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SEFI Modeling in Readout Integrated
Circuit Induced by Heavy Ions at
Cryogenic Temperatures

L. Artola

Abstract—This paper presents a modeling approach of
single-event functional interrupt (SEFI) which takes into account
all the physical and electrical processes from the radiation
particle down to the event at the system level. This paper is
focused on the evaluation of SEFI sensitivity by experimental
and simulation analyses of a readout integrated circuit (ROIC)
designed by Sofradir for their infrared image sensors. Relevant
correlations between simulation and experimental results of SEFI
cross sections for heavy ions are presented and discussed. The
simulation results confirm the strong SEFI robustness of the
ROIC at 57 K.

Index Terms— Heavy ions, infrared (IR) detectors, low temper-
atures, modeling, readout integrated circuit (ROIC), single-event
functional interrupt (SEFI).

I. INTRODUCTION
HE space environment is known to be a harsh environ-
ment in terms of temperature, vibration, and radiation for
embedded devices and circuits. Soft error (SE) can be induced
in electronics systems by radiation particles [1], [2], such as
cosmic rays, protons, and even electrons (more recently) [3].

The complementary metal-oxide—semiconductor (CMOS)
technology is the main technology used in on-board systems,
especially in digital circuits such as the readout integrated
circuit (ROIC) of CMOS image sensors (CIS) or infrared (IR)
image sensors. The pixel array is controlled by the readout
circuit of the image sensor. A readout circuit is composed of
row and column decoders, multiplexers, memories, and various
logic and sequential cells. CIS and IR image sensors are key
devices in spacecraft for applications such as earth or space
observation, the guidance system in a spacecraft (launcher
or satellite). For these reasons, it is necessary to assure the
reliability of such systems during the space mission.

Due to the harsh space environment, ROICs are known to
be sensitive to single-event effects (SEE), such as single-event
transient (SET) and single-event upset (SEU) [4]. One of
the main critical failures in the space environment of digital
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devices is the loss of functionality of the device, also called
single-event functional interrupt (SEFI) [5]. SEFI events are
due to an SET or an SEU in a critical function of the device.
SETs correspond to a transient change in the state of the
node. The criticality of an SET is defined by its intensity, its
timing, and its duration. As a function of these characteristics,
the SET is able to induce an SEU in the memory function
of the device, such as D Flip-Flop (DFF) or static random
access memory or an SEFI at the device level. For the space
industry, it is necessary to evaluate this risk. Radiation tests
with heavy ion or proton beams are used to quantify the SEFI
risk on embedded devices or circuits such as ROICs. However,
the SEE radiation tests are performed twice: at the beginning
of the device/circuit development and at the end. If the results
of radiation tests are not acceptable, at this time, it could be
critical (technically and financially) to redevelop additional
SEFI countermeasures in order to fit with project requirements.

So, the SEFI modeling in ROICs is critical to anticipate the
risk due to space radiation. Simulation-based fault injection
frameworks allow early evaluation of the system reliability
when only the system description and the associate models
are available [6]-[11]. Previously, works dedicated to the
evaluation of SE have been developed by the means of fault
injection at register transfer level using field-programmable
gate array (FPGA) and very high description language code.
Other approaches are based on the injection of transient errors
in flip-flops. However, such work did not take into account
other functions of the circuit such as logic cells or clock
trees [12]. These approaches are very useful due to their
high-speed performances. However, none of these approaches
allow linking the injected faults in the studied circuit with the
radiation constraint. This makes impossible the quantitative
evaluation of the SEFI susceptibility of a given device.

The goal of this paper is to perform the link between a
given radiation constraint (heavy ions) and the occurrence of
an SEFL In order to reach this goal, a new SEFI modeling
approach is presented and was applied to a studied case: an
ROIC designed by Sofradir for their IR image sensor. The
SEFI modeling was based on the use of the Monte Radiation
tool, MUSCA SEP3 tool [12]-[14] coupled with an new
injection platform dedicated to simulate fault injections at mul-
tiple system levels: transistor and gate: transient ERRor injec-
tion framework for integrated CMOS (TERRIFIC). MUSCA
SEP3 will be used to generate a realistic SET database
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Fig. 1. Overview of the investigated ROIC developed by Sofradir.

(in terms of amplitude and duration) as a function of radiation
constraint (energy and location) and device details (technology
and designs), while TERRIFIC will allow injecting the SET
databases for various configurations (in terms of timing and
logical state) in the floating nodes of the device.

This paper is organized as follows. First, the ROIC device
will be presented. Second, the experimental results (SEE cross
sections) obtained during heavy ion test will be presented.
Third, the approach dedicated to the modeling of SEE and
especially SEFI will be detailed. Finally, the SEFI estimations
will be compared with experimental data and discussed.

II. READOUT INTEGRATED CIRCUIT DEDICATED
TO INFRARED IMAGE SENSOR

The readout circuits developed and studied in this paper
have been developed by Sofradir in a 0.25-xm bulk technol-
ogy, with shallow trench isolation [15]. This technology is
a mixed technology allowing high voltages on analog parts.
This technology allows working at cryogenic temperature:
57 K for this circuit. IR image sensors are cooled down to
cryogenic temperature with the aim to reduce the leakage
current, also known as the dark current, and to increase its
performance.

Fig. 1 presents a global description of the ROIC. The
current—voltage conversion was realized by the integration of
the input charges on the integrated capacitance. The charges
transferred from integration to readout capacitances were then
transferred to the amplifiers located in the columns and at the
output of the ROIC. The circuit was composed of row and
column multiplexers in order to address the pixel arrays.

However, a test transistor was implemented into the direct
injection stage to allow the ROIC tests before the hybridization
of the detectors. This approach was used for the SEE radiation
tests. The ROIC proposes three modes: NORMAL mode,
IMAGER mode, and MEMORY mode. The master clock
frequency is set at 4 MHz. For confidential reasons, only a
brief description of the three modes is presented.
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Fig. 2. Experimental setup of SEE detection in ROIC from Sofradir during
heavy ion tests.

o NORMAL Mode: During this mode, the macropixels are
read. The pixel array size is 160 x 160. One frame is
required to output the whole array.

o IMAGER Mode: The aim of this mode is either to perform
images with all the subpixels or to detect permanent
changes in the subpixel array. This mode will be used
to determine the initial subpixel mapping or a new
mapping linked to the evolution of the detector during
its operational life.

o MEMORY Mode: The aim of this mode is to detect
state changes in the subpixels memories. These changes
are mainly linked to mapping or irradiation issues. The
system should store the subpixel mapping to be able
to detect the state changes after a MEMORY mode
sequence.

In this paper, the modeling of SEFI events was done in the
IMAGER mode. Note that in this paper, only the CMOS digital
parts of the ROIC were modeled and analyzed.

III. SEFI SENSITIVITY OF SOFRADIR ROIC
A. SEE Irradiation Tests Under Heavy lons

SEE tests were performed at Université Catholique de
Louvain (UCL), Belgium, by the means of the heavy
ion facility. The UCL test facility and test beam species were
presented in [15]. The principle of the temperature control
system used during the heavy ion tests is based on a cooling
machine with a cooled finger. The ASIC device is fixed on the
top of the cooled finger and directly connected to the vacuum
chamber. The complete description of the heavy ion test setup
and the temperature control system (at 57 K) was presented
in [4] and [5]. The experimental setup is shown in Fig. 2 where
the SEFI detection signatures are processed by the FPGA.

Fig. 3 presents the experimental SEE cross sections, for
SEU (in black) and for SEFI (in red) of the two ROIC samples
(Partl and Part2) tested in the IMAGER mode under heavy
ions. These two samples are issued from the same lot. A strong
difference in cross sections is observed for the SEU and the
SEFI. The error signature of the observed SEFI corresponds to
a change in the mode of operation of the ROIC. This change
required an ON/OFF cycle to recover the correct behavior of
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Fig. 3. Experimental SEE cross sections, for SEU (in black) and for SEFI
(in red) of the two samples of ROIC under heavy ion beam at 57 K.

the ROIC. Because of project requirements (time and cost
reasons) for the SEE qualification of the ROIC, the fluence of
each run is about 7.7 x 10°> cm™2. This fluence is mandatory by
the European Space Components Coordination (ESCC) basic
specification No 25 100 for rare SE events [16]. Two samples
of ROIC were tested. The SEFI sensitivity of the ROIC is very
low. Even if the SEU sensitivity is very well characterized
(with very low statistic error bar), it appears that data of SEFI
measurements could be completed by simulations.

One of the interests of the modeling of SEFI presented in
Section IV will be to provide more data and discuss the reasons
of such SEFI robustness. A potential new test plan for a future
radiation campaign will be also discussed.

B. Description of the SEFI Modeling Approach

The main principle of this modeling approach is based
on the two steps of simulations. Fig. 4 presents the global
framework of the SEFI modeling approach.

The Monte Carlo (MC) radiation tool, MUSCA SEP3,
was used [12], [14], [15]. This tool has been developed at
ONERA since 2008. As mentioned, the tool uses a MC
approach coupled in a sequential modeling of all the physical
and electrical processes. The following steps are considered:
1) the modeling of the radiation constraint; 2) the transport
mechanisms of radiation particles (in this work, heavy ions)
through the layer stack (back end of line); 3) the generation
of electron-hole pairs in the silicon; 4) the mechanisms of
charges transport and collection; and 5) the circuit feedback.

The modeling of the radiation environment is based on
several sources of input data (from engineering models, and
physical models). These models are provided by ONERA’s
internal research group which is considered as a worldwide
reference [17].

The modeling of transport mechanisms of radiation particles
through the overlayers is based on databases from GEANT4
(for nuclear reactions) and stopping and range of ions in matter
(for ionization mechanism). The interest of using databases
is the time-consuming gain in comparison with full direct
simulations.

The modeling transport and collection of free carriers in
the silicon are performed by the means of 3-D analytical
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models in order to take into account the following mecha-
nisms: ambipolar diffusion, dynamic collection, multicollec-
tion bipolar amplification, recombination, bias dependence,
and temperature dependence. It is important to highlight that
all the physical and electrical models used for the transport and
collection of charge in the semiconductor take into account
the impact of the temperature, down to 50 K. Specific models
occurring at cryogenic temperature such as incomplete ion-
ization of dopant atom of the substrate, shallow level impact
ionization, and band-to-band narrowing were considered to
take into account the decrease in the mobility of carriers
below 150 K as revealed by recent works for radiation effect
applications [18], [19].

The modeling of the front end of line is based on a descrip-
tion (dimensions and locations) of drain and source implants
of each nMOS and pMOS transistors. This information was
extracted by a graphic database system extractor from the
design file provided by Sofradir.

This simulation framework allows for obtaining an SET
database. The communication link between MUSCA SEP3 and
the Specter simulator was done by the means of a new
simulation framework called TERRIFIC. This injection tool
allows for performing electrical SET injections at various
levels: 1) transistor level or 2) gate level.

At transistor level, the injections are performed using the
SET database generated by MUSCA SEP3 as done in [14]
and [15]. The cryogenic transistor models were developed
and validated by Sofradir using experimental data from
I-V measurements. These simulations allowed estimating the
SET and SEU cross sections of a set of basic digital cells
used in the ROIC. After an analysis of the layout of the
ROIC, three main families of standard cells were selected:
logic cells, DFF, and clock buffers. This selection is based
on a preliminary fault injection simulation at gate level of
the ROIC. These cell families correspond to the majority of
the area of the digital part of the ROIC. It was revealed that
the standard cells of the process design kit (PDK) used by
Sofradir for their ROIC have very similar SET/SEU cross
sections for various designs in each digital function, especially
at cryogenic temperatures (57 K) [4], [20]. According to these
works, a hypothesis of a variation of +25% of SET/SEU cross
section would be considered for each main family of standard
cells. The +25% correspond to an engineering estimate of the
variability of the SEE sensitivity of the standard cells based
on experimental measurements and simulations performed
in [20]. MUSCA SEP3 simulations were performed for one
reference of each of the selected main families. The respective
SEE cross sections will be presented and discussed in the next
section.

At gate level, TERRIFIC performs fault injection simula-
tions based on the SEE evaluation of SET injections (issued
from MUSCA SEP3). The characteristics of these SETs cor-
respond to the worst cases in terms of amplitude and duration.

At the same time, automated fault injection simulations
were performed on the digital modules of the ROIC using the
TERRIFIC tool developed in SKILL [21]. The fault injection
was done at the gate level on each floating node of the
circuitry using the Spectre simulator. For SEEs (expected
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for single-event latchup), the floating nodes are the only
nodes whose the electrical potential can be disturbed by a
transient current. The other nodes, i.e., connected the bias or to
the ground, mitigate the transient currents from the circuit.
Injections of current pulses were simulated on clocked signals,
while injections of voltage pulses were simulated on the other
floating nodes. This allowed for not disturbing the nominal
bias of the ROIC before the fault injection. The simulations
allowed identifying the sensitive nodes and the associated
standard cells, which could induce an SEFI in the digital part
of the ROIC.

The identification of sensitive nodes and the SEE cross
section of logic cells, DFF, and clock buffers were convolved
to determine the SEFI cross section of the ROIC. The cal-
culation of the SEFI cross section corresponds to the sum
of SEU/SEU cross sections obtained for the gates which are
connected with the identified sensitive nodes.

1V. DISCUSSION

Fig. 5 shows the simulations of SEE (SET and SEU) cross
sections of the selected reference for each cell family: logic,
DFF, and clock buffers. The selection of the evaluated cell for
each family was done randomly. However, as mentioned previ-
ously, due to the very limited variability of the SEE sensitivity
of the standard cells for each family, it is considered that a
sensitivity envelope of £25% around the presented SET/SEU
cross section will be considered for the logic/DFF/clock buffer
cells of the PDK.

The results of MUSCA SEP3 simulations coupled with
TERRIFIC runs were obtained for a simulated fluence of

1 x 108 up to 1 x 10 cm™2 regarding the investigated cell.
The error bars correspond to two times of the standard
deviation (97% of confidence). Fig. 5 (a) presents the SET
cross section of a reference of AND gates as a function of
linear energy transfer (LET) of heavy ions simulated at 57 K.
As expected for the SET, the saturation of the cross section is
not well observed. The phenomenon is due to the low drive
current for this design of the AND gate [20].

Fig. 5(b) presents the SEU cross section of a refer-
ence of DFF as a function of heavy ion LETs simulated
at 57 K. The LET threshold is the same as the AND gate
(i.e., 10 MeV-cm?-mg~") illustrated in Fig. 5(a)-5(c) by a
dashed arrow and a question mark. Fig. 5(c) presents the SET
cross section of a reference of clock buffer as a function of
heavy ion LETs. No event was observed during the simulations
at 57 K (in black). In order to evaluate if the cell is totally
immune to SET, an increase in the temperature was simulated.
An increase in temperature is known to lead to an increase
in the SET duration [22]. This point is in good correlation
with previous works which highlighted that if a cryogenic
temperature dependence of SEE occurrence is observed, the
worst case must be not at cryogenic temperature but at room
temperature [19]. The simulations highlight the potential SET
sensitivity of the clock buffer at 300 K (in red). However, for
the ROIC point of view, the contribution of clock buffers to
the SEFI occurrence is very limited (~10%).

As mentioned in Section III-B, these SEE cross sec-
tions were convolved with the identified sensitive nodes of
the ROIC (thanks to the fault injection simulation). The
calculation of the SEFI cross section corresponds to the
sum of SEU/SEU cross sections obtained for the gates
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which are connected the identified sensitive nodes. This
final step allowed calculating the SEFI sensitivity of the
ROIC.

Fig. 6 presents the comparison of experimental (red sym-
bols) and simulation (black symbols) data of the SEFI cross
section of the ROIC as a function of LET of heavy ions
at 57 K. The error bars correspond to two times of the standard
deviation (97% of confidence). The simulations are in good
correlation with the experimental data and confirm the strong
robustness of the ROIC against SEFI. However, the wide
error bars in the experimental data needed to be validated.
As mentioned, because of project requirements (time and cost
reasons) for the SEE qualification of the ROIC, the fluence of
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Comparison of experimental data (in red) and MC simulation of thle

each irradiation run is about 7.7 x 10° cm~2. This fluence is
mandatory by the ESCC basic specification No 25 100 for
SEE [16]. For this reason, SEU and SEFI were measured
in the same time for each irradiation run. Even if the SEU
sensitivity was very well characterized (with very low statistic
error bar), it appears that data of SEFI measurements are weak
and could be completed by dedicated simulations as a function
of fluence.

Fig. 7 presents the calculated SEFI cross section by MC
simulation as a function of fluence. It integrates the evolution
of the statistical minimum/maximum error corresponding to
two times of the standard deviation (97% of confidence). The
simulation results show a similar SEFI sensitivity (between
1x107% and 4 x 10~° cm?) obtained for the same fluence used
during experimental tests (7.7 x 10° cm~2). The simulation
results confirmed the weak deposited fluence during experi-
mental data for a relevant quantitative evaluation of the SEFI
sensitivity of the ROIC. Considering the simulation results a
relevant fluence would be around 1 x 108 and 5 x 10° cm™2.

In the future projects, the radiation test plan of ROICs
developed by Sofradir will be updated. In addition to the
standard specification from ESCC (for SEU tests), a dedicated



run for SEFI measurement could be performed with high
fluence levels. This specific SEFI test plan will be developed
regarding preliminary simulations of this new SEFI modeling
approach. In this case of the robust IR detector, a relevant
fluence should reach 1 x 108 cm™2 for the highest LET. Even
if such increase in fluence is not representative of a given space
mission for earth orbits, it would improve the understanding of
SEFI in complete digital systems under a radiation constraint.

V. CONCLUSION

This paper presents a modeling approach of SEFI which
takes into account all the physical and electrical processes
from the radiation particle down to the event at the system
level. This paper was focused on the evaluation of SEFI
sensitivity by experimental and simulation analyses of an
ROIC designed by Sofradir for their IR image sensors. Rele-
vant correlations between simulation and experimental results
of SEFI cross sections for heavy ions were presented and
discussed. The relevance of the SEFI estimation is allowed
by the complete description of the device: layout, size, and
technology. The simulation results confirmed the strong SEFI
robustness of the ROIC at 57 K.

The SEFI modeling approach has presented promising
applications for radiation hardness assurance. Due to the need
to get as an input the complete description of the device (layout
and technology), this approach is relevant and useful for
designers for the preparation of future radiation tests. For rare
events such as SEFI, it allows obtaining a first sensitive level of
the device before radiation tests and defining potentially higher
fluence than the regular radiation standards with the aim to
reduce error bars if needed. Even if such increase in fluence
during radiation test is not representative of a given space
mission for earth orbits, it would improve the understanding
of SEFI mechanisms in complete digital systems under a
radiation constraint.

By definition, the SEFI evaluation defines the operability
rate of a given system. Other promising perspectives of such
SEFI modeling approach will be the operational evaluation of
an embedded system used in a given space integration platform
for various orbits.
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