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We prove that the first Dirichlet eigenvalue of a regular N -gon of area π has an 
asymptotic expansion of the form λ1(1 +

∑
n≥3

Cn(λ1)
Nn ) as N → ∞, where λ1 is the 

first Dirichlet eigenvalue of the unit disk and Cn are polynomials whose coefficients 
belong to the space of multiple zeta values of weight n and conjecture that their 
coefficients lie in the space of single-valued multiple zeta values. We also explicitly 
compute these polynomials for all n ≤ 14.

© 2024 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let Ω be a bounded connected domain with piecewise smooth boundary in R2 and let us denote by 
Δ := ∂2

∂x2 + ∂2

∂y2 the standard flat Laplace operator. When one considers suitable spaces of functions on Ω
with Dirichlet boundary conditions (i.e., vanishing on ∂Ω) it is well known by the spectral theorem that Δ
possesses a discrete spectrum {λk(Ω)}∞k=1 of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

with corresponding finite-dimensional eigenspaces Eig(λk) of smooth eigenfunctions. In other words each 
eigenfunction ϕ ∈ Eig(λk) satisfies the following boundary value PDE:

{
Δϕ + λkϕ = 0 ,
ϕ|∂Ω = 0 .
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One can consider many aspects regarding the asymptotics of Dirichlet eigenvalues and Dirichlet eigenfunc-
tions, a large portion of which could be regarded as “classical” and being intensely studied: without aiming 
at being thorough, we just mention, for example, various forms of Weyl laws prescribing the asymptotics of 
large eigenvalues λk in terms of the underlying geometric data; concentration phenomena for eigenfunctions 
and level set distribution; behavior of eigenvalues with respect to domain perturbation; etc. For a very 
thorough and accessible overview we refer to the treatments in [8], [28].

In this note we are interested in the behavior of the eigenvalues with respect to domain perturbations in 
the special case of regular polygons. Let PN be a regular polygon of area π with N ≥ 3 sides. We study 
the behavior of λk(PN ) as N goes to infinity. More precisely, we are interested in computing the coefficients 
Ck,n of the asymptotic series

λk(PN )
λk(D) ∼ 1 + Ck,1

N
+ Ck,2

N2 + Ck,3

N3 + . . . , (1)

where D is the unit disk.
The above problem has been considered in several previous works. As an outcome of the works [17], [11], 

[12] the first four coefficients C1,i were computed and, to a certain surprise, expressed as integer multiples 
of the Riemann zeta function. Roughly speaking, the corresponding methods (Calculus of Moving Surfaces) 
require one to consider an explicit deformation of the polygon into a disk and study the evolution of the 
corresponding eigenfunction.

Later on, the next two coefficients C1,5, C1,6 were also computed and given in a similar form (cf. [4]). 
Recently, in [14] an expression for the next two coefficients C1,7, C1,8 was proposed as a result of high-
precision numerics and certain linear regression methods.

To summarize the above results, assuming that the polygons under consideration are normalized in 
such a way that Area(PN ) = π, the asymptotic expansion (with proposed seventh and eighth terms being 
conjectural) is the following

λ1(PN )
λ1

= 1 + 4ζ(3)
N3 + (12 − 2λ1)ζ(5)

N5 + (8 + 4λ1)ζ2(3)
N6

+
(36 − 12λ1 − 1

2λ
2
1)ζ(7)

N7 + (48 + 8λ1 + 2λ2
1)ζ(3)ζ(5)

N8 + O(N−9) .
(2)

Here λ1 = λ1(D) is the first Dirichlet eigenvalue of the unit disk. Recall that λ1 = j2
0,1, where j0,1 is the 

smallest positive zero of the Bessel function of the first kind J0.
Formula (2) might lead one to suspect that all higher coefficients of the asymptotic expansion can be 

expressed as polynomials in λ1 with coefficients that are polynomials in odd zeta values ζ(2m + 1), m ≥ 1. 
As we will show below, this is indeed the case for the first 10 coefficients of the expansion, but, assuming 
some widely believed algebraic independence results, the 11-th coefficient is no longer of this form.

As further motivation we note a couple of related problems. Drawing inspiration from the Faber-Krahn 
inequality and a conjecture of Pólya and Szegö (which states that among all n-gons with the same area, the 
regular n-gon has the smallest first Dirichlet eigenvalue), it was conjectured in [1] that for all N ≥ 3 and 
Area(PN ) = π, the first Dirichlet eigenvalues are monotonically decreasing in N , i.e.,

λ1(PN ) > λ1(PN+1) .

So far the monotonicity has been confirmed by numerical experiments (cf. [1]). Note, however, that since 
ζ(3) > 0, equation (2) implies this inequality for all sufficiently large N . For further results along the theme 
of Faber-Krahn and eigenvalue optimization via regular polygons under the presence of various constraints 
(in- and circumradius normalization, etc.) we refer to [19], [21] and the references therein.
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A further intriguing application of the above eigenvalue asymptotics can be found in [20], where the 
Casimir energy of a scalar field on PN (and further generalized to PN×Rk) has been studied. For background 
we refer to [20] and the accompanying references.

Before describing our main results, we briefly recall the definition of multiple zeta values. Multiple zeta 
values (MZVs) are real numbers defined by

ζ(m1, . . . ,mr) :=
∑

0<n1<n2<···<nr

1
nm1

1 nm2
2 . . . nmr

r
,

where m1, . . . , mr are positive integers and mr > 1. A multiple zeta value ζ(m1, . . . , mr) is said to have 
weight n if m1 + · · · + mr = n. We denote the Q-linear span of all multiple zeta values of weight n by Zn. 
Our main result is the following theorem.

Theorem 1. There exists a sequence of polynomials Cn ∈ Zn[λ], n ≥ 1, where Zn is the space of multiple 
zeta values of weight n, such that

λk(PN )
λk

∼ 1 +
∞∑

n=1

Cn(λk)
Nn

(3)

whenever λk is a radially-symmetric Dirichlet eigenvalue of the unit disk.

Here radially-symmetric eigenvalues are λk’s for which the corresponding eigenfunction is radially-
symmetric. Explicitly, the theorem applies whenever λk = j2

0,m, where j0,m is the m-th zero of the Bessel 
function J0(x). In particular, the theorem applies in the case k = 1.

The proof of Theorem 1 is based on an asymptotic version of the “method of particular solutions” 
(see, e.g., [10], [18]) and it provides an explicit procedure for producing increasingly better approximations 
(at least when N → ∞) to both the eigenvalues and the eigenfunctions (as long as they correspond to 
the radially symmetric eigenfunctions on the unit disk). We find that not only the eigenvalues, but the 
eigenfunctions themselves have asymptotic expansions in powers of 1/N with interesting coefficients (these 
coefficients turn out to be multiple polylogarithms, see Table 2).

Our approach gives an explicit symbolic algorithm for computing the polynomials Cn. We have calculated 
Cn for n ≤ 12 using an implementation of this algorithm in the computer algebra system SAGE [22] and 
for n ≤ 14 using an optimized parallel implementation in Julia [15]. As an immediate corollary we confirm 
the 7-th and 8-th terms in the asymptotic expansion (1) that were conjectured in [14]. We collect the results 
of our calculations in Table 1. The initial expressions in terms of MZVs that we get by directly applying 
our algorithm are rather unwieldy and to obtain the simpler expressions given in the table we have used 
the MZV Datamine [3]. In the table we use the notation ζn := ζ(n) and

ζsv
3,5,3 := 2ζ(3, 5, 3) − 2ζ(3)ζ(3, 5) − 10ζ(3)2ζ(5) ,

ζsv
5,3,5 := 2ζ(5, 3, 5) − 22ζ(5)ζ(3, 5) − 120ζ(5)2ζ(3) − 10ζ(5)ζ(8) ,

ζsv
3,7,3 := 2ζ(3, 7, 3) − 2ζ(3)ζ(3, 7) − 28ζ(3)2ζ(7) − 24ζ(5)ζ(3, 5) − 144ζ(5)2ζ(3) − 12ζ(5)ζ(8)

for the first few nontrivial single-valued MZVs. The space of single-valued multiple zeta values of weight n
is an important subspace of Zn that was introduced by Brown [6]. Single-valued MZVs appear, for example, 
in computation of string amplitudes, and as coefficients of Deligne’s associator (for other examples, see the 
references in [6]).

Conjecture 1. The polynomial Cn(λ) belongs to Zsv
n [λ] for all n ≥ 1, where Zsv

n denotes the space of single-
valued multiple zeta values of weight n.
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Table 1
Coefficients of the asymptotic expansion for n ≤ 14.

n Cn(λ)

1 0
2 0
3 4ζ3
4 0
5 −2ζ5λ + 12ζ5
6 4ζ2

3λ + 8ζ2
3

7 − 1
2 ζ7λ

2 − 12ζ7λ + 36ζ7
8 2ζ5ζ3λ2 + 8ζ5ζ3λ + 48ζ5ζ3
9 − 1

4 ζ9λ
3 − 104

9 ζ9λ
2 + (− 146

3 ζ9 + 80
3 ζ3

3)λ + ( 340
3 ζ9 + 32

3 ζ3
3)

10 (ζ7ζ3 + ζ2
5)λ3 + (39ζ7ζ3 − 6ζ2

5)λ2 + (−24ζ7ζ3 − 12ζ2
5)λ + (144ζ7ζ3 + 72ζ2

5)
11 − 5

32 ζ11λ
4 + (− 661

60 ζ11 + 1
5 ζ

sv
3,5,3)λ

3 + (− 1623
20 ζ11 + 80ζ5ζ2

3 + 54
5 ζsv

3,5,3)λ
2 + (−176ζ11 + 176ζ5ζ2

3)λ +(372ζ11 + 96ζ5ζ2
3)

12 ( 5
8 ζ9ζ3 + 11

8 ζ7ζ5)λ4 + ( 107
3 ζ9ζ3 + 47

2 ζ7ζ5)λ3 + (456ζ9ζ3 − 207ζ7ζ5 − 16ζ4
3)λ2 + (− 488

3 ζ9ζ3 − 216ζ7ζ5

+ 272
3 ζ4

3)λ + ( 1360
3 ζ9ζ3 + 432ζ7ζ5 + 32

3 ζ4
3)

13 − 7
64 ζ13λ

5 + (− 226501
16800 ζ13 + ζ7ζ

2
3 − 31

10 ζ
2
5ζ3 − 157

1400 ζ
sv
5,3,5 + 5

56 ζ
sv
3,7,3)λ

4 + (− 1283839
8400 ζ13 + 34ζ7ζ2

3 + 256
5 ζ2

5ζ3

− 549
350 ζ

sv
5,3,5 + 59

28 ζ
sv
3,7,3)λ

3 + (− 1447393
1400 ζ13 + 1236ζ7ζ2

3 − 1128
5 ζ2

5ζ3 − 12339
175 ζsv

5,3,5 + 747
14 ζsv

3,7,3)λ
2

+(−618ζ13 + 336ζ7ζ2
3 + 336ζ2

5ζ3)λ + (1260ζ13 + 288ζ7ζ2
3 + 288ζ2

5ζ3)
14 ( 7

16 ζ11ζ3 + ζ9ζ5 + 9
16 ζ

2
7 )λ5 + ( 10169

240 ζ11ζ3 + 467
8 ζ9ζ5 + 175

16 ζ2
7 − 1

5 ζ
sv
3,5,3ζ3)λ

4 + ( 20381
30 ζ11ζ3 + 1300

9 ζ9ζ5 + 483
4 ζ2

7

+40ζ5ζ3
3 + 28

5 ζsv
3,5,3ζ3)λ

3 + ( 32902
5 ζ11ζ3 − 7306

3 ζ9ζ5 − 3627
2 ζ2

7 + 3664
3 ζ5ζ

3
3 + 1296

5 ζsv
3,5,3ζ3)λ

2

+(−664ζ11ζ3 − 2824
3 ζ9ζ5 − 540ζ2

7 + 2752
3 ζ5ζ

3
3)λ + (1488ζ11ζ3 + 1360ζ9ζ5 + 648ζ2

7 + 128ζ5ζ3
3)

The results given in Table 1 confirm this conjecture for n ≤ 14, and in [2] we give strong numerical 
evidence in its support also for n = 15 and n = 16. If true, Conjecture 1 would also explain the curious fact 
that when PN is normalized to have area π (as opposed to, say, normalizing PN to have circumradius 1), the 
low order coefficients of the resulting asymptotic expansion do not involve even zeta values (see [4, p. 125]).

By analyzing the general recursion for Cn(λ) obtained in the proof of Theorem 1 we obtain a formula for 
the generating function of the first two coefficients of the polynomials Cn(λ).

Theorem 2. The coefficients Cn(0) and C ′
n(0) satisfy the generating series identity

∑
n≥0

(Cn(0) + C ′
n(0)λ)zn = Γ(1 + z)2Γ(1 − 2z)

Γ(1 − z)2Γ(1 + 2z)

(
1 − λ

2
∑
n≥1

(2z)2nz3

n!2(z + n)3
)
, (4)

where (x)n = x(x + 1) . . . (x + n − 1) denotes the rising Pochhammer symbol.

Using this formula we also prove the following.

Theorem 3. The coefficients Cn(0) and C ′
n(0) are polynomials with rational coefficients in odd zeta values 

of homogeneous weight n.

The proof is based on a hypergeometric identity (27) of Ramanujan-Dougall type that could be of 
independent interest. Theorem 3 confirms Conjecture 1 for the first two coefficients Cn(0) and C ′

n(0). Note 
that the expression for C11 from Table 1 shows that C ′′

11(0) involves ζsv
3,5,3, and thus the claim of Theorem 3

in general fails for C ′′
n(0), assuming the (widely believed) algebraic independence of ζsv

3,5,3 and ζ(2m + 1), 
m ≥ 1 (see [6, p. 35]).

As a final remark, we note that the normalizing factor

Γ(1 + z)2Γ(1 − 2z)
2
Γ(1 − z) Γ(1 + 2z)
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that appears in several of our formulas is a specialization of Virasoro’s closed bosonic string amplitude [24]. 
We do not know if this is a simple coincidence, or if there is some conceptual explanation for this.

2. Multiple polylogarithms and multiple zeta values

In this section we very briefly recall some basic properties of multiple polylogarithms and multiple zeta 
values. For a much more detailed introduction (including the algebraic structure and interpretation of MZVs 
as periods of mixed Tate motives) we refer the reader to [25], [7].

Let m1, . . . , mr be positive integers. The one-variable multiple polylogarithm Lim1,...,mr
(z) is an analytic 

function defined by the power series

Lim1,...,mr
(z) :=

∑
0<n1<n2<···<nr

znr

nm1
1 nm2

2 . . . nmr
r

, |z| < 1 . (5)

For mr > 1 the above series converges absolutely for |z| ≤ 1 and we define

ζ(m1, . . . ,mr) :=
∑

0<n1<n2<···<nr

1
nm1

1 nm2
2 . . . nmr

r
= Lim1,...,mr

(1) . (6)

The numbers ζ(m1, . . . , mr) are called multiple zeta values (MZVs). We denote by Z the Q-linear span 
of all multiple zeta values and by Zk the Q-linear span of all multiple zeta values of weight k, i.e., the linear 
span of ζ(m1, . . . , mr) over all r-tuples (m1, . . . , mr) satisfying m1 + · · · + mr = k. The Q-vector space Z
forms an algebra (see (9) below), and multiplication respects weight, i.e., Zk · Zl ⊆ Zk+l. Zagier [27] has 
conjectured that there are no rational linear relations between elements of Zk for different k (that is, that 
Z =

⊕
k≥0 Zk) and that dimZk = dk, where dk are defined by the generating series

1
1 − x2 − x3 =

∑
k≥0

dkx
k .

The upper bound dimZk ≤ dk has been proved independently by Goncharov and Terasoma, but no nontrivial 
lower bounds for dimZk are presently known.

For our purposes it is more convenient to index multiple polylogarithms by words in two letters X =
{x0, x1}, reflecting their structure as iterated integrals as opposed to the definition as an infinite sum (5). 
In our treatment we mainly follow Brown [5] (see also [13]). Let X× be the free noncommutative monoid 
generated by X, i.e., the set of all words in x0, x1 equipped with the concatenation product. Then {Liw}w∈X×

is a family of analytic functions on the cut plane C � ((−∞, 0] ∪ [1, ∞)) defined by the recursive relations

d

dz
Lix0w(z) = Liw(z)

z
,

d

dz
Lix1w(z) = Liw(z)

1 − z
, w ∈ X× (7)

together with the following initial conditions: Lie(z) = 1, Lixn
0 (z) = 1

n! logn(z), and limz→0 Liw(z) = 0 for 
all w ∈ X× not of the form xn

0 . Here e ∈ X× denotes the empty word. These conditions uniquely determine 
Liw(z) and for m1, . . . , mr ≥ 1 one has

Li
xmr−1
0 x1...x

m1−1
0 x1

(z) = Lim1,...,mr
(z) . (8)

We also extend the notation Liw(z) by linearity to the elements of the monoid ring C〈X〉, i.e., for any formal 
combination 

∑
i aiwi we set Li∑

i aiwi
(z) =

∑
i aiLiwi

(z). Note that the algebra C〈X〉 is graded by word 
length, and we denote by C〈X〉n the n-the graded piece. We will also write |w| for the length of w ∈ X×
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and we will say that the function Liw(z) has weight |w|. (Since the functions Liw(z) are linearly independent 
over C(z), see [5], this notion of weight is well-defined.)

An important property of the space of multiple polylogarithms is that it is closed under mutliplication. 
More precisely, one has

Liw(z)Liw′(z) = Liw w′(z) . (9)

Here : C〈X〉 ×C〈X〉 → C〈X〉 denotes the shuffle product, defined on words by

a1 . . . ak ak+1 . . . ak+l =
∑
σ

aσ(1) . . . aσ(k+l) ,

where σ runs over all permutations satisfying σ−1(1) < · · · < σ−1(k) and σ−1(k + 1) < · · · < σ−1(k + l).
Note that for w ∈ X×x1 the function Liw(z) extends analytically to C� [1, ∞), and for w ∈ x0X

×x1 it is 
moreover continuous on D. We will call the words w ∈ x0X

×x1 convergent and we will also call convergent 
any formal linear combination of convergent words in C〈X〉 (in other words, all elements of x0C〈X〉x1 are 
called convergent). An important corollary of (9) is that for any w ∈ X×x1 there exists a unique collection 
of convergent elements w0, w1, . . . , wk ∈ Q〈X〉 such that

Liw(z) = Liw0(z) + Liw1(z)Li1(z) + · · · + Liwk
(z)Lik1(z) .

The function Li1(z) is simply − log(1 − z). The above decomposition allows one to extend the definition of 
multiple zeta values ζ(w) = Liw(1) to cases when the series diverges by setting Liw(1) := Liw0(1) for all 
w ∈ X×x1.

In the proof of our main result we will use several identities involving multiple polylogarithms. First, let 
us note the following simple corollaries of the definition of Liw.

Lemma 1. For all w ∈ X×x1 and k ≥ 0 we have

Lixk+1
0 w(z) = 1

k!

z∫
0

Liw(t) logk(z/t)dt
t
, z ∈ D .

Proof. This follows trivially from (7) by induction on k. �
Lemma 2. For all w ∈ X×x1 we have

1∫
0

Liw(e2πit)dt = 0 .

Proof. This follows from Liw(e2πit) = 1
2πi

d
dtLix0w(e2πit). �

Our proof of Theorem 1 is based on the following result.

Proposition 1. Let u, v ∈ X×x1 and let k = |u| + |v|. Then there exist elements α(u, v) and β(u, v) in ⊕k−1
j=0 Zj ⊗Q〈X〉k−j−1x1 and Au,v ∈ Zk such that

Liu(z)Liv(z−1) = Au,v + Liα(u,v)(z) + Liβ(u,v)(z−1) , z ∈ C � [0,+∞) . (10)

Moreover, if u and v are convergent, then α(u, v) and β(u, v) are also convergent.
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Proof. We will prove the statement by induction on k for all u, v ∈ X×x1  {e}. For the base of induction, 
when either u = e or v = e the identity becomes trivial if we set Au,e = Ae,v = 0, α(u, e) = u, α(e, v) = 0, 
and β(u, e) = 0, β(e, v) = v.

Note that from (7) it follows that for all w ∈ X× we have

d

dz
Lix0w(z−1) = − 1

zLiw(z−1) , d

dz
Lix1w(z−1) = ( 1

z + 1
1−z )Liw(z−1) . (11)

Therefore, if we set

Fu,v(z) = Liu(z)Liv(z−1) ,

then for any a, b ∈ X, u, v ∈ X× we have

d

dz
Fau,bv(z) = ϕa(z)Fu,bv(z) + ψb(z)Fau,v(z)

= ϕa(z)(Au,bv + Liα(u,bv)(z) + Liβ(u,bv)( 1
z )) + ψb(z)(Aau,v + Liα(au,v)(z) + Liβ(au,v)( 1

z )) ,

where ϕx0(z) = 1
z , ϕx1(z) = 1

1−z , ψx0(z) = − 1
z , and ψx1(z) = 1

z + 1
1−z . In view of this we recursively define

α(au, bv) = aα(u, bv) + b̃α(au, v) + (Au,bvδ(a) + Aau,v
1−δ(b)

2 )x1

β(au, bv) = ãβ(u, bv) + bβ(au, v) + (Aau,vδ(b) + Au,bv
1−δ(a)

2 )x1 ,
(12)

where x̃0 = −x0, x̃1 = x0 + x1, and δ is defined by δ(x1) = 1, δ(x0) = −1. Then by induction we obtain 
that

Liu(z)Liv(z−1) − Liα(u,v)(z) − Liβ(u,v)(z−1) = const =: Au,v .

If u, v, α, and β are all convergent, then we may simply take z = 1 to get Au,v = Liu(1)Liv(1) −
Liα(u,v)(1) − Liβ(u,v)(1). Otherwise we take z = e2πix and take the limit x → 0+, which corresponds to a 
regularization of Liw(1) given by

Liw(e±2πi0) :=
k∑

j=0
Liwj

(1)(±πi
2 )j ,

where Liw(z) =
∑k

j=0 Liwj
(z)Lij1(z) with all wj in x0C〈X〉x1. Thus Au,v ∈ Zk and by induction we get also 

that α(u, v) and β(u, v) belong to 
⊕k−1

j=0 Zj ⊗Q〈X〉k−j−1x1.
To verify the last claim let us consider u = x0u

′, v = x0v
′. The recursive definition (12) with a = b = x0

shows that α(u, v) and β(u, v) would be convergent if we can show that Au′,x0v′ = Ax0u′,v′ . But the 
calculation of the derivative of Fu,v shows that

i
d

dt
Fu,v(eit) = Au′,x0v′ −Ax0u′,v′ + Liw(eit) + Liw′(e−it)

for some w, w′ ∈ C〈X〉x1 and hence, by Lemma 2, we obtain Au′,x0v′ = Ax0u′,v′ . �
Remark 1. The proof shows that we may take β(u, v) = α(v, u). Note also that if we extend the definition 
of α(u, v), β(u, v), and Au,v to bilinear functionals on C〈X〉x1 ×C〈X〉x1, the identity (10) remains true for 
all u, v ∈ C〈X〉x1.
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As a corollary of the above proposition we have the following curious fact.

Corollary 1. For all u, v ∈ X×x1 we have

1∫
0

Liu(e2πit)Liv(e−2πit)dt ∈ Z|u|+|v| .

Proof. It follows from (10) and Lemma 2 that

Au,v =
1∫

0

Liu(e2πit)Liv(e−2πit)dt ,

and the claim then follows from Proposition 1. �
As a further corollary, note that when u and v are both convergent equation (10) implies

ReLiu(z)Liv(z) = Au,v + Re Liα(u,v)+β(u,v)(z) , |z| = 1 .

This formula thus gives a purely algebraic solution of the Dirichlet boundary value problem u(z) = ϕ(z) for 
|z| = 1 where ϕ is of the form ϕ(z) = Re Liu(z)Liv(z) and u is sought to be harmonic in D. It is exactly in 
this form that we will use Proposition 1 in the proof of Theorem 1.

3. Proof of Theorem 1

Let us fix the polygon PN ⊂ C to be the convex hull of {cζj}0≤j<N , where ζ is a primitive n-th root 
of unity, and c > 0 is chosen so that Area(PN ) = π. We will utilize the classical Schwarz-Christoffel map, 
f : D → PN , which maps the unit disk D conformally onto PN . It is given by any of the following equivalent 
expressions

f(z) = cNz 2F1

( 2
N

,
1
N

, 1 + 1
N

; zN
)

= cN

z∫
0

dζ

(1 − ζN )2/N
(13)

where the constant

cN =

√
Γ(1 − 1/N)2Γ(1 + 2/N)
Γ(1 + 1/N)2Γ(1 − 2/N) (14)

is determined by the condition that Area(PN ) = π. Here 2F1 is the ordinary Gauss hypergeometric function

2F1(a, b, c; z) =
∑
n≥0

(a)n(b)n
(c)n

zn

n! , |z| < 1 ,

where (x)n := x(x + 1) . . . (x + n − 1) denotes the rising Pochhammer symbol.
The first fact that we will need is that the function FN(x) := 2F1(2/N, 1/N, 1 +1/N ; x) can be expanded 

as a power series in 1/N (convergent for N ≥ 3) whose coefficients are multiple polylogarithms. Let us recall 
the definition of Nielsen polylogarithms (see [16], [9])

Sn,p(z) = (−1)n+p−1

(n− 1)!p!

1∫
logn−1(t) logp(1 − zt)dt

t
= Li1,...,1,n+1(z) = Lixn

0 x
p
1
(z) . (15)
0
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Lemma 3. For all N ≥ 3 and |x| ≤ 1 we have

2F1

( 2
N

,
1
N

, 1 + 1
N

;x
)

= 1 +
∞∑

n=2
Sn(x)N−n , (16)

where

Sn(x) =
n−1∑
j=1

(−1)j−12n−jSj,n−j(x) .

Proof. This follows by expanding in powers of 1/N the right hand side of

2F1

( 2
N

,
1
N

, 1 + 1
N

;x
)

= 1 + 1
N

1∫
0

t1/N ((1 − tx)−2/N − 1)dt
t

and using the definition (15). �
We will also need a formula for the asymptotic expansion of the Bessel function J0(x) around its zero. 

Recall that J0(x) satisfies xJ ′′
0 (x) + J ′

0(x) + xJ0(x) = 0 and can be defined by the Taylor series

J0(x) =
∑
n≥0

(−x2

4 )n

n!2 .

Proposition 2. (i) For n ≥ 0 define

En(x) :=
n∑

j=0

e2jx(x + Hn−j −Hj)
j!2(n− j)!2 ,

where Hn =
∑n

j=1
1
j , H0 = 0. Then En(x) = O(x2n+1), x → 0.

(ii) Let α be a zero of J0(x). Then

−J0(αex)
αJ1(α) =

∑
n≥0

(−α2

4 )nEn(x) . (17)

Proof. (i) Define Wn by

Wn(x) :=
∞∫
0

En(xt)e−tdt =
n∑

j=0

1
j!2(n− j)!2

( x

(1 − 2jx)2 + Hn−j −Hj

1 − 2jx

)
.

Note that if En(x) =
∑

m amxm, then Wn(x) =
∑

m m!amxm, so it suffices to show that Wn(x) = O(x2n+1), 
x → 0. We claim that

Wn(x) = 4nx2n+1∏n
j=1(1 − 2jx)2

,

which clearly implies Wn(x) = O(x2n+1). Let Rn(x) denote the difference between the left hand side and 
the right hand side in the above equation. A simple calculation shows that Rn(x) → 0 as x → ∞, and 
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since Rn ∈ Q(x), it is enough to show that it has no poles. The only potential singularities are at x = 1
2k , 

1 ≤ k ≤ n. If we let x = 1
2k − ε, then

n!2Rn(x) =
(
n

k

)2( 1
2k − ε

(2kε)2 + Hn−k −Hk

2kε

)
−

ε−2( 1
2k − ε)2n+1∏

j �=k(
1
2j − 1

2k + ε)2
+ O(1) , ε → 0 .

(Here 
∏

j �=k denotes the product over 1 ≤ j ≤ n, j �= k.) Then the coefficient in front ε−2 vanishes since (
n
k

)2 =
∏

j �=k(
k
j − 1)−2, and for ε−1 the vanishing is equivalent to

1 − 2k(Hn−k −Hk) = (2n + 1) +
∑

1≤j≤n
j �=k

2j
k − j

,

which is again easy to verify.
(ii) Let us denote the left hand side of (17) by f(x) and the right hand side by g(x). From the differential 

equation xJ ′′
0 (x) + J ′

0(x) + xJ0(x) together with J ′
0(x) = −J1(x), we obtain that f ′′(x) + α2e2xf(x) = 0

and f(0) = 0, f ′(0) = 1. Thus, it is enough to check that g(x) satisfies the same differential equation and 
initial conditions. The conditions g(0) = 0, g′(0) = 1 follow from part (i). Using the easily checked identity

e2jxj2(x + Hn+1−j −Hj) + e2jxj

j!2(n + 1 − j)!2 = e2jxj2(x + Hn−j+1 −Hj−1)
(j − 1)!2(n− j + 1)!2 , 1 ≤ j ≤ n + 1

we get that g′′(x) + α2e2xg(x). �
Finally, to prove the asymptotic expansion we will employ the following version of the “method of 

particular solutions”.

Proposition 3. Let Ω be a bounded domain in R2, and let f : Ω → R be a function in C2(Ω) ∩ C(Ω) that 
satisfies Δf + λ′f = 0 in Ω, 1

|Ω|
∫
Ω |f(x)|2dx = 1, and supx∈∂Ω |f(x)| ≤ ε, where ε < 1. Then there exists a 

Dirichlet eigenvalue λ of Ω such that |λ′ − λ| ≤ λε.

Proof. This is a special case of [18, Theorem 1]. �
We are now ready to prove our main result.

Proof of Theorem 1. To simplify notation we set λ(N) := λk(PN ) and λ := λk(D). Since the λ-eigenfunction 
of D is radially-symmetric, we may assume that, for all sufficiently large N , the λ(N)-eigenfunction of PN

is dihedrally-symmetric. More precisely, if{
Δϕ(z) + λ(N)ϕ(z) = 0 ,
ϕ(z) = 0 , z ∈ ∂PN ,

(18)

then we may assume that ϕ(e2πi/Nz) = ϕ(z) = ϕ(z).
By the general theory developed by Vekua [23, (13.5), p. 58] any function ϕ that satisfies Δϕ +λ(N)ϕ = 0

in PN can be represented as

ϕ(z) = a0J0(
√

λ(N)|z|) + Re
z∫
U(t)J0

(√
λ(N)z(z − t)

)
dt , (19)
0
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where a0 ∈ R and U : PN → C is some holomorphic function. Since by assumption ϕ(z) is dihedrally-
symmetric, we may write U(f(t)) = Ũ(tN )/t, where Ũ(0) = 0 and the Taylor series of Ũ at 0 has real 
coefficients (we recall that f is defined by (13)). Then

ϕ(f(z)) = a0J0(
√
λ(N)|f(z)|) + Re

z∫
0

f ′(t)U(f(t))J0

(√
λ(N)f(z)(f(z) − f(t))

)
dt

= a0J0(
√

λ(N)|f(z)|) + cNRe
z∫

0

(1 − tN )−2/N Ũ(tN )J0

(√
λ(N)f(z)(f(z) − f(t))

)dt
t
.

After replacing z and t by z1/N and t1/N respectively and setting ψ(z) := ϕ(f(z1/N )) and V (z) := Ũ(z)
(1−z)2/N

we obtain

ψ(z) = a0J0(ρ1/2|z|1/N |FN (z)|) + cN
N

Re
z∫

0

V (t)K(z, t)dt
t
, (20)

where we set ρ := c2Nλ(N) and

K(z, t) := J0

(
ρ1/2|z|1/N

√
FN (z)(FN (z) − (t/z)1/NFN (t))

)
.

Now we make an ansatz that

ρ ∼ λ exp
(κ1

N
+ κ2

N2 + . . .
)
,

V (z) ∼ V0(z) + V1(z)
N

+ V2(z)
N2 + . . . ,

(21)

where Vj : D → C are holomorphic and Vj(0) = 0.
In view of Proposition 2 (ii) it is convenient to set a0 = cN

λ1/2J1(λ1/2) . We will expand (20) as an asymptotic 
series in powers of 1/N and then recursively compute κj and Vj using the boundary condition ψ(z) = 0, |z| =
1. Note that by (16) FN (x) = 1 +O(N−2) and using (16) and the expansion (t/z)1/N =

∑
n≥0

logn(t/z)
n! N−n

we get

K(z, t) =
r∑

n=0
(−ρ

4 )nFN (z)n(FN (z) − (t/z)1/NFN (t))n

n!2 + O(N−r−1)

=
∑

u,v,w,m

γu,v,w,mLiu(z)Liv(z)Liw(t) logm(z/t)N−|u|−|v|−|w|−m + O(N−r−1) ,

where γu,v,w,m are coefficients that depend on κi and the summation is over words u, v, w ∈ x0X
×x1 and 

m ≥ 0 satisfying |u| + |v| + |w| +m ≤ r. We get a similar expression (involving only products Liu(z)Liv(z)) 
after expanding a0J0(ρ1/2|FN (z)|) using (17).

We claim that κi and Vi(z) can be calculated inductively by comparing the coefficients of the 1/N -
expansion. Indeed, comparing the coefficients of 1/N we see that

κ1

2 − Re
z∫
V0(t)

dt

t
= 0 , |z| = 1 ,
0
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Table 2
The functions Vn(z) for n ≤ 4.
n Vn(z)
0 0
1 2Li1(z)
2 (λ

2 − 2)Li2(z) + 4Li1,1(z)
3 (λ2

16 − λ + 2)Li3(z) + (3λ − 12)Li1,2(z) + (λ − 4)Li2,1(z) + 23Li1,1,1(z)
4 ( λ3

192 − λ2

8 − λ
2 − 2)Li4(z) + (λ2

8 − 2λ + 4)Li3,1(z) + (λ2

4 − 4λ + 12)Li2,2(z)

+ ( 5λ2

8 − 8λ + 28)Li1,3(z) + (2λ − 8)Li2,1,1(z) + (6λ − 24)Li1,2,1(z)

+ (14λ − 56)Li1,1,2(z) + 24Li1,1,1,1(z) + 2ζ3Li1(z)

so that κ1 = V0(z) = 0. In general, assume that κi ∈ Zi[λ] and Vi−1(z) = Livi−1(z) for i = 1, . . . , k, where 
vi ∈ Z[λ]〈X〉x1 is of total weight i (we define the total weight of λazw, where z ∈ Zk to be k + |w|). Note 
that by Lemma 1

z∫
0

Liu(z)Liv(z)Liw(t) logm(z/t)dt
t

= m!Liu(z)Liw′(z) ,

where w′ = v xm+1
0 w. Thus, when comparing the coefficients of N−k−1, we need to ensure an identity of 

the form

κk+1

2 − Re
z∫

0

Vk(t)
dt

t
−
∑
u,v

γu,v ReLiu(z)Liv(z) = 0 , |z| = 1 ,

where the terms in the sum only depend on already computed quantities κ1, . . . , κk and V0(z), . . . , Vk−1(z)
and all have total weight k + 1 (where we define the total weight of γLiu(z)Liv(z) for γ ∈ Zk[λ] to be 
|u| + |v| + k). By Proposition 1 this amounts to setting

x0vk = −
∑
u,v

γu,v(α(u, v) + β(u, v)) ,

κk+1

2 =
∑
u,v

γu,vAu,v .

This indeed can be done since by assumption the elements u and v are convergent and hence α(u, v), β(u, v) ∈
x0C〈X〉x1. This gives an explicit algebraic recursion for κn and Vn(z) that shows, in particular, that 
κn ∈ Zn[λ]. In Table 2 we list the functions Vn(z) for n ≤ 4. We also note that the coefficients κn vanish 
for n ≤ 4.

We still need to verify that the ansatz (21) indeed gives an asymptotic expansion for λ(N). To see this, 
note that plugging a truncated solution for the boundary condition ψ(z) = 0, |z| = 1 back into (19) we 
obtain a sequence of functions ϕN,r : PN → R, and numbers λN,r. The numbers λN,r converge to λk as 
N → ∞ for each fixed r and the functions ϕN,r satisfy

ΔϕN,r(z) + λN,rϕN,r(z) = 0 , z ∈ PN ,

together with ‖ϕN,r‖2 � 1 and ‖ϕN,r|∂PN
‖∞ �r N−r−1. Therefore, applying Proposition 3 shows that 

|λN,r − λk(PN )| �r N−r−1, so that λN,r indeed give an asymptotic expansion for λk(PN ).
Finally, the coefficients Cn(λ) are related to κn(λ) by the generating series identity

exp
(
κ1(λ)z + κ2(λ)z2 + . . .

)
= Γ(1 − z)2Γ(1 + 2z)

Γ(1 + z)2Γ(1 − 2z)

(
1 +

∑
Cn(λ)zn

)
,

n≥1
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and using

Γ2(1 + z)Γ(1 − 2z)
Γ2(1 − z)Γ(1 + 2z) = exp

(∑
k≥1

ζ(2k + 1)4(4k − 1)z2k+1

2k + 1

)
(22)

we obtain that Cn ∈ Zn[λ]. �
4. Explicit formulas for Cn(0) and C′

n(0)

Proof of Theorem 2. We follow the algebraic recursion for κk and Vk(z) given in the proof of Theorem 1
ignoring all the terms involving λk for k ≥ 2 (in other words we work modulo the ideal generated by λ2). 
For this we write

V (z) = V (0)(z) + λV (1)(z) + O(λ2)

and

κ :=
∑
n≥1

κn

Nn
= κ(0) + λκ(1) + O(λ2) .

Note that (17) implies that

J0(λ1/2ex)
λ1/2J1(λ1/2)

= −x + λ

4 (x + 1 + (x− 1)e2x) + O(λ2) ,

so that

a0J0(λ1/2eκ/2+log |FN (z)|) = cN

(
− κ/2 − log |FN (z)| + λ

4 (κ/2 + log |FN (z)| + 1

+(κ/2 + log |FN (z)| − 1)eκ|FN (z)|2)
)

+ O(λ2) .

Similarly, we calculate the kernel K(z, t) to order O(λ2) as

K(z, t) = 1 − λ

4 e
κFN (z)(FN (z) − (t/z)1/NFN (t)) + O(λ2) .

If we first look at the boundary condition modulo O(λ), it reads

1
2κ

(0) + log |FN (z)| = N−1 Re
z∫

0

V (0)(t)dt
t
, |z| = 1 .

This clearly implies N−1 ∫ z

0 V (0)(t)dtt = logFN (z) and κ(0) = 0. Using this we can rewrite the boundary 
condition for the linear term in λ as

1
2κ

(1) − 1
4(log |FN (z)| + 1 + (log |FN (z)| − 1)|FN (z)|2) −N−1 Re

z∫
0

V (1)(t)dt
t

= −1
4N

−1 Re
z∫

0

V (0)(t)FN (z)(FN (z) − (t/z)1/NFN (t))dt
t
, |z| = 1 .
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Since N−1 ∫ z

0 V (0)(t)dtt = logFN (z), we have V (0)(t) = Nt
F ′

N (t)
FN (t) and thus

1
2κ

(1) − 1
4 log |FN (z)| −N−1 Re

z∫
0

V (1)(t)dt
t

= 1
4

(
1 − |FN (z)|2 + ReFN (z)F̃N (z)

)

where we denote F̃N (z) =
∫ z

0 (t/z)1/NF ′
N (t)dt. Integrating over |z| = 1 leads to

2κ(1) =
1∫

0

(
1 − |FN (e2πix)|2 + FN (e−2πix)F̃N (e2πix)

)
dx . (23)

Our goal is to rewrite the right hand side of (23) as a hypergeometric series. For this we will make use of 
the integral representation for FN (z)

FN (z) = 1 + 1
N

1∫
0

t1/N ((1 − tz)−2/N − 1)dt
t
.

First, we plug this representation into the definition of F̃N (z) to obtain

F̃N (z) = 2
N2

z∫
0

(x/z)1/N
( 1∫

0

t1/N (1 − xt)−2/N−1dt
)
dx

= 2
N2

1∫
0

1∫
0

(t1t2)1/Nz(1 − zt1t2)−2/N−1dt1dt2

= − 2
N2

1∫
0

t1/Nz(1 − zt)−2/N−1 log tdt .

From this, by changing the order of integration, we calculate

1∫
0

1 − |FN (e2πix)|2dx = − 1
N2

1∫
0

1∫
0

(t1t2)1/N−1(GN (t1t2) − 1)dt1dt2 ,

1∫
0

FN (e2πix)F̃N (e−2πix)dx = − 1
N2

1∫
0

1∫
0

(t1t2)1/N−1t1t2G
′
N (t1t2) log t1dt1dt2 ,

where

GN (x) = 2F1(2/N, 2/N, 1;x) =
∑
n≥0

(2/N)2n
n!2 xn .

Next, using the easily verified identity

1∫ 1∫
f(xy) logk xdx

x

dy

y
= − 1

k + 1

1∫
f(t) logk+1 t

dt

t

0 0 0
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we can rewrite the above double integrals as single integrals. Plugging the resulting expressions back into (23)
we get

2κ(1) = 1
N2

1∫
0

((GN (t) − 1) log t + t
2G

′
N (t) log2 t)t1/N dt

t
.

Finally, expanding GN (t) as a power series in t and integrating the above identity term-by-term we obtain

κ(1) = − 1
2N3

∑
n≥1

(2/N)2n
n!2(1/N + n)3 , (24)

which immediately implies (4). �
Finally, let us prove Theorem 3. For this we will need the following lemma to evaluate the right hand 

side of (24) in terms of gamma function and its derivatives.

Lemma 4. For all z �∈ 1
2Z we have

m∑
n=0

(2z)2nz3

n!2(z + n)3
(1 + m)n(−m)n

(1 + 2z + m)n(2z −m)n

= (1 + 2z)m(1 − z)2m
(1 − 2z)m(1 + z)2m

(
1 +

m∑
j=1

j(j − 2z)
(j − z)2 −

m∑
j=1

j(j + 2z)
(j + z)2

) (25)

Proof. We will prove this identity by induction on m, the case m = 0 being trivial. First, we divide both 
sides by the product of the Pochhammer symbols on the right to get an equivalent identity

m∑
n=0

Tn,m = 1
z3

(
1 +

m∑
j=1

j(j − 2z)
(j − z)2 −

m∑
j=1

j(j + 2z)
(j + z)2

)
,

where we denote

Tn,m := (1 − 2z)m(1 + z)2m
(1 + 2z)m(1 − z)2m

(2z)2n
n!2(z + n)3

(1 + m)n(−m)n
(1 + 2z + m)n(2z −m)n

.

Then it is enough to show that

m+1∑
n=0

(Tn,m+1 − Tn,m) = − 4(m + 1)
(m + 1 − z)2(m + 1 + z)2 .

First, an elementary calculation shows that for 0 ≤ n ≤ m + 1 we have

Tn,m+1 − Tn,m = 4z(2z)2n
n!2(z + n)

(1 − 2z)m+1(1 + z)2m
(1 − z)2m+1(1 + 2z)m

(1 + m)n(−m− 1)n
(1 + 2z + m)n+1(2z −m− 1)n+1

.

Therefore, it suffices to show that for m ≥ 1 we have

m∑
Dn,m = 1 ,
n=0
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where

Dn,m = −z(m− z)2(2z)2n
n!2(z + n)m

(1 − 2z)m(1 + z)2m
(1 + 2z)m+n(1 − z)2m

(m)n(−m)n
(2z −m)n+1

.

The last identity can be easily proved using the Wilf-Zeilberger method [26]. Explicitly, using the identities

Dn,m+1

Dn,m
= (m + 1 + z)2(m− n− 2z)(m + n)(m + 1)

(m− z)2(m + n + 1 + 2z)m(m− n + 1)
Dn+1,m

Dn,m
= (n + z)(n + 2z)2(m− n)(m + n)

(n + 1 + z)(m− n− 1 − 2z)(m + n + 1 + 2z)(n + 1)2

one can verify that

Dn,m+1 −Dn,m = Gn+1,m −Gn,m , n = 0, . . . ,m + 1 , (26)

where Gn,m = Dn,mR(n, m) and

R(n,m) = n2(2m + 1)(z + n)(m− n− 2z)(2m2z + (m + z)2 − (n + z)2 + m + n + 2z)
4m2(m + 1)2(n−m− 1)(m− z)2z .

(We regularize Gn,m for n = m + 1 by canceling the factor (n −m − 1) in the denominator of R(n, m) with 
the factor (n − 1 −m) coming from the Pochhammer symbol (−m)n in the definition of Dn,m.) Finally, the 
identity 

∑m
n=0 Dn,m = 1 then follows by induction on m from (26) together with G0,m = Gm+2,m = 0. �

Corollary 2. For all z ∈ C with |z| < 1 we have

∑
n≥0

(2z)2nz3

n!2(z + n)3 = Γ2(1 + z)Γ(1 − 2z)
Γ2(1 − z)Γ(1 + 2z)

(
1 + z2ψ(1)(1 + z) − z2ψ(1)(1 − z)

)
, (27)

where ψ(k)(z) = dk+1

dzk+1 log Γ(z) is the k-th polygamma function.

Proof. For Re z < 1 and z �∈ 1
2Z simply take the limit m → +∞ in (25) using the fact that (x)n = Γ(x+n)

Γ(x) ∼
Γ(n)nx

Γ(x) , n → ∞, together with

m∑
j=1

j(j ± 2z)
(j ± z)2 = m− z2ψ(1)(1 ± z) + z2ψ(1)(1 + m± z) .

Noting that both sides of (27) are non-singular also for z = 0, ±1/2 we obtain the claim for all |z| < 1. �
Proof of Theorem 3. The claim for Cn(0) immediately follows from (4) and (22). Differentiating the classical 
identity

log Γ(1 − z) = γz +
∑
n≥2

ζ(n)z
n

n

twice shows that

z2ψ(1)(1 − z) − z2ψ(1)(1 + z) =
∑
k≥1

4kζ(2k + 1)z2k+1 ,

and thus (4), (22) and (27) together imply the claim for C ′
n(0). �
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