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The flow of two immiscible liquids or fluids in bounded systems where confinement

geometry varies can lead to drop or bubble formation. This phenomenon has been

reported in the context of oil recovery and named snap-off, or exploited for mak-

ing emulsions, and then foams, by using microfluidic systems, namely microchannel

emulsification or step-emulsification. We report a comprehensive experimental inves-

tigation on such an emulsification process occurring at the end of a glass rectangular

tube filled with oil and immersed in a water bath. This allows to clearly visualize the

break-up event of the dispersed phase liquid finger at the capillary’s end. Below a

critical flow rate, the drop size varies slowly with the flow rate and it is linked to the

pinching time of the dispersed phase. A semi-empirical law that gives the resulting

drop size as a function of fluid and geometrical properties is proposed. However,

this feature is altered for an aspect ratio of the rectangular tube below 2.5 where

the forming drop hinders the counter flow of the continuous phase leading to larger

drops. Then, above a critical flow rate, or capillary number that weakly depends

on the viscosity ratio of the two liquids, the neck adopts a quasi-static shape well

accounted for by a model based on a Hele-Shaw flow. In that case, drop formation

is driven by gravity and a transition from a dripping regime to a jetting is observed

at higher flow rates. Monodisperse foam can also be formed by injecting air. While

the overall dynamics of bubble formation shares similarities with an incompressible

fluid, the bubble size or the critical capillary number do not follow the same scaling

laws.

∗ E-mail: Nicolas.Bremond@espci.fr
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I. INTRODUCTION

Surface tension driven flows are ubiquitous in nature [1]. Flows may be induced by sur-

face tension gradient, so called Marangoni flows, with the famous example of wine tears [2].

Liquid motion is also induced by capillary pressure gradient linked to interface curvature in-

homogeneity, where surface tension may be also time and scale dependent. Such phenomena

play a major role in liquid fragmentation, from atomization to emulsification [3]. Bounded

multiphase flows experience liquid break up, like in a porous medium in the context of oil

recovery applications [4, 5]. The interfacial curvature is imposed by the geometrical con-

finement of the pore throat that may lead to capillary pressure imbalance and finally the

snap-off of water immersed in oil, or vice versa. This phenomenon has been exploited in

the context of emulsification where the dispersed phase is pushed through a porous medium

immersed in a second immiscible phase, namely membrane emulsification [6–8]. Here, the

pores exhibits elongated shape and the drop size distribution is linked to the variation of

pores geometry. The development of microfabrication technologies led to a precise manufac-

ture of regular arrays of microchannels having a trapezoidal or rectangular shape, mimicking

pore structure while leading to homogeneous droplet size [9, 10]. This method for produc-

ing emulsions is known as microchannel emuslification or step-emulsification. Since then,

various modifications have been implemented, including a straight through geometry [11], a

co-flow of the continuous phase [12, 13], a variation of the microchannel’s height [14], width

[15] including an diverging shape [16] and even shunt channels [17]. Such a method is also

well suited for making monodisperse foams [18].

This strategy of emulsification offers an unique way to produce a large amount of homoge-

nous droplets. First, below a critical flow rate of the dispersed phase, droplet size is mainly

linked to the microchannel geometry and thus to their manufacturing quality [19]. Second,

it is straightforward to parallelize microchannels for enhancing the throughput [20]. Cali-

brated emulsion droplets find various applications as they can act as chemical/bio-reactors

where molecules or cells are encapsulated [21], or can be used to create functional particles

[22].

Here, we study the drop formation that occurs at the end of a glass capillary having a

rectangular cross section. After introducing the materials and methods used in this work, the

features of the drop formation dynamics as a function of fluid properties are reported. The
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Figure 1. Front view of a rectangular glass capillary having a height h of 96 µm and a width w of

1050 µm.

influence of the capillary geometry, including the aspect ratio, is also investigated. These

features include the characteristic timescale of drop formation, the drop size and the critical

flow rate above which the snap-off solely driven by surface tension is stopped. A model of the

quasi-static shape of the neck above the transition is then detailed. The peculiar dynamics

of bubble formation for which gas compressibility comes into play is finally studied.

II. MATERIALS AND METHODS

The continuous aqueous phases are prepared from ultra pure water (Milli-Q). A surfac-

tant, sodium dodecyl suflate (SDS, Sigma-Aldrich), is used at a concentration of 1 wt%.

The viscosity of the continuous phase η0 is tuned by adding a low molecular weight poly-

mer, polyethylene glycol (PEG 3350, Sigma-Aldrich), at various concentrations up to 35 wt

% that corresponds to η0 equal to 26 mPa s at 25◦C [23]. The dispersed phase is either

fluorocarbon oil (3M Fluorinert), silicone oil (Dow Corning) purchased from Sigma-Aldrich,

or air. Their bulk properties are reported in Tab. I. The corresponding interfacial tension γ

with the aqueous solution of SDS at a concentration above the critical micellar concentra-

tion is given in Tab. I. The interfacial tension is measured by the pending drop technique

(SA100, Krüss). We note that contrary to other microfluidic techniques [24] the wetting of

the dispersed phase onto the confining walls should be limited as it can induce a failure of

the emulsification process [25, 26]. Therefore, choosing the right surfactant and/or modify-

ing the wall properties is a crucial step for using such an emulsification process [27]. Here,

the glass capillaries are initially cleaned with an oxygen plasma cleaner (FEMTO, Diener

electronic), leading to a complete wetting of water on the glass wall in presence of SDS (Fig.

S1 [28]).

The rectangular glass capillaries are purchased from Vitrocom. The height h varies from
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ηi (mPa s) ρi (kg/m3) γ (mN/m)

Fluorocarbon oils FC-3283 1.4 1820 18.8

FC-40 4.1 1850 18.8

FC-40a 4.1 1850 50.5

FC-70 24 1940 19.4

Silicon oils SO5 4.6 960 10.4

SO10 10 1000 12.0

SO20 20 950 12.0

SO50 48 960 11.0

SO100 96.5 965 11.7

SO100a 106 1006 9.2

SO500 485 960 12.0

SO1000 970 970 12.0

Air 0.018 1.18 35

Table I. Properties of the dispersed phases at 25◦C where γ is the interfacial tension between the

oils and an aqueous solution of SDS at 1 wt % expected for FC40a where the aqueous phase is free

of surfactant. The value of γ for SO10 has been extrapolated from the necking time (see text for

details).

20 µm to 200 µm and the width w from 200 µm to 2000 µm, with an aspect ratio w/h of about

10 or 20. They are diced with the help of a ceramic cleaving stone (Polymicro Technologies).

A snapshot of a capillary cross section is shown in Fig. 1. The walls are not perfectly parallel

and may vary from capillary to capillary. For smaller aspect ratios, a channel is made by

gluing glass plates having a thickness of 1 mm. Once selected, the glass capillary is glued

on a glass plate by keeping one extremity outside of the plate. The other extremity is used

for infusing the phase to be dispersed by gluing a syringe needle that fits into a plastic tube

connected to a glass syringe. The flow is then controlled with the help of a syringe pump

(PhD Ultra, Harvard Apparatus). The glass plate is hold above a square glass cuvette filled

with the continuous phase with a 3-ways micro-control stage. The tip of the glass capillary

is then immersed in the water bath and illuminated with a LED panel (SLLUB backlight,



5

x

t(b)
ts tb

xe

�n

-0.5

-314 -190 -165 -120

-75 4.5 79

(a)

x

y

d

x

z

-500 -400 -300 -200 -100 0
0

100

200

300

400

500

t-tb (ms)

r
(μ
m
)

rxy unstable

rxz unstable

rxy stable

rxz stable

(d)

rxy

(c) y

tts tb

Figure 2. (a) Time sequence showing the drop formation from a rectangular glass capillary observed

from both sides (w = 1000 µm, h = 100 µm). Time is indicated in ms and t = 0 matches with

the time when the neck breaks up. Gravity is pointing downwards, along x direction. (b) Spatio-

temporal diagram built along the x direction in the midline of the channel from which characteristic

timescales of drop formation are evaluated. (c) Spatio-temporal diagram built along the y direction

at the location of the neck break-up. (d) Time evolution of the radii of curvature rxy and rxz

evaluated during a period of drop formation, the reference time being taken at break-up, i.e. at tb.

The time period when the meniscus is stable is indicated by full symbols and the unstable phase

by empty ones.

Phlox). The dynamics of drop formation is observed with a high speed camera (FastCam

SA3, Photron) mounted on a macro zoom microscope (MVX10, Olympus) set horizontally.

Alternatively, the whole glass plate is immersed in a larger cuvette for pointing upwards the

rectangular tube’s extremity. We did not notice any modification of the droplet formation

dynamics in such a configuration.

III. RESULTS AND DISCUSSION

A time sequence of drop formation at a capillary’s end seen from both sides is shown in

Fig. 2 (a) (see also Movie S1). From these images, the radii of curvature, rxy and rxz, at the
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apex of the liquid finger in the plan {x, y} and {x, z} can be measured. They are reported

in Fig. 2 (d) as a function of time. Before reaching the capillary’s extremity, the shape

of the finger tip is nearly circular along both directions, the radii being mainly imposed

by the channel geometry with a correction du to the viscous flow [29]. As revealed on the

spatiotemporal diagram shown in Fig. 2 (b), the corresponding trajectory of the finger’s tip

is initially straight, i.e. the apex travels at a constant velocity. Then, at a distance from

the edge of the order of the capillary’s height and reached at a time noted ts, the finger’s

tip accelerates. The sign of the curvature Cxy of the meniscus in the {x, y} plan is inverted

at a location close to the edge, a necking phase is taking place. As revealed by the spatio-

temporal diagram built along the y direction at the location of the neck break-up (Fig. 2 (c)),

the neck’s width decreases for t > ts, seems to reach a plateau and finally collapses in a

few ms when the width is of the order of the channel’s height. The overall dynamics shares

similarities with other microfluidics situations where the vertical confinement leads to a

2D collapse [30], stable against perturbation of the interface [31], and a final 3D stage of

the neck break-up ruled by the classical Rayleigh-Plateau instability [3]. The confinement

release triggers the pinch-off of the finger tip. Indeed, in a quasi-static approach, where the

variations of liquid pressure due to the viscous flow are neglected, the mean curvature of the

meniscus C = Cxy + Cxz is constant [32]. When the finger’s apex is out of the rectangular

tube, the interface can now expand in the z direction leading to an increase of rxz and thus

a decrease of Cxz. This phase is named unstable in Fig. 2 (d). On the other hand, the radius

in the other plan, rxy, first decreases, then increases and becomes equal to rxz. An inflating

drop connected to liquid finger is thus formed. As discussed later on, the pressure drop in

the neck due to viscous flow is not high enough to balance the variation of the capillary

pressure induced by the variation of the interfacial curvature. As a consequence, the neck

continues to shrink and finally breaks up at a time tb. One can then define a necking time

τn = tb−ts. The necking phase results in the formation of a drop having a diameter d. Then,

the meniscus shape relaxes to a quasi circular shape before being pushed again towards the

capillary extremity where the emulsification process is repeated.

Let us now discuss in more detail how the channel geometry and the liquid properties

impact on such an emulsification process. The evolution of the drop size along with the

necking time are first reported in Fig. 3 (a) as a function of the flow rate of a silicone oil

(SO5). The height of the glass capillary is 50 µm and has a width ten times larger. The drop
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Figure 3. (a) Evolution of the drop diameter d (•) and the necking time τn (◦) as a function of

the flow rate. The height of the capillary is 50 µm, the width is 500 µm and the dispersed phase

is the silicone oil SO5. The continuous line corresponds to Eq. 1. (b) Variation of the drop size

d0 with the height h of the capillary. The dispersed phase is the silicone oil SO5. The continuous

line is a purely linear fit with a slope of 4.4. Inset: Drop size normalized by the capillary height as

a function of the viscosity ratio ηi/ηo for silicone oils with capillaries having an aspect ratio w/h

equal to 2 (2) , 11 (•) and 20 (◦), fluorocarbon oils with w/h = 11 (N).

size is initially constant and equal to d0 = 220 µm up to q = 100 µL/h. Then d increases

and reaches a value of about 250 µm at q = 500 µL/h. The neck is stabilized above this flow

rate as discussed later on. The corresponding necking time is almost constant, it decreases

from 30 ms to 25 ms over the whole range of flow rates. The dependence of drop size with

the flow rate can then be evaluated from an inflation mechanism where the volume of the

drop V = πd3/6 is equal to a minimal volume V0 = πd30/6 plus the volume injected at a flow

rate q during a time τ0 proportional to τn. This leads to an estimation of the drop size as

d = d0

(
1 +

6qτ0
πd30

)1/3

. (1)

The evolution of d given by Eq. 1 correctly predicts the experimental data as shown in

Fig. 3 (a) once the characteristic size d0 and timescale τ0 are adjusted. Here τ0 is equal to

16 ms, which is a bit more than half the average value of τn.

As reported in Fig. 3 (b), the minimal drop size d0 is proportional to the tube’s height h

and, for w/h ∼ 10, is given by d0 = 4.4h. The drop size d0 is independent of the viscosity
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Figure 4. Characteristic timescale of drop formation τ0 as a function of (a) the inner viscosity ηi

for two aspect ratios w/h equal to 11 (•) and 20 (◦) with ηo = 1 mPa.s and h = 50 µm, (b) the

outer viscosity with ηi = 4.65 mPa.s and h = 50 µm, (c) the interfacial tension γ for silicon oil (•)

and fluorocarbon oil (N) with h = 50 µm, (d) the height h with ηi = 4.65 mPa.s and ηo = 1 mPa.s.

The continuous lines represent linear functions or is proportional to 1/γ in (c). (e) Characteristic

timescale τ0 versus the empirical scaling law where a = 375, α = 4.7 × 10−2, β = 0.33. The

symbols represent data sets with the same fluid properties and tube geometry as in Fig. 3 (b). The

continuous line is a purely linear function with a prefactor of 1. Inset: Correlation between the

average necking time τn and τ0. The continuous line is a purely linear fit with a prefactor of 1.36.

of both phases and the interfacial tension as shown in the inset of Fig. 3 (b). The overall

data at this aspect ratio which is 10.8 ± 0.3 gives a drop size d0 = (4.5 ± 0.2)h. We note

that we did not find a marked increase of d0 for low viscosity ratios as observed earlier [33].

On the other hand, as reported in the inset of Fig. 3 (b), d0 slightly depends on the tube’s

width. The drop size is indeed about 5 times the tube’s height when w/h = 20. This is in

accordance with the influence of the flow rate ratio for a co-flow situation [34]. Even though

the aspect ratio is not varied over a wide range, the following relationship between drop size

and tube’s geometry can be estimated,

d0 = h(3.9 + 0.05
w

h
). (2)

As discussed in a previous investigation [19], the characteristic timescale of drop formation



9

τ0 is a function of channel geometry and fluid properties. As reported in Fig. 4, τ0 is a purely

linear function of the inner phase viscosity ηi. The coefficient of proportionality increases

with the aspect ratio w/h (Fig. 4 (a)). In addition, it is a linear function of the outer

viscosity ηo (Fig. 4 (b)). The necking phase being driven by the interfacial tension, τ0 is

found to be inversely proportional to γ (Fig. 4 (c)). Finally, we notice that τ0 increases

linearly with the tube’s height h (Fig. 4 (d)). The necking dynamics is solely ruled by a

competition between interfacial tension and viscous dissipation linked to the confinement

geometry. The characteristic timescale of the necking process is empirically found to be

proportional to a time defined by a capillary velocity γ/ηi and a characteristic length scale

h corrected by the viscosity ratio and the aspect ratio as

τ0 = a

(
1 + α

ηo
ηi

)(
1 + β

w

h

) ηih
γ
. (3)

The constants a, α and β are adjusted to 375, 0.047 and 0.33, respectively (Fig. 4 (e)). We

notice that a point does not collapse onto the master curve in Fig. 4 (e). This value of τ0

corresponds to a rectangular channel having an aspect ratio of 2. The experimental necking

time is longer than the empirical value given by Eq. 3. This discrepancy is discussed in the

next paragraph. The correlation between τ0 and the necking time as defined in Fig. 2 (b) is

also reported in Fig. 4 (e). Both times are proportional with a coefficient of proportionality

equal to 1.36, whatever the aspect ratio.

By combining Eq. 1, 2 and 3, we finally end up with a semi-empirical law for the drop size

as a function of the flow rate, the liquid properties and the tube dimensions,

d = h(3.9 + 0.05
w

h
)

(
1 + 8.4

qηi
γh2

(
1 + 4.7× 10−2ηo

ηi

)(
1 + 3.3× 10−1w

h

))1/3

. (4)

The influence of the aspect ratio on the necking dynamics is reported in Fig. 5 (a). The

necking time is almost constant for large w/h and grows below a critical ratio of 2.5. Two

snapshots of the neck before breakup are also shown for w/h equal to 2 and 4. We notice that

the location of the neck pinch-off is close to the step for a ratio larger than the critical one

and further upstream for a smaller aspect ratio. In that case, when necking takes place, the

drop is larger than the channel’s width. The drop hinders the counter flow of the continuous

phase and thus delays the collapse dynamics of the neck. Necking will be induced as soon as

there is a curvature gradient [32] which is alway the case at the extremity of a rectangular

channel whatever the aspect ratio. This has also been recently verified for a round capillary
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Figure 5. (a) Evolution of the necking time τn as a function of the aspect ratio h/w for SO20

along with two snapshots prior to breakup. The scale bar is 1 mm. (b) Growth of the normalized

drop size d/d0 as function of the flow rate ratio q divided by the critical flow rate ratio qc at the

transition for two aspect ratios, 2 (square symbol) and 10 (round symbols) and various formulation

and capillary geometries. The width and the height of the rectangular capillaries are indicated

in µm in the legend. The lines correspond to Eq. 5 for b equal to 0.45 (continuous line) and 4.8

(dashed line).

[35, 36]. According to Eq. 1, this delay has a direct impact on the resulting drop size. To

compare two aspect ratios, the drop size normalized by the minimal drop size d0 is plotted

in Fig. 5 (b) against the flow rate divided by the critical flow rate qc above which larger

drops are formed. The link between qc and τ0 is discussed below. The normalized drop size

is now given by

d

d0
=

(
1 + b

q

qc

)1/3

, (5)

where the constant b is equal to 0.45 for w/h = 10 and to 4.8 for w/h = 2. It is therefore

advantageous to work with an aspect ratio larger than 2.5 for limiting the influence of the

flow rate on the resulting drop size (Eq. 4). Interestingly, all the data obtained for various

fluid properties collapse on a single curve. This indicates a direct relationship between the

critical flow rate and the characteristic timescale of drop formation as previously suggested

[19]. This correlation is reported in Fig. 6 (a) for all the experimental conditions. The
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Figure 6. (a) Correlation between the critical flow rate qc above which the meniscus is stabilized

by the flow and the flow rate built with the characteristic timescale τ0 and drop size d0. The solid

line is a linear fit with a coefficient of proportionality equal to 0.45. Inset: critical capillary number

Ca times the aspect ratio of the rectangular tube w/h as a function of the viscosity ratio ηi/ηo.

The oblique line corresponds to a power law of 0.2. The symbols represents data sets with the

same fluid properties and tube geometry as in Fig. 3 (b). (b) Streamlines in the continuous phase

revealed by micrometer size particles when the tip is approaching the tube’s end and when the neck

is dynamically stabilized. The images are a superposition of 100 snapshots taken every millisecond.

The width of the capillary is 1000 µm.

critical flow rate qc is proportional to the flow rate built with d0 and τ0, i.e. qc = bπd30/6τ0.

The constant of proportionality is found to be equal to 0.45 for aspect ratios of 10 and 20.

We remind that the data point represented by an empty square symbol, which does not

gather with the other data, corresponds to an aspect ratio of 2, i.e. below the critical one.

As previously mentioned, the critical flow rate depends on the fluid properties and channel

features. The transition occurs at critical capillary built with the inner phase properties,

i.e. Ca = ηiq/γhw. As discussed later on, the transition from small to large drop formation

regime takes place when the viscous pressure drop in the neck is enough to balance the

capillary pressure variation linked to the curvature of the interface [34]. The influence of the

aspect ratio is recovered by considering the fluid velocity at the neck that has a dimension
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of the order of h at the transition, i.e. Ca∗ = Ca× w/h. Such a modified capillary number

is reported in Fig. 6 (a) as a function of the viscosity ratio ηi/ηo. The transition occurs

for Ca∗ = 0.019(ηi/ηo)
0.2. This behavior suggests the the counterflow of the continuous

phase should be taken into account. Streamlines in the continuous phase can be visualized

by adding micrometer size particles in the water. Two examples are shown in Fig. 6 (b)

when the finger tip is approaching the capillary’s end and when the neck is stabilized for

a capillary number above the transition. While the flow is initially unidirectional in the

rectangular tube, we observe the formation of two vortices beside the meniscus. Such a flow

may be at the origin of the slight dependence of the critical capillary number on the viscosity

ratio. The description of the meniscus shape beyond the transition of emulsification regime,

for a quasi-steady shape, is now given by following the analysis of Li and coworkers[34]

but without considering a flow of the outer phase. Far from the capillary’s end, the flow is

assumed to be similar to a Poiseuille flow in a tube having a rectangular cross section wm×h

where wm ∼ w is the width of the meniscus. When wm >> h, the flow rate q is given by

q = −h
3w

12ηi

dpi
dx

(6)

where pi is the pressure of the inner phase which is here assumed to depend only on x, i.e.

for weak variation of the velocity direction that is principally along x axis. This parallel

flow is illustrated in Fig. 6 (b) for the outer phase before the meniscus’ tip reaches the step

location. The inner pressure is linked to the outer pressure po through the capillary pressure,

pi(x) = po(x) + γC (7)

where C is the curvature of the meniscus at a location {x, ym}. When (dym/dx)
2 << 1, the

curvature is approximated by

C = 2

h
− d2ym

dx2
. (8)

From Fig. 6 (b), we clearly see that the quasi-steady shape of the meniscus is accompanied

by a recirculating flow of the outer phase on each side of the neck. An exact calculation of

the pressure field related to this complex flow feature would required numerical simulations.

However, for large velocity contrast, i.e. for ηi >> ηo, one can assume that the viscous

pressure drop mainly occurs in the inner phase. Therefore, by letting po constant, the

evolution of the meniscus’ width is directly linked to the variation of pi given by Eq. 6. This
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assumption leads to the following equation for ym

ym
d3ym
dx3

=
6ηiqi
γh3

(9)

Using the width w as the characteristic length scale and noting the variables ỹm = ym/w

and x̃ = x/w, the dimensionless form of Eq. 9 is

ỹm
d3ỹm
dx̃3

= k (10)

where k = 6(w/h)2Ca and Ca = ηiqi/whγ is the capillary number. The integration of Eq. 10

leads to

ỹm
d2ỹm
dx̃2

− 1

2

(
dỹm
dx̃

)2

= kx̃+ c, (11)

where c is a constant of integration. By choosing the location x̃ = 0 where ỹm reaches its

maximum value, i.e. for ỹm = 1/2 and dỹm/dx̃ = 0, the constant c is linked to the initial

meniscus curvature in the {x, y} plan, i.e.

c =
1

2

d2ỹm
dx̃2

∣∣∣
x̃=0

. (12)

Numerical resolutions of Eq. 11 are compared in Fig. 7 to experimental meniscus shapes

for silicone oils in water for different oil viscosities and at various flow rates, and thus different

capillary numbers. The constant c is adjusted such that the minimum of ym of the theoretical

meniscus matches with the experimental one. We notice that the value of c is an increasing

function of Ca. The first picture for each oil corresponds to the capillary number at the

transition from unstable meniscus to quasi-static meniscus. For larger capillary numbers,

above the transition, the neck size grows. Meanwhile, the location where the neck breaks

is moving downstream, out of the glass capillary. For much larger flow rates, a planar jet

is formed and breaks via the growth of propagating capillary waves, like for the dripping to

jetting transition at the exit of a cylindrical tube [37] (see Movie S1).

For the lowest oil viscosity of 4.65 mPa.s (Fig. 7 (a)), the model does not properly describe

the meniscus shape which is set back from the experimental one, whatever the capillary

number. However, for a larger viscosity of 48 mPa.s (Fig. 7 (b)), the discrepancy is less

pronounced and even cancel out for the largest capillary numbers. Then, for an oil viscosity

of about 100 mPa.s (Fig. 7 (b)), the shapes predicted by the model are in good agreement

with the observed ones for the whole Ca range. The observed discrepancy for the lowest

viscosities might be attributed to the viscous dissipation in the outer phase, and thus to an
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2.7 9.8 19.5 39(a)

4.2 12 24 48(b)

5.7 14.4 26 51(c)

Figure 7. Quasi-static shapes of the meniscus for increasing flow rates, and thus capillary number

Ca, and various viscosities ηi. The value of 103×Ca is indicated on each picture and ηi is equal to

(a) 4.65 mPa.s, (b) 48 mPa.s, (c) 106 mPa.s. The height and the width of the glass capillaries are

about 100 µm and 1000 µm, respectively. The white continuous lines are the equilibrium shapes

predicted by the integration of Eq. 11.

extra source of pressure drop, which is not taken into account here. For an intermediate

oil viscosity, increasing the flow rate reduces the volume occupied by the outer liquid and

thus its influence on the pressure. As a consequence, the quasi-static shape of the meniscus

is well predicted for higher flow rates (Fig. 7 (b)). The extra pressure drop due to the

entrainment flow of the continuous phase (Fig. 6 (a)) can be incorporated in an effective

viscosity of the inner phase that grows when the outer phase viscosity increases. The static

shape of the meniscus for low viscosity ratios is indeed recovered when a higher effective

viscosity is used for evaluating the pressure drop in Eq. 6. As a consequence, the transition

is reached for a smaller flow rate, or velocity, corresponding to a smaller critical capillary



15

1 10 100 1000
6

7

8

9

10

11

12
h=100, i

h=100, ii

h=100, iii

h=50, iii

q (ml/h)

d
/h

1 10 100 1000
0

1

2

3

4

5

6

q (ml/h)

τ
n

(m
s)

(a) (b)

syringe

needle with Luer taper

tube
glass capillary

glass plate

(c)

i

ii

iii

-30.2 -5.8 -3.8 -2.8

-1.4 -0.1  1.6  6.6

Figure 8. (a) Time sequence showing the bubble formation from a rectangular glass capillary

(w = 1000 µm, h = 100 µm). Time is indicated in ms and t = 0 matches with the time when the

neck breaks up. Gravity is pointing downwards. The injection system is case i sketched in (c). (b)

Evolution of the bubble’s diameter d divided by the height h as a function of the flow rate q for

different injection conditions. Inset: Corresponding evolution of the necking time τn as a function

of q. (c) Schematics of the different injection systems (see text for more details).

number (Fig. 6 (a)). A more elaborated model would be necessary to predict the exact

scaling dependence.

We finally investigate such a phenomenon when the phase to be dispersed is air. A time

sequence of bubble formation at the end of a rectangular tube is reported in Fig. 8 (a). The

overall dynamics shares similarities when oil, an immiscible liquid, is used (Fig. 2 (a)) but

two main differences are noticed. First, after the necking phase, the finger’s tip recedes much

further upstream. Second, the bubble size is almost as large as the tube’s width. As shown

in Fig. 8 (b, case i), the bubble’s diameter is about 9 times the capillary’s height for low

flow rates. The bubble size slightly decreases and reaches a minimum for q ∼ 10 mL/h and

then grows along a similar inflation mechanism as previously discussed. Indeed, for large

flow rates, the evolution of d is well described by Eq. 1, but with a characteristic time τ0

which is almost 3 times larger than the one predicted by Eq. 3. Also, the necking time τn is
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a weak decreasing function of q and it is here of the order of 4 ms for h = 100 µm.

These different features are linked to the compressibility nature of the dispersed phase.

Indeed, the volume of air is linked to the pressure that here varies suddenly when the

finger’s tip reaches that capillary’s end. Let us make the analogy with a reservoir containing

a gas under pressure ps, here represented by the syringe of volume Vs, that is connected

to the external pressure pe at time t = 0 through a tube of length L characterized by a

hydrodynamic resistance Rt. The corresponding mass flow rate is [38]

dm

dt
= −ρgL

Rt

dp

dx
, (13)

where m is the mass of gas, ρg the volumetric mass density of gas and x is the coordinate

along the tube’s axis. The density depends on the pressure p via the perfect gas law,

ρg = Mp/RT , where M is the gas molar mass, R the universal gas constant and T the

temperature. The reservoir pressure is thus ruled by

dps
dt

= − 1

2RtVs

(
p2s − p2e

)
. (14)

If the pressure difference δp between the reservoir and the surrounding medium is small, one

gets the following law for the gas pressure release

δp(t) = δp(0)e−tpe/RtV s, (15)

and the corresponding volumetric gas flow rate qg at the exit is simply

qg =
δp(0)

Rt

e−t/τ . (16)

The pressure release is similar to the electric discharge of a capacitor through a resistance

with a characteristic time τ equal to RtV s/pe. The volume of air prior to the capillary’s

end thus acts as a capacitor that leads to an increase of the bubble size during its forma-

tion through an extra gas flow qg. The bubble formation is more complex since boundary

conditions and flow properties are time dependent. Indeed, Pe is linked to the finger’s tip or

bubble curvature that depends on time but also on the surface tension that may be dynamic

since surfactants are present and the interface area is subjected to a fast stretching. Also,

the gas boundary layer sets up inside the glass capillary on a time scale h2/νg, where νg is

the cinematic viscosity, that might be no negligible as compared to the necking time during

which the bubble is formed. For h = 100 µm, this time is 0.63 ms and τn is 4 ms. However,

this simple analogy is enough to rationalize the observed trends.
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Three injection cases have been considered where the glass capillary length is kept con-

stant and set to 22 mm. The first one, named i in Fig. 8 (b) and (c), corresponds to the one

used for oils. The glass syringe has a volume of 5 ml and is connected to the glass capillary

through a cylindrical tube having an inner diameter of 810 µm and a length of 0.5 m via a

needle having a Luer taper glued on a glass plate. As previously mentioned, the bubble’s

diameter is about 9 times h at low flow rates. For the second one, named ii (Fig. 8 (c)),

the cylindrical tube is replaced by a 6 m long tube having an inner diameter of 100 µm.

The hydrodynamic resistance of this tube is thus increased by about 360. In that way, the

syringe volume is isolated from the rest of the injection system. The only volume that plays

the role of a capacitor is the needle one, including the Luer taper, and the glass capillary.

This volume is 0.135 ml. The capacitance is thus decreased, leading to a faster discharge

time τ and thus lower gas flow rate (Eq. 16). As a consequence, the bubble size is around

7.8× h for low flow rates, while the necking time is similar (Fig. 8 (b) inset). For the third

case, named iii (Fig. 8 (c)), the Luer taper is cut leading to a reduced volume of 0.026 ml.

Again, the size is further decreased, down to about 7.1 × h for low q and τn remains the

same. We note that this value is still larger than the one for oils, which is 4.5. If now a

thinner rectangular tube is used, more precisely for h = 50 µm, the bubble diameter for low

flow rates is 7.2× h. In addition, the necking time is two times shorter that for h = 100 µm

(Fig. 8 (b) inset). These features are in accordance with the experimental scaling laws found

for oils (Eq. 2 and 3).

We did not manage to evaluate the critical flow rate above which the neck is stabilized by the

flow when a long tube is used. Indeed, this latter introduces a too high pressure loss, above

the working range of this injection system. On the other hand, for the injection system i, a

critical flow rate of (1000 ± 200) mL/h could be measured. This corresponds to a critical

capillary number times the aspect ratio of 0.014±0.003 to be compared with the estimation

of 0.009 given by the empirical law found with oils (Fig. 6 (a) inset). In addition, we notice

oscillations of the neck with large amplitude before it breaks that might be the result of

a combination of low inertia and compressibility (see Movie S2). The transition features

seems peculiar for air and further investigations are required to fully map the step-foaming

dynamics.
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IV. CONCLUSION

A rectangular glass tube is an efficient tool for making emulsion droplets at one of its

extremity as well as for observing the dynamics of emulsification. This allowed us to ex-

tensively quantify the role played by the fluid properties and the tube geometry on such a

process. Three regimes of drop production are observed. In a first regime, drop formation

results from a competition between interfacial tension and viscous dissipation. This regime

is usually named step-emulsification. In that regime, the drop size is governed by an inflation

mechanism linked to a characteristic timescale of break-up, a necking time, and the flow rate

of the dispersed phase. The necking time experiences a strong increase for an aspect ratio

of the rectangular tube smaller than 2.5. This slower dynamics is attributed to a hindrance

of the counter flow of the continuous liquid due to the drop itself during its formation. As

a consequence, larger drops are formed for small aspect ratios. A semi-empirical law of the

drop size as a function of the flow rate, the liquid properties and the tube dimensions for

w/h > 2.5 is given. Above a critical capillary number, the necking of the liquid finger is

stopped and a quasi-static shape takes place. Such a shape is well accounted for by a model

based on a Hele-Shaw flow for an inner viscosity larger than 5 mPa.s. In this model, the

viscous pressure drop balances the capillary pressure variation linked to the shape of the

interface between the two liquids. However, a more complete model is needed for taking into

account the flow in the continuous phase. Indeed, the critical capillary number above which

the meniscus adopts a quasi-static shape is shown to be a function of the viscosity ratio.

In that regime, the drops are then formed when other forces come into play, like gravity

or shear if the continuous phase is under stirring. Then, by increasing the flow rate, and

thus inertia, the drop formation undergoes a classical dripping to jetting transition where

the capillary instability becomes convective. A few experiments have been performed with

air as the dispersed phase. While sharing common features with the emulsification process,

the dynamics of bubble formation does not match exactly with the droplet one. First, for a

given aspect ratio of the tube, the bubble size is about twice larger. Then, the necking time

is found to be almost three times larger than expected with an immiscible liquid. Finally,

the transition between the two first regimes occurs at a higher capillary number. These pre-

liminary results open thus interesting future works on such a process when a compressible

fluid is used.



19

V. ACKNOWLEDGEMENT

This work is supported by a public grant overseen by the French National Research

Agency (ANR) as part of the Investissements d’Avenir program (Reference No. ANR-10-

NANO-02).

[1] P. G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena:

Drops, Bubbles, Pearls, Waves (Springer, 2004).

[2] J. B. Fournier and A. M. Cazabat, “Tears of wine,” EuroPhys. lett. 20, 517 (1992).

[3] J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71, 036601 (2008).

[4] J. Roof, “Snap-off of oil droplest in water-wet pores,” Soc. Petrol. Engin. J. 10, 85 (1970).

[5] R. Lenormand, C. Zarcone, and A. Sarr, “Mechanisms of the displacement of one fluid by

another in a network of capillary ducts,” J. Fluid Mech. 135, 337 (1983).

[6] T. Nakashima, M. Shimizu, and M. Kukizaki, “Particle control of emulsion by membrane

emulsification and its applications,” Adv. Drug Delivery Rev. 45, 47 (2000).

[7] S. M. Joscelyne and G. Tragardh, “Membrane emulsification - a literature review,” J. Membr.

Sci. 169, 107 (2000).

[8] G. T. Vladisavljevic and R. A. Williams, “Recent developments in manufacturing emulsions

and particulate products using membranes,” Adv. Colloid Interface Sci. 113, 1 (2005).

[9] T. Kawakatsu, Y. Kikuchi, and M. Nakajima, “Regular-sized cell creation in microchannel

emulsification by visual microprocessing method,” J. Am. Oil Chem. Soc. 74, 317 (1997).

[10] G. T. Vladisavljevic, I. Kobayashi, and M. Nakajima, “Production of uniform droplets using

membrane, microchannel and microfluidic emulsification devices,” Microfluid. Nanofluid. 13,

151 (2012).

[11] I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, and H. Fukita, “Silicon array of elongated

through-holes for monodisperse emulsion droplets,” AIChE J. 48, 1639 (2002).

[12] C. Priest, S. Herminghaus, and R. Seemann, “Controlled electrocoalescence in microfluidics:

Targeting a single lamella,” Appl. Phys. Lett. 89, 134101 (2006).

[13] F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary, H. Willaime, P. Tabeling, B. Cabane,

and P. Poncet, “Monodisperse colloids synthesized with nanofluidic technology,” Langmuir 26,



20

2369 (2010).

[14] R. Dangla, S. C. Kayi, and C. N. Baroud, “Droplet microfluidics driven by gradients of con-

finement,” Proc. Natl. Acad. Sci. USA 110, 853 (2013).

[15] K. van Dijke, G. Veldhuis, K. Schroen, and R. Boom, “Parallelized edge-based droplet gener-

ation (edge) devices,” Lab Chip 9, 2824 (2009).

[16] E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner, and D. A. Weitz,

“Robust scalable high throughput production of monodisperse drops,” Lab Chip 16, 4163

(2016).

[17] A. G. Håti, T. R. Szymborski, M. Steinacher, and E. Amstad, “Production of monodisperse

drops from viscous fluids,” Lab Chip 18, 648 (2018).

[18] M. Stoffel, S. Wahl, E. Lorenceau, R. Höhler, B. Mercier, and D. E. Angelescu, “Bubble

production mechanism in a microfluidic foam generator,” Phys. Rev. Lett. 108, 198302 (2012).

[19] N. Mittal, C. Cohen, J. Bibette, and N. Bremond, “Dynamics of step-emulsification: From a

single to a collection of emulsion droplet generators,” Phys. Fluids 26, 082109 (2014).

[20] I. Kobayashi, Y. Wada, K. Uemura, and M. Nakajima, “Microchannel emulsification for mass

production of uniform fine droplets: integration of microchannel arrays on a chip,” Microfluid.

Nanofluid. 8, 255 (2010).

[21] A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S.

Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and

biology,” Angew. Chem., Int. Ed. 49, 5846 (2010).

[22] J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based

materials assisted by droplet-based microfluidics,” Small 7, 1728 (2011).

[23] P. Gonzalez-Tello, F. Camacho, and G. Blazquez, “Density and viscosity of concentrated aque-

ous solutions of polyethylene glycol,” J. Chem. Eng. Data 39, 611 (1994).

[24] C. Cohen, R. Giles, V. Sergeyeva, N. Mittal, P. Tabeling, D. Zerrouki, J. Baudry, J. Bibette,

and N. Bremond, “Parallelised production of fine and calibrated emulsions by coupling flow-

focusing technique and partial wetting phenomenon,” Microfluid. Nanofluid. 17, 959 (2014).

[25] T. Kawakatsu, G. Tragardh, C. Tragardh, M. Nakajima, N. Oda, and T. Yonemoto, “The effect

of the hydrophobicity of microchannels and components in water and oil phases on droplet

formation in microchannel water-in-oil emulsification,” Colloids Surf., A 179, 29 (2001).



21

[26] M. L. Eggersdorfer, H. Seybold, A. Ofner, D. A. Weitz, and A. Studart, “Wetting controls of

droplet formation in step emulsification,” Proc. Natl. Acad. Sci. USA 115, 9479 (2018).

[27] K. Schroën, M. Ferrando, S. de Lamo-Castellví, S. Sahin, and C. Güell, “Linking findings in

microfluidics to membrane emulsification process design: the importance of wettability and

component interactions with interfaces,” Membranes 6, 26 (2016).

[28] See Supplemental Material at [URL will be inserted by publisher] for visualizing the non-

wetting condition of oils on glass surface as well as movies showing drops or bubbles formation.

[29] C. W. Park and G. M. Homsy, “Two-phase displacement in hele shaw cells - theory,” J. Fluid

Mech. 139, 291 (1984).

[30] P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup

in confined geometries: A route to monodisperse emulsions,” Phys. Rev. Lett. 94, 164501

(2005).

[31] B. Dollet, W. van Hoeve, J. P. Raven, P. Marmottant, and M. Versluis, “Role of the channel

geometry on the bubble pinch-off in flow-focusing devices,” Phys. Rev. Lett. 100, 034504

(2008).

[32] R. Dangla, E. Fradet, Y. Lopez, and C. N. Baroud, “The physical mechanisms of step emulsi-

fication,” J. Phys. D: Appl. Phys. 46, 114003 (2013).

[33] K. van Dijke, I. Kobayashi, K. Schroen, K. Uemura, M. Nakajima, and R. Boom, “Effect

of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification,”

Microfluid. Nanofluid. 9, 77 (2010).

[34] Z. Li, A. M. Leshansky, L. M. Pismen, and P. Tabeling, “Step-emulsification in a microfluidic

device,” Lab Chip 15, 1023 (2015).

[35] S. Barkley, E. R. Weeks, and K. Dalnoki-Veress, “Snap-off production of monodisperse

droplets,” Eur. Phys. J. E 38, 138 (2015).

[36] S. Barkley, S. J. Scarfe, E. R. Weeks, and K. Dalnoki-Veress, “Predicting the size of droplets

produced through laplace pressure induced snap-off,” Soft Matter 12, 7398 (2016).

[37] C. Clanet and J. C. Lasheras, “Transition from dripping to jetting,” J. Fluid Mech. 383, 307

(1999).

[38] H. N. Og̃uz and A. Prosperetti, “Dynamics of bubble growth and detachment from a needle.,”

J. Fluid Mech. 257, 111 (1993).


