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Primordial aqueous alteration recorded in
water-soluble organic molecules from the
carbonaceous asteroid (162173) Ryugu

A list of authors and their affiliations appears at the end of the paper

We report primordial aqueous alteration signatures in water-soluble organic
molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2
spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-
R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic
acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples
from the two touchdown locations at Ryugu. The quantitative and qualitative
profiles for the hydrophilic molecules between the two sampling locations
shows similar trends within the order of ppb (parts per billion) to ppm (parts
per million). A wide variety of structural isomers, including α- and β-hydroxy
acids, are observed among the hydrophilicmolecules.We also identify pyruvic
acid and dihydroxy and tricarboxylic acids, which are biochemically important
intermediates relevant to molecular evolution, such as the primordial TCA
(tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu
samples underwent substantial aqueous alteration, as revealed by the pre-
sence of malonic acid during keto–enol tautomerism in the dicarboxylic acid
profile. The comprehensive data suggest the presence of a series for water-
soluble organic molecules in the regolith of Ryugu and evidence of signatures
in coevolutionary aqueous alteration between water and organics in this car-
bonaceous asteroid.

Pristine samples from the near-Earth asteroid (162173) Ryugu returned
to Earth by the Hayabusa2 spacecraft provided a valuable opportunity
to reveal the organic astrochemistry preserved for over 4.6 billion
years in the Solar System1–4. This unique opportunity for investigating
primordial organic molecules illuminates several scientific contexts
involving carbonaceous asteroids, including the following
questions5–7:
– What is the role of carbonaceous asteroids in the Solar System his-

tory?
– What are the origins and characteristics of the light elements, e.g.,

carbon (C), nitrogen (N), hydrogen (H), oxygen (O), and sulfur (S)?
– What do their isotopic compositions reveal?
– How do they record the primordial organic evolution on the aster-

oid?

– Is the nature of molecular chirality symmetric or asymmetric?
– How do interactions between water, organic matter, and minerals

affect chemical diversity?

To address these important scientific questions, the
Hayabusa2 soluble organic matter (SOM) team6 evaluated aggregate
fine grain samples from the first and second touchdown sites (here-
after, TD1 and TD2); hence, the bulk chemistry data from these two
sample collections are averaged representative values for the surface
(A0106) and possibly subsurface (C0107) environments (i.e., TD2 was
near the artificial crater, for which the depth was ~1.7 meters below
ground level8) of Ryugu (Fig. 1). For further insight at the organic
molecular level, the SOM team determined the first answers to these
questions based on carbon (C), nitrogen (N), hydrogen (H), oxygen
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(O), sulfur (S) elements and their isotopic profiles6,9,10, monocarboxylic
acids6, amino acids and their molecular chirality6,11,12, pyrimidine
nucleobase and N-heterocycles6,9, primordial salts and sulfur-bearing
labile molecules between the organic and inorganic interfaces10, ali-
phatic hydrocarbons andpolycyclic aromatic hydrocarbons (PAHs)13,14,
comprehensive organic molecular profiles6,15, molecular growth
signatures16, and sub-mm scale spatial imaging for organic homo-
geneity and heterogeneity in the mineral assemblage6,17. According to

Fourier transform-ion cyclotron resonance mass spectrometry (FT-
ICR/MS) analysis, the SOM from Ryugu samples contained highly
diverse organicmolecules (~20,000 species) in the solvent extracts6,15.

Naraoka et al.6 reported organic molecular diversity from initial
bulk (IB) to insoluble organic matter (IOM) in a sequential extraction
process using hydrophilic to hydrophobic solvents. In this report, we
determine themolecular diversity of polar organicmolecules extracted
from the first contact between hot water and pristine Ryugu samples
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and report theunique color characteristics of the sequentially extracted
fractionswith systematic variations in their 13C- and 15N-isotopic profiles.
If indigenous water–organic interactions occurred in the history of the
asteroid, the signatures of parent body aqueous alteration could have
been recorded in these hydrophilic organic molecules (Fig. 2).

To decipher the chemical evolution that occurred in surface and
subsurface samples1,2,18, we comprehensively evaluated highly diverse
hydrophilic organic molecules using capillary electrophoresis (CE)
with high-resolution mass spectrometry (HRMS). We used this mole-
cular information to interpret the aqueous alteration processes that
asteroid Ryugu has experienced to complement the study by Naraoka
et al., who reported organicmolecular diversity from initial bulk (IB) to
insoluble organic matter (IOM) in the sequential extraction process.

Results and discussion
Identification of water-extractable molecules and diverse
structural isomers
The Ryugu A0106 and C0107 samples (~10mg each) were subjected to
hot water extraction in sealed ampoules at 105 °C for 20 h for the
present study6 (see Methods). This extraction targeting water-
extractable compounds followed previous reports (e.g., hydroxy
acids19,20;). We first identified highly diverse hydroxy acids and
hydrophilic molecular groups in hot water extracts by CE-HRMS
(Fig. 2). Figure 3A shows the baseline resolution of representative
hydroxy acids and other molecules from the hot water extracts iden-
tified with reference standards (Murchison meteorite; Methods). We
determined eachmolecule bymigration time (MT) and the exactmass
corresponding to the monoisotopic mass9. Short-chain hydroxy acids
(e.g., glycolic acid, HO-CH2-COOH; lactic acid, CH3-CH(OH)-COOH;
and glyceric acid, HO-CH2-CH(OH)-COOH) were predominant in
aggregate samples of A0106 and C0107 from Ryugu (Fig. 3B).

Within the concentration range of 10 ppb to 103 ppb [i.e., parts per
billion (ppb) as nanograms (ng) hydroxy acid per gram (g) of extracted
Ryugu sample] (Table S1), structural isomers of hydroxy acids and
molecular abundance were determined. The concentration of lactic acid
(C3), which is more abundant than glycolic acid (C2), is consistent with
previous reports on the Murchison meteorite19,20. Among these homo-
logsofhydroxyacids,wealso identifiedmoleculespotentially relevant to
chemical evolution (e.g., pyruvic acid, C3H4O3; mevalonic acid, C6H12O4;
and citric acid, C6H8O7). Since thesemolecules are important precursors
in diverse molecular evolution21, demonstrating their presence on the
carbonaceous asteroid Ryugu is significant. Specifically, thesemolecules
are biochemically crucial and are intermediate substrates of the lipid
synthesis pathway and Krebs cycle. Chemically reactive hydroxy acids
(e.g., glycolic acid)may play an important role inmolecular evolution for
the formation of primary carbon chains22. Furthermore, there may be a
connection pathway between hydroxy acids and formose reaction-
derived IOM23 as side products24.

In addition to the previously reported organic acids (e.g., formic
acid and acetic acid6) and nitrogen heterocycles9, we also identified a
new group of diverse carboxylic acids (i.e., monocarboxylic acids for
aliphatic, aromatic, unsaturated, and keto acids; Figs. 2, 3 and

Tables S1, S2) and nitrogen (N)-bearing molecules, including amines
(e.g., urea, CH4N2O; and glycocyamine, C3H7N3O2), hydroxy- and
N-heterocyclic indoles (e.g., dihydroxyindole, C8H7NO2; and hydro-
xyindole, C8H7NO), in hot water extracts. Thus, we suggest that the
spectroscopic signals of hydroxyl groups (-OH) and amino/imino
groups (-NH) in the infrared spectra (chambers A and C2; A0106 and
C0107,9; grain-scale and surface observation; Fig. S13, cf.17,25:) include a
substantial amount of intramolecular -OH and -NH moieties originat-
ing from the series of polar organic molecules in the present study.

Aqueous alteration signatures and keto–enol tautomerism
Aliphatic dicarboxylic acids (e.g., C2, oxalic acid; C3, malonic acid; C4,
succinic acid; C5, glutamic acid; and C6, adipic acid) are defined as
organic compounds bearing two carboxyl groups (-COOH) with an
aliphatic backbone. We detected dicarboxylic acids (e.g., oxalic acid,
malonic acid, succinic acid, glutaric acid, adipic acid, malic acid, and
maleic acid) within the concentration range of 10 ppb to 103 ppb
(Table S1; Fig. 4A). Previous reports have suggested that the relative
concentration of malonic acid (HOOC-CH2-COOH) in the dicarboxylic
acid group is sensitive properties by the process of keto–enol
tautomerization26,27. Laboratory-based malonic acid formation has
been compared with the extraterrestrial origin of dicarboxylic acids
from tautomerization28. Enol malonic acid is presumed to decompose
faster than other dicarboxylic acids because it produces a thermo-
dynamically unstable carbon‒carbon double bond (i.e., HO-C =CH-,
vinyl alcohol group29–31) during aqueous alteration as follows:

HOOC�CH2�COOH withH2O ! ðHOÞ2�C=CH�COOH
� � ()

HOOC�CH=C�ðOHÞ2
� �

Hence, the formation of two vinyl alcohol groups on the intra-
molecular malonic acid is probably more reactive (chemically
unstable) than that of other dicarboxylic acids (Fig. 4A, B). After
unstable equilibrium is eventually reached under aqueous conditions
at higher temperatures32,33, keto–enol tautomerism induces dec-
arboxylation to form acetic acid (CH3COOH) and carbon dioxide (CO2)
as end products (Fig. 4B). Hence, a substantial concentration of acetic
acid6 can result from chemical cleavage of the secondary acetogenic
process via malonic acid. Therefore, we suggest that malonic acid
(mole%) is a molecular signature of the aqueous alteration process
recorded in the asteroid Ryugu. In fact, the relative abundance of
malonic acid is an order of magnitude lower than that of CM meteor-
ites (e.g., Murchison and Murray, as shown in Fig. 4A), suggesting a
different aqueous history.

The systematics of hydrophilic molecules at two sampling
locations on Ryugu
The systematics for elemental and organic chemical surveys, includ-
ing CNHOS and hydrophilic molecular groups, were compiled to
formulate the TD1 and TD2 diagrams (Fig. 5). Within these overviews
of surface and potential subsurface sample profiles1,2,18, we evaluated

Fig. 1 | Profiles of samples obtained from asteroid (162173) Ryugu and various
observation photographs from kilometer to micrometer scales. A Ryugu pho-
tograph taken with the Optical Navigation Camera Telescopic (ONC-T). The photo
was taken on August 31, 2018. Credit: JAXA, Univ. Tokyo etc. B Thermal image of
Ryugu from the thermal infrared imager (TIR). The observation indicates that the
lowest temperature in theblue section is estimated tobe below −50 °C,whereas the
lowest temperature in the red section is estimated to be < 60 °C. Please see the
onsite data acquisition and temperature dynamics74,75. Credit: JAXA etc. The data
were collected on August 31, 2018. C The surface of the asteroid Ryugu and the
shadow of the Hayabusa2 spacecraft. The image was taken from ONC-W1 at an
altitudeof 70m.Date taken: 21 September 2018.DThe 1st touchdownoperation on
Ryugu with CAM-H imaging on 22 February 2019. The image was captured just

before touchdown during descent at an altitude of approximately 4.1m. Credit:
JAXA. E Photograph of initial sample A0106 (38.4mg)6 from the asteroid Ryugu
during the 1st touchdown sampling1,2. A photograph of C0107 (37.5mg) from the
2nd touchdown sampling is shown in Supplementary Fig. S1. The scale bar repre-
sents 1mm (red line). F Reference photograph of the discolored and altered cross-
section of the Ryugu sample showing possible precipitates (e.g., C0041)76. G The
isotopic compositions of C, N, H, and S of the Ryugu aggregate samples for A0106
and C0107 are shown after compilation6,9,10. The isotopic compositions of δ13C (‰
vs. VPDB), δ15N (‰ vs. Air), δD (‰ vs. VSMOW) and δ34S (‰ vs. VCDT) are expressed
as international standard scales. By comparing the classification of carbonaceous
meteorites in the Solar System, the compiled data suggested that the Ryugu sample
has isotopic characteristics most similar to the petrologic type of CI chondrite6,52.

Article https://doi.org/10.1038/s41467-024-49237-6

Nature Communications |         (2024) 15:5708 3



the average chemical composition and diversity of hydrophilic
molecules to determine whether there is potential organic hetero-
geneity or homogeneity in Ryugu. The total amount of CNHOS light
elements (ΣCNHOS) in the IB of A0106 and C0107were ~21.3 wt%6 and
~23.7 wt%9, respectively (Fig. 5A). Then, ΣCNHOS in the IOM increased
by an order of magnitude (Fig. 5B) because the inorganic matrix was
eliminated (cf. IOM description34).

The overall observations were plotted directly on or near the 1:1
line for hydroxy acids andother hydrophilicmolecules (Fig. 5C),water-

extractable amino acids and amines for the CHNO molecular series6,11

(Fig. 5D), and inorganic cations and anions10 (Fig. 5E). The detection of
N-bearing primary amine molecules (R-NH2), ammonium ions
(NH4

+)6,10,11 and ureamolecules [(NH2)2 = CO] (Fig. 5F) from Ryugu is an
important finding, not only as evidenceof exogenous nitrogen carriers
but also as themost primitive chemical forms of nitrogen35,36. Urea and
alkyl-urea groups (e.g., methyl-urea and alkyl-urea up to C6) may also
serve as reservoirs of involatile C, N, O, and H on the asteroid. Urea is
also an interesting organic reactive substrate that exhibits amphiphilic

Fig. 2 | Representative molecular structures of newly identified from Ryugu
aggregate samples (A0106 and C0107). The hot water-extractable molecular
structures include α-hydroxy acids (e.g., glycolic acid, lactic acid, and
2-hydroxybutyric acid), β-hydroxy acids (e.g., glyceric acid, 3-hydroxybutyric acid,
mevalonic acid, and hydroxybenzoic acid), dicarboxylic hydroxy acids (e.g., malic
acid and citramalic acid),monocarboxylic acids (e.g., valeric acid, 4-oxovaleric acid,
5-oxohexanoic acid, tiglic acid, toluic acid, and cumic acid), dicarboxylic acids (e.g.,
oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and maleic acid),

tricarboxylic acid (e.g., citric acid), pyruvic acid and other nitrogen-bearing
hydrophilic molecules (e.g., urea, methylurea, glycocyamine = guanidinoacetic
acid, 6-hydroxynicotinic acid, isovalerylalanine, and dihydroxyindole). Notably,
some hydroxy acids and carboxylic acids have chiral centers with left–right sym-
metry, but those enantiomers are not discussed in the present report. Newly
identified cyclic sulfur compounds (S6, S7 in this study; Supplementary informa-
tion) were also noted with the comparison of cyclic S8 molecule6.
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Fig. 3 | Representative hydrophilic molecular groups in hydroxy acid, dicar-
boxylic acid, and tricarboxylic acid in hot water extracts from Ryugu samples
(A0106 and C0107) and a reference sample (Murchison). AHigh-resolutionmass
electropherogram of capillary electrophoresis during the analysis of hot water
extracts (#7-1). The blank was composed of ultrapure water before hot water
extraction. Based on the migration time (min) and mass accuracy within ~1 ppm
(μg/g) of the theoretical peak (m/z), we assigned each observed peak to the cor-
responding standard (Fig. S4). B Concentrations of representative hydroxy acids

determined in Ryugu aggregate samples. In this graph, dark blue and light blue
represent samples A0106 and C0107, respectively. These hydroxy acids and other
related hydrophilic molecules from fraction #7-1 (hot water extracts) are in ppb.
C The analytical accuracy for the concentration of short-chainα-hydroxy acids (i.e.,
glycolic acid, lactic acid, 2-hydroxybutyric acid, and 2-hydroxyvaleric acid)
extracted fromMurchison andMurraymeteorites19 (glycolic acid as 100%) is shown
for the same formulation.
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properties and behaves as a solid and/or liquid depending on tem-
perature and ambient physicochemical factors22,37. Regarding the
temperature constraint of Ryugu, Yokoyama et al. reported that sam-
ples from TD1 and TD2 remained below ~100 °C after aqueous altera-
tion until the present based on the abundance of structural water38.

To further describe the CI-like organic characteristics, the
hydrophilicmolecules fromRyugu (A0106 andC0107)were compared
to CM-type chondrites from Murchison and Murray (Fig. 6A).
According to the composition of amino acids found in the CI-type
meteorite Ivuna39, the properties of meteoritic amino acids were ver-
ified for Ryuguwith the samenormalization (Fig. 6B). Compared to the
CM2 chondrites of Murchison and Murray, CI-type carbonaceous
chondrites with parent bodies that have experienced aqueous altera-
tion contain lower total amino acid abundances39,40. In this context,
Burton and coworkers reported that carbonaceous chondrites that
experienced high-temperature thermal alteration along with aqueous
alteration (e.g., CI type Y-980115; re-examination with δ15N of amino
acids41) have much lower amino acid abundances than CI Orgueil and
CM Murchison meteorites40,42). Distinct positive correlations were
observed in both concentration profiles above the 1:1 line, whereas the
principal component-2 (PC2) scores suggested that the concentration
of hydrophilic molecules was lower and that the history of aqueous
alteration differed between the Ryugu and CM samples (Fig. 6C).
Therefore, we suggest that comprehensive surveys of meteoritic

amino acids of the CI and CM types are important for classifying
Ryugu6,11,13.

Stepwise 15N depletion and 13C depletion during solvent
extractions
Themass balance equation1 for the initial bulk composition of organic
matter (normalized to 100% for IB as whole rock) in the Ryugu sample
is expressed as the sum of inorganic fractions10, soluble and insoluble
organic fractions through the following equation:

IB =Σ Inorganics +Σ SOM+Σ IOM ð1Þ

ΣSOM represents the sum of the components extracted in each
process of sequential extraction, whereas ΣIOM represents the sum of
the insoluble organic fractions, as detailed in previous literature6,34.We
investigated the nitrogen isotopic profiles during sequential solvent
extraction by hot water extracts (#7-1), formic acid extracts (#9), and
HCl extracts (#10) for Ryugu (A0106 and C0107) and the CI group
reference (Orgueil meteorite9,10) (Fig. 7A). Interestingly, this validation
clearly showed that organic solvent extraction resulted in 15N-enriched
profiles (e.g., hot water extracts; < +63.1‰ and < +55.2 ‰ vs. Earth’s
atmospheric air for A0106 and C0107, respectively) for each extrac-
table organic fraction during the sequential process. Therefore, the
nitrogen isotopic compositionof the insoluble residue indicated that it

Fig. 4 | Evidence for aqueous alteration of the asteroid Ryugu revealed by
dicarboxylic acids and molecular tautomerism of malonic acid. A Dicarboxylic
acid profiles (i.e., C2, oxalic acid;C3,malonic acid; C4, succinic acid; C5, glutaric acid;
C6, aspartic acid; C7, pimelic acid; and C8, suberic acid) for the Ryugu (A0106 and
C0107) and CM types (Murchison and Murray) normalized by oxalic acid as 100%.

B Mechanism underlying keto–enol tautomerism of malonic acid (MA), which
converts a chemically stable keto form to an unstable enol- form in the aqueous
alterationprocess. The twoenol- forms of the unstableMA tautomer are symmetric
and in fact identical molecule.
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was conversely depleted of 15N-organic matter in the stepwise extrac-
tion (Fig. 7B). We observed that the carbon isotopic composition of
the insoluble residues also tended to be 13C-depleted down to
−17.0 ± 0.2‰, as observed for 15N profiles (down to +28.2 ± 3.8‰). This
observation (Fig. 7B) agrees well with previous reports on the carbon
and nitrogen isotopic compositions of extractable SOM and refractory

IOM inMurchison43. In contrast, it is interesting to note that the sulfur
isotopic composition (δ34S) converged to the VCDT scale (~0‰) before
and after solvent extraction. Within the SOM fraction, the normalized
nitrogen balance of each extract was high in the formic acid fraction,
indicating that the pink extracts (A0106 and C0107) contained a sub-
stantial amount of hydrophilic organic matter (Supplementary

Fig. 5 | Standardization to comparatively verify the elemental and hot water-
extractablemolecular propertiesof samples fromthe 1st touchdown site (TD1)
and 2nd touchdown site (TD2) at Ryugu. Notably, the Ryugu sample is of sci-
entific value as a surface (TD1) and subsurface sample (TD2) from the carbonaceous
asteroid1,18. In this report, we evaluated thehydrophilic organicmolecules in surface
aggregate (A0106) and subsurface aggregate (C0107) samples as follows. A Light
elements in IB samples for total C, N, H, and S and pyrolyzable O in wt%. Compi-
lation after the references6,9,10. The error arc indicates the standard deviation (1σ).
Here, we define IB aswhole-rock bulk, which includes all inorganicmatrices such as
silicates and carbonates, and IOM as the fraction that does not contain silicates43.
B CNHOS contents in IOM (sample treatment34 and measurement by the present
report) in wt% (Table S3). C Hydroxy acids, carboxylic acids and other newly

identifiedN-bearinghydrophilicmolecules in this studyobtained from fraction#7-1
(hot water extracts) in ppb. The molecular assignments and raw data profiles are
shown in Fig. 3 and Tables S1, S2, respectively. D Amino acids and amines from
fraction #7-1 (hot water extraction) in ppb. The data were compiled after the
references6,11. Please see the error notation in the diagram11. E Major inorganic
cations and anions from fraction #7-1 (hot water extracts) on the ppm scale. Please
see the report for ammonium ion detection (NH4

+, ~ 3 ppm; red diamond symbol)
and other important molecules associated with organic and inorganic profiles10.
The error notations in thediagram indicate 2σ after the reference.FConcentrations
of urea and alkyl-urea (i.e., methyl-urea, ethyl-urea, and other alkyl ureas up to C6-
urea) were measured in the present study.
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Information). Based on the present observations (Fig. 7), the hypoth-
esis regarding isotope fractionationduring the formationofmeteoritic
organic matter44, volatile nitrogen molecules and thermally altered N
residues in Ryugu45,46, and primordial 15N depletion in the protosolar
nebula (down to –400‰)36 will be important for describing nitrogen
dynamics in the Solar System.

Implication of aqueous alteration history on the parent body
When investigating the history of the carbonaceous asteroid (162173)
Ryugu, we found definite signatures of aqueous alteration from
hydrophilic organic molecules, as shown in the hypothetical concept
summary (Fig. 8). We consider that physicochemical and temperature
factors (i.e., cold and hot thermal conditions; and icy dry and aqueous
wet cycles, Fig. 1B) correlate with the molecular evolution between
water and organic matter within the cold hydrothermalism15. The
coevolutionary outline hypothesized here is also supported by the
observations of secondary mineral assemblages and altered vein
formations38,47–49 (Fig. 9). For a comparative investigation of those
findings, the origin of Ryugu’s water within the history of the parent
body will be elucidated in subsequent studies38,50–52. As a notable
opportunity in 2023, NASA’s OSIRIS-REx (Origins, Spectral Inter-
pretation, Resource Identification and Security-Regolith Explorer)
spacecraft returned the carbonaceous asteroid (101955) Bennu sample

to Earth53. We expect that international return missions will offer
extremely important scientific opportunities to explore the history of
organic chemical evolution.

We hope that the Bennu sample will reveal detailed information
on chemical evolution and molecular chirality6,11,40,54, including widely
diverse hydrophilic molecules in the asteroid history. Notably, the
carbonate veins observed on someboulders at Bennu55 are unique and
should reveal interactions between pristine aqueous alteration pro-
cesses, as discussed in this paper and other perspectives7,53,56. There-
fore, we conclude here that carbonaceous asteroids are natural
laboratories for observing realistic primordial molecular evolution in
organic and inorganic contexts.

Methods
Sample process andextractionof hydrophilic organicmolecules
The description summary of the onsite sample collection from the
asteroid Ryugu is reported by the Hayabusa2 International Team1,2. To
ensure the quality of the pristine sample, the project team performed
an environmental evaluation in the prelaunch phase57,58, system design
and preliminary assessments59,60 and careful assessment of the sample
process during volatile recovery in Australia61,62 until the curation
facility63,64. The seamless sample process and the extraction of organic
molecules from Ryugu have been described previously6

Fig. 6 | Summary of integrated observations of Ryugu with CI type (Ivuna) and
CM type (Murchison andMurray) for aqueous alterationprocesses throughout
their history. A Hydroxy acids, dicarboxylic and tricarboxylic acids, and other
newly identified hydrophilicmolecules for comparison between Ryugu (this study)
andCM (Murchison andMurray; this study) type at the ppb scale. The Ryugu values
on the horizontal axis are shown as the average of A0106 and C0107 (Table S1).
BAmino acids for the comparisonbetweenCI type (Ivuna) andCMtype (Murchison
and Murray) based on compilation39. Please see the individual molecular

information in the diagram with the following review40 and amino acid profiles for
Ivuna and Orgueil (Fig. S14). The error arc indicates the standard deviation (1σ).
C Principal component (PC) analysis between Ryugu and CM (Murchison and
Murray) regarding hydroxy acids and dicarboxylic and tricarboxylic acids with
other hydrophilic molecules based on the panel (A) raw data profile (this study).
The PC2 scores between the CM type (Murchison,Murray for sample description77)
and CI type of Ryugu (A0106 and C0107; Tables S1, S2) are shown, suggesting a
different history of indigenous organic molecules.
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(Supplementary Information, Figs. S1–S3). The extracted fractions
were photographed (this study; Figs. S5–S8) and analyzed by the SOM
team. The insoluble organic residue was processed by the IOM team34.

Analysis of hydrophilic molecules for hydroxy acids andmono-,
di-, tri-carboxylic acids
We performed capillary electrophoresis-high-resolution mass spec-
trometry (CE-HRMS) using the ω Scan package (Human Metabolome
Technologies, Inc., Japan) as described in previous reports9,65. In brief,
CE-HRMS analysis was performed with an Agilent 7100 CE capillary
electrophoresis system (Agilent Technologies, Inc., Santa Clara, CA,
USA) equipped with a Q Exactive Plus (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), Agilent 1260 isocratic HPLC pump, Agilent

G1603A CE-MS adapter kit, and Agilent G1607A CE-ESI-MS sprayer kit
(Agilent Technologies, Inc., Santa Clara, CA, USA). The system was
controlled with Agilent MassHunter workstation software for LC/MS
data acquisition for the 6200 series TOF/6500 series Q-TOF version
B.08.00 (Agilent Technologies, Inc., SantaClara,CA,USA) andXcalibur
(Thermo Fisher Scientific Inc.,Waltham,MA, USA). The separation was
performedwith a fused silica capillary (50μm i.d. × 80 cm total length)
and electrophoresis buffer (H3301-1001, HMT) as the electrolyte. To
ensure the accuracy of the analysis, blank measurements were also
performed to validate the raw data acquisition. Compound peaks were
extracted using MasterHands, and automatic integration software was
used to obtain raw signal information, including m/z values, peak
areas, and migration times (MTs)66.

Fig. 7 | Carbon, nitrogen, hydrogen and sulfur abundances and their isotopic
profiles before and after the solvent extraction processes from the organic
matter facies. A The 15N-nitrogen isotopic depletion between the supernatant and
IOM residue during sequential solvent extraction for the Ryugu (A0106 and C0107)
and Orgueil samples. The pinkish color originates from formic acid extract #9, and
the yellowish color originates fromHCl extract #10. The other chemical profiles are
shown in Figs. S6, S7, and S8. Please also see the residue of IOM (black color) on the
bottom of the vial78. Unique brownish colloidal-colored fractions (#4 MeOH
extract, #5 water extract) were observed for A0106 and C0107 (cf. Figs. S5, S9).

B Carbon, nitrogen, hydrogen, and sulfur profiles (wt%) and their isotopic shifts
observed from IB, ΣSOM and ΣIOM. The data were compared with previous
references6,9,10 and this study. The abundance of carbon (wt%), nitrogen (wt%),
hydrogen (wt%) and sulfur (wt%) in IOM increased by one order of magnitude
because of the dissolution of silicates and other mineral structures. The error arc
indicates the standard deviation (1σ). Note the previous reports regarding volatile
components45,46 and inorganic profiles10,38. The isotopic profiles of ΣSOM from the
sequential extractions are shown in Table S4. Please see the IOM treatment34 and C-
N-S isotopic variations of the Solar System6,36,79,80.
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We used the most representative carbonaceous meteorite of
Murchison6,9,67 as a reference standard to confirm our qualitative eva-
luation of the sample matrix effects (Fig. S4). The standard mixture
including the working reagents for migration time alignment (e.g.,
AM1, AM2, AM3, AM4, and AM5) and an internal standard for anion
analysis (ISA) were prepared from an HMT metabolomics kit (Human
Metabolome Technologies Inc., Tsuruoka, Japan)65,66,68.

Tracing CNHSO contents and their isotopic compositions to the
IOM fraction
For further isotopic analysis of the organic extracts and IOM residues,
we analyzed the elemental abundances of carbon (C,wt%), nitrogen (N,
wt%), hydrogen (H, wt%), and sulfur (S, wt%) with isotopic composi-
tions ofδ13C (‰ vs. VPDB),δ15N (‰ vs. Air),δD (‰ vs.VSMOW), andδ34S
(‰ vs. VCDT), respectively6,9,10 (Fig. S5). For the total CNS contents and
their isotopic compositions (δ13C, δ15N, δ34S), we used an ultrasensitive
nano-EA/IRMS method (Flash EA1112 elemental analyzer/Conflo III
interface/Delta Plus XP isotope ratio mass spectrometer, Thermo
Finnigan Co., Bremen) at JAMSTEC69,70 (within wide isotopic dynamic
ranges in Fig. S10). Analytical validations using the nano-EA/IRMS
system were performed during practical analyses and studies on car-
bonaceous chondrites41,71. For the total H and the isotopic composi-
tions (δD), we used a high-sensitive EA/IRMS method (Delta Plus XL
isotope ratio mass spectrometer, Thermo Finnigan Co., Bremen) at
Kyushu University. The elemental CNH contents (wt%) and their iso-
topic compositions (δ13C—δ15N—δD profiles) of Ryugu samples A0106
and C0107 are shown in Fig. 1G based on the compilation6,9,10. The δ
values of the Ryugu samples for C, N, H and S isotopic compositions
are denoted using international isotope standards as follows:

δ13C = ½ð13C=12CÞRyugu=ð13C=12CÞVPDB�1�× 1000 ðmÞ ð2Þ

with the Vienna Pee Dee Belemnite (VPDB) standard;

δ15N = ½ð15N=14NÞRyugu=ð15N=14NÞAir�1�× 1000ðmÞ ð3Þ

with the Earth atmospheric nitrogen (Air) standard;

δD= ½ðD=HÞRyugu=ðD=HÞVSMOW � 1�× 1000ðmÞ ð4Þ

with the Vienna Standard Mean Ocean Water (VSMOW) standard; and

δ34S = ½ð34S=32SÞRyugu=ð34S=32SÞVCDT�1�× 1000ðmÞ ð5Þ

with the Vienna Canyon Diablo Troilite (VCDT) standard, respectively.
Since the IOM fraction comprises the main portion of various solid
organic carbon in Ryugu samples, simultaneous data acquisition for
SOM and IOM was performed6,34.

Surface-assisted laser desorption/ionizationmass spectrometry
(SALDI-MS)
SALDI-MS has been used to analyze many materials, including carbo-
naceousmeteorites72,73, at TohokuUniversity. Briefly, amatrix-assisted
laser system (AP-SMALDI5, TransMIT) connected to an orbital trap
mass spectrometer (QExactive, ThermoFisher Scientific Inc.,Waltham,
MA, USA) was used to acquire SALDI mass spectra. Mass spectrometry
was conducted in positive mode with a mass resolution of 140,000
using a solid-state laser of 20μm, 60Hz, and 30 pulses for each spot
(Fig. S8). Approximately 130 spots in a 300× 300μm area in the pit
were scanned by the laser.

FTIR spectra and ultraviolet‒visible spectra of the organic
extracts
We compiled the Fourier transform infrared spectroscopy (FTIR)
profiles of the solvent extracts by using a Nicolet iN10 infrared
microscope (Thermo Fisher Scientific Inc., Waltham, MA, USA)
between A0106 and C0107 (method after the ref. 6). Briefly, 1–2μL of
the solvent extract was dropped onto a BaF2 plate (1mm thick) and air-
dried (Fig. S9). The data acquisition for transmission spectra was
performed by an MCT (mercury–cadmium–telluride) detector at
liquid N2 in a clean room at Kyushu University. The microscope and
detector were continuously purged with dry N2 gas during analysis.

The ultraviolet‒visible (UV‒vis) spectra of the extracts were ana-
lyzed with a microvolume UV‒Vis spectrophotometer (NanoDrop One
C, Thermo Fisher Scientific Inc., Waltham,MA, USA) in the wavelength
range of 190 nm to 1100 nm (Fig. S7). This spectroscopicmeasurement
was performed at Tohoku University.

Fig. 8 | Aqueous alteration of primordial hydrophilic organic molecules and
minerals during parent body processing of asteroid (162173) Ryugu. The left
panel represents the initial primary mineral assemblage and fluid veins in the early
stage of interaction between water, organics, and rock within the bedrock. The
right panel represents altered secondary mineral assemblages (i.e., porous and
physically fragile), desiccated veins, and precipitates in the late stage and ongoing
stage with dehydration processes at Ryugu47,50. Within cold hydrothermalism15,

thermal history in the asteroid74,75, and temperature constraints38, this figure con-
ceptualizes aqueous alteration, and the sizes of regolith particles and bedrock are
arbitrary scales. Amino acids and other hydrophilic molecules6 with “salt”
formation10 are overviewed in the illustration diagram of chemical evolution. The
organic analysis of the asteroid Bennu81 is a valuable opportunity to consider the
scientific consequences of this study.

Article https://doi.org/10.1038/s41467-024-49237-6

Nature Communications |         (2024) 15:5708 10



Gas chromatography/mass spectrometry (GC/MS) of hexane
extracts from the IOM fraction
After discovering the yellow sticky deposit on the wall in the glass vial
containing the IOM fraction (see the pretreatment34), we conducted an
n-hexane extraction to identify cyclic sulfur molecules (i.e., cyclic
hexaatomic sulfur, S6; cyclic heptaatomic sulfur, S7; and cyclic octaa-
tomic sulfur, S8) from the fraction (Figs. S11, S12). We analyzed the
extracts by gas chromatography/mass spectrometry (GC/MS; 7890B
GC and 5975 C MSD, Agilent Technologies, Inc., Santa Clara, CA, USA)
with a VF-5MS column (30m×0.25mm i.d., 0.10μm film thickness,
Agilent Technologies, Inc., Santa Clara, CA, USA) at JAMSTEC. The GC
oven temperature was programmed as follows: the temperature
was initially 40 °C, ramped up at 30 °C min–1 to 120 °C, ramped up at
6 °Cmin–1 to 320 °C, and maintained for 20min. The target molecules

were verified by comparison with authentic standards of aliphatic
hydrocarbons in n-hexane solution (Supplementary Information) and
the library database from NIST (National Institute of Standards and
Technology).

Data availability
Wedeclare that all thesedatabasepublications are compliantwith ISAS
data policies (www.isas.jaxa.jp/en/researchers/data-policy/). The
Hayabusa2 project is releasing raw data on the properties of the
asteroid Ryugu from the Hayabusa2 Science Data Archives (DARTS,
https://www.darts.isas.jaxa.jp/planet/project/hayabusa2/) for Optical
Navigation Camera (ONC), Thermal InfraRed Imager (TIR), Near
InfraRed Spectrometer (NIR), LIght Detection And Ranging (LIDAR),
SPICE kernels, and PDS4.

Fig. 9 | Photographs showing representative altered aqueous signatures,
desiccated veins, and spatial cross-sections ofRyugu samples. ARepresentative
photographs of the chamber A sample series and (B) chamber C sample series,
showing the cross-sectional areas that are past fluid veins and/or hydrothermally

produced precipitates, which are indicated by blue arrows. For a description of the
sample properties of organic homogeneity or heterogeneity17,25, please see the
details in a previous report1,76,82.
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