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In brief

Bischerour et al. show the importance of
the link between DNA double-strand
break introduction and repair during
programmed DNA elimination in
Paramecium.When the two steps are
uncoupled, proper somatic genome
assembly and offspring survival are
compromised by DNA translocations and
de novo telomere addition.
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SUMMARY

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the so-
matic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the
PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining
(NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing.
We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads
to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type
and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions
identifies the presence of extremities healed by de novo telomere addition and nhumerous translocations be-
tween IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held
together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic

precleavage complex.

INTRODUCTION

The genome must be preserved in its integrity throughout the life
of an organism but must also adapt to its environment during
evolution through changes in structure and sequence. Many
somatic cell differentiation processes are accompanied by
programmed DNA rearrangements that are driven by active
“mutagenic” mechanisms, such as V(D)J recombination of
immunoglobulin genes or programmed DNA elimination in
nematodes.'? This type of extreme genomic regulation is well
illustrated in ciliates, in which two kinds of nuclei co-exist in
the same cytoplasm®: the somatic macronucleus (MAC) is
essential for gene expression but is destroyed at each sexual
cycle, while the germline micronucleus (MIC) undergoes meiosis
and transmits its genome to the zygotic nucleus. New MICs and
MACs of sexual progeny differentiate from copies of the zygotic
nucleus. Extensive genome rearrangements, together with
multiple rounds of genome endoreplication, take place in the
new MAC.

During this amplification, several thousands of short se-
quences and large genomic regions are eliminated via pro-
grammed genome rearrangements (PGRs).*° Eliminations, ac-
counting for ~30% of the germline genome content in species
of the Paramecium aurelia group (up to 98% in some other cil-
iates), are initiated by the introduction of DNA double-strand
breaks (DSBs), generally followed by the ligation of both flank-
ing ends through the classical non-homologous end joining
(cNHEJ) pathway.*”® Alternatively, telomeric repeats are
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added at the heterogeneous borders of large and imprecisely
eliminated repeated sequences (mobile genetic elements,
mini-satellites, etc.).®

The fidelity of rearrangements is essential for the formation of a
functional new MAC. This relies on the introduction of precise
DNA cuts at the nucleotide level and controlled repair of the re-
sulting DNA extremities. The PiggyMac enzyme (Pgm), a domes-
ticated transposase of the PiggyBac family, in combination with
five Pgm-like proteins, catalyzes DSBs centered on the TA dinu-
cleotide invariably present at all internal eliminated sequence
(IES) boundaries.® %" After cleavage, the two DNA extremities
generated on the genome have the same geometry (4-base 5’
overhangs) but are rarely fully compatible for direct rejoining.
The final joining step involves prior processing of the ends, which
includes the removal of one base at the 5 extremity, pairing
the TA dinucleotides of each overhang, and filling the nucleotide
gap.

The Paramecium genome encodes NHEJ repair proteins,
such as Ku70, Ku80, Ligase4 (Lig4), and Xrcc4, as well as puta-
tive homologs of DNAPKcs and XIf,*'*'® which form the core of
the NHEJ machinery in eukaryotes.'* The number of breaks and
the fidelity of repair have raised questions about how the matu-
ration steps are controlled to restore the sequence of the exci-
sion junction. How translocations of the ends to be repaired are
proscribed, while thousands of breaks are generated concom-
itantly, remains to be addressed.

Depletion of Ku70/80 DNA repair proteins by RNAi has
shown that in their absence, DSBs are no longer introduced,
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Figure 1. A Ku70 DNA-binding-deficient
mutant to uncouple DNA cleavage and repair
during PGR

(A) Strategy to uncouple DNA cleavage and repair.
(B) AlphaFold model of the Ku80c/Ku70a hetero-
dimer highlighting the position of the 6E mutations
(in blue) in the ring domain of Ku.

(C) Detection of DSBs by ligation-mediated PCR
(LMPCR) using genomic DNA isolated from early
(T5-T10) autogamous cells. The genomic left
boundary of IES 51A2591 and the left extremity of
IES 51G4404 are analyzed using adaptor oligo-
nucleotides (gray) and PCR primers (in red) (top),
followed by nested PCR (blue primers) (bottom).'®
See also Figures S1 and S2.
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strongly suggesting that Ku proteins are an integral part of
the excision machinery.'® This phenotype is accompanied
by the loss of Pgm anchoring in the nucleus.'® This coupling,
which conditions the introduction of breaks to the prior pres-
ence of repair actors, relies on a development-specific Ku80c
paralog.'® Although such a tight coupling has not been
described in any other system, an interaction between Ku
and proteins encoded by mobile genetic elements has been
reported several times.'”'® Ku proteins are also associated
with the Rag1/Rag2 complex made of domesticated transpo-
sases that ensure the rearrangement of immunoglobulin
loci during development, a process that involves the NHEJ
pathway.*°

Before conducting this study, we proposed that the coupling
observed in Paramecium could favor faster recruitment of repair
proteins and maintenance in close proximity of the correct ends
to be ligated.'®?" In fine, this would allow faithful assembly of
chromosomes in the context of numerous DSBs throughout
the genome.

To test this hypothesis, we addressed a simple question:
what are the consequences of uncoupling DNA cleavage
from its repair steps during genome rearrangements? This
would correspond to the more usual situation of repair
following accidental DSBs where breaks are introduced
first and repair proteins are recruited in response to the pres-
ence of DNA ends. How will the quality of the junctions and,
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free DNA ends (Figure 1A). Our strategy
to uncouple DNA cleavage and DSB
repair was to poison the process by ex-
pressing a second version of Ku, which is repair deficient
but still able to activate Pgm. Under these conditions, the
mutant Ku will activate DNA cleavage but fail to directly load
on the DNA ends. If present in the cell, wild-type Ku proteins
will then bind the ends and initiate the repair process.

A DNA-binding-deficient mutant of human Ku70 (Ku70-
Mut6E) was characterized previously.?” The Paramecium
Ku70a sequence (PtKu70a), which we will call Ku70 for
simplicity, was aligned with the human Ku70 sequence (Fig-
ure S1). PtKu70a K279, K283, A297, K328, K335, and K400
were identified as counterparts of the K282, K287, T300,
K331, K338, and R403 residues of human Ku70. Their posi-
tions in the DNA-binding ring domain are supported by the
predicted modeled structure of PtKu70/80c (Figure 1B). Re-
combinant Ku70 or Ku70-6E was expressed in insect cells
together with the development-specific Ku80c subunit, and
the DNA-binding deficiency of the mutant was confirmed by
electrophoretic mobility shift assay using a 35-bp DNA sub-
strate (Figure S2).

We then performed an in vivo complementation assay and
demonstrated that cells transformed by an RNAi-resistant
wild-type FLAG-KU70 construct provide viable sexual prog-
eny after autogamy when subjected to RNAIi against endoge-
nous KU70. In contrast, microinjection of the FLAG-KU70-6E
mutant fails to complement depletion of the endogenous
wild-type protein, resulting in death of the sexual progeny,
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Figure 2. Ku70-6E is defective for DNA repair

(A) Propidium iodide (PI) staining of genomic DNA

content in the developing MACs of control cells,

KU70-silenced cells, and FLAG-KU70-6E trans-

formants subjected to KU70 RNAI. Scale bar: 5 um.

o (B) Quantification of total PI intensity in developing
MAGCs. 44-59 developing MACs were analyzed for

o Q each condition. The statistical test (Mann-Whitney-
- Wilcoxon) compares the KU70 RNAi and FLAG-
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**p < 0.01 and **p < 0.001. The analysis of anlagen
sizes is presented in Figure S3. T5 = 5 hours after
begining of autogamy

(C) Screenshot of read coverage along the Parame-
cium MAC genome (position bp 100,000-275,000 on
scaffold51_6). Genomic DNA was purified from sor-
ted new developing MACs at T25-T30 after the
beginning of autogamy. IES excision sites are shown
as vertical bars. Telomere addition sites are repre-
sented by small arrows. In each condition, the
sequencing depth was normalized by the total num-
ber of mapped reads (cpm = counts per million).

(D) Analysis of the reads covering IES excision
sites (using the MEND module of ParTIES). Arrows
represent 75 bp lllumina reads from paired-end
sequencing data, which can be mapped on the
positions of IES excision sites (TA dinucleotide).
They correspond to (1) the genomic loci with an
IES (IES+), (2) an already excised IES (MAC junc-
tion), (3) reads starting at the TA (+ or —2 bp)
(extremities), and (4) reads stopping on the TA
dinucleotide (+ or —2 bp) (other). See Figure S4 for
analysis of replicate.

(E) Analysis of collapsed sequencing depth in the
1 kb region surrounding IES excision sites.

See also Figure S3.
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tremities were detected as intermediate
| products of IES elimination (Figure 1C).
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even when expressed at similar or higher levels relative to wild
type (Figure S2).

Ku70-6E supports Pgm-dependent DNA cleavage

The expression of Ku70/Ku80c is essential for anchoring the
excision machinery in the new developing MAC and for
the DNA cleavage activity of Pgm.'® We found that whereas
the Pgm signal vanished from the new MAC, when Ku70 was
depleted by RNAi as previously reported,'® the expression of
Ku70-6E restored the nuclear Pgm signal to a level close to
control conditions (Figure S2). To test the DNA cleavage
activity of Pgm in the presence of Ku70-6E, total genomic
DNA was isolated from cells 5 h after the beginning of
autogamy (T5) when DSBs were introduced.'®?® The presence
of cleaved DNA ends was first tested by ligation-mediated
PCR (LMPCR) for two previously well-characterized excision

TA
Distance from TA (nt)

00 In contrast, DSBs were detected at a
similar level to the wild type in Ku70-6E-
expressing cells, which indicates that
the Ku70-6E mutant supports Pgm activ-

ity and that Ku’s ability to bind DNA extremities is dispensable

for DNA cleavage.

KU70-6E expression impairs DNA endoreplication in the
new MAC

Using propidium iodide (Pl) staining, we previously observed that
unrepaired DSBs accumulating in Lig4-depleted cells lead to a
severe defect in DNA amplification.'? In control cells, the devel-
opment of the new MACs until T53 (T53 = 53 h after begining of
autogamy) correlates with intense PI staining, as expected for a
high level of endoreplication®® (Figures 2A and 2B). In contrast,
when Ku70 is replaced by the DNA-binding-deficient Ku70-6E
mutant, the intensity of the Pl signal does not increase at T29
and T53. Concomitantly, growth of the new MACs is also
severely impaired, and large DNA-depleted regions are
observed in these nuclei (Figures 2A and S3). Our data also
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indicate that Ku70 depletion leads to the retention of all IESs and
a significant reduction of DNA amplification in the new MAC at
late stages. The latter phenotype has not been documented in
other conditions of IES retention, suggesting that it might be
linked to a Ku-related replication phenotype. Altogether, our ob-
servations are consistent with the inability of the Ku70-6E mutant
to repair DSBs after licensing of Pgm DNA cleavage, resulting in
DNA amplification failure.

To gain global insight into the molecular consequences of
Ku70-6E expression on genome assembly, we purified the new
developing MACs of cells collected at T25-T30 using a fluores-
cence-assisted nuclear sorting (FANS) approach.”® Cells were
exposed to control, LIG4, or KU70 RNAI in the presence or
absence of the KU70-6E transgene. Quantification of the PI
signal in the FANS-purified new developing MACs confirms
that both LIG4-silenced cells and Ku70-6E-expressing cells
have lower DNA content than control and KU70-silenced cells
(Figure S3). Sequencing of the new developing MAC genome
of Ku70-6E-expressing cells shows that the read coverage along
the MAC reference genome is highly heterogeneous (Figures 2C
and S3). IES-free fragments of the genome were highly covered
compared to IES-dense regions. Moreover, IES excision sites
were invariably found at the boundaries of amplified regions.
To extend this observation to the whole genome, we calculated
the average sequencing depth for each inter-IES fragment (Fig-
ure S3). Above 2 kb, the level of endoreplication is correlated
with fragment size: the larger the inter-IES fragment, the more
it is amplified. This mirrors a previous observation that was
made for injected transgenes in Paramecium: they must be
long enough to be efficiently maintained as mini-chromosomes
through vegetative divisions.?>?° In Paramecium, although the
mechanism of DNA replication initiation is unknown, longer frag-
ments appear to provide more opportunities for replication.

Ku70-6E is defective for DNA DSB repair

To better decipher the origin of read coverage heterogeneity,
we developed MEND, a new module of the ParTIES pipeline,*’
to analyze in more detail the DNA reads overlapping the TA
dinucleotide at IES excision sites (Figure 2D). Whereas most
reads correspond to MAC junctions in the control, KU70-knock-
down cells—in which Pgm activity is abolished—yield almost
exclusively IES-containing reads. In LIG4-knockdown cells or
in cells expressing the KU70-6E mutant, the normalized
numbers of reads mapping to the TA are reduced by 30%
and 80%, respectively, confirming the specific loss of the
genomic sequences surrounding IES excision sites. The disap-
pearance of these sequences correlates with an increase in the
number of reads starting at the TA position (+ or — 2 bases, “ex-
tremities” in Figure 2D), in agreement with the presence of un-
repaired DSBs specifically at this position. We extended the
analysis of read coverage in the vicinity of IESs by collapsing
all the DNA reads mapping —500 to +500 bases from the TA di-
nucleotides at the excision sites (Figure 2E). Compared to
control, the read coverage decreases progressively in Lig4-
depleted and Ku70-6E-expressing cells, suggesting possible
trimming of DNA extremities after DSBs are introduced at these
positions. The two peaks of read coverage positioned 75 bp
(= size of DNA reads) away from the TA disappeared when ex-
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tremities reads were omitted, suggesting they are due to the
overrepresentation of sequenced fragments starting exactly at
the TA (“extremities” in Figures 2D and S3). We conclude that
the heterogeneity of genome coverage and the strong deficit
in IES-containing regions observed in LIG4-silenced or Ku70-
6E-expressing cells are the consequences of a replication
defect and the partial degradation of genomic sequences
consecutive to unrepaired DSBs.

Together with LMPCR results, this supports the notion that ex-
pressing Ku70-6E in place of wild-type Ku70 enables Pgm-
dependent cleavage at IES boundaries but not DSB repair.

Chromosome healing by de novo telomere deposition

De novo telomere addition is part of PGR as a consequence
of imprecise DNA elimination at chromosome fragmentation
sites.”?® Unrepaired |IES excision has been proposed to provide
another opportunity for de novo telomere addition,”® an alterna-
tive DSB repair pathway in many organisms.*® Therefore, we
looked for de novo telomere addition in the new developing
MAC genome by counting the reads containing MAC DNA se-
quences linked to telomeric repeats (Figures 3A and S4). These
telomeric DNA reads are strongly enriched in Ku70-6E-express-
ing cells and in Lig4-depleted cells; they are distributed all along
the scaffolds and are overrepresented at the borders of amplified
segments, which correspond to IES excision sites (Figure 2C).
Only 17% of telomeres are added at a short distance from the
TA (<10 nucleotides), indicating that the ends generated by
Pgm cleavage tend to be trimmed before telomere addition
when wild-type Ku is depleted (Figures 3A and S4). We also
observed telomere addition at the —1, T, and A positions, sug-
gesting that the 3’ recessive ends generated by initial Pgm
cleavage (—2 position) have been filled in by a DNA polymerase
before telomere addition (Figure 3B). In Lig4-depleted cells, we
observed that telomeres tend to branch closer to the TA (Fig-
ure 3A) with a preponderant addition site at —2 and almost no
telomeres added at the —1, T, and A positions (Figure 3B). These
observations suggest that the DNA-binding activity of Ku is
dispensable for the recruitment or the activation of the NHEJ
DNA polymerase at cleaved extremities. In contrast, Lig4
appears to play an important role in the control of 3’ end
processing.

Uncoupling DNA cleavage and repair induces numerous
translocations

To uncouple the two steps of IES excision, we permitted the
expression of both wild-type and mutant Ku70 proteins (KU70-
6E transgene without RNAI). We first analyzed the survival of
the progeny of transformants harboring increasing levels of the
FLAG-KU70-6E transgene (Figure 4A). At low injection levels
(<100 cphg, copies per haploid genome), we observed no
phenotype with regard to progeny survival, whereas higher levels
led to the death of the entire progeny. We selected the two most
injected transformants (253 and 470 cphg) and one transformant
(142 cphg) that provided 50% progeny survival after autogamy.
For the three transformants, we deep-sequenced total genomic
DNA from cells collected 50 h after the beginning of autogamy
(total DNA in Figure S4 and Table S3). In addition, we sequenced
DNA from sorted new MACs of the 253 cphg transformant. In the
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guanine at the —1 or —2 positions were not considered in this analysis.
See also Figure S4.

presence of both wild-type Ku70 and the 6E mutant, the pres-
ence of correctly assembled MAC junctions demonstrates that
IESs are partially excised (in black in Figure 2D). Interestingly, a
significant fraction of reads (classified as “other”) were found
to map only partially on the MAC genome, and the mapping
stopped on the TA of IES excision sites. Using an improved
version of the MILORD module of ParTIES,?” the unmapped se-
quences of these reads can be remapped successfully on
another part the genome, suggesting that they result from chro-
mosome translocation events. In control non-injected cells (no
RNAI), only rare translocations are detected (Figures 4B and
S4). They implicate sequences that are distant from IES excision
sites (>100 bp) and are characterized by frequent microhomolo-
gies of up to 15 bases at the junction (Figure S5). They are also
detected in KU70 and LIG4 RNAi samples, indicating that they
are likely caused by a pathway distinct from cNHEJ (Figure S5).

The numerous translocations generated in uncoupling condi-
tions involved IES-flanking sequences (Figures 4B and S5). In
contrast to the above control, these translocations rely on the
cNHEJ pathway since they are not observed in the absence of
endogenous Ku70. The most frequent translocations bring
together two sequences flanking different IESs joined on a TA
dinucleotide (dark blue) or one IES-flanking sequence joined to
an excised IES (light blue) (Figure 4B). Alternatively, the second
extremity may have been trimmed before the ligation (gray).
Other rare translocations with differently processed DNA ends
could be detected at low frequency (Figure S5). These events
were also observed in other transformants (Figure S5).

Taken together, these results demonstrate that coupling be-
tween DNA cleavage and DSB repair is crucial to maintain the
two flanking MAC-destined DNA extremities in close proximity
throughout IES excision. Moreover, the existence of transloca-

tions with imprecise junctions suggests that coupling the two re-
actions may limit the processing of DNA extremities prior to
ligation.

DISCUSSION

In this study, we have addressed the necessity of the coupling
that renders the DNA cleavage activity of the IES excision com-
plex entirely dependent on the presence of the DNA repair pro-
teins Ku70 and Ku80 by measuring the consequences of its
abolition. We first validated that a Ku70 mutant unable to bind
free DNA ends can activate the cleavage machinery but fails to
repair DSBs. In cells depleted of endogenous Ku70, the expres-
sion of this mutant results in heterogeneous amplification of a
fragmented version of the somatic genome. Consequently, we
observed the addition of multiple telomeres and the amplification
of extended IES-free subregions of the genome that are not
exposed to programmed DSBs.

Distinct recruitment of NHEJ partners in Lig4-depleted
cells and Ku70-6E-expressing cells

Both Lig4 depletion and the replacement of Ku70 by its 6E
mutant lead to the accumulation of unrepaired DSBs across
the genome. However, DNA extremities are subsequently
processed in two different DNA repair backgrounds formally
designated as Lig4d—/Ku+ and Lig4+/Ku70—, respectively, which
could explain the observed differences in genome amplification
(Figure 2) and telomere addition pattern (Figure 3). In the Ku-
defective background, we noted more loss of read coverage in
the vicinity of DSBs, correlating with telomere deposition at a
greater distance from the breaks. This suggests that free DNA
ends are exposed to extensive trimming in the absence of
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Figure 4. Uncoupling of DNA cleavage and repair induces genomic
translocations

(A) Sexual progeny survival assays of FLAG-KU70a-6E transformants under
control (no RNAI) conditions. For each transformant, the percentage of progeny
with a functional new MAC (black bars) and the gPCR quantification of the
number of transgenes (cphg) (white bars) are presented (see Table S1 for details).
(B) Quantification of genomic translocation events and scheme of the most
frequent translocations observed upon uncoupling. Translocations implicating
sequences distant by more than 2 nucleotides away from the TA are consid-
ered as xDNA (gray).

See also Figure S5.

6 Cell Reports 43, 114001, April 23, 2024

Cell Reports

DNA-bound Ku. Precise analysis of the positions of telomere
addition on untrimmed ends points to differential recruitment of
NHEJ factors at the extremities. In both conditions, only a frac-
tion of telomeric repeats are added to the 3'OH at position —2,
which is the extremity generated by Pgm cleavage. Telomere re-
peats branched at the —1, T, and A positions indicate that filling
of the 3’ recessive extremities has preceded telomere addition.
Their absence in the Lig4 background is consistent with the pro-
posed role of the Lig4/Xrcc4 complex in recruiting the NHEJ-
dedicated DNA polymerase.'?

Moreover, IES retention is greater upon LIG4 RNAi. We cannot
formally rule out that Lig4 plays a role in the activation of DNA
cleavage, but an indirect effect is more likely. Indeed, the unre-
paired DNA extremities that accumulate in the absence of Lig4
may consequently trap endogenous Ku70/80 complexes and
reduce the available pool of unbound Ku that is necessary to
activate further DNA cleavages. In agreement with this hypothe-
sis, we observed that late excised |IESs are more retained than
the early ones® (Figure S5). In contrast, the Ku70-6E protein,
which is defective for binding to DNA extremities, will not be trap-
ped on DNA and will remain available to license Pgm-mediated
cleavage.

Coupling preserves synapsed DNA ends from the DNA
cleavage step to DSB repair
During IES excision, both the cleavage of DNA termini and the
subsequent NHEJ-mediated repair of the two broken ends,
rely on the formation of a synaptic complex. PiggyBac transpo-
sases, and probably all cut-and-paste DNA transposases,
including Rag1/2, establish contacts between transposon ex-
tremities before DSB introduction.”*"*? Similarly, IES excision
in Paramecium also involves a crosstalk between the two IES
ends before DNA cleavage.®® Interaction of transposases with
NHEJ factors like Ku70/80 has been documented for many
transposons, suggesting that NHEJ is a favored DNA repair
pathway during transposition.’”~>°

We propose that the main function of coupling the two steps
of the IES excision reaction is to ensure continuity between the
synaptic complex that is established between both IES ends
before DSB introduction and the synaptic complex that is
formed between the two flanking broken ends during DNA repair
(Figure 5). Pgm on its own might be deficient for the assembly of
the DNA cleavage synaptic complex and might have become
dependent on DNA repair factors to properly hold together
and cleave IES boundaries. Although this model is attractive, it
implies that Ku70/80 are recruited to the presynaptic complex
before DSB introduction: this may be mediated by a direct inter-
action with Pgm or other partners of the cleavage complex'® or
through binding to uncleaved DNA. How then would Ku stimu-
late the bridging of the two IES ends during cleavage? In DNA
repair synaptic complexes, Ku recruits partners, including
DNAPKcs, XIf, Xrcc4/Lig4, and Paxx, that bridge the two DNA
extremities.'*** %% Interestingly, two Paramecium paralogs
called Die5a and Die5b (for deficient in IES excision) share struc-
tural homology with human Paxx.*® Their corresponding genes
are induced during the sexual cycle, and RNAi-mediated DIE5
knockdowns lead to death of sexual progeny and to the reten-
tion of several IESs examined by molecular approaches.’®
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Whether Dieb is the functional Paramecium homolog of Paxx,
and whether its depletion induces IES retention genome-wide,
remains to be explored. However, its properties support the hy-
pothesis that a DNA repair complex is partially assembled
before DSB introduction and may contribute to licensing DNA
cleavage by bridging the two IES boundaries in the DNA cleav-
age synaptic complex (Figure 5).

The contribution of repair factors to DNA cleavage during IES
elimination contrasts with V(D)J recombination. In the latter, the
Rag1/2 recombinases introduce DNA breaks independently of
DNA repair factors. Furthermore, they help to maintain the two
broken DNA ends within the DNA repair synaptic complex, as
indicated by the observation that destabilizing the Rag1/2 com-
plex via the deletion of Rag2 subdomains renders the DNA repair
step sensitive to the absence of XIf.*' Due to the massive scale of
programmed DSBs during MAC development in Paramecium,
the interaction between the domesticated transposase and the
NHEJ factors has been pushed to an extreme by rendering the
repair factors indispensable for the activation of DNA cleavage.
Comparing the two systems will further highlight the multifaceted

interactions that have been established during the co-evolution
of DSB-inducing enzymes and DNA repair machineries.

Limitations of the study

We have uncoupled the two steps of the DNA elimination reac-
tion by co-expressing wild-type Ku with a DNA-repair-deficient
mutant. Since the wild-type proteins alone are capable of
ensuring the normal course of events (break introduction and
repair), we anticipated that only a fraction of the observed
events would correspond to the uncoupling scenario. There-
fore, our results likely underestimate the actual effect of com-
plete uncoupling. Furthermore, because wild-type and mutant
Ku70 proteins required Ku80c as a partner, overexpression of
the mutant will reduce the available amount of Ku80c; the
more mutant Ku70 proteins are expressed, the less wild-type
Ku70/Ku80c complexes are assembled. As a consequence,
DNA repair is abolished. Whether DNA damage response is
induced or not during PGR in Paramecium is unknown. One
can imagine that because the system has evolved toward
coupling, the DNA damage response has become ineffective.
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The present study does not provide elements that might sup-
port this hypothesis.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Ku70a (588-602) (Rabbit polyclonal) This paper N/A

anti-Flag antibody a-FLAG M2 Sigma-Aldrich AB_262044

a-Pgm 2659-GP (Polyclonal guinea Pig) (Dubois et al.)*? N/A

Alexa Fluor 568 goat anti-mouse IgG (H + L) antibody ThermoFisherScientific LifeTech A-11004

Goat anti-guinea pig IgG (H + L) highly cross ThermoFisherScientific LifeTech A-11073

adsorbed secondary antibody AF488

Bacterial and virus strains

Klebsiella pneumoniae (Cosson strain) (Beisson et al.)** N/A

Escherichia coli HT115 (Beisson et al.)** N/A

Chemicals, peptides, and recombinant proteins

Luna Qpcr Mix New England Biolabs M3003S

DAPI Sigma-Aldrich D9542

Propidium iodide Sigma-Aldrich P4170

Deposited data

See Table S1-C for deposited sequencing data This paper https://www.ebi.ac.uk/ena/
browser/view/PRJEB66127

Statistical data and R scripts used to generate the This paper https://zenodo.org/doi/10.5281/

bioinformatic images and proteomic data

zenodo.10047597

Experimental models: Organisms/strains

P. tetraurelia wild-type 51 new (Besson et al.)** N/A

P. tetraurelia wild-type 51 ND7-1 (Besson et al.)*® N/A

Oligonucleotides

See Table S1-B for oligonucleotides This paper N/A

Recombinant DNA

See Files S1 for plasmid sequence This paper N/A

Software and algorithms

bcl2fastg2 Conversion Software (v2.18.12) lllumina https://emea.support.illumina.com/
Cutadapt (v1.15/v1.12) Cutadapt https://cutadapt.readthedocs.io/
CASAVA (v1.8.2) lllumina https://jp.support.illumina.com/

Bowtie2 (v2.2.9)
samtools (v1.9)
ParTIES (v1.06)

R statistical computing platform (v4.0.4)
ggplot2 v3.3.5; GenomicRanges v1.42; rtracklayer v1.50
ParameciumDB website

(Langmead and Salzberg)*®
(Li et al.)*”
(Denby Wilkes et al.)*’

R

R packages

(Arnaiz et al.)*®

http://bowtie-bio.sourceforge.net/
http://www.htslib.org/

https://github.com/oarnaiz/ParTIES
https://zenodo.org/doi/10.5281/
zenodo.6347088

https://www.r-project.org/
https://bioconductor.org/
https://paramecium.i2bc.paris-saclay.fr/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Julien

Bischerour (Julien.bischerour@i2bc.paris-saclay.fr).

Materials availability

Plasmids and antibodies used in this study are available from the lead contact upon reasonable request.
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Data and code availability

® Sequencing data have been deposited at ENA and are publicly available as of the date of publication. Accession numbers are
listed in the key resources table and Table S3. Microscopy data reported in this paper will be shared by the lead contact upon
request. Sequencing and mapping data, as well as technical information, are available on the ParameciumDB website (https://
paramecium.i2bc.paris-saclay.fr).

o Statistical data and R scripts used to generate the bioinformatic images have been deposited at Zenodo and are publicly avail-
able as of the date of publication. The DOl is listed in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Paramecium strains and culture conditions
P. tetraurelia wild-type 51 new or its mutant derivative 51 nd7-1 were grown in a standard medium made of a wheat grass infusion
inoculated with Klebsiella pneumoniae and supplemented with 0.8 pg/mL B-sitosterol and 100 pg/mL ampicillin.

METHOD DETAILS

Gene knockdowns during autogamy

Autogamy was carried out as described”? and the progression of old MAC fragmentation and new MAC development was monitored
using a Zeiss Lumar.V12 fluorescence stereo-microscope, following quick fixation and staining of cells in 0.2% paraformaldehyde
20 pg/mL DAPI. The TO time-point for each experiment is defined as the stage where 50% of cells in the population harbor a frag-
mented old MAC.

RNAi was achieved using the feeding procedure, as described.'"*° Paramecium cells grown for 10 to 15 vegetative fissions
in plasmid-free Escherichia coli HT115 bacteria were transferred to medium containing non-induced HT115 harboring each RNAI
plasmid and grown for ~4 additional divisions. Cells were then diluted into plasmid-containing HT115 induced for dsRNA production
and allowed to grow for ~8 additional vegetative divisions before the start of autogamy. Final volumes were 50-100 mL for middle-
scale experiments (western blotting, immunostaining and DNA extraction) and 0.5 to 1 L for large-scale experiments (whole-genome
sequencing). The presence of a functional new MAC in the progeny was tested after four days of starvation as described.'? Control
experiments were performed using the L4440 vector. RNAIi plasmids were L4440 derivatives carrying the following inserts: KU70a-1
(op 514-813 from KU70a)'® and pLIG4b-L(bp 521-1774 from LIG4b) for LIG4."?

Transgene construction, micro-injection and protein expression analysis
The Ku70-6E mutations were introduced into a Paramecium Ku70a-expressing vector carrying the KU70a gene fused at its 5’ end to
sequences encoding the 3xFLAG peptide. Silent mutations were introduced into the KU70a-6E nucleic acid sequence to make it
insensitive to RNAI. As a control, a wildtype version of KU70a was cloned and modified similarly to become RNAi-resistant. Plasmid
sequences of plasmids are presented in File S1. All transgene-bearing pUC18 derivatives were linearized with appropriate restriction
enzymes (Bsal) and co-injected with an ND7-complementing plasmid into the MAC of vegetative 51 nd7-1. Sequences of the FLAG-
KU70a transgenes encoding N-terminal fusions of the 3X FLAG tag (YKDHDGDYKDHDIDYKDDDDKT) to Ku70a are displayed in File
S1. Transgene injection level (copy per haploid genome or cphg) was determined by gPCR on genomic DNA extracted from vege-
tative transformants, using a LightCycler 480 and the Luna Qpcr Mix (New England Biolabs). Oligonucleotide primers for the KU70a
transgene and the genomic reference locus are listed in Table S2.

A peptide corresponding to amino acid sequence 588 to 602 of P. tetraurelia Ku70a was used for rabbit immunization to yield anti-
Ku70a (588-602) antibodies (Eurogentec). Polyclonal antibodies were purified by antigen affinity purification. The FLAG tag was revealed
using monoclonal anti-Flag antibody «-FLAG M2 (Sigma-Aldrich). Protein extracts used for western-blot were prepared as previously.'®

Cell staining

Cell staining and Immunostaining of fixed cells using polyclonal anti-Pgm guinea pig antibody a-Pgm 2659-GP or monoclonal anti-
Flag antibody «-FLAG M2 (Sigma-Aldrich) were performed as described previously.'® For propidium iodide staining, autogamous
cells were permeabilized with ice-cold PHEM (60mM PIPES, 25 mM HEPES, 10mM EGTA, 2 mM MgCI2 pH 6.9) with 1% Triton
X-100 during 4min, and fixed for 10min in PHEM +2% formaldehyde. Cells were further washed twice in TBST (10mM Tris pH 7.4,
0.15 M NaCl, 0.1% Tween 20) + 3% BSA, incubated for 5min in PI/RNase staining buffer (BD Pharmingen), and mounted in Citifluor
AF2 (Biovalley). Observations were made with an Olympus BX63 epifluorescence microscope with a 63x oil objective or an Olympus
BX63 epifluorescence microscope with a 60x oil objective, focusing on the maximal area section of new developing MACs. Quanti-
fication of new MAC sizes, fluorescence intensity, boxplot representation and statistical analysis were performed as described.'®

Purification and DNA binding assays using recombinant Ku70/80 proteins expressed in insect cells
Ku70a/80c and Ku70a-6E/80c were expressed and purified as previously described, using a 6His tag at the N terminus of Ku80c.
Electrophoretic mobility shift assays were performed in the presence of 50nM of double stranded DNA substrate made of LE35Top

15,50
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and LE35Bot-Cy3 oligos (Table S2), in a buffer containing 50 mM Tris pH 7.4, 100 mM NaCl, 5% glycerol and 0.1 mg/mL BSA. Com-
plexes were assembled on ice for 15min before loading on 5% Acrylamide gel (29/1) and 0.5X TBE at room temperature. Gels were
analyzed using a Typhoon scanner.

Detection of DNA extremities by ligation mediated PCR (LMPCR)

DNA double-strand breaks at the left genomic boundary of the IES 51A2591 and at the extremity of the excised IES 51G4404 were
detected using the LMPCR technique.'?* PCR was performed with total genomic DNA that was purified from cells 5 h after the
beginning of autogamy.

Purification of new developing MACs, sequencing of genomic DNA and mapping on the paramecium genomes

New developing Macs (anlagen) were purified by FANS using anti-Pgml1 antibodies and genomic DNA was extracted as previously
described.?® The total genomic DNA of late autogamous cells (4 days of starvation) was extracted from large-scale cultures (1L) using
the NucleoSpin Tissue extraction kit (Macherey Nagel) as previously described.'® All genomic DNAs were sequenced at a 76 to 160X
coverage by a paired-end strategy using lllumina HiSeq (paired-end read length: 2 x 100 nt) or NextSeq (paired-end read length:
2x~75 nt) sequencers (Table S1-C). DNA-seq data were filtered on expected contaminants (ribosomal DNA, mitochondrial and bac-
terial genomes) then mapped on the P.tetraurelia MAC (ptetraurelia_mac_51.fa) or MAC+IES (ptetraurelia_mac_51_with_ies.fa) refer-
ence genome using Bowtie2 (v2.2.9 —local -X 500).°":°2

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
The number of replicates and the statistical methods used are indicated in the figure legend. A summary of the experiments carried
out is presented in Table S1.

Bioinformatic analyses

Coverage around or between IES excision sites: Only IES excision sites on scaffolds greater than 30 kb (98% of IESs) were consid-
ered. The mean sequencing depth was calculated for inter-IES fragments (>300 nt) using SAMTools (depth v1.9 -g 30 -Q 30) then
normalized by the number of mapped reads to compare samples. The coverage around IES excision sites (+/— 500 nt of the TA)
was calculated using SAMTools (view v1.9). A home-made perl script wrapper (coverage_TA.pl) allowed to consider both mappings
on the MAC and the MAC+IES genomes, to take into account all reads around IES excision sites. The collapsed coverage on all IESs
was then normalized by the number of mapped reads. Telomere detection: the detection of de novo telomere addition sites is
described in.?® The determination of the distances to the closest IES and the positions of telomere addition sites around IES excision
sites was performed with R GenomicRanges functions.

MEND analysis

The IES annotation v1 (internal_eliminated_sequence_PGM_ParTIES.pt_51.gff3) was used for this study.®' These datasets are avail-
able from the ParameciumDB download section.*® A new version of ParTIES (v1.06 https://github.com/oarnaiz/ParTIES) was devel-
oped for this study. It is now possible to analyze translocation events (MILORD module, parameters: -consider_translocation) and to
analyze and classify the reads around IES junctions (MEND module default parameters). The number of events was normalized by the
number of mapped reads. R (v4.0.4) packages were used to manipulate annotations and to generate images (ggplot2 v3.3.5;
GenomicRanges v1.42; rtracklayer v1.50).
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SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Sequence alignment of Paramecium Ku70a and human Ku70 and modeling
using ESPript3.0. (Related to Figure 1)

Alignment was performed using ClustalW, with the following sequences for Human KU70
(CAG47015.1 G22P1), Paramecium tetraurelia Ku70a (PTET.51.1.P0150242), and
Paramecium caudatum (PCAU.43¢3d.1.P00420064) and used for ESPript3.0 analysis [1].
The 6E positions are represented by a black square, identical residues in red squares and

homologs are written in red. Alfa helices (a), Beta strands () and Turns (T) are depicted.

Figure S2. Characterization of the Ku70-6E mutant activity. (Related to Figure 1)

(A) Analysis of the DNA binding activity of Ku80c/70a and Ku80c/Ku70a-6E mutant by
electrophoretic mobility shift assay (EMSA).

(B) (Left Panel) Western blot analysis of FLAG-Ku70a and FLAG-Ku70a-6E expression levels
in early autogamous cells (T5, i.e. 5 hrs after the TO time-point) subjected to KU70a RNAA,
using a-Ku70a antibodies. FLAG-Ku70a-expressing transgenes are RNAi-resistant, thanks to
the modification of the nucleotide sequence. The injection level of each transformant is
indicated as cphg (copies par haploid genome). (Right Panel) Survival test for the sexual
progeny of FLAG-KU70a and FLAG-KU70a-6E-complemented cells.

(C) Western blot analysis of FLAG-Ku70a and FLAG-Ku70a-6E expression levels in early
autogamous transformed cells (T5) subjected or not to KU70 RNAI. Total protein extracts were
prepared at TS after the beginning of autogamy. FLAG-Ku70a proteins were revealed on

western blots using a-Flag (M2-Sigma) antibodies.



(D) Immunolabelling of Pgm in early developing MACs (TS5) of control cells, KU70-silenced
cells and cells transformed with FLAG-KU70-6F (280 cphg) subjected to KU70 RNAIi. Scale
bar is 5 pm.

(E) Boxplot of Pgm mean fluorescent intensity in 36-70-um? developing MACs under the
different conditions. This window of new MAC sizes corresponds to the maximal Pgm signal
in the control. 73 to 81 developing MACs were analyzed for each condition. * for p-value <0.05
and *** for p-value <0.001 in a Mann-Whitney-Wilcoxon statistical test, in comparison with

the control.

Figure S3. Ku70-6E mutant impairs new developing MAC assembly. (Related to Figure
2)

(A) Boxplot of the sizes (um?) of developing MACs from the different conditions. 44 to 59
developing MACS were analyzed for each condition. The statistical test (Mann-Whitney-
Wilcoxon) compares the KU70 RNAi1 and FLAG-Ku70-6E/KU70 RNAI1 conditions at TS, T29
and T53, with their respective control RNAi. ** for p-value <0.01 and *** for p-value <0.001.
(B) Flow cytometry sorting of aPgmLI1-immunolabeled nuclei in RNAi control (L4440),
KU70a, LIG4 RNAI and in FLAG-KU70-6F injected cells (KU70 RNAi and L4440 control
conditions). Sorted nuclei correspond to the gated events on the PgmL1 labelling vs PI plots.
The PI histogram shows the DNA content of the sorted population. Estimation of the C-level
for the indicated peaks was performed as described using tomato nuclei as an internal standard
[2].

(C) Screenshot of read coverage over a 175kb window along 51 6 scaffold (position 100000
to 275000). Purified new developing MACs (S= sorted) collected at T25 and total genomic

DNA (T=total) collected at T53 from the different conditions were sequenced using the



[llumina technology. Sequencing libraries were prepared using enzymatic digestion ("westburg
library prep kit"), Nebnext DNA fragmentase (*) or mechanical fragmentation (covaris) (**)
(Table S3). IES positions are indicated by small vertical bars. The injection level of the Flag-
KU70-6FE transgene is indicated on the right (cphg = copies per haploid genome).

(D) Sequencing depth analysis of Inter-IES fragments in a FLAG-KU70-6E transformant
(253cphg) in KU70 RNAI conditions. The average sequencing coverage was calculated for
individual inter IES fragments along the genome and reported according to their size.
Fragments shorter than 300bp were not considered, since they were possibly counter-selected
during the preparation of the sequencing libraries.

(E) Analysis of collapsed sequencing depth at the proximity of IES excision sites (-500 to
+500nt). The figure is equivalent to figure 2E, except that reads “extremities” (MEND analysis)

were omitted.

Figure S4. Analysis of uncoupling in supplementary samples. (Related to Figure 3 and
Figure 4)

(A) Scheme of events considered in MEND analysis. Sequencing reads overlapping the TA
dinucleotide which is present at the extremities of each IES were classified in the four depicted
categories. Categories of reads, IES+, Mac junction, Extremities and “other”. Reads must map
over a minimal 15 nucleotides region to be considered.

(B) Top Panel, MEND analysis of purified new developing MACs. Samples were collected at
T25 and sequenced using the Illumina technology. Sequencing libraries were prepared using
enzymatic digestion ("westburg library prep kit"), Nebnext DNA fragmentase (*) or mechanical
fragmentation (covaris) (**) (Table S3). Bottom Panel, relative quantification of MEND

analysis of purified new developing MACs (S= sorted) collected at T25.



(C) Quantification of de novo telomere addition. As previously described?, a telomere addition
site was pinpointed wherein a read alignment on the MAC sequence stops and the read sequence
proceeds with telomeric repeats (G4T2 or G3T3). Then the number of events was normalized by

the total number of mapped reads (cpm).

Figure SS. Detailed analysis of translocations in all genomic DNA samples. (Related to
Figure 4)

(A) Quantification of translocation events. The quantification of the number of translocations
was performed using the same procedure as in Figure 4B. The conditions of RNAI, the level of
injection (cphg), and the protocol of preparation of the genomic DNA samples (S= sorted nuclei
at T25, T= total genomic DNA at T53) are indicated below the histogram.

(B) (Left Panel) Scheme of all subcategories of translocations. The four main types of
translocations, according to the nature of DNA extremities and to the processing of ends, are
presented at the top. Other types of translocations indicated as “other events”, were not
considered since their frequency was very low or not relevant for this study, such as the inter-
IES junctions that correspond to the assembly of excised IESs (concatemers) (see Table S3).
The * and ** correspond to technical replicates of the KU70-6E injected sample (253 cphg)
with different methods of genomic DNA library preparation (see Table S3). (Right Panel)
Numerical values of translocation frequencies (number of events normalized per million
mapped reads) for each sample.

(C) Analysis of the length of microhomologies. Translocations classified as “other” were
analyzed. They are grouped in three classes according to the distance to the nearest IES (< 10
nucleotides (black), < 100 nucleotides (dark grey) or > 100 nucleotides (light grey)). The
frequency of translocations is represented as a function of the size of the microhomology that

is detected at the junction. The number of translocations for each category is presented at the



right top part of the figure. In control and KU70 RNAI, most of the translocations implicated
fragments of the genome that are distant from IES. They are characterized by frequent longer
microhomologies at the junction. In KU70-6E injected cells, translocations are found in the
three categories of distance. Long microhomologies are more often detected when the
translocations implicate junctions that are distant from an IES. This suggests that translocation
induced by errors during IES excision are likely processed by cNHEJ. In contrast, when limited
end trimming happens, another DNA repair pathway requiring longer microhomology is
ongoing. All the analyses were performed with sorted new developing MACs.

(D) Analysis of reads coverage as a function of IES excision time. IESs were clustered in four
group of excision timing, (very early, early, intermediate and late) as described previously?.
The analysis was performed using the MEND module of PARties and normalized by the
number of IESs in each group. The different configurations of IES-flanking sequences are
presented at the top. They are classified in four categories; sequencing reads that correspond to
the genomic loci with an IES (IES+ in white), or to an already excised IES (MAC junction in
black), reads that start at the TA (+ or-2 bp) (Extremities in grey), and reads that map on the
flanking DNA but cannot be aligned on adjacent MIC or MAC beyond the TA dinucleotide (+
or-2 bp) (Other). Analysis was performed on purified (sorted nuclei) new developing MAC
genomic DNA. The data show the accumulation of IES+ reads on the latest excised IES in LIG4
RNAIi and in KU70-6F expressing cells, suggesting an indirect effect of unrepaired DSBs

generated during early IES excision, on the excision of the late IESs.

SUPPLEMENTAL FILES
File S1. Sequence of plasmids

Sequence of pUC-3FLAG-KU70a and pUC-3FLAG-KU70a-6E



> pUC-3FLAG-KU70a (5229 bp)
TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT
GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA
GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGC
GCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAA
GGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTG
CCAAGCTTGCATGCTAAGGACAAAAATATCTAATACTTTTTTTTTGGACTTTTTCAAATTATCATTCCAATAATTATAATGAT
ATTAATTAATATAATAATTCTGTAGAGTTTCTGTTCATTAAATTAATAAAATAAATGAATTCTAGAGACTACAAAGACCAT
GACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGATAAGGGATCCATGGATTTTGAAGAGGAGCACG
CAGGAGGAGACGACGTTGAAGAAATCTAAGACGGAGAAGATATATTTGGTGAAGACGCTGATATATCAGTACACGATTC
AGGGAGCAAAAAAGATGCAGTCATATTTTTGGTAGATTGCAAAAAAGCATTGTTTGACATGGATCAAGATGGACAAGGCA
CAGTCTTTTCTAAAATATTATCTGCCTTTTCTAGCTTTATGAAGGCAAAAATCATATCAAGTCCAGATGATCGCATTGGTAT
GATATTCTACAACACAGTAATTAATATCTATAAAATTAGAAATCCACCAATAATCAATTAAAATTCAATAACATCACAGA
AATTTATAAATTAGATGGACCATCTGCAGATATTATCAAAAATTGTTTAAAAATAGAGCAAAATTTTGAGAAAGATTATC
AATTAGGCAACAATGCTCATTTTCATGAATGTTTATGGCTCTGCAATCATGAATTCAAAGAATTGTAAACATATTATCAA
TATTTATTAGAGATAAGAACAAATTCAATATGCGTATATTTTTATTCACTCCAGATGATTTACCATATTTTAAAGATTTG
AATGCCAGATCATCAGCTTTGAAATACGCCAAGTAATTGAAGGATGCAGATGTTTAGATTGAATTGTTTCCATTGCCCAG
TTAAAATGAATTCAAAATTGCTAGATTTTACGGTGAGATTATAACTGTTGATTTGGATGAAGTTAACAATGCTGTACTTG
ATACTTCAACTAAAATTATGGATTTGCATTAAAGAATTAAATAAAAGGAATTTAAGAAAAGAGCTTTGAATAGACTTATT
ATGGATATCGATGATATCAAGATAGGTTTGAAGATTTACTGTCTAGTTAACAAAGCTAAGAAACCTTACGGAAAGCCATT
GGACAGAAGATATAATTAACAATTAAAGAAAAAGGCTTAATTCATAGACGAGGAAACTGGATAAGCTCTATTCCCATAAC
AAATTTCAACACATTTAATTTTAGGTAACGAGAAGATTGCTATACCTAAAGAATACATGGCAAAGATTAAGGGATTCGAG
AAACCAGGAATGACATTAATTGGATTCAAGTCATCATCTGCACTAAAAGACTACCACAACTACAGGGCTTCATACTTTCT
ATACCCAGACGACGAGCATGTTAACGGTTCATCTCAATTCTTTGACGCTTTAATATAACAAATGATTTTAAAGGAAAAGA
TTGGAATTGTACGACTAGTTCCAAAGTAAGGTTCATAAGTTAGATTCTGTGCTTTACTACCTTAAGCAGAACAATATGAT
GAAAATCATTTTTAGACACCTCCAGGATTACATCTGATATTTTTACCTTATGCTGATGATATTAGAGGACTGTCTACAGT
TAAGTAAGAAGGAGCCGAGATTACAAGATAGACCTTGAATGCAGCTAAGATTTTAGTAAATGCTCTGACAATCCAAGATT
TTGATTGCTCAAACTTTGAAGATCCTTCAATATAGAAGTAATAATAGATTATTAATATAGATTTTACACATATTTACAAG
GGTTGGCATTGTAAGAGTAAAACATCGAAGAACCTGAAGATTTACTTTAGCCAGACTTTAAAGGTATGGAAAAATATAGA
GATATTGTGAACTTATTTATGAGTAATGTCAGTCTGGAATGCTCTAATATGCCCTCAAGATCTAAAGGATAAGGAGGGGG
AAGAGGTAGAGGCAGAGGAAGAGGAAGAGGCAAACAAGAAGAAAGTGAGAGTGACGATTGTTCTAAAGTAAAGGGGA
GAGGCAGAGGGTCCACTTAGAAGCAAAAGATTGAAGAGGATGACAGTTTGGAAGGAGAGGAGATCTATTAACCAGTAAA
AAAGAGAGGAAGAGGACGTTGATTATTGTTTTTACAAACTCATATTAGGATTATATAAAAACTTAAATATCAATTGGTTTAT
TCCACATTTTTAAAATAAAATCATTTCATTTGTCGCTTTGGCAACCCCGTTGGAGGTTCTTTTATCAACTAAGACATATGTT
TTAGATTATTAATATTTATTGTATGATAGATATTTGGATTCATGAAAATTCTGAGATAAATTCTATATTAAAATAATTAG
CATTATAAAATCTAGAAAAATGGGTAATTGTAAGAGCTCAAGCTTGAGTTGGGATTTGACATAATCGGTGAAATGAAGCT
GTTCTTTTTCTTTCGTGTAATACTGTAAAATAAAAACAATTTATCTTAGGTAATCATCAGATCCAATCATTAAATGCTAT
GAATTCAAACTCCGATATAATATACGGTTTGAATGCAAATATTCAAGAAAAAGAACAACCTAGGCAGCATGGAATTCAGC
GTGTTCTTGGTTTAATTAGAGCATGCGAGCTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC
GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACAT
TAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCG
GGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG
AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCA
AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCA
TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCT
CCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTT
CTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTT
CAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGC
AGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC
TACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCC
GGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA
AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTAT
CAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGG
TCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACT
CCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCT




CACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCC
TCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCAT
TGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTA
CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA
GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCG
CGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTG
AGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTT
TTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAA
ATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAA
AAATAGGCGTATCACGAGGCCCTTTCGTC

> pUC-3FLAG-KU70a-6E
TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT
GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA
GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGC
GCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAA
GGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTG
CCAAGCTTGCATGCTAAGGACAAAAATATCTAATACTTTTTTTTTGGACTTTTTCAAATTATCATTCCAATAATTATAATGAT
ATTAATTAATATAATAATTCTGTAGAGTTTCTGTTCATTAAATTAATAAAATAAATGAATTCTAGAGACTACAAAGACCAT
GACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGATAAGGGATCCATGGATTTTGAAGAGGAGCACG
CAGGAGGAGACGACGTTGAAGAAATCTAAGACGGAGAAGATATATTTGGTGAAGACGCTGATATATCAGTACACGATTC
AGGGAGCAAAAAAGATGCAGTCATATTTTTGGTAGATTGCAAAAAAGCATTGTTTGACATGGATCAAGATGGACAAGGCA
CAGTCTTTTCTAAAATATTATCTGCCTTTTCTAGCTTTATGAAGGCAAAAATCATATCAAGTCCAGATGATCGCATTGGTAT
GATATTCTACAACACAGTAATTAATATCTATAAAATTAGAAATCCACCAATAATCAATTAAAATTCAATAACATCACAGA
AATTTATAAATTAGATGGACCATCTGCAGATATTATCAAAAATTGTTTAAAAATAGAGCAAAATTTTGAGAAAGATTATC
AATTAGGCAACAATGCTCATTTTCATGAATGTTTATGGCTCTGCAATCATGAATTCAAAGAATTGTAAACATATTATCAA
TATTTATTAGAGATAAGAACAAATTCAATATGCGTATATTTTTATTCACTCCAGATGATTTACCATATTTTAAAGATTTG
AATGCCAGATCATCAGCTTTGAAATACGCCAAGTAATTGAAGGATGCAGATGTTTAGATTGAATTGTTTCCATTGCCCAG
TTAAAATGAATTCAAAATTGCTAGATTTTACGGTGAGATTATAACTGTTGATTTGGATGAAGTTAACAATGCTGTACTTG
ATACTTCAACTAAAATTATGGATTTGCATTAAAGAATTAAATAAAAGGAATTTAAGAAAAGAGCTTTGAATAGACTTATT
ATGGATATCGATGATATCAAGATAGGTTTGAAGATTTACTGTCTAGTTAACAAAGCTAAGEAACCTTACGGAZAGCCATT
GGACAGAAGATATAATTAACAATTAAAGAAAAAGGaaTAATTCATAGACGAGGAAACTGGATAAGCTCTATTCCCATAAC
AAATTTCAACACATTTAATTTTAGGTAACGAGAAGATTGCTATACCTEAAGAATACATGGCAAAGATTEAGGGATTCGAG
AAACCAGGAATGACATTAATTGGATTCAAGTCATCATCTGCACTAAAAGACTACCACAACTACAGGGCTTCATACTTTCT
ATACCCAGACGACGAGCATGTTAACGGTTCATCTCAATTCTTTGACGCTTTAATATAACAAATGATTTTAAAGGAAAAGA
TTGGAATTGTACGACTAGTTCCAGAGTAAGGTTCATAAGTTAGATTCTGTGCTTTACTACCTTAAGCAGAACAATATGAT
GAAAATCATTTTTAGACACCTCCAGGATTACATCTGATATTTTTACCTTATGCTGATGATATTAGAGGACTGTCTACAGT
TAAGTAAGAAGGAGCCGAGATTACAAGATAGACCTTGAATGCAGCTAAGATTTTAGTAAATGCTCTGACAATCCAAGATT
TTGATTGCTCAAACTTTGAAGATCCTTCAATATAGAAGTAATAATAGATTATTAATATAGATTTTACACATATTTACAAG
GGTTGGCATTGTAAGAGTAAAACATCGAAGAACCTGAAGATTTACTTTAGCCAGACTTTAAAGGTATGGAAAAATATAGA
GATATTGTGAACTTATTTATGAGTAATGTCAGTCTGGAATGCTCTAATATGCCCTCAAGATCTAAAGGATAAGGAGGGGG
AAGAGGTAGAGGCAGAGGAAGAGGAAGAGGCAAACAAGAAGAAAGTGAGAGTGACGATTGTTCTAAAGTAAAGGGGA
GAGGCAGAGGGTCCACTTAGAAGCAAAAGATTGAAGAGGATGACAGTTTGGAAGGAGAGGAGATCTATTAACCAGTAAA
AAAGAGAGGAAGAGGACGTTGATTATTGTTTTTACAAACTCATATTAGGATTATATAAAAACTTAAATATCAATTGGTTTAT
TCCACATTTTTAAAATAAAATCATTTCATTTGTCGCTTTGGCAACCCCGTTGGAGGTTCTTTTATCAACTAAGACATATGTT
TTAGATTATTAATATTTATTGTATGATAGATATTTGGATTCATGAAAATTCTGAGATAAATTCTATATTAAAATAATTAG
CATTATAAAATCTAGAAAAATGGGTAATTGTAAGAGCTCAAGCTTGAGTTGGGATTTGACATAATCGGTGAAATGAAGCT
GTTCTTTTTCTTTCGTGTAATACTGTAAAATAAAAACAATTTATCTTAGGTAATCATCAGATCCAATCATTAAATGCTAT
GAATTCAAACTCCGATATAATATACGGTTTGAATGCAAATATTCAAGAAAAAGAACAACCTAGGCAGCATGGAATTCAGC
GTGTTCTTGGTTTAATTAGAGCATGCGAGCTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC
GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACAT
TAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCG
GGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGLG
AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCA
AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCA




TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCT
CCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTT
CTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTT
CAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGC
AGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC
TACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCC
GGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA
AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTAT
CAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGG
TCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACT
CCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCT
CACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCC
TCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCAT
TGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTA
CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA
GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCG
CGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTG
AGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTT
TTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAA
ATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAA
AAATAGGCGTATCACGAGGCCCTTTCGTC
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Table S2. List of oligonucleotides

Unique Name |Other name Sequence (5' ->3")

Reference locus for normalization (IES 574 1835)

OMBO063 51A1835-3'(4) AGACAAGTAGGGAATCCACTTCTAGTAATC
OMBO064 51A1835-5' TAATGTATTGATAAGGCTTGCTCTACAGCC

KU70a locus

OMBI1174 GGAGGAGACGACGTTGAAGA

OMBI1175 TACCAATGCGATCATCTGGA

DNA substrat EMSA

OMBI1125 LE35Top CCCTAGAAAGATAGTCTGCGTAAAATTGACGCATG
OMBI1126 LE35Bot-Cy3 CATGCGTCAATTTTACGCAGACTATCTTTCTAGGG




Table S3. Summary of sequencing data with ENA accession numbers
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