants C∗, C∗∗, CK , Cd, Cf (detailed in
the proof). Then, for all δ > 0, there exists a measurable set Ωδ such that P(Ωδ) ≥ 1− δ and t̂δ > 0
such that the following statements hold.

(i) If p = 2 and σ∞ is non-increasing, then σ∞ vanishes at infinity and

(a) there exists γ > 0 such that for every λ ∈]0, 1[,

E
(

dist(X(t),S)2

2

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+ e−2γ(1−λ)(t−t̂δ)(C2

∞ + C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
+ Cd

√
δ, ∀t > t̂δ;

(29)

(b) there exists µ > 0 such that for every λ ∈]0, 1[,

E (f(X(t)) − min f) ≤ e−µ2(t−t̂δ)E([f(X(t̂δ)) − min f ]1Ωδ
)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ C∗∗C∞
√
δ

)
+
lδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(30)

Moreover, if (23) holds, then

E (f(X(t)) − min f) ≤ e−µ2(t−t̂δ)E([f(X(t̂δ)) − min f ]1Ωδ
)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ CKC∞

√
t̂β−1
δ

√
δ

)
+
kδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(31)
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(ii) If p > 2:

(a) There exists γ > 0 such that

E
(

dist(X(t),S)2

2

)
≤ y⋆δ (t) + Cd

√
δ, ∀t > t̂δ, (32)

where y⋆δ is the solution of the Cauchy problem

(C.1)

{
y′(t) = −2

p
2 γy

p
2 + hδ(t), ∀t > t̂δ

y(t̂δ) = E
(
dist(X(t̂δ,S))2

2 1Ωδ

)
.

(b) There exists µ > 0 such that

E [f(X(t)) − min f ] ≤ w⋆
δ (t) + Cf

√
δ, ∀t > t̂δ, (33)

where w⋆
δ is the solution of the Cauchy problem

(C.2)

{
y′(t) = −µ2y(t)2q + lδ(t), t > t̂δ

y(t̂δ) = E([f(X(t̂δ) − min f ]1Ωδ
).

Moreover, if (23) holds, then

E [f(X(t)) − min f ] ≤ z⋆δ (t) + Cf

√
δ, ∀t > t̂δ, (34)

where z⋆δ is the solution of the Cauchy problem

(C.3)

{
y′(t) = −µ2y(t)2q + kδ(t), ∀t > t̂δ

y(t̂δ) = E([f(X(t̂δ) − min f ]1Ωδ
).

Before proceeding with the proof, a few remarks are in order.

Remark 4.6. The hypothesis that f has a Lipschitz continuous gradient restricts the  Lojasiewicz
exponent q to be in [12 , 1[.

Remark 4.7. If we have a global error bound (or  Lojasiewicz inequality), then as noted in the
discussion of Section 4.1, one necessarily has p = 2 (or q = 1

2). In this case, the statements (i) of
Theorem 4.5 will hold if we replace σ∞ ∈ L2(R+) by σ∞ non-increasing and vanishing at infinity,
δ by 0 and t̂δ by 0. Clearly, one recovers (13).

Remark 4.8. It is important to highlight the trade-off in the selection of δ. Although δ can be
arbitrarily small, the time from which the inequalities are satisfied, t̂δ, surely increases when δ
approaches 0+. Besides, let qδ,t̂δ : R+ → R be a decreasing function. Our convergence rates in

Theorem 4.5 are of the form E[m(X(t))] ≤ qδ,t̂δ(t) + C
√
δ, ∀t > tδ, where m(x) = f(x) − min f

or m(x) = dist(x,S)2/2. Let ε ∈]0, 2C[ and δ⋆ = ε2

4C2 . Then one gets an ε-optimal solution for

t > max{q⋆(ε), t̂δ⋆}.

Remark 4.9. Referring again to the discussion of Section 4.1, we have that there exists δ > 0 and
Ωδ ∈ F with P(Ωδ) ≥ 1− δ over which we have uniform convergence of the objective. If δ could be
0 (a.s. uniform convergence), there would be a t̂ > 0 such that X(t) ∈ [f ≤ r], ∀t > t̂ a.s.. Thus,
the statements in Theorem 4.5 would hold if we replace δ by 0 and t̂δ by t̂. The proof is far easier
in this case. It is however not easy to ensure the existence of such t̂ in general.
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Remark 4.10. In order to find explicit convergence rates in Theorem 4.5 we have to solve or bound
the solution of the Cauchy problems (C.1), (C.2) and (C.3). We can generalize these problems as
follows: Let a > 0, b > 1, t̂δ > 0, δ > 0, y0(t̂δ, δ) > 0 and pδ a nonnegative integrable function.
Consider

(C.0)

{
y′(t) = −ayb(t) + pδ(t), ∀t > t̂δ

y(t̂δ) = y0(t̂δ, δ).

Although one could give an explicit ad-hoc pδ in order to find a particular solution of (C.0), the
dependence of this function on t̂δ is unavoidable, which is a problem, since pδ is explicitly related
to σ∞, and this in turn is the one that defines t̂δ in the first place.

To the best of our knowledge, there is no way to arithmetically solve this non linear ODE, not
even a sharp bound of the solution.

Nevertheless, if y(t) = O
(

(t+ 1)−
1

b−1

)
, then pδ(t) = O

(
(t+ 1)−

b
b−1

)
. Which leads us to make

the following conjecture:

Conjecture 4.11. If pδ = O(σ2∞) and σ2∞(t) = O
(

(t+ 1)−
b

b−1

)
(for constants

independent of δ and t̂δ), then y(t) = O
(

(t+ 1)−
1

b−1

)
.

Proof. Proof of Theorem 4.5. Given that σ∞ ∈ L2(R+), if it is non-increasing, we have immediately
that it vanishes at infinity. Let x⋆ ∈ S. Let us recall that by claim (i) of Theorem 3.1, there exists
C∗ > 0 such that

sup
t≥0

E
(
dist(X(t),S)2

)
≤ sup

t≥0
E
(
∥X(t) − x⋆∥2

)
≤ C∗.

sup
t≥0

E (f(X(t)) − min f) ≤ 1

2
E(∥∇f(X(t)) −∇f(x⋆)∥2) +

1

2
E(∥X(t) − x⋆∥2) ≤ L2 + 1

2
C∗ < +∞.

On the other hand, by Theorem 3.1(iii), there exists a set Ωconv ∈ F such that P(Ωconv) =
1 where, for all ω ∈ Ωconv: limt→+∞ f(X(ω, t)) = min f , t 7→ f(X(ω, t)) is continuous, and
limt→+∞ dist(X(ω, t),S) = 0. Then, by Theorem A.4 for every δ > 0 there exists Ωδ ∈ F such
that Ωδ ⊂ Ωconv, P(Ωδ) > 1 − δ and f(X(·, t)) (resp. dist(X(·, t),S)) converges uniformly to min f
(resp. to 0) on Ωδ. This means that given r ≥ min f , and for every δ > 0, there exist t̂δ > 0 and
Ωδ ∈ F with P(Ωδ) > 1 − δ such that X(ω, t) ∈ [f ≤ r] ∩ VS for all t ≥ t̂δ and ω ∈ Ωδ, where
VS is a neighbourhood of S. On the other hand, since f ∈  Lq(S), by Proposition 4.3, there exists
r > min f and a neighbourhood VS of S such that f verifies the p-Hölderian error bound inequality
(25) on [min f < f < r] ∩ VS . Consequently, for any δ > 0, there exists t ≥ t̂δ large enough such
that the p-Hölderian error bound inequality holds at X(ω, t) for all t ≥ t̂δ and ω ∈ Ωδ.

We are now ready to start. Let x⋆ ∈ S, δ > 0, and t ≥ t̂δ.

(i) p = 2:
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(a) Let ĝ(t) = ϕ̂(X(t)) = dist(X(t),S)2
2 , Ĝ(t) = E(ĝ(t)1Ωδ

), and µ > 0 be the coefficient of the
error bound inequality. We have

∇ϕ̂(X(t)) = X(t) − PS(X(t)),

where PS(x) is the projection of x on S, so ϕ̂ ∈ C1,1
1 (Rd). We use Proposition 2.4 to

obtain

ĝ(t) − ĝ(t̂δ) ≤ −
∫ t

t̂δ

⟨∇f(X(s), X(s) − PS(X(s))⟩ ds

+

∫ t

t̂δ

tr[Σ(s,X(s))]ds+

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)

〉
. (35)

We have that tr[Σ(s,X(s))] ≤ σ2∞(s) and by convexity

−⟨∇f(X(s), X(s) − PS(X(s))⟩ ≤ − (f(X(s)) − min f) .

Therefore,

ĝ(t) − ĝ(t̂δ) ≤ −
∫ t

t̂δ

(f(X(s)) − min f)ds

+

∫ t

t̂δ

σ2∞(s)ds+

∫ t

t̂δ

⟨σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)⟩.

Then, multiplying this inequality by 1Ωδ
, and taking expectation we obtain

Ĝ(t) − Ĝ(t̂δ) ≤ −E
[∫ t

t̂δ

(f(X(s)) − min f)1Ωδ
ds

]
+

∫ t

t̂δ

σ2∞(s)ds

+ E
[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)

〉]
.

On the other hand, since σ∞ ∈ L2(R+), we have for all T > 0

E
(∫ T

0
∥σ⊤(s,X(s))(X(s) − PS(X(s)))∥2ds

)
≤ E

(∫ T

0
σ2∞(s)∥X(s) − PS(X(s))∥2ds

)
=

∫ T

0
σ2∞(s)E(dist(X(t),S)2)ds

≤ C∗
∫ +∞

0
σ2∞(s)ds < +∞.

Letting Y (s) = σ⊤(s,X(s))(X(s) − PS(X(s))), then

E
[∫ t

t̂δ

⟨Y (s), dW (s)⟩
]

= 0.
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This immediately implies

E
[
1Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]

= −E
[
1Ωconv\Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]
.

The right-hand side can be bounded using Cauchy-Schwarz inequality as follows∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

⟨Y (s), dW (s)⟩
]∣∣∣∣

=

∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)

〉]∣∣∣∣
≤
√
E(1Ωconv\Ωδ

)

√√√√E

[(∫ t

t̂δ

⟨σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)⟩
)2
]

≤
√
δ

√
E
[∫ t

t̂δ

∥σ⊤(s,X(s))(X(s) − PS(X(s)))∥2ds
]

≤
√
C∗δ

√∫ t

t̂δ

σ2∞(s)ds =
√
C∗δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds,

where we have used the fundamental theorem of calculus to arrive at the last equality.

Set C∗ =
√
C∗, and recall that C∞ =

√∫ +∞
0 σ2∞(s)ds. Thus, for every t > t̂δ

Ĝ(t) ≤ Ĝ(t̂δ) −
∫ t

t̂δ

E [(f(X(s)) − min f)1Ωδ
] ds+

∫ t

t̂δ

σ2∞(s)ds+ C∗
√
δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds.

(36)

Recall hδ(t) from (26). Then, we can rewrite (36) as

Ĝ(t) ≤ Ĝ(t̂δ) −
∫ t

t̂δ

E [(f(X(s)) − min f)1Ωδ
] ds+

∫ t

t̂δ

hδ(s)ds, ∀t > t̂δ. (37)

Using that f ∈ EB2([f ≤ r]), we obtain

Ĝ(t) ≤ Ĝ(t̂δ) − 2γ

∫ t

t̂δ

Ĝ(s)ds+

∫ t

t̂δ

hδ(s)ds, ∀t > t̂δ.

Observe that hδ ∈ L1([t̂δ,∞[) since∫ +∞

t̂δ

hδ(s)ds ≤ C2
∞ + C∗C∞

√
δ.

The goal now is to apply the comparison lemma to Ĝ(t) (see Lemma A.2) which neces-
sitates to solve the following ODE{

y′(t) = −2γy(t) + hδ(t) ∀t > t̂δ,

y(t̂δ) = Ĝ(t̂δ).
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Let λ ∈]0, 1[. Using the integrating factor method, we obtain

y(t) = e−2γ(t−t̂δ)y(t̂δ) + e−2γt

∫ t̂δ+λ(t−t̂δ)

t̂δ

hδ(s)e
2γsds+ e−2γt

∫ t

t̂δ+λ(t−t̂δ)
hδ(s)e

2γsds

≤ e−2γ(t−t̂δ)E(ĝ(t̂δ)) + e−2γ(1−λ)(t−t̂δ)

∫ t̂δ+λ(t−t̂δ)

t̂δ

hδ(s)ds

+ hδ(t̂δ + λ(t− t̂δ))e
−2γt

∫ t

t̂δ+λ(t−t̂δ)
e2γsds

≤ e−2γ(t−t̂δ)E(ĝ(t̂δ)) + e−2γ(1−λ)(t−t̂δ)(C2
∞ + C∗C∞

√
δ) +

hδ(t̂δ + λ(t− t̂δ))

2γ
.

where in the first inequality, we used that σ2 is non-increasing and so is hδ. Lemma A.2
then gives

E
(

dist(X(t),S)2

2
1Ωδ

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+e−2γ(1−λ)(t−t̂δ)(C2

∞+C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
.

According to Corollary A.6 we obtain that for all t > t̂δ

E
(

dist(X(t),S)2

2

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ),S)2

2

)
+e−2γ(1−λ)(t−t̂δ)(C2

∞+C∗C∞
√
δ)

+
hδ(t̂δ + λ(t− t̂δ))

2γ
+ Cd

√
δ.

(b) Denote g̃(t) = ϕ̃(X(t)) = f(X(t)) − min f and G̃(t) = E(1Ωδ
g̃(t)). By Proposition 2.4

g̃(t) ≤ g̃(t̂δ) −
∫ t

t̂δ

〈
∇f(X(s)),∇ϕ̃(X(s))

〉
ds+

L

2

∫ t

t̂δ

tr[Σ(s,X(s))]ds

+

∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉
. (38)

Multiplying both sides by 1Ωδ
and taking expectation we obtain

G̃(t) − G̃(t̂δ) ≤ −E
[∫ t

t̂δ

∥∇f(X(s))∥21Ωδ
ds

]
+
L

2
E
[∫ t

t̂δ

tr[Σ(s,X(s))]ds

]
+ E

[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉]
. (39)

On the other hand, we have

E
(∫ T

0
∥σ⊤(s,X(s))∇f(X(s))∥2ds

)
≤ L2E

(∫ T

0
σ2∞(s)∥X(s)) − x⋆∥2ds

)
≤ L2C∗

∫ +∞

0
σ2∞(s)ds < +∞, ∀T > 0.
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Since E
[∫ t

t̂δ

〈
σ⊤(s,X(s))∇f(X(s)), dW (s)

〉]
= 0, we have

E
[
1Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]
= −E

[
1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s)), dW (s)

〉]
.

The last term can be bounded as∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]∣∣∣∣
≤
√
E(1Ωconv\Ωδ

)

√√√√E

[(∫ t

t̂δ

⟨σ⊤(s,X(s))(∇f(X(s))), dW (s)⟩
)2
]

≤ L
√
δ

√
E
[∫ t

t̂δ

σ2∞(s)∥X(s) − x⋆∥2ds
]

≤ L
√
C∗

√
δ

√∫ t

t̂δ

σ2∞(s)ds = L
√
C∗

√
δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds,

where we have used the fundamental theorem of calculus to arrive at the last equality.
Let us notice that if (23) holds, then Proposition 3.4 tells us that E(f(X(t))−min f) ≤
K ′tβ−1 with β ∈ [0, 1[, and for some K ′ > 0. In this case, Cauchy-Schwarz inequality
and Corollary 2.2 yield∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

〈
σ⊤(s,X(s))(∇f(X(s))), dW (s)

〉]∣∣∣∣ ≤ √
2LK ′

√
δ

∫ t

t̂δ

σ2∞(s)sβ−1

2
√∫ s

t̂δ
σ2∞(u)uβ−1du

ds.

Injecting this into (39), we have for all t > t̂δ

G̃(t) ≤ G̃(t̂δ) − E
[∫ t

t̂δ

∥∇f(X(s))∥21Ωδ
ds

]
+
L

2

∫ t

t̂δ

σ2∞(s)ds

+


CK

√
δ
∫ t
t̂δ

σ2
∞(s)sβ−1

2
√∫ s

t̂δ
σ2
∞(u)uβ−1du

ds, ∀t > t̂δ if (23) holds,

C∗∗
√
δ
∫ t
t̂δ

σ2
∞(s)

2
√∫ s

t̂δ
σ2
∞(u)du

ds otherwise,
(40)

where C∗∗ = L
√
C∗, CK =

√
2LK ′ and recall that C∞ =

√∫ +∞
0 σ2∞(s)ds. Recalling

lδ(t) and kδ(t) from (27)-(28), and by Fubini’s theorem, (40) becomes

G̃(t) ≤ G̃(t̂δ) −
∫ t

t̂δ

E
[
∥∇f(X(s))∥21Ωδ

]
ds+

{∫ t
t̂δ
kδ(s)ds if (23) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(41)

Since f ∈  L1/2(S), there exists µ > 0 such that

G̃(t) ≤ G̃(t̂δ) − µ2
∫ t

t̂δ

G̃(s)ds+

{∫ t
t̂δ
kδ(s)ds if (23) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(42)

To get an explicit bound in (42), we use Lemma A.2, which involves solving
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(E.2)

{
y′(t) = −µ2y(t) + lδ(t), ∀t > t̂δ

y(t̂δ) = G̃(t̂δ)

(E.3)

{
y′(t) = −µ2y(t) + kδ(t), ∀t > t̂δ

y(t̂δ) = G̃(t̂δ)

Let λ ∈]0, 1[. Using the integrating factor method as in (i), we get for (E.2)

y(t) ≤ e−µ2(t−t̂δ)E(g̃(t̂δ)) +


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + C∗∗C∞

√
δ
)

+ lδ(t̂δ+λ(t−t̂δ))
µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CKC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

Using Lemma A.2 and then Corollary A.6, we obtain

E [f(X(t)) − min f ] ≤ y(t) + Cf

√
δ

≤ e−µ2(t−t̂δ)E
[
f(X(t̂δ)) − min f

]
+ Cf

√
δ

+


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + C∗∗C∞

√
δ
)

+ lδ(t̂δ+λ(t−t̂δ))
µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CKC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

(ii) p > 2:

(a) We embark from inequality (37) and we now use that f ∈ EBp([f ≤ r]) with p > 2, to
get

Ĝ(t) ≤ Ĝ(t̂δ) −
∫ t

t̂δ

E [(f(X(s)) − min f)1Ωδ
] ds+

∫ t

t̂δ

hδ(s)ds (43)

≤ Ĝ(t̂δ) − 2p/2γ

∫ t

t̂δ

Ĝ(s)p/2 +

∫ t

t̂δ

hδ(s)ds.

In the last inequality, we used that p > 2 and Jensen’s inequality.

The idea is again to use the comparison lemma (Lemma A.2), which will now involve
solving the Cauchy problem (C.1), and finally invoke Corollary A.6.

(b) The reasoning is similar to the previous point using now that f ∈  Lq(S) and the com-
putations of (i)(b). We omit the details for the sake of brevity.

5 SDE for nonsmooth structured convex optimization

In this section, we turn to the composite convex minimization problem with additive structure

min
x∈Rd

f(x) + g(x), (44)

where {
f ∈ C1,1

L (Rd) ∩ Γ0(Rd) and g ∈ Γ0(Rd);

S = argmin(f + g) ̸= ∅.
(H′

0)
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The importance of this class of problems comes from its wide spectrum of applications ranging
from data processing, to machine learning and statistics to name a few.

We consider two different approaches leading to different SDE’s. The first is based on a fixed point
argument and the use of the notion of cocoercive monotone operator. The second approach is based
on a regularization/smoothing argument, for instance the Moreau envelope.

5.1 Fixed point approach via cocoercive monotone operators

Let us start with some classical definitions concerning monotone operators.

Definition 5.1. An operator A : Rd ⇒ Rd is monotone if

⟨u− v, x− y⟩ ≥ 0, ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A).

It is maximally monotone if there exists no monotone operator whose graph properly contains
graph(A). Moreover, A is γ-strongly monotone with modulus γ > 0 if

⟨u− v, x− y⟩ ≥ γ∥x− y∥2, ∀(x, u) ∈ graph(A), (y, v) ∈ graph(A).

Remark 5.2. If A is maximally monotone and strongly monotone, then A−1(0)
def
= {x ∈ Rd :

A(x) = 0} is non-empty and reduced to a singleton.

Remark 5.3. The subdifferential operator ∂g of g ∈ Γ0(Rd) is maximally monotone.

Definition 5.4. A single-valued operator M : Rd → Rd is cocoercive with constant ρ > 0 if

⟨M(x) −M(y), x− y⟩ ≥ ρ∥M(x) −M(y)∥2, ∀x, y ∈ Rd.

Remark 5.5. It is clear that a ρ-cocoercive operator is ρ−1-Lipschitz continuous. In turn, a
cocoercive operator is maximally monotone.

Remark 5.6. If f ∈ C1,1
L (Rd) ∩ Γ0(Rd), then the operator ∇f is L−1-cocoercive.

Our interest now is to solve the structured monotone inclusion problem

0 ∈ A(x) +B(x),

where A is maximally monotone, and B is cocoercive with (A + B)−1(0) ̸= ∅. This is of course a
generalization of (44) by taking A = ∂g and B = ∇f .

A favorable situation occurs when one can compute the resolvent operator of A

JµA = (I + µA)−1, µ > 0.

In this case, we can develop a strategy parallel to the one which consists in replacing a maximally
monotone operator by its Yosida approximation. Indeed, given µ > 0, we have

(A+B)(x) ∋ 0 ⇐⇒ x− JµA(x− µB(x)) = 0 ⇐⇒ MA,B,µ(x) = 0, (45)

where MA,B,µ : Rd → Rd is the single-valued operator defined by

MA,B,µ(x) =
1

µ
(x− JµA(x− µB(x))) . (46)
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MA,B,µ is closely tied to the well-known forward-backward fixed point operator. Moreover, when
B = 0, MA,B,µ = 1

µ (I − JµA) which is nothing but the Yosida regularization of A with index µ. As
a remarkable property, for the µ parameter properly set, the operator MA,B,µ is cocoercive. This
is made precise in the following result.

Proposition 5.7. [4, Lemma B.1] Let A : Rd ⇒ Rd be a general maximally monotone operator,
and let B : Rd → Rd be a monotone operator which is λ-cocoercive. Assume that µ ∈]0, 2λ[. Then,
MA,B,µ is ρ-cocoercive with

ρ = µ
(

1 − µ

4λ

)
.

We first focus on finding the zeros of M , where

M : Rd → Rd is cocoercive and M−1(0) ̸= ∅. (HM
0 )

We will then specialize our results to the case of a structured operator of the form MA,B,µ.

Our goal is to handle the situation where M can be evaluated up to a stochastic error. We
therefore consider the following SDE with an F0-measurable initial data X0:{

dX(t) = −M(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0.
(SDEM )

As in Section 1.1, we will assume that the volatility matrix σ : R+ × Rd → Rd×m satisfies (H), W
is a Ft-adapted m-dimensional Brownian motion.

Remark 5.8. The motivation of (SDEM ) comes again from the Robbins-Monro stochastic ap-
proximation algorithm where the martingale difference noise/error is induced by randomly approx-
imating the action of the whole fixed point operator MA,B,µ. This allows for instance for inexact
computation of the resolvent of A with random noise. However, the situation is more intricate
when the noise is solely on B (i.e. inside the resolvent), as it is standard in many applications
(think of B = ∇f and the latter is accessible only some unbiased stochastic estimator). In this
case, to justify moving the noise outside of the resolvent, one has to modify (SDEM ) to a lim-
iting continuous-time process of a forward-backward scheme, which would take us to the land of
stochastic differential inclusions (SDI). SDI’s were only introduced in the early 80’s by [32, 33],
where the notion of solutions with pathwise uniqueness of a solution for a certain class of maximal
monotone operators A was introduced. Theory of SDI’s has subsequently received much attention
with general applications including beyond the maximal monotone case; see e.g. [31]. We point out
in particular the results of [50] who was the first to show existence and uniqueness of a solution
to SDI’s with maximal monotone A and Lipschitz continuous B using the Yosida approximation
of A, hence extending known results of Brézis [13] in the deterministic case. This is yet another
justification behind our second approach using Moreau-Yosida regularization, though restricted to
functions. However, handling SDI’s properly would necessitate much more care and many new
techniques and notions that will deserve a whole dedicated paper which is the subject of ongoing
work.

Let us now state the natural extensions of our main results to this situation.
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Theorem 5.9. Let M : Rd → Rd be a cocoercive operator. Consider the stochastic differential
equation (SDEM ), with M and σ under the hypotheses (HM

0 ) and (H), respectively. Additionally,
let ν ≥ 2, X0 ∈ Lν(Ω;Rd) and is F0-measurable. Then, there exists a unique solution X ∈ Sν

d .
Moreover, if σ∞ ∈ L2(R+), then:

(i) E
[
supt≥0 ∥X(t)∥ν

]
< +∞.

(ii) ∀x⋆ ∈M−1(0), limt→+∞ ∥X(t) − x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s..

(iii) limt→∞ ∥M(X(t))∥ = 0 a.s..

(iv) There exists an M−1(0)-valued random variable X⋆ such that limt→+∞X(t) = X⋆ a.s..

Proof. Proof. Existence and uniqueness follow from Theorem A.7 since M is Lipschitz continuous
and σ verifies (H). The proof of the first three items remains the same as for Theorem 3.1,
where we use the cocoercivity of M instead of the convexity of f in the third item to prove that
limt→∞ ∥M(X(t))∥ = 0 a.s.. For the last item, it suffices to use that the operator M is continuous
(since it is Lipschitz continuous) to conclude with Opial’s Lemma.

Theorem 5.10. Consider the dynamic (SDEM ) where M and σ satisfy the assumptions (HM
0 )

and (H). Moreover, let M be a ρ-cocoercive operator. Additionally, X0 ∈ L2(Ω;Rd) and is F0-
measurable. Let X ∈ S2

d be the unique solution of (SDEM ), then the following properties are
satisfied:

(i) Let M ◦X(t)
def
= t−1

∫ t
0 M(X(s))ds and ∥M(X(t))∥2 def

= t−1
∫ t
0 ∥M(X(s))∥2ds. We have

E
[
∥M ◦X(t)∥2

]
≤ E

[
∥M(X(t))∥2

]
≤

E
(
dist(X0,M

−1(0))2
)

2ρt
+
σ2∗
2ρ
, ∀t > 0. (47)

Besides, if σ∞ is L2(R+), then

E
[
∥M ◦X(t)∥2

]
≤ E

[
∥M(X(t))∥2

]
= O

(
1

t

)
, ∀t > 0. (48)

(ii) If M is γ-strongly monotone, then M−1(0) = {x⋆} and

E
(
∥X(t) − x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−γt +

σ2∗
γ
, ∀t ≥ 0. (49)

If, moreover, σ∞ is non-increasing and vanishes at infinity, then for every λ ∈]0, 1[

E
(
∥X(t) − x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−γt +

σ2∗
γ
e−γt(1−λ) + σ2∞(λt), ∀t > 0. (50)

Proof. Proof. Analogous to Theorem 3.3.

We now turn to the local convergence properties. To this end, we need an extension of the
Hölderian error bound inequality (or  Lojasiewicz inequality) to the operator setting. For convex
functions, it is known that error bound inequalities are closely related to metric subregularity of
the subdifferential [2, 34, 35]. This leads to the following definition.
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Definition 5.11. Let M : Rd → Rd be a single-valued operator. We say that M satisfies the
Hölder metric subregularity property with exponent p ≥ 2 at x⋆ ∈ M−1(0) if there exists γ > 0
and a neighbourhood Vx⋆ such that

∥M(x)∥2 ≥ γdist(x,M−1(0))p, ∀x ∈ Vx⋆ . (51)

If this inequality holds for any x⋆ ∈M−1(0) with the same γ, we will write M ∈ HMSp(Rd).

Theorem 5.12. Consider the dynamic (SDEM ) where M and σ satisfy the assumptions (HM
0 ) and

(H). Moreover, let M ∈ HMS2(Rd) be a ρ-cocoercive operator. Additionally, X0 ∈ L4(Ω;Rd) and

is F0-measurable. Suppose that σ∞ ∈ L2(R+) (C∞
def
= ∥σ∞∥L2(R+)) and σ∞ is non-increasing. Let

X ∈ S2
d be the unique solution of (SDEM ). Consider also the positive constants C,Cd, γ. Then,

for all δ > 0, there exists t̂δ > 0 such that for every λ ∈ (0, 1):

E
(

dist(X(t),M−1(0))2

2

)
≤ e−2γρ(t−t̂δ)E

(
dist(X(t̂δ),M

−1(0))2

2

)
+ e−2γρ(1−λ)(t−t̂δ)(C2

∞ + C∞C
√
δ) (52)

+
hδ(t̂δ + λ(t− t̂δ))

2γρ
+ Cd

√
δ, ∀t > t̂δ,

where hδ(t) = σ2∞(t) + C
√
δ σ2

∞(t)

2
√∫ t

t̂δ
σ2
∞(u)du

.

Proof. Proof. The proof is essentially the same as that of Theorem 4.5(i)(a), where instead of
convexity in (35), we use cocoercivity of M , and in (37) we invoke Theorem 5.9 and Hölder metric
subregularity.

Remark 5.13. We can naturally extend the previous result for p > 2 as in Theorem 4.5(ii).
Nevertheless, since that bound is not explicit, we will skip this extension.

As an immediate consequence of the above result, by considering the cocoercive operator MA,B,µ

defined in (46), we obtain the following result.

Corollary 5.14. Let A : Rd ⇒ Rd be a maximally monotone operator and B : Rd → Rd be a
λ-cocoercive operator, λ > 0. Let MA,B,µ be the operator defined in (46). Assume that µ ∈]0, 2λ[
and (A+B)−1(0) ̸= ∅. Then, the operator MA,B,µ is ρ-cocoercive with ρ = µ

(
1 − µ

4λ

)
, letting ν ≥ 2

and considering the SDE with initial data X0 ∈ Lν(Ω;Rd) which is F0-measurable:{
dX(t) = −MA,B,µ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0,
(SDEMA,B,µ)

we can conclude the same results as in Theorem 5.9 and Theorem 5.10. In particular, if σ∞ ∈
L2(R+), there exists an (A + B)−1(0)-valued random variable X⋆ such that limt→+∞X(t) = X⋆

a.s..
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This result naturally applies to problem (44) when S = argmin(f +g) ̸= ∅ by taking A = ∂g and
B = ∇f . In this case, one has that X(t) converges a.s. to an S-valued random variable. Moreover,
using standard inequalities, see e.g. [6], one can show that

E
[
(f + g)

(
t−1

∫ t

0

(
proxµg(X(s) − µ∇f(X(s)))

)
ds

)
− min(f + g)

]
= O

(√
E
[
∥M∂g,∇f,µ(X(t))∥2

])
,

where proxµg = (I + µ∂g)−1 is the proximal mapping of g. From this, one can deduce an O(t−1/2)
rate thanks to (47) and (48).

5.2 Approach via Moreau-Yosida regularization

The previous approach, though it is able to deal with more general setting (that of monotone
inclusions), took us out of the framework of convex optimization by considering instead a dynamic
governed by a cocoercive operator. In particular, the perturbation/noise is considered on the whole
operator evaluation and not on a part of it (i.e.B) as it is standard in many applications. Moreover
this approach led to a pessimistic convergence rate estimate when specialized to convex function
minimization. By contrast, the following approach will operate directly on problem (44) and is
based on a standard smoothing approach, replacing the non-smooth part g by its Moreau envelope
[7].

5.2.1 Moreau envelope

Let us start by recalling some basic facts concerning the Moreau envelope.

Definition 5.15. Let g ∈ Γ0(Rd). Given θ > 0, the Moreau envelope of g of parameter θ is the
function

gθ(x)
def
= inf

y∈Rd

(
g(y) +

1

2θ
∥x− y∥2

)
=

(
g □

1

θ
q

)
(x)

where □ is the infimal convolution operator and q(x) = 1
2∥x∥

2.

The Moreau envelope has remarkable approximation and regularization properties, as summa-
rized in the following statement.

Proposition 5.16. Let g ∈ Γ0(Rd).

(i) gθ(x) ↓ inf g(Rd) as θ ↑ +∞.

(ii) gθ(x) ↑ g(x) as θ ↓ 0.

(iii) gθ(x) ≤ g(x) for any θ > 0 and x ∈ Rd,

(iv) argmin(gθ) = argmin(g) for any θ > 0,

(v) g(x) − gθ(x) ≤ θ
2∥∂

0g(x)∥2 for any θ > 0 and x ∈ dom(∂g),

(vi) gθ ∈ C1,1
1
θ

(Rd) ∩ Γ0(Rd) for any θ > 0.
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We use the following notation in the rest of the section: F
def
= f + g,S def

= argminF , Fθ
def
= f + gθ

and Sθ
def
= argminFθ.

Note that Fθ ∈ C1,1

L+ 1
θ

(Rd)∩Γ0(Rd). Thus we will use Fθ as the potential driving in (SDE), that

is {
dX(t) = −∇Fθ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0.
(SDEθ)

Throughout this section, we assume that X0 ∈ L2(Ω;Rd) and is F0-measurable. Under (H′
0) and

(H), we will show almost sure convergence of the trajectory and corresponding convergence rates.

Remark 5.17. Though we focus here on the Moreau envelope, our convergence results, in par-
ticular, Proposition 5.20, still hold with infimal-convolution based smoothing using more general
smooth kernels beyond the norm squared; see [7, Section 4.4].

5.2.2 Convergence of the trajectory

Applying Theorem 3.1 to Fθ, we have the following result.

Proposition 5.18. For any θ > 0, let X0 ∈ L2(Ω;Rd) and Xθ ∈ S2
d be the unique solution of

the dynamic (SDEθ) governed by the potential Fθ, and make assumptions (H′
0), Sθ ̸= ∅, (H) and

σ∞ ∈ L2(R+). Then there exists an Sθ-valued random variable X⋆
θ such that

lim
t→+∞

Xθ(t) = X⋆
θ , a.s..

If f = 0, then Sθ = S (see Proposition 5.16(iv)), and Proposition 5.18 provides almost sure
convergence to a solution of (44). On the other hand for f ̸= 0, S ≠ Sθ in general and we only
obtain an “approximate” solution of (44); see Proposition 5.19(ii) for a quantitative estimate of
this approximation when f is strongly convex. To obtain a true solution of the initial problem, a
common device consists in using a diagonalization process which combines the dynamic with the
approximation. Specifically, one considers{

dX(t) = −∇Fθ(t)(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0

X(0) = X0,
(SDEθ(t))

where θ(t) ↓ 0 as t → +∞. In the deterministic case, an abundant literature has been devoted
to the convergence of this type of systems. Note that unlike the cocoercive approach, we are now
faced with a non-autonomous stochastic differential equation, making this a difficult problem, a
subject for further research (see also Remark 5.8).

5.2.3 Convergence rates

We start with the following uniform bound on Sθ which holds under slightly reinforced, but rea-
sonable assumptions on f and g.

Proposition 5.19. Consider f, g where f and g and are proper lsc and convex, and g is also
L0-Lipschitz continuous.
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(i) Assume that F = f + g is coercive. Then, there exists C > 0, such that for any θ ∈ [0, 1]

sup
z∈Sθ

∥z∥ ≤ C. (53)

(ii) Assume that f ∈ Γµ(Rd) for µ > 0. Then (53) holds for every θ ∈ [0, 1]. Moreover, S = {x⋆},
Sθ = {x⋆θ} and

∥x⋆θ − x⋆∥2 ≤ L2
0

µ
θ. (54)

Proof. Proof.

(i) Since F is coercive, so is Fθ. Thus both S and Sθ are non-empty compact sets. Let x⋆θ ∈ Sθ

and x⋆ ∈ S. By Proposition 5.16(v) and Lipschitz continuity of g, we obtain

F (x⋆θ) − Fθ(x
⋆
θ) = g(x⋆θ) − gθ(x

⋆
θ) ≤

L2
0

2
θ.

Moreover,

Fθ(x
⋆
θ) +

L2
0

2
θ ≤ Fθ(x

⋆) +
L2
0

2
θ ≤ F (x⋆) +

L2
0

2
θ ≤ min(F ) +

L2
0

2

def
= C̃,

where the second inequality is given by Proposition 5.16(iv). On the other hand, the coercivity
of F implies that there exists a > 0, b ∈ R such that for any x ∈ Rd

a∥x∥ + b ≤ F (x).

Therefore, collecting the above inequalities yields

a∥x⋆θ∥ + b ≤ F (x⋆θ) ≤ C̃.

Using that x⋆θ is arbitrary in Sθ, and defining C
def
= C̃−b

a ≥ 0, we obtain (53), or equivalently
that the set of approximate minimizers is bounded independently of θ.

(ii) Since f is µ-strongly convex, so are F and Fθ. In turn, F is coercive and thus (53) holds by
claim (i). Strong convexity implies uniqueness of minimizers of F and Fθ. Moreover,

µ

2
∥x⋆θ − x⋆∥2 ≤ Fθ(x

⋆) − Fθ(x
⋆
θ). (55)

From Proposition 5.16(iii)-(v) and Lipschitz continuity of g, we infer that

Fθ(x
⋆) − Fθ(x

⋆
θ) ≤ F (x⋆) − Fθ(x

⋆
θ) ≤ F (x⋆θ) − Fθ(x

⋆
θ) ≤

L2
0

2
θ. (56)

Combining (55) and (55), we get the claimed bound.

We are now ready to establish complexity results.
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Proposition 5.20. Suppose that in addition to (H′
0) and (H), F = f + g is coercive and g is L0-

Lipschitz continuous. Let X0 ∈ L2(Ω;Rd) and Xθ ∈ S2
d be the unique solution of (SDEθ) governed

by Fθ with θ ∈]0, 1]. Let C0 = E[(∥X0∥ + C)2], where C is the constant defined in (53). Then the
following statements hold for any t > 0.

(i) Let Xθ(t) = t−1

∫ t

0
Xθ(s)ds, then

E
(
F
(
Xθ(t)

)
− minF

)
≤ C0

2t
+
σ2∗
2

+ θ
L2
0

2
.

Besides, if σ∞ ∈ L2(R+), then

E
(
F
(
Xθ(t)

)
− minF

)
=
C0 +

∫ +∞
0 σ2∞(s)ds

2t
+ θ

L2
0

2
.

(ii) If σ∞ verifies (23) with β ∈ [0, 1[, and θ ∈]0, 1], then

E (F (X(t)) − minF ) =
C0

2t
+
K(1 + L)

2t1−βθ
+ θ

L2
0

2
.

(iii) If, in addition, f ∈ Γµ(Rd) for some µ > 0, then S = {x⋆} and

E
(
∥Xθ(t) − x⋆∥2

)
≤ 2C0e

−µt +
2σ2∗
µ

+ 2
L2
0

µ
θ.

Besides, if σ∞ is non-increasing and vanishes at infinity, then ∀λ ∈]0, 1[:

E
(
∥Xθ(t) − x⋆∥2

)
≤ 2C0e

−µt +
2σ2∗
µ
e−µ(1−λ)t + 2σ2∞(λt) + 2

L2
0

µ
θ.

Remark 5.21. Observe that when f = 0, then Sθ = S = {x⋆}. Therefore in Proposition 5.20, the
last term in θ can be dropped.

Proof. Proof.

(i) Combine Theorem 3.3(i) applied to Fθ, Proposition 5.16(iii) and (v), and Proposition 5.19(i).

(ii) Argue as in claim (i) using Proposition 3.4 instead of Theorem 3.3(i), and use the fact that
∇Fθ is Lipschitz continuous with constant

L+
1

θ
≤ L+ 1

θ
for θ ∈]0, 1].

(iii) Combine Theorem 3.3(ii) applied to Fθ, Proposition 5.19(ii) and Jensen’s inequality.
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6 Conclusion, Perspectives

This work was intended to uncover the global and local convergence properties of trajectories of
gradient-like flows under stochastic errors. The aim is to solve convex optimization problems with
noisy gradient input with vanishing variance. We have shed light on these properties and provided
a comprehensive local and global complexity analysis both in the smooth and non-smooth case. We
believe that this work paves the way to many important extensions and research avenues. Among
them, we mention the following ones:

• Let H and K be two real separable Hilbert spaces, we can extend naturally every result of
this paper to the case where the data belongs to H, W is a K-valued Brownian motion, and
the volatility term is a linear Hilbert-Schmidt operator from K to H.

• Extension beyond the convex case, and for instance to the quasi-convex case, we refer to the
recent work of [17] which offers us perspective concerning the extension of our work to the
non-convex KL setting.

• Analyzing the non-smooth case, and more generally, the situations involving the sum of two
maximal monotone operators one of which is merely Lipschitz continuous. This covers many
important practical cases (e.g. primal-dual splitting, ADMM), and will take us to the land of
stochastic differential inclusions. This will in turn allow us to understand the behavior of the
solution Xθ of (SDEθ) as θ vanishes. These are very interesting but challenging problems.

• Studying second-order dynamics with inertia in view of understanding the behavior of accel-
erated dynamics in presence of stochastic errors.

A Auxiliary results

A.1 Deterministic results

The following lemma is straightforward to prove. We omit the details.

Lemma A.1. Let t0 > 0 and g : [t0,+∞[→ R+. Suppose that limt→∞ g(t) exists and
∫∞
t0

g(s)
s ds <

+∞. Then limt→∞ g(t) = 0.

The next result is an adaptation of [42, Proposition 2.3] to our specific context but under slightly
less stringent assumptions.

Lemma A.2 (Comparison Lemma). Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞[→ R+ is
measurable with h ∈ L1([t0, T ]) , that ψ : R+ → R+ is continuous and non-decreasing, φ0 > 0 and
the Cauchy problem {

φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]

φ(t0) = φ0

has an absolutely continuous solution φ : [t0, T ] → R+. If a lower semicontinuous function ω :
[t0, T ] → R+ is bounded from below and satisfies

ω(t) ≤ ω(s) −
∫ t

s
ψ(ω(τ))dτ +

∫ t

s
h(τ)dτ
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for t0 ≤ s < t ≤ T and ω(t0) = φ0, then

ω(t) ≤ φ(t) for t ∈ [t0, T ].

Lemma A.3. Let f : R+ → R and lim inft→+∞ f(t) ̸= lim supt→+∞ f(t). Then, for every α
satisfying lim inft→+∞ f(t) < α < lim supt→+∞ f(t), and for every β > 0, we can define a sequence
(tk)k∈N ⊂ R+ such that

f(tk) > α, tk+1 > tk + β, ∀k ∈ N.

Proof. Proof. Since lim inft→+∞ f(t) and lim supt→+∞ f(t) are different real numbers, α in the
lemma obviously exists. Moreover, by definition of lim sup, there exists a sequence (tk)k∈N such
that limk→+∞ tk = +∞ and f(tk) > α. Let β > 0 and n0 = 0, let us define recursively for j ≥ 1,
nj = min{n > nj−1 : tn − tnj−1 > β}. Let j′ ∈ N be the first natural such that nj′ = +∞. This
implies that for every n > nj′−1, tn ≤ β + tnj′−1

< +∞, a contradiction since limn→+∞ tn = +∞,
then for every j ∈ N, nj < +∞. Thus, we can define (tnj )j∈N a subsequence of (tk)k∈N such that
limj→+∞ tnj = +∞ and for every j ∈ N, tnj+1 − tnj > β.

A.2 Stochastic and measure-theoretic results

Let us recall some elements of stochastic analysis; for a more complete account, we refer to [44,
48, 41]. Throughout the paper, (Ω,F ,P) is a probability space and {Ft|t ≥ 0} is a filtration of
the σ-algebra F . Given C ⊆ ⊗, we will denote σ(C) the σ-algebra generated by C. We denote

F∞
def
= σ

(⋃
t≥0Ft

)
∈ F .

The expectation of an Rd-valued random variable ξ : Ω → Rd is denoted by

E(ξ)
def
=

∫
Ω
ξ(ω)dP(ω).

As said in Section 2, for 1 ≤ p ≤ +∞, Lp(Ω;Rd) is the space of Rd-valued random variables ξ such
that E(∥ξ∥p) < +∞, with the usual adaptation when p = +∞.

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as ”E, P-a.s.” or
simply ”E, a.s.”. The characteristic function of an event E ∈ F is denoted by

1E(ω)
def
=

{
1 if ω ∈ E,

0 otherwise.

An Rd-valued stochastic process is a function X : Ω × R+ → Rd. It is said to be continuous if

X(ω, ·) ∈ C(R+;Rd) for almost all ω ∈ Ω. We will denote X(t)
def
= X(·, t). We are going to study

(SDE), and in order to ensure the uniqueness of a solution, we introduce a relation over stochastic
processes. Two stochastic processes X,Y : Ω× [0, T ] → Rd are said to be equivalent if X(t) = Y (t),
∀t ∈ [0, T ], P-a.s.. This leads us to define the equivalence relation R, which associates the equivalent
stochastic processes in the same class.

Furthermore, we will need some properties about the measurability of these processes. A stochas-
tic process X : Ω×R+ → Rd is progressively measurable if for every t ≥ 0, the map Ω× [0, t] → Rd

defined by (ω, s) → X(ω, s) is Ft ⊗ B([0, t])-measurable, where ⊗ is the product σ-algebra and B
is the Borel σ-algebra. On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every

37



t ≥ 0. It is a direct consequence of the definition that if X is progressively measurable, then X is
Ft-adapted.

Let us define the quotient space:

S0
d [0, T ]

def
=
{
X : Ω × [0, T ] → Rd : X is a prog. measurable cont. stochastic process

}/
R.

We set S0
d

def
=
⋂

T≥0 S
0
d [0, T ]. Furthermore, for ν > 0, we define Sν

d [0, T ] as the subset of processes

X(t) in S0
d [0, T ] such that

Sν
d [0, T ]

def
=

{
X ∈ S0

d [0, T ] : E

(
sup

t∈[0,T ]
∥X(t)∥ν

)
< +∞

}
.

We define Sν
d

def
=
⋂

T≥0 S
ν
d [0, T ].

Theorem A.4 (Egorov’s Theorem). [54, Chapter 3, Exercise 16] Let (X,Σ, µ) be a measure
space with µ(X) < +∞, and (ft)t∈R+ is a family of real measurable functions such that for µ-almost
all x ∈ X:

1. limt→+∞ ft(x) = f(x), and

2. t 7→ ft(x) is continuous.

Then, for every δ > 0, there exists a measurable set Eδ ⊂ X, with µ(X \Eδ) < δ, such that (ft)t∈R+

converges uniformly on Eδ.

Lemma A.5. Let δ > 0,Ωδ ∈ F such that P(Ωδ) ≥ 1 − δ and h : Ω ×R+ → R a stochastic process
such that supt≥0 E[h(t)2] < +∞. Then, there exists a constant Ch > 0 (independent of δ) such that

E[h(t)1Ω\Ωδ
] ≤ Ch

√
δ.

Proof. Proof. Note that P(Ω \ Ωδ) ≤ δ and thus Cauchy-Schwarz inequality gives

E[h(t)1Ω\Ωδ
] =

∫
Ω
h(ω, t)1Ω\Ωδ

(ω)dP(ω) ≤
√
δ
√

E[h(t)2] ≤
√
δ
√

sup
t≥0

E[h(t)2]︸ ︷︷ ︸
def
=Ch

.

Corollary A.6. Let δ > 0,Ωδ ∈ F such that P(Ωδ) ≥ 1−δ. Consider (SDE) where f and σ satisfy
the assumptions (H0) and (H), respectively. Assume that X0 ∈ L4(Ω;Rd) and is F0-measurable.
Moreover, suppose that σ∞ ∈ L2(R+). Let X ∈ S4

d be the unique solution of (SDE), then there
exists Cd, Cf > 0 (independent of δ) such that

E
[

dist(X(t),S)2

2

]
− E

[
dist(X(t),S)2

2
1Ωδ

]
≤ Cd

√
δ,

and
E [f(X(t)) − min f ] − E [(f(X(t)) − min f)1Ωδ

] ≤ Cf

√
δ.
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Proof. Proof. Let x⋆ ∈ S. Using Proposition 2.4 with ϕ̂(x) = dist(x,S)2
2 , squaring the obtained

inequality and taking expectation, we obtain

E
[

dist(X(t),S)4

4

]
≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⊤(s,X(s))(X(s) − PS(X(s))), dW (s)⟩

)2
]

≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ t

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t) − x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E

[(
dist(X(t),S)2

2

)2
]
≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ +∞

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t) − x⋆∥2]
[∫ +∞

0
σ2∞(s)ds

]
def
= Cd < +∞.

In the above estimation we used that σ∞ ∈ L2(R+) and supt≥0 E[∥X(t) − x⋆∥2] < +∞ by Theo-
rem 3.1(i).

On the other hand, since f ∈ Γ0(Rd) ∩ C1,1
L (Rd) and X0 ∈ L4(Ω;Rd), we have that

E([f(X0)−min f ]2) ≤ 1

2
E(∥∇f(X0)−∇f(x⋆)∥4)+

1

2
E(∥X(t)−x⋆∥4) < L4 + 1

2
E(∥X0−x⋆∥4) < +∞.

Then using Proposition 2.4 with ϕ̃(x) = f(x) − min f , squaring it, and taking expectation, we
obtain

E
[
[f(X(t) − min f ]2

]
≤ 3E([f(X0) − min f ]2) +

3L2

4

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⊤(s,X(s))(∇f(X(s))), dW (s)⟩

)2
]

≤ 3E([f(X0) − min f ]2) +
3L2

4

(∫ t

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t) − x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E
[
[f(X(t) − min f ]2

]
≤ 3E([f(X0) − min f ]2) +

3L2

4

(∫ +∞

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t) − x⋆∥2]
[∫ +∞

0
σ2∞(s)ds

]
def
= Cf < +∞.

And we have proved the hypothesis of Lemma A.5 in both cases, applying this lemma, we conclude
the proof.
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Let us consider ν ≥ 2 and the SDE with initial data X0 ∈ Lν(Ω;Rd) which is F0-measurable:{
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t), t ≥ 0,
X(0) = X0,

(57)

where F : R+ ×Rd → Rd, G : R+ ×Rd → Rd×m are measurable functions and W is an Ft-adapted
m-dimensional Brownian Motion.

Theorem A.7. (See [44, Theorem 5.2.1], [41, Theorem 2.3.1 and Theorem 2.4.4]) Let F : R+ ×
Rd → Rd and G : R+ × Rd → Rd×m be measurable functions satisfying

sup
t≥0

(∥F (t, 0)∥ + ∥G(t, 0)∥F ) < +∞, (58)

and for every T > 0 and some constant C1 ≥ 0,

∥F (t, x) − F (t, y)∥ + ∥G(t, x) −G(t, y)∥F ≤ C1∥x− y∥, ∀x, y ∈ Rd, ∀t ∈ [0, T ]. (59)

Then (57) has a unique solution X ∈ Sν
d .

Proof. Proof. Conditions (58) and (59) implies that there exists C2 ≥ 0 such that

∥F (t, x)∥2 + ∥G(t, x)∥2F ≤ C2(1 + ∥x∥2), ∀x ∈ Rd, ∀t ∈ [0, T ],

which is the necessary inequality to use [41, Theorem 2.4.4] and deduce that X ∈ Sν
d .

A.3 On martingales

Theorem A.8. [23] Let (Mt)t≥0 : Ω → R be a continuous martingale such that supt≥0 E (|Mt|p) <
+∞ for some p > 1. Then there exists a random variable M∞ ∈ Lp(Ω;R) such that limt→+∞Mt =
M∞ a.s..

Theorem A.9. [41, Theorem 1.3.9] Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing
processes with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real valued continuous local martingale with
M0 = 0 a.s.. Let ξ be a nonnegative F0-measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→+∞At < +∞ a.s., then a.s. limt→+∞Xt exists and is finite, and
limt→+∞ Ut < +∞.

Proposition A.10. (see [41, Theorem 1.7.3]) Let p > 0, W be a m-dimensional Brownian motion
defined over a filtered probability space (Ω,F , {Ft}t≥0,P) and g : Ω × R+ → Rm (with our usual

notation g(t)
def
= g(·, t)) be such that

E
[∫ T

0
∥g(s)∥2ds

]
< +∞, ∀T > 0.

Then, there exists Cp > 0 (only depending on p) for every T > 0 such that:

E

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
⟨g(s), dW (s)⟩

∣∣∣∣∣
p]

≤ CpE

[(∫ T

0
∥g(s)∥2ds

) p
2

]
.

In particular, we have that C2 = 4.
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