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Abstract. Recently, it was shown that a radial basis function network
(RBFN) with a softmax output layer amounts to pooling by Dempster’s
rule positive and negative evidence for each class, and approximating the
resulting belief function by a probability distribution using the plausibil-
ity transform. This so-called latent belief function offers a richer uncer-
tainty quantification than the probabilistic output of the RBFN. In this
paper, we show that there exists actually a set of latent belief functions
for a RBFN. This set is obtained by considering all possible dependence
structures, which are described by correlations, between the positive and
negative evidence for each class. Furthermore, we show that performance
can be enhanced by optimizing the correlations brought to light.

Keywords: Belief function · Dempster’s rule · Dependence · Evidential
classification.

1 Introduction

Evidential classifiers, the most well-known being arguably the evidential k-
nearest neighbor classifier [4] and its prototype-based improvement [5], are classi-
fiers whose predictive uncertainty about the unknown class θ ∈ Θ = {θ1, . . . , θK}
of an instance with feature vector x is represented by a belief function Belx [3,
21]. They allow the distinction between aleatory uncertainty and epistemic un-
certainty [11], which is akin to the distinction between conflicting evidence and
lack of evidence [17]. Such a distinction is important in situations where the
final decision can be postponed (e.g. classification with a reject option) or where
additional data can be gathered (e.g. active learning) [17]. Moreover, their fine
uncertainty quantification can also be exploited to enhance the predictions of a
deep neural network architecture, such as a CNN, as first shown in [25].

Of particular interest in this paper is the evidential classifier introduced re-
cently in [16, 9], as an alternative approach to the prototype-based evidential
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classifier [5] having similar properties. This classifier was obtained by applying
ideas developed in [7], to a radial basis function network (RBFN) with a softmax
output layer (or with an output layer containing a single unit with logistic acti-
vation function in the case of binary classification). It was used in [16] to enhance
the predictions of a UNet model [19] for a task of lymphoma segmentation from
3D PET-CT images.

In essence, this classifier, called hereafter the evidential RBFN (ERBFN),
reveals a predictive, so-called latent, belief function Belx underlying the prob-
abilistic prediction Px of a given (trained) RBFN with a softmax output layer.
This belief function underlies the probabilistic prediction in the sense that its
transformation into a probability distribution using the plausibility transforma-
tion [2] is exactly Px. Belx is obtained by, first, defining positive and negative
pieces of evidence for each class based on the parameters of the RBFN and on
x, and, then, pooling them by Dempster’s rule.

In the ERBFN, positive and negative evidence for a given class are consid-
ered independent. However, they are obtained from the same set of values and
therefore the independence assumption may be questioned. As shown in this
paper, this assumption is actually inconsequential insofar as any possible depen-
dence structure yields a predictive latent belief function, that is, a predictive
belief function whose plausibility transformation is Px. However, this depen-
dence structure, which as will be seen can be characterized following [14] by a
correlation, does have an impact on the predictive belief function and therefore
does matter.

To select the dependence structure, i.e., correlation, for each class, differ-
ent approaches can be followed depending on the available information. When
the only information available is the given RBFN with its (trained) parameters,
then the best attitude is to be cautious, that is, one should select the correlations
leading to the most uncertain (least informative) predictive belief function. This
is known as following the least commitment (or maximum uncertainty) prin-
ciple [18, 24], which plays a role in Dempster-Shafer Theory (DST) similar to
the principle of maximum entropy in probability theory. We note that such an
approach leads to a simple and sound solution (if one uses the informational
ordering considered in [7]), which is not reported here due to lack of space.

When, in addition to the trained RBFN, some learning data are available,
which is a situation that is likely in practice and is the one considered in this
paper, then it becomes possible to search for the correlations that will yield the
best performance, according to some uncertainty quantification quality criterion.
Classical prediction quality criteria, such as error rate, are not very well adapted
as given some labelled data, they can only evaluate the quality of crisp (precise
and certain) predictions. We propose to optimize the correlations with respect to
the classification equivalent of the evidential uncertainty quantification quality
criterion introduced recently by Denœux in regression [10, 12]. Its rationale is
that the uncertainty quantification is all the better if high degrees of belief tend
to be assigned to the true classes and low degrees of belief are assigned to the
complements of the true classes, i.e., high degrees of plausibility are assigned to
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the true classes. It generalizes the cross entropy loss in probability theory. As
will be seen, such an optimization leads to predictive latent belief functions that
tend to have better uncertainty quantification than the one of [16, 9].

This paper is organized as follows. First, necessary background on the Demp-
ster-Shafer theory of belief functions is provided in Section 2. Then, in Section 3,
a means to represent the dependence structure between positive and negative
evidence for a proposition by a correlation is presented and used to unveil a
new result concerning so-called separable belief functions. This result is then
exploited in Section 4 to introduce a new evidential classifier, called r-ERBFN,
which is an extension of the ERBFN. Its additional parameters are a correla-
tion r in the binary classification case and a vector r of K correlations in the
multi-class classification case, allowing to account for the dependence between
positive and negative evidence for each class. This classifier allows us to reveal
alternative latent belief functions to that of the ERBFN for a given RBFN. A
criterion for selecting a particular latent belief function among the available ones
is described in Section 5. Experiments on real data are reported in Section 6.
Finally, Section 7 concludes the paper. Proofs are omitted due to lack of space.

2 Background on Dempster-Shafer theory

2.1 Evidence representation

In Dempster-Shafer theory [3, 21], a piece of evidence about the true (unknown)
answer θ to some question is represented by a mass function, which is a mapping
m : 2Θ → [0, 1] such that m(∅) = 0 and

∑
A⊆Θ m(A) = 1, with Θ = {θ1, . . . , θK}

the set of possible answers to the question. The mass m(A), for some A ⊆ Θ,
represents the probability that the evidence supports exactly the proposition
θ ∈ A (and nothing else more or less specific). Any subset A ⊆ Θ such that
m(A) > 0 is called a focal set of m. If Θ is a focal set, then m is non dogmatic.

The vacuous mass function has Θ as only focal set; it corresponds to a totally
uninformative piece of evidence. A mass function m whose focal sets are single-
tons only, is said to be Bayesian; it corresponds to the probability distribution
p : Θ → [0, 1] such that p(θ) = m({θ}) for all θ ∈ Θ.

A mass function that has the form m(A) = 1−d, m(Θ) = d, for some A ⊂ Θ
such that A ̸= ∅ and some d ∈ [0, 1], is said to be simple. The quantity d is called
the degree of diffidence in A [13]. The quantity w := − ln(d) is called the weight
of evidence [21]. Such a mass function may be conveniently denoted by Ad or,
equivalently, by Aw. It represents a piece of evidence that can be interpreted
in two ways, with respective probabilities 1 − d and d: according to the first
interpretation, the evidence tells that θ ∈ A, and in the second interpretation,
the evidence is useless, i.e., it tells θ ∈ Θ.

More generally, a mass function “involves a probability model for the evidence
bearing on [the] question” [22]. This model is the following (see, e.g., [8, 23]). The
piece of evidence can be interpreted in different ways with given probabilities,
with Ω the (finite) set of interpretations and P the probability measure on Ω.



4 F. Pichon et al.

If interpretation ω ∈ Ω holds, the evidence tells that θ ∈ Γ (ω), with Γ (ω)
a nonempty subset of Θ. The tuple (Ω, 2Ω , P, Γ ) is called a source [6] and is
formally a random set. It induces the mass function m such that m(A) = P ({ω ∈
Ω : Γ (ω) = A}), for all A ∈ 2Θ\{∅}.

Given a mass function m and any A ⊆ Θ, the probability that the evidence
implies θ ∈ A is Bel(A) :=

∑
B⊆A m(B) and that it does not contradict θ ∈ A

is Pl(A) :=
∑

B∩A̸=∅ m(B). Functions Bel : 2Θ → [0, 1] and Pl : 2Θ → [0, 1] are
called the belief and plausibility functions, respectively, and are in one-to-one
correspondence with m. The contour function π : Θ → [0, 1] is the restriction of
the plausibility function to singletons, i.e., π(θ) = Pl({θ}), for all θ ∈ Θ.

2.2 Evidence combination

Let (Ω1, 2
Ω1 , P1, Γ1) and (Ω2, 2

Ω2 , P2, Γ2), with Γi : Ωi → 2Θ\{∅}, i = 1, 2,
be two sources representing two pieces of evidence about θ and inducing mass
functions m1 and m2, respectively. Assume these sources to be independent,
i.e., the joint probability P12(ω1, ω2) that the pair of interpretations (ω1, ω2) ∈
Ω1 ×Ω2 holds is equal to P1(ω1) · P2(ω2).

Let us make the subsequent assumption that the sources are reliable and
let Γ∩(ω1, ω2) := Γ1(ω1) ∩ Γ2(ω2) for all (ω1, ω2) ∈ Ω1 × Ω2. According to this
assumption, if interpretations ω1 and ω2 both hold, then we know for sure that
θ ∈ Γ∩(ω1, ω2), and if Γ∩(ω1, ω2) = ∅, we know that ω1 and ω2 cannot hold
simultaneously, and therefore the probability that a particular event in Ω1 ×Ω2

holds is obtained by conditioning P12 on the event Θ∩ = {(ω1, ω2) ∈ Ω1 × Ω2 :
Γ∩(ω1, ω2) ̸= ∅}.

Let P∩ be the probability measure on Ω1×Ω2 resulting from the conditioning
of P12 on the event Θ∩. Under the assumptions that the pieces of evidence
represented by mass functions m1 and m2 are independent and reliable, our
knowledge about θ can then be represented by the mass function denoted m1 ⊕
m2, called the orthogonal sum of m1 and m2, and induced by the random set
(Ω1 ×Ω2, 2

Ω1×Ω2 , P∩, Γ∩). It is easy to show that

(m1 ⊕m2)(A) =
1

1− κ

∑
B∩C=A

m1(B)m2(C), ∀A ⊆ Θ,A ̸= ∅,

and (m1 ⊕ m2)(∅) = 0, with κ :=
∑

B∩C=∅ m1(B)m2(C) the degree of conflict
between m1 and m2. The orthogonal sum is well defined if κ < 1.

The binary operation ⊕ is called Dempster’s rule. It satisfies several proper-
ties. It is commutative, associative and has the vacuous mass function as only
neutral element. Furthermore, given two simple mass functions Aw1

and Aw2
,

their orthogonal sum is the simple mass function Aw1+w2
.

Another property of Dempster’s rule is related to the plausibility transforma-
tion method [2], which allows us to approximate a mass function m by a Bayesian
mass function pm obtained by normalizing the contour function π of m:

pm({θk}) :=
π(θk)∑K
ℓ=1 π(θℓ)

, k = 1, . . . ,K.
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Given two mass functions m1 and m2, we have pm1⊕m2
= pm1

⊕ pm2
[27], i.e.,

combination and approximation commute. In the remainder of this paper, the
approximation of a mass function according to the plausibility transformation
method is simply referred to as, for short, its approximation.

Dempster’s rule allows us to define the notion of a separable mass function:
a mass function m is separable if it can be obtained as the combination by
Dempster’s rule of simple mass functions. Furthermore, if m is non dogmatic,
then m can be canonically decomposed as [21]:

m =
⊕

∅≠A⊂Θ

Ad(A), (1)

with d(·) a mapping from 2Θ\{∅, Θ} to (0, 1] called diffidence function [13].
Finally, let us remark that the orthogonal sum m1⊕m2 of two mass functions

m1 and m2 relies on the assumption that they are induced by independent
sources, which amounts to specifying the joint probability measure P12 on Ω1 ×
Ω2 to be the product measure P1 ⊗ P2. However, in principle, any dependence
structure, and thus any P12 having P1 and P2 as marginals, can be selected. This
is illustrated by Shafer in [22, Example 3], which is a case of non independence
between sources inducing simple mass functions. Another example of such a case
is provided by Example 14.

Example 1. Assume m1 and m2 are simple mass functions, induced by sources
(Ωi, 2

Ω
i , Pi, Γi), with Ωi = {0, 1}, Pi(0) = 0.2, Γi(0) = Ai and Γi(1) = Θ for

some Ai ⊂ Θ, i = 1, 2. Let Si be the random variable, with state space Ωi,
representing the interpretation for the i-th source. Then, specifying P12(0, 0) =
0.2 and P12(1, 1) = 0.8, models the dependency S2 = S1 (we have P12(S2 =
0|S1 = 0) = 1 and P12(S2 = 1|S1 = 1) = 1).

In Section 3, we will see that any possible dependence structure between two
simple mass functions can be characterized by a correlation.

3 Dependence between positive and negative evidence

Positive and negative items of evidence with respect to a class, as defined in [7],
and more generally with respect to a proposition θ ∈ A, are nothing but sim-
ple mass functions with focal set A and focal set A, respectively. Combining
them by Dempster’s rule corresponds to assuming that they are independent. In
Section 3.2, we extend their combination to any possible dependence structure,
which we characterize by a correlation. This is obtained as a particular case of
the more general problem of combining two simple mass functions Ad1

1 and Ad2
2

having some dependence structure, which leads to a generalization of Dempster’s
rule for combining simple mass functions (Section 3.1). Then, in a second step

4 Example 1 is based on the probabilistic dependence structure considered in [23,
Example 1].
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(Section 3.3), we use this rule to unveil a new result concerning the approxima-
tion of separable (non dogmatic) mass functions, which is instrumental for our
extension of the ERBFN.

3.1 Correlation-based specification of the dependence

Let us assume that we have two (non dogmatic) simple mass functions m1 = Ad1
1

and m2 = Ad2
2 , for some Ai ⊂ Θ and di ∈ (0, 1], i = 1, 2, induced by two

sources (Ωi, 2
Ω
i , Pi, Γi), with Ωi = {0, 1}, Pi(1) = di, Γi(0) = Ai and Γi(1) = Θ,

i = 1, 2. Let Si be the random variable, with state space Ωi, representing the
interpretation for the i-th source. As explained in Section 2.2, specifying the
dependence structure between these items of evidence amounts to specifying a
joint probability measure P12 on Ω1 ×Ω2, with marginals P1 and P2.

It is easy to see that, given d1 and d2, P12 is completely characterized simply
by providing d12 := P12(S1 = 1, S2 = 1). Indeed, we have

P12(S1 = 1, S2 = 1) = d12,

P12(S1 = 1, S2 = 0) = P1(S1 = 1)− P12(S1 = 1, S2 = 1)

= d1 − d12,

P12(S1 = 0, S2 = 1) = P2(S2 = 1)− P12(S1 = 1, S2 = 1)

= d2 − d12,

P12(S1 = 0, S2 = 0) = 1− (d12 + d1 − d12 + d2 − d12)

= 1− d1 − d2 + d12. (2)

Thanks to Fréchet [15], we know that d12 ∈ [max(0, d1+d2−1),min(d1, d2)],
and thus any dependence structure between the two pieces of evidence can be
specified by choosing a number in this latter interval. Moreover, specifying the
probability d12 = P12(S1 = 1, S2 = 1), given d1 = P1(S1 = 1) and d2 = P2(S2 =
1), actually amounts to specifying the dependence between events S1 = 1 and
S2 = 1. Following [14], this dependence can be completely characterized and
without loss of information by a scalar r ∈ [−1, 1], representing the correlation
between the events. A model of correlation between two events of respective
probabilities p1 and p2 with correlation r ∈ [−1, 1] is provided in [14]: it is based
on the Frank family of copulas and it is such that the probability p12 of their
conjunction is equal for correlation r to p12 = F (p1, p2, r) with

F (p1, p2, r) =


min(p1, p2) if r = 1,

p1 · p2 if r = 0,

max(0, p1 + p2 − 1) if r = −1,

logs[1 + (sp1 − 1)(sp2 − 1)/(s− 1)] otherwise,

where s = tan(π(1 − r)/4). This family is continuous and strictly increasing in
r, i.e. for r < r′, we have F (p1, p2, r) ≤ F (p1, p2, r

′) for all (p1, p2) ∈ [0, 1]2

and there exist (p1, p2) ∈ [0, 1]2 such that F (p1, p2, r) < F (p1, p2, r
′). The cases
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r = −1, r = 0 and r = 1 correspond to particular dependence structures:
opposite dependence, independence, and perfect dependence, respectively [14];
we can notice that P12 in Example 1 is obtained for correlation r = 1.

In short, the dependence structure between two sources underlying two simple
mass functions is characterized by a correlation r ∈ [−1, 1]. Now, if we assume
further that these sources are reliable, and that their dependence is specified
by r, our knowledge about θ can be represented by the mass function denoted
Ad1

1 ⊕r Ad2
2 and induced by the random set (Ω1 × Ω2, 2

Ω1×Ω2 , P r
∩, Γ∩), where

P r
∩ is the probability measure P12 defined by (2) with d12 = F (d1, d2, r) and

conditioned on the event Θ∩. The binary operation ⊕r is a generalization of
Dempster’s rule for the combination of two simple mass functions (⊕ is recovered
for r = 0).

3.2 Dependent positive and negative evidence

Consider the special case of Section 3.1, where A1 = A for some A ⊂ Θ, A ̸= ∅,
and A2 = A1, i.e, mass functions m1 and m2 represent positive and negative
items of evidence, respectively, with respect to proposition θ ∈ A. Assuming
these items of evidence to be reliable and their dependence to be specified by
some correlation r ∈ [−1, 1], our knowledge about θ is then represented by mass
function Ad1 ⊕r A

d2 .

Proposition 1. We have

(Ad1 ⊕r A
d2
)(A) =

d2 − F (d1, d2, r)

d1 + d2 − F (d1, d2, r)
,

(Ad1 ⊕r A
d2
)(A) =

d1 − F (d1, d2, r)

d1 + d2 − F (d1, d2, r)
,

(Ad1 ⊕r A
d2
)(Θ) =

F (d1, d2, r)

d1 + d2 − F (d1, d2, r)
,

and (Ad1 ⊕r A
d2
)(B) = 0 for all B ∈ 2Θ\{A,A,Θ}.

3.3 Introducing dependence between positive and negative evidence
in a separable mass function

Consider the canonical decomposition (1) of a non dogmatic separable mass
function m. Let A be some strict non empty subset of Θ. We have d(A) ≤ 1 and
d(A) ≤ 1. In other words, the mass function m involves a (possibly vacuous)
positive evidence and a (possibly vacuous) negative evidence for the proposition
θ ∈ A. More generally, it may be remarked that m involves (possibly vacuous)
positive and negative evidence for 2|Θ|−1 − 1 propositions.

It is then clear that there exist n ≤ 2|Θ|−1 − 1 distinct, strict and non empty
subsets A1, . . . , An of Θ, with Ai ̸= Aj for all i ̸= j, such that m can be rewritten
as

m =

n⊕
i=1

(A
d+
i

i ⊕Ai
d−
i ) (3)
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with d+i = d(Ai) and d−i = d(Ai). Although this is inconsequential for our
subsequent developments, we remark that expression (3) is obviously not unique.
In particular, the list of subsets A1, . . . , An can, or not, include a subset Ai

such that d(Ai) = 1 and d(Ai) = 1, without changing the fact that (3) holds,
given that the vacuous mass function is a neutral element for Dempster’s rule.
Furthermore, if both d(A) < 1 and d(A) < 1 for some subset A, then either A
or A can arbitrarily be chosen to be one of the subsets Ai.

In any case, Equation (3) brings to light that a non dogmatic separable mass
function relies on the combination of independent positive and negative pieces
of evidence for n propositions θ ∈ Ai, i = 1, . . . , n.

Theorem 1. Let m be the mass function given by (3). Let r := (r1, . . . , rn) ∈
[−1, 1]n. Let mr :=

⊕n
i=1(A

d+
i

i ⊕ri Ai
d−
i ).We have pm = pmr with pm and pmr

the approximations of m and mr, respectively.

Theorem 1 shows that whatever the dependence structure, i.e., correlation
ri, chosen between the positive and negative evidence for proposition θ ∈ Ai,
i = 1, . . . , n, the approximation of the resulting mass function does not depend
on this choice.

4 The r-ERBFN classifier

In this section, we start by introducing an evidential classifier, which is an ex-
tension of the ERBFN classifier [16, 9] accounting for the dependence between
positive and negative evidence for each class (Section 4.1). Then, we show that,
similarly as the ERBFN reveals a latent mass function for a given RBFN, this
classifier also produces a latent mass function for this RBFN (Section 4.2).

4.1 Model

Let x ∈ X be the feature vector of some instance with unknown class θ ∈ Θ =
{θ1, . . . , θK}. Let pj ∈ X , j = 1, . . . , J , be J prototypes. Let sj = exp(−γjdj) be
the degree of similarity between x and pj , where dj = ||x−pj || is the Euclidean
distance between x and pj and γj > 0 is a parameter.

Case K = 2 Let vj ∈ IR be a parameter associated to prototype pj . Let
wj = sjvj . Let w+

j = max(0, wj) and w−
j = max(0,−wj) be the positive and

negative parts, respectively, of wj . Let m+
j be the simple mass function with focal

set {θ1} and weight of evidence w+
j , i.e., m+

j = {θ1}w+
j
. Let m−

j be the simple

mass function with focal set {θ2} and weight of evidence w−
j , i.e., m−

j = {θ2}w−
j
.

In other words, prototype pj induces a positive evidence m+
j and a negative

evidence m−
j for class θ1.

Let m+ :=
⊕J

j=1 m
+
j be the overall, i.e., given all prototypes, positive evi-

dence for class θ1. Similarly, let m− :=
⊕J

j=1 m
−
j be the overall negative evidence
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for class θ1. We have m+ = {θ1}d
+

, with d+ = exp(−w+) where w+ =
∑J

j=1 w
+
j ,

and m− = {θ2}d
−
, with d− = exp(−w−) where w− =

∑J
j=1 w

−
j .

It can be remarked that mass functions m+
j , j = 1, . . . , J, are completely

determined by distinct values wj , j = 1, . . . , J , i.e., changing the value wj for
some j does not affect mass functions m+

k , k ̸= j, therefore it seems reasonable
to assume that they are independent between themselves, hence the definition
of m+. The same can be said about mass functions m−

j , j = 1, . . . , J . On the
contrary, we can remark that changing the value wj for some j will affect in
general both m+ and m−. Hence, when pooling the overall positive and negative
evidence for θ1 in order to obtain our overall evidence – represented by some
mass function mx – with respect to the class of the instance, it seems safer to
assume that there is some dependence between them. As we have seen, such
a dependence can be characterized by a correlation r ∈ [−1, 1], leading to the
following definition:

Definition 1 (r-ERBFN). The output of the r-ERBFN classifier is the mass
function mx,r defined as

mx,r := m+ ⊕r m
−. (4)

Remark 1. The 0-ERBFN is nothing but the ERBFN classifier introduced in [16,
Section 3.2]. It corresponds to assuming that the overall positive and negative
evidence for θ1 are independent.

Case K > 2 Let vjk ∈ IR be a parameter associated to prototype pj and to
class θk. Let wjk = sjvjk. Let w+

jk = max(0, wjk) and w−
jk = max(0,−wjk).

Let m+
jk = {θk}w+

jk
and m−

jk = {θk}w−
jk

. In other words, prototype pj induces a

positive evidence m+
jk and a negative evidence m−

jk for class θk.

Let m+
k :=

⊕J
j=1 m

+
jk, respectively m−

k :=
⊕J

j=1 m
−
jk, be the overall positive,

respectively negative, evidence for class θk. We have m+
k = {θk}d

+
k , with d+k =

exp(−w+
k ) where w+

k =
∑J

j=1 w
+
jk, and m−

k = {θk}
d−
k , with d−k = exp(−w−

k )

where w−
k =

∑J
j=1 w

−
jk.

Using a similar reasoning as that in the case K = 2, we can safely assume
that: mass functions m+

jk (resp. m−
jk), j = 1, . . . , J, are independent; mass func-

tions m+
k and m−

k are not independent. The dependence between these latter
mass functions can be characterized by a correlation rk. Our overall evidence for
class θk is then represented by mass function mk := m+

k ⊕rk m−
k .

If we make the assumption that the the prototypes pj (together with their
associated parameters γj) have been identified, i.e., are fixed, then we can remark
that mass functions mk, k = 1, . . . ,K, are determined by distinct sets of values :
mk is determined by the set {vjk : 1 ≤ j ≤ J} whereas mk′ , k′ ̸= k, is determined
by the set {vjk′ : 1 ≤ j ≤ J}. Hence, under this assumption, mass functions mk,
k = 1, . . . ,K, can be considered independent, leading to the following definition:
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Definition 2 (r-ERBFN). The output of the r-ERBFN classifier, with r =
(r1 . . . , rK), is the mass function mx,r defined as

mx,r :=

K⊕
k=1

(
m+

k ⊕rk m−
k

)
. (5)

Remark 2. The 0-ERBFN is nothing but the classifier described in [9]. It cor-
responds to assuming that the overall positive and negative evidence for each
class are independent.

4.2 Latent mass function

Case K = 2 We recall that a RBFN with a logistic output unit is a probabilistic
classifier for a binary classification problem (Θ = {θ1, θ2}). It is a neural network
composed of a hidden layer containing J hidden units, each hidden unit j, j =
1, . . . , J, being characterized by a prototype pj and a scale parameter γj > 0.
The activation of hidden unit j is sj = exp(−γjdj), where dj = ||x − pj ||
with x the feature vector of an instance. Furthermore, let vj be the weight of
the connection between hidden unit j and the logistic output unit. Then, the
probabilistic prediction Px of this classifier is

Px(θ1) =
1

1 + exp(−
∑J

j=1 sjvj)
. (6)

Now, consider a r-ERBFN, for some r ∈ [−1, 1], whose parameters pj , γj
and vj , have been identified to that of a given RBFN with a logistic output unit.
Let mx,r denote the output mass function defined by (4) of this r-ERBFN.

Theorem 2. For all r ∈ [−1, 1], the approximation pmx,r
of mx,r satisfies

pmx,r ({θ1}) = Px(θ1). (7)

Theorem 2 shows that the output mx,r of a r-ERBFN, whose parameters
have been identified to that of a given RBFN, is a latent mass function for the
probabilistic prediction Px of this RBFN, for all r ∈ [−1, 1]\{0}, in the same
way as is the output of the 0-ERBFN.

Case K > 2 A RBFN with a softmax output layer is a probabilistic classifier
for a multi-class classification problem, whose parameters are prototypes pj and
scale parameters γj > 0, j = 1, . . . , J , as well as weights vjk connecting hidden
unit j and output unit k, j = 1, . . . , J , k = 1, . . . ,K. Its probabilistic prediction
Px is

Px(θk) =
exp(

∑J
j=1 sjvjk)∑K

ℓ=1 exp(
∑J

j=1 sjvjℓ)
. (8)

Consider a r-ERBFN, for some r := (r1, . . . , rK) ∈ [−1, 1]K , whose parameters
pj , γj and vjk, have been identified to that of a given RBFN with a softmax
output layer. Let mx,r denote the output mass function defined by (5) of this
r-ERBFN.
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Theorem 3. For all r ∈ [−1, 1]K , the approximation pmx,r of mx,r satisfies

pmx,r({θk}) = Px(θk), ∀θk ∈ Θ. (9)

Proof. It has been established in [9] that Eq. (9) holds for r = 0. The theorem
follows from Theorem 1.

We have thus proved that in the multi-category case also, there exists a set
of latent mass functions for the probabilistic prediction of a RBFN, of which the
one identified in [9] is a particular member, obtained for r = 0.

5 Identification of the correlations

Assume a RBFN having a softmax output layer5 and whose parameter values
are given. Let us consider the r-ERBFN and identify its prototypes, parameters
γj and vjk to those of this RBFN. To compute the output mass function of the
r-ERBFN, it remains to identify the correlations r. Note that this amounts to
selecting a particular latent mass function among the set of latent mass functions
brought to light in Section 4.2.

In order to select a given r, one can consider its prediction error (or loss).
When a prediction is probabilistic, i.e., in the form of a probability distribution
Px, its loss is typically evaluated by the negative log-likelihood (or cross-entropy)

L(y, Px) = − lnPx(y), (10)

with y the true class of the instance with feature vector x. Minimizing (10) is
equivalent to maximizing the probability of the true class.

In the case of the r-ERBFN, the prediction is evidential, i.e., in the form of a
mass function mx. Following [10, 12], since in this case we no longer have a single
probability for the true class but two numbers - a degree of belief Belx({y}) and
a degree of plausibility Plx({y}) - we can consider the following generalized
negative log-likelihood (GNLL)

L(y,mx) = −1

2
lnBelx({y})−

1

2
lnPlx({y}). (11)

Minimizing (11) amounts to seeking high degrees of belief and of plausibility for
the true class. Moreover, we may notice that if mx is Bayesian, i.e., corresponds
to a probability distribution, then we have Belx({y}) = Plx({y}) = mx({y}),
and loss (11) reduces, as may be required, to (10).

Given a loss of the form (11) and some learning data {xi, yi}ni=1 where xi

is the feature vector of instance i and yi is its true class, we may then fit over
this learning set, the correlation vector r, i.e., we can search for the vector of
correlations r̂ that optimizes the total GNLL over this learning data:

r̂ = arg min
r∈[−1,1]K

n∑
i=1

L(yi,mxi,r).

5 We focus for short on the case K > 2 in this section, but our developments also hold
for K = 2.
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The resulting optimized correlation vector r̂ may then be used to compute the
predictive latent mass function for any test feature vector x.

6 Experiments

The previous section has put forward the r̂-ERBFN, as a classifier producing
sensible predictive latent mass functions for a RBFN, according to the principle
of minimizing the loss. The purpose of this section is to illustrate using some
numerical experiments, the interest of this classifier with respect to the original
proposal from [16, 9], which corresponds to the 0-ERBFN. First, we describe how
we trained the RBFN in our experiments (Section 6.1). Then, we provide the
remainder of our experimental protocol and the results obtained (Section 6.2).

6.1 Training of the RBFN

In all of our experiments, the parameters pj , γj > 0 and vjk of the considered r-
ERBFN classifiers were identified to that of a RBFN with a softmax output layer
(or a logistic output unit in the case of a binary classification problem) learnt over
the training dataset following two phase learning as described in [20]. Precisely,
in the first phase, for each class, three prototypes were obtained as the centers
of the clusters resulting from applying the (constrained6 [1, Algorithm 2.2]) K-
means clustering procedure to the examples of the class. Furthermore, the scale
parameter γj associated to prototype pj was set to γj = 1/(2σ2

j ) where (kernel
width) σj was the mean of the distances between the prototype pj and the
training examples in its associated cluster. In the second phase, the connection
weights vjk between hidden units and output units were learnt by minimisation
of the L2 regularized cross entropy loss, using gradient descent (with learning
rate and regularization coefficient both set to 10−3 and with 103 epochs).

6.2 Experimental settings and results

We used four real datasets7 considered in related work [11]: Pima (7 features, 2
classes, 532 instances), Ionosphere (33 features, 2 classes, 351 instances), Glass
identification (9 features, 6 classes, 214 instances), Vowel identification (10 fea-
tures, 6 classes, 540 instances). For each dataset, we proceeded similarly as in [12,
Section 5]. Specifically, the data were split randomly (using stratified random
sampling) into training, validation and test sets containing, respectively, 60%,
20% and 20% of the instances. The training set was used to learn the RBFN as
presented in Sect. 6.1, the validation set was used to optimize r as described in
Sect. 5, and the test set was used to evaluate the performance, according to the
average GNLL, of r = r̂ as well as of r = 0. This process was repeated 50 times.

Figure 1 shows boxplots of test GNLL values for the four datasets.
6 Enforcing at least two training examples of the given class per cluster.
7 Pima is available from the R package MASS [26]. Ionosphere, Glass and Vowel are

available from the UCI ML repository https://archive.ics.uci.edu. For Vowel,
we considered only the first six classes, as in [11].
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Fig. 1. Generalized negative log-likelihood for the Pima (1a), Ionosphere (1b), Glass
(1c) and Vowel (1d) datasets for r = 0 (original) and r = r̂ (optimized).
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We can see that for all four datasets, the r̂-ERBFN outperforms the 0-
ERBFN; the differences are highly significant (p-values of paired t-tests for the
comparison of GNLL values were at most8 2.6× 10−11 over all datasets.)

7 Conclusion

This paper has brought to light a set of latent belief functions for a RBNF,
extending the latent belief function identified in [16, 9] to all possible dependence
structures between positive and negative evidence for each class. These latent
belief functions allow some performance improvement in terms of uncertainty
quantification. A singular – least informative – belief function exists in this set;
it will be described in a future publication.
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