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Implicit Statistical Learning of Language
and Music

Bénédicte Poulin-Charronnat  & Barbara Tillmann 
LEAD – CNRS UMR5022, Université de Bourgogne

One fundamental ability of the human cognitive system is to become 
sensitive to the regularities present in the environment. By mere exposure 
to the surrounding environment, and without intention to learn, perceiv-
ers are able to adapt to the regularities of their environment, whether 
perceptual, linguistic, musical, motor, or even social. Language and music 
are two highly structured systems; they convey statistical regularities that 
can be learned by mere exposure through implicit learning mechanisms. 
The present article focuses on laboratory studies mainly using behavioral 
methods to investigate the statistical learning in language and music 
domains. We sequentially review research showing the structural segmen-
tation of sequential material and the acquisition of grammatical or syntac-
tic structures in artificial systems, followed by extensions to more real-
world-like materials. The final section is dedicated to a brief overview of 
the potential mechanisms underlying this learning, as proposed from 
different theoretical perspectives.

Keywords: implicit statistical learning, language, music

Apprentissage Statistique Implicite du langage et de la musique

Une capacité fondamentale du système cognitif humain est de devenir sensible aux régulari-
tés présentes dans l’environnement. Par simple exposition au milieu environnant, et sans 
intention d’apprendre, les individus sont capables de s’adapter aux régularités qui les entour-
ent, qu’elles soient perceptives, linguistiques, musicales, motrices, ou même sociales. Le 
langage et la musique sont deux systèmes hautement structurés ; ils présentent des régularités 
statistiques qui peuvent être apprises par simple exposition à travers des mécanismes
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d’apprentissage implicite. Le présent article se concentre sur des études conduites en labora-
toire, utilisant principalement des méthodes comportementales afin d’étudier l’apprentissage
statistique dans les domaines du langage et de la musique. Nous passons en revue des
recherches montrant la segmentation de séquences et l’acquisition de structures syntaxiques
ou grammaticales dans des systèmes artificiels, suivies d’extensions à des matériels plus réels.
La dernière section est consacrée à un bref aperçu des mécanismes potentiels sous-tendant
cet apprentissage, proposés par différentes perspectives théoriques.

Mots-clés : apprentissage statistique implicite, langage, musique

One fundamental ability of the human cognitive system is to become
sensitive to the regularities present in the environment. By mere exposure
to the surrounding environment, and without intention to learn, perceiv-
ers are able to adapt to regularities in the world, whether perceptual,
linguistic, musical, motor, or even social. Initially referred to as implicit
learning by Reber (1967), and more recently referred to as statistical
learning, or even implicit statistical learning (Perruchet & Pacton, 2006),
the underlying mechanisms of this phenomenon have been studied also
in link to language and music acquisition. Language and music are two
highly structured systems; they convey statistical regularities that can be
learned by mere exposure through implicit learning mechanisms. In the
laboratory, the cognitive capacity of implicit statistical learning is investi-
gated by exposing participants to miniature systems of different types,
and participants’ potential learning is measured with behavioral methods,
such as explicit judgments, ratings, or response times, or with neurophysi-
ological methods (e.g., M/EEG, fMRI). The present article mainly focuses
on the former methods, but points the interested reader to some neuro-
imaging studies.

In the following, we first present laboratory research investigating
implicit statistical learning in language acquisition, such as segmenting
words from a speech stream, learning grammatical or syntactic structures
in artificial systems, followed by extensions to more real-world materials.
We then present with a similar structural organization the laboratory
research investigating implicit statistical learning in music (or music-like)
materials (i.e., segmentation, syntax, real-world materials). The final
section is dedicated to a brief overview of the potential mechanisms
underlying statistical learning, as proposed from different theoretical per-
spectives.
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IMPLICIT STATISTICAL LEARNING IN LANGUAGE
ACQUISITION

Word segmentation

For language acquisition, infants need to segment the perceived con-
tinuous speech stream to extract the words of the language. This capacity
was first studied with miniature artificial languages (Figure 1) in the lab
for both adults and infants by Saffran and collaborators. Classically, an
artificial language paradigm is composed of two phases: an exposure
phase in which the participants are presented with an unknown artificial
language followed by a test phase. In one of their seminal studies (Saffran,
Newport, et al., 1996), adult participants were presented with an auditory
artificial language composed of six trisyllabic nonsense words generated
from 12 syllables (e.g., babupu, bupada, dutaba, pidabu, patubi, and
tutibu). The six words were repeated and concatenated by a synthesized
language software, without direct repetitions and without acoustic cues
that could aid word segmentation (no silences, no pitch or duration
changes; e.g., babupubupadadutabapatubibabupututibu…). The only cue
available to allow for segmenting the speech stream was statistical infor-
mation bearing on transitional probabilities between the syllables used to
constitute the artificial language. The transitional probability between two
syllables X and Y is the probability that Y occurs given X. Imitating
natural language (Harris, 1955; Saffran, Aslin, et al. 1996), the transitional
probabilities in the artificial language were higher within words (i.e., from
.31 to 1.00) than between words (i.e. from .10 to .20). After having been
exposed to the artificial language for 21 minutes, participants were pre-
sented with pairs of items that consisted of one of the six words of the
artificial language and either a nonword (i.e., a unit that contains the
same syllables as the exposure sequence but presented in a different order)
or a partword (e.g., a unit combining the last two syllables of a word with
the first syllable of another word). Participants had to indicate which item
of the pairs was one of the words of the artificial language. The results
showed that participants were able to select above chance level the words
of the language compared to either nonwords or partwords. The results
of this pioneer study suggested that adult participants were sensitive to
the statistical structure of the artificial language (here transitional proba-
bilities between syllables) and were successful in correctly segmenting the
words from the artificial language stream. This investigation of statistical
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learning leading to word segmentation in artificial languages has been 
extended also to 6-7-year-old children (Saffran et al.,1997) and to 8-
month-old infants (Saffran, Aslin, et al., 1996) by the same research team. 
For infants, the paradigm was adapted with a classical familiarization-
preference procedure. After the exposure phase, one of two types of 
stimuli was played (e.g., words versus nonwords) and its duration was 
controlled by the infants’ gaze. With this procedure, infants showed 
longer listening times for nonwords and partwords compared to words, 
indicating a novelty preference. This study by Saffran, Aslin, et al. (1996) 
suggested that 8-month-old infants possess powerful learning mecha-
nisms based on the extraction of the statistical structure of the to-be-
learned material (see also Aslin et al., 1998). More recent research has 
extended this investigation of statistical learning to even younger infants, 
including newborns. Studies investigating newborns used electroencepha-
lographic (EEG) recordings rather than behavioral methods. For example, 
Teinonen et al. (2009) recorded EEG of sleeping neonates from 0.5 to 2 
days after birth, while presenting a continuous artificial language stream 
composed of ten trisyllabic words chained without acoustic markers (all 
syllables, whether within or between words, were separated by 200 ms). 
After exposure, the amplitude of a negative event-related potential was 
significantly larger for the first syllable of the words than for their third 
syllable, suggesting successful speech segmentation. Recently, similar 
findings have been reported with syllables being separated by a shorter 
delay (e.g., 150 ms in Bosseler et al., 2016) and no delay (Fló et al., 2022). 

In addition to the “acoustically neutral” languages providing only sta-
tistical cues, a set of research used artificial languages that also manipu-
lated various acoustic markers, like rhythmic and prosodic cues, such as 
vowel lengthening, coarticulation, or stress (e.g., Brent & Cartwright, 
1996; Jusczyk et al., 1999), and even distal prosodic cues (Morrill et al., 
2015). For example, adult participants’ implicit statistical word learning 
was improved by final syllable lengthening (vs. initial syllable lengthening 
or no lengthening; Saffran, Newport, et al., 1996), suggesting the influence 
of participants’ native language (i.e., English) as a strategy to parse the 
incoming stream (i.e. lengthening of the final syllable indicates word 
endings in English). Other perceptual cues can also help speech segmenta-
tion. In Perruchet and Tillmann (2010), participants were presented with 
an artificial language composed of six trisyllabic nonsense words. The ease 
with which three syllables were spontaneously perceived as a unit 
(referred to as the initial word-likeness, IWL) was manipulated for three 
of these six words. For an IWL+group, the three words, when heard in a 
continuous speech stream, were spontaneously perceived and recognized
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more often as words than were trisyllabic partwords. In an IWL–group,
the three words were perceived less often as words than were the trisyl-
labic partwords (see also Perruchet et al., 2004). The biased words, as well
as the three other words of the artificial language, were learned faster in
the IWL+ group than in the IWL–group.

Pitting statistical cues against acoustic cues, notably speech surface
cues (i.e., coarticulation or stress), revealed developmental changes (e.g.,
Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003). While 9-month-old
infants favor stress cues over statistical cues, 7-month-old infants did not
show this bias for perceptual indicators and became sensitive to the statis-
tical relations between the syllables despite stress cues indicating conflict-
ing groupings. This outcome suggests that younger infants’ sensitivity to
statistical cues allows them to extract the words, and after having become
more sensitive to stress patterns of their native language, they are biased
to these stress patterns. Listeners’ knowledge about stress patterns of their
native language has also been shown to influence perceptual segmentation
in a second language, acquired later in life (e.g., Sanders et al., 2002).

Follow-up studies have demonstrated that statistical learning can lead
to word segmentation and the mapping of meanings to words. In
Estes et al. (2007), 17-month infants first performed a classical artificial

Figure 1. Illustration of the main paradigms used in implicit statistical learning with
language and music materials
Note. Artificial languages being instantiated with units of three syllables or tones (left)
and artificial grammars being instantiated with letters (LTNRL) or tones (a#daf#a#),
played auditorily as short melodies. Examples of stimuli used in the test phases.
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language protocol, immediately followed by an object-label association 
learning task. The infants were able to associate the object with its label, 
when this latter was a word of the artificial language, but not when it was 
a nonword or a partword. Several studies obtained similar results with 
natural language (e.g., Hay et al., 2011), in children (e.g., Ramos-
Escobar et al., 2021), and adults (e.g., François et al., 2017; Mirman et al., 
2008). Despite some differences observed as a function of age, the overall 
findings suggest that statistical learning can support word segmentation, 
emerging potential lexical candidates, and the subsequent learning of 
object-word association.

Syntax acquisition

In the seminal work of Reber (1967), five letters constituted the vocab-
ulary set and the syntactic rules were defined by an artificial (finite-state) 
grammar (Figure 1), with which “grammatical” letter sequences were gen-
erated. A set of random letter sequences was also constituted with the 
same vocabulary (i.e., the same five letters). In a first experiment, an 
experimental group had to memorize grammatical letter sequences and 
a control group had to memorize random letter sequences. During the 
experimental session, performance continuously improved for the experi-
mental group, while for the control group, a performance plateau was 
reached, and no further improvement was observed. This finding sug-
gested that the structure of the grammatical letter sequences made the 
memorization more efficient. In an attempt to better understand the 
underlying learning processes, Reber added a testing phase after the mem-
orization phase: participants, after having been informed about the exis-
tence of the grammar, had to make a judgment of grammaticality on new 
letter sequences. Some of the letter sequences were generated from the 
same artificial grammar as the letter sequences memorized during the 
exposure phase (i.e., grammatical letter sequences), whereas others did 
not follow the rules of the grammar (i.e., ungrammatical letter sequences). 
Reber observed a high proportion of correct responses, indicating that 
participants correctly discriminated between grammatical and ungram-
matical letter sequences. Participants had become sensitive to the statisti-
cal nature of the grammatical letter sequences, although they could not 
verbalize on this statistical nature.

Acquiring knowledge about grammar and syntactic structures requires 
also to learn nonadjacent dependencies. Numerous nonadjacent depend-
encies are present in language syntax, for instance, between auxiliaries
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and inflectional morphemes (e.g., is working, has learned) or in number
and gender agreement (e.g., she speaks with her sister). Gómez (2002)
investigated the learning of such nonadjacent dependencies by using two
artificial languages. The two languages (A and B) were composed of non-
sense strings of three elements (e.g., pel-wadim-jic or vot-kicey-rud). For
both languages, the strings began and ended with the same elements (i.e.,
aXd, bXe, and cXf for the first language, versus aXe, bXf, and cXd for the
second language). The middle element was variable, as well as the size of
the pool from which this middle element was drawn (from 6 to 24). The
adjacent dependencies between the elements were identical between the
two languages, the only difference was the nonadjacent dependencies
between the first and the third elements of the strings. After having been
exposed to either language A or language B, adult participants were
informed that the strings they had listened to were generated based on
some word-order rules, and they had to indicate whether new strings
(half from language A and half from language B) followed the same order
rules or not. The results showed that adult participants discriminated
between strings that followed word-order rules from strings which did
not, suggesting that participants learned the nonadjacent dependencies
(but only when the variability of the middle element was the highest).

Using a similar material as Gómez (2002), Misyak et al. (2010) evalu-
ated the statistical learning online with a serial reaction time (SRT) task.
Six string elements were presented on 2 × 3 visuospatial grids on the
screen (e.g., pel, wadi, jic, vot, kicey, rud), three of the string elements
were presented auditorily in succession, and participants had to click as
fast and as accurately as possible on the corresponding string written in
grid cases (see Figure 2).

As in classical SRT tasks, there were several blocks, each consisting of
a continuous repetition of the strings. The first six blocks were learning
blocks (containing only grammatical strings), the seventh block was a
block with ungrammatical strings (i.e., comparable to the random block
in a classical SRT task) and the eighth block was a recovery block (i.e.,
presenting again grammatical strings). The results showed that the mean
RT difference between the initial and the final elements of the strings
gradually increased during the first six blocks, but it was drastically
reduced in the ungrammatical block, and then increased again in the final
grammatical block. These findings confirmed that syntax can be learned
through implicit statistical learning processes. However, the online learn-
ing of nonadjacent dependencies appeared to require long exposure (i.e.,
no learning was evident before the fifth block).
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Figure 2. Illustration of a serial reaction time task used in implicit statistical learning 
with language material
Note. The plain arrows represent the curser of participant’s computer mouse and the
dotted arrows its movement as a function of the serial sequence of words written
below.

The learning of new syntactic-like structures has also been shown with
two other investigation methods, notably the use of 1) recursive context-
free grammars, modeling some features of natural language (e.g., Rohr-
meier et al., 2012), and 2) an artificial miniature language to create a set
of sentences using items serving as nouns, verbs, determiners, adjectives
and adverbs, thus getting closer to natural language structures (e.g.,
Opitz & Hofmann, 2005).

More ecological contexts

In the auditory modality, statistical learning has been studied also with
a controlled set of real-world language materials (e.g., Italian, Japanese),
unknown to the participants (e.g., German native speakers) to investigate
whether listeners learn structural cues, including nonadjacent regularities
(e.g., Müller et al., 2009). This has been investigated not only for adults,
but also for infants (e.g., Friederici et al., 2011; van der Kant et al., 2020).

In the visual modality, orthographic regularities in participants’ native
language provide a real-world example to study implicit learning. Some
of these regularities are not explicitly learned at school (i.e., double letters
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and their position in words), but learned based on exposure to written
language. Pacton et al. (2001) evaluated whether children from grades 1
to 6, were sensitive to the fact that in French, certain letters are more
frequently doubled than others (some letters being never doubled), and
whether children are sensitive to the position of the double letters (i.e.,
only in medial position in French). Different kinds of nonwords were
used, which could contain frequently double consonants (i.e., ll, mm, ss),
less frequently double consonants (i.e., cc, dd, vv), and never occurring
double letters (e.g., uu, xx, kk). The children had to either decide which
of two nonwords is more like a word (e.g., ommera vs ovvera; oxxubi vs
ollubi; nnulor vs nullor; tillos vs tiilos) or to complete nonwords (e.g.,
tuba_ir, u_otir) with provided patches (e.g., LL, XX). Overall, the results
demonstrated that as early as grade 1, children are sensitive to the fre-
quency of occurrence of letters and double letters, as well as to legal
positions of double letters. This sensitivity was shown to increase with
increasing grade levels. This study demonstrated the influence of implicit
statistical learning in natural learning situations of language (i.e., natural
exposure to written language). Congruent evidence has been provided by
studies investigating statistical learning in the lab and reading ability (as
acquired in real life), showing that better statistical learning capacity is
related to better reading ability in children and adults (Arciuli & Simpson,
2012).

For school-based learning, implicit statistical learning has been
assessed with new implicit learning designs. Vinter et al. (2022) compared
the impact of digital games designed to teach either implicitly or explicitly
the name of uppercase letters to preschool children aged from 3 to 5 years.
The proposed implicit digital games promoted the automatic elicitation
of associative implicit learning processes during the normal progress of
play. Vinter et al. (2010) defined four main characteristics for any implicit
learning situation: 1) no exposure to errors, 2) the to-be-learned material
should be salient, 3) repetition is necessary, and 4) no explicit attention
should be paid to the to-be-learned material. The implicit games consisted
of the incidental teaching of an association between the visual image of
an uppercase letter and its name (auditory stimulus) while the children
were playing. The instructions given to the children and the success in
the game did not require the letter-name associations. In contrast, in the
explicit digital games, which were created based on educational games
available on the digital game market, children’s attention was explicitly
drawn to the letter shape-letter name associations, mimicking a teaching
procedure used at school. The children were explicitly asked to memorize
the letter shape-letter name association in order to succeed in the game.
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The results revealed that the implicit games were more efficient than the 
explicit games and the control condition (i.e., children did not play with 
any digital game) at ages 3 and 4. Directly comparing learning methods 
based on different learning mechanisms (i.e., implicit vs. explicit) at 
school is another way to evaluate implicit statistical learning in more 
ecological learning contexts.

IMPLICIT STATISTICAL LEARNING OF MUSIC

Next to the learning of language, the implicit statistical learning of 
music is another real-world example showing the power of the cognitive 
system to acquire regularities in the environment. Indeed, the native 
speakers becoming sensitive to the structures of the language system of 
their environment early in life can be compared to nonmusician listeners. 
Numerous research in music cognition has provided evidence that even 
nonmusician listeners (thus listeners without any explicit formal musical 
training) become sensitive to the structure of the musical system of their 
culture by mere exposure (i.e., tonal enculturation; e.g., Bigand & Poulin-
Charronnat, 2006; Francès, 1958; Tillmann et al., 2000). For music in 
particular, the question emerged whether musical expertise (based on 
training in music schools and conservatories) might benefit to structure 
learning, not only of music but beyond. Divergent result patterns have 
been reported and methodological considerations discussed (e.g., Fran-
çois et al., 2012). While Rohrmeier et al. (2011) showed that musicians 
did not outperform nonmusicians, suggesting that the learning of a new, 
unfamiliar melodic system is not supported by musical expertise, others 
showed that learning could be boosted by musical expertise (e.g., compar-
ing EEG responses in adult musicians and nonmusicians, see François & 
Schön, 2011; or in 8-year-old children having received musical or painting 
training, see François et al., 2013), in particular for nonadjacent regulari-
ties (Brod & Opitz, 2012). However, the potential benefit of musical train-
ing seems to be restricted to auditory material and not extending to visual 
statistical learning (Mandikal Vasuki et al., 2015). In addition to the 
benefit of musical expertise on statistical learning, a similar question can 
be asked for deficits, such as in congenital amusia. Some findings reported 
intact statistical learning capacities in amusics for both language and 
music-like materials (Omigie & Stewart, 2011), while others reported 
extended deficits, in particular when applied to tone materials (Loui &
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Schlaug, 2012; Peretz et al., 2012). Note that similar investigations have
been performed in the language domain, notably with the hypothesis of
potential deficits in statistical learning in dyslexia or developmental lan-
guage disorders, with mixed results (e.g., Bogaerts et al., 2021; Singh &
Conway, 2021; West et al., 2021; for reviews and meta-analyses).

The present section follows the same structural organization as the
preceding section on language, but here presenting research investigating
implicit statistical learning with music (or music-like) materials and its
different aspects (i.e., segmentation, syntax, real-world materials).

Music segmentation

An important debate in the statistical learning domain deals with the
domain generality (i.e., a unitary learning system) versus domain speci-
ficity (i.e., a separate system for each of modality) of this learning capacity
(see Saffran et al., 1999). Frost et al. (2015, 2019) proposed a theoretical
framework according to which statistical learning is a domain-general
process that applies to different modalities, but is subjected to specific
constraints, which depend on the modality and might lead to result pat-
terns suggesting domain-specificity. This hypothesis of a potentially
domain-general learning mechanism (i.e., beyond language material) had
been addressed by Saffran et al. (1999) who compared learning of artificial
language systems being implemented either with syllables (as in
Saffran et al., 1996) or nonlinguistic stimuli (i.e., tone sequences). An
artificial language of tone words was created by replacing the syllables of
the previous artificial language by tones. Six tritone “words” were created
and randomly concatenated without direct repetition to generate a 21-
minute-long artificial music exposure stream. After the exposure to this
artificial, musical “language”, nonmusician adult participants were then
presented with a test phase in which pairs of tritone test items were used.
In each test pair, one of the tritone items was one of the tritone “words”
of the artificial music stream, while the other tritone item was either a
nonword or a partword. The results revealed that, as for the syllable mate-
rial, participants succeeded in selecting the words of the tone language.
Supplementary analyses indicated no difference between the performance
for syllable- and tone-based languages. In the same study, these results
were also extended to 8-month-old infants. As for language, infants’ per-
formance was similar to adults’ performance, and the tone performance
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was similar to the syllable performance. In Schön et al. (2008), the sylla-
bles of an artificial language were combined with musical information, 
thus creating sung sequences. Experiment 1 showed that when the expo-
sure phase of a spoken artificial language, similar to that of Saffran, 
Newport, et al. (1996), was reduced to 7 minutes, participants were not 
able to discriminate between words and partwords. Experiment 2 imple-
mented the same artificial language with sung material, with the statistical 
tone structure being consistent with the statistical syllable structure. 
Results showed that participants performed above chance level with this 
consistent mapping. Experiment 3 implemented the statistical structures 
of tones and syllables in an inconsistent way, and results revealed lower 
performance than in Experiment 2, albeit above-chance performance (dis-
cussed as a potential arousal effect created by the musical features). A 
sung advantage was also observed for newborns (François et al., 2017).

The respective influences of both acoustic and statistical features on 
implicit learning have been also investigated for other nonverbal material, 
notably musical timbre sequences (Tillmann & McAdams, 2004). The 
acoustic features either reinforced the statistical features, contradicted 
them or were neutral with respect to them. An artificial language similar 
to the one of Saffran, Newport, et al. (1996) was used, but syllables were 
replaced by musical timbres (e.g., trumpet, harp, vibraphone, clarinet, 
guitar). In one language, the timbres were acoustically similar within a 
triplet, but distant between timbre triplets, thus reinforcing the statistical 
structuration of the triplets. In a second language, the timbres were acous-
tically distant within a triplet, whereas the timbres between two different 
triplets (e.g., the last timbre of a triplet and the first timbre of the next 
triplet) were acoustically similar, thus acoustical similarity was contradict-
ing statistical regularities. Finally, in a third language, the acoustic charac-
teristics of timbres were neutral with regard to the statistical regularities. 
The results showed that participant groups being exposed to one of the 
three languages became all sensitive to the statistical regularities underly-
ing the timbre sequences, and this independently of the acoustic proper-
ties of the musical timbres. All groups obtained better performance 
compared to control groups realizing the same test phase, but without 
exposure phase. However, perceptual cues can also improve statistical 
learning in music, notably when learning nonadjacent dependencies is 
evaluated. Creel et al. (2004) assessed the statistical learning of nonadja-
cent dependencies in tone sequences using triplets of tones (e.g., OPQ, 
RST, uvw, xyz) that were temporally interleaved (e.g., 
OuPvQwRuSvTw…). The adjacent transitional probabilities were always 
.05, while the nonadjacent transitional probabilities were always 1. The
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nonadjacent transitional probabilities being higher, they should have
guided statistical learning. However, this was not the case, the participants
only learned the adjacent dependencies. In two follow-up experiments,
Creel et al. (2004) added a similarity cue for the nonadjacent tones (i.e.,
pitch frequency or timbre similarity). For instance, OPQ and RST were
represented by high pitches, whereas uvw and xyz were represented by
low pitches. When such prominent similarity cues are used, statistical
learning was affected, and participants learned only the nonadjacent
dependencies. In this case, the similarity cues could have led to auditory
stream segregation and benefited to learning of event chaining in one
stream. As for language, statistical learning can lead to the learning of
nonadjacent dependencies in the music domain, although aided by per-
ceptual cues.

In music, time is the second most-important form-bearing dimension
beyond pitch (e.g., McAdams, 1989). Music cognition research has inves-
tigated the processing of temporal structures and regularities, including
the implicit statistical learning of these regularities. The influential theory
of dynamic attending by Jones (1976, 2019) hypothesized that temporal
attention benefits from temporal regularities, guiding attention over
cycles, thus facilitating processing of events occurring in regular structures
or at expected time points. The influence of temporal regularity has been
studied for implicit statistical learning for both segmentation and syntax
(see below). When an artificial language was implemented only with
“word units” of the same size (i.e. containing either three musical timbres
or three syllables), learning was enhanced in comparison to languages
implementing “word units” of different length (Hoch et al., 2013). The
regularity of the units’ onset, when emerging during learning, might help
to guide attention to the first elements of each unit, thus reinforcing
segmentation. Converging results have been reported with EEG measure-
ments, notably with an enhanced early negativity (N1, linked to attention)
emerging for the first syllable of a triplet over the exposure stream (e.g.,
Abla et al., 2008; Sanders et al., 2009). The advantage of rhythmic struc-
ture on learning has also been shown in newborns (Suppanen et al.,
2019).

Musical syntax acquisition

As for language syntax learning, tested with different materials such
as letters, syllables, or (pseudo)words, different kinds of stimuli have been
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used to implement artificial grammars aiming to evaluate implicit statisti-
cal learning of musical syntax. Bigand et al. (1998) used an artificial 
grammar similar to the one presented in Figure 1, and replaced the letters 
with musical timbres (i.e., gong, trumpet, piano, violin, and voice) to 
generate grammatical timbre sequences. During the exposure phase, par-
ticipants had to memorize the timbre sequences and to indicate whether 
they had already heard the sequence. At the subsequent test phase, partici-
pants were informed that the timbre sequences they listened to were 
created by a computer program and that they were going to listen to new 
timbre sequences and had to indicate whether the timbre sequences were 
created by the same computer program (grammatical timbre sequences) 
or not (ungrammatical timbre sequences). Results showed that correct 
response rates were above chance level, and this performance was signifi-
cantly better than the performance of a control group without exposure 
phase.

Artificial grammars have also been used by replacing the letters with 
tones, creating short melodies (Altmann et al., 1995). As in the other 
artificial grammar experiments, participants were presented with gram-
matical tone sequences generated by the artificial grammar. After this 
exposure, the test phase followed, using also a cover story with a com-
puter program having created the melodies. Results paralleled previous 
findings: participants who were exposed to the grammatical tone sequen-
ces performed better in the testing phase than a control group without 
exposure phase.

Based on the findings that participants can acquire new, artificial 
grammar regularities with music-like material, the question arose whether 
listeners could use this newly acquired knowledge to develop online pre-
dictions (or expectations) for upcoming tones (Tillmann & Poulin-Char-
ronnat, 2010). These predictions should thus lead to facilitated processing 
for expected tones in comparison to unexpected (i.e., ungrammatical) 
tones. In this study, the exposure phase was a classical artificial grammar 
exposure, with grammatical tone sequences generated from an artificial 
grammar (see Figure 1, right panel). However, the test phase was not the 
classical grammaticality judgment task, but a priming task. Participants 
were presented with new tone sequences, half was grammatical (i.e., gen-
erated by the same artificial grammar as the tone sequences used in the 
exposure phase), whereas the other half was ungrammatical, with one 
tone violating the artificial grammar. Participants had to listen to the tone 
sequences and had to make a speeded binary response on the indicated 
target tones for each sequence (for the purpose of this task, half of the 
targets were in-tune and half were out-of-tune). The response times for
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the tuning judgments were faster on the grammatically correct tones than
the ungrammatical tones. Importantly, response times did not differ
between grammatical and ungrammatical tones for participants of a
control group without exposure phase. These findings suggest that partici-
pants had not only learned the regularities underlying the generation of
the grammatical sequences but could also use the newly implicitly
acquired knowledge to develop expectations on the tones of the sequences
that facilitated the processing of expected tones.

When investigating the learning of new artificial tone systems, Rohr-
meier and Cross (2013) also showed the influence of melodic, Gestalt-
like features, linked to interval and contour information (e.g., listeners
prefer small interval sizes, and a large interval size is followed by a small
interval in the opposite direction to fill in the gap; see Narmour, 1990;
Schellenberg, 1996). When interval and contour features were manipu-
lated in an artificial structure learning context implemented with tones,
the results revealed that melodic materials, containing contour and inter-
val violations of these Gestalt-like melodic principles, impede implicit
learning of the artificial tone grammar. This result is thus a case for
musical material showing that implicit structure learning can be affected
by prior knowledge of materials or prior preferences.

Learning of artificial-grammar structures can also be extended to more
complex acoustic implementations, such as chords (more than two tones
played simultaneously) creating harmonic structures (Jonaitis & Saffran
2009) or to an unfamiliar musical scale. In Loui et al. (2010), melodic
sequences were generated from two artificial grammars based on an unfa-
miliar Bohlen-Pierce scale. Participants were exposed for 25 minutes to
melodies from one of the two grammars. In the test phase, with a two-
alternative forced-choice task, they had to indicate which of two melodies
was generated by the same grammar as the melodies they were exposed
to. The results showed that both musician and nonmusician listeners per-
formed above chance level and successfully discriminated between the
grammatical and the ungrammatical melodies. These results indicated
that the musical syntax can be acquired implicitly by mere exposure to
music even with unfamiliar tone elements. More recently, Loui (2022)
extended these findings and provided evidence that low-level acoustical
features can influence the acquired sensitivity to statistical structure in
music-like material. Varying the spectral information and its link to the
statistical structure allowed revealing that when the timbres included
spectral information that was congruent with the to-be-learned musical
scale structure, learning was the best.
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Artificial grammar regularities can also be learned when implemented 
on the time dimension, that is with tones of different durations 
(Prince et al., 2018). This is in agreement with SRT studies showing learn-
ing of sequence regularities on the time dimension, with temporal pat-
terns defined by event onsets (e.g., Brandon et al., 2012; Schultz et al., 
2013). For artificial grammars of temporal regularities, learning has been 
shown to be restricted to the implementation with all tones being at the 
same pitch (isotonous presentation) and does not hold when random 
tones (i.e., differing in pitch) were used to install the durations. However, 
the same artificial grammar implemented on the pitch dimension can be 
learned both in an isochronous implementation and with random tone 
variations (Prince et al., 2018).

Learning of an artificial grammar of tones can also benefit from tem-
poral regularities, as predicted by the dynamic attending theory (e.g., 
Jones, 1976). Presenting the tone sequences with a rhythmic pattern that 
implies a strong metrical structure leads to better learning (e.g., increased 
benefit of grammaticality on reaction times) than when presented with 
temporally irregular structures (Selchenkova, Jones et al., 2014), and even 
when compared to an isochronous presentation, revealing the advantage 
of metric binding (Jones, 2016; Selchenkova, François et al., 2014).

More ecological contexts

Music cognition research suggests that mere exposure to Western 
musical pieces suffices to develop implicit knowledge of the Western tonal 
system. Just by listening to music in everyday life, listeners become sensi-
tive to the regularities and structures of the tonal system without being 
necessarily able to verbalize them (e.g., Bigand & Poulin-Charronnat, 
2006; Tillmann et al., 2000). This acquisition is based on the cognitive 
capacity of implicit learning and has been referred to as “tonal encultura-
tion”. Francès (1958) was one of the first underlining the importance 
of statistical regularities in music for tonal enculturation, followed by 
Krumhansl (1990), Huron (2001) and others. Regularities between 
musical events also exist in other musical systems (e.g., Indian or Arabic 
music), and cultural learning and familiarity to these systems lead to audi-
tory experiences different from those of naive listeners. Supporting evi-
dence comes from perception studies comparing enculturated listeners 
and naive listeners, for example, for Balinese music (Kessler et al., 1984), 
Indian music (Castellano et al., 1984), Arabic music (Ayari & McAdams,
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2003) or even Finnish spiritual folk hymns and North Sami yoiks (Krum-
hansl et al., 2000). For example, both enculturated and naive listeners
show sensitivity to the sensory information present in the context, but
only the enculturated listeners show the perception of fine-graded musical
features that are independent of the tones or sensory information pre-
sented in the context.

In contrast to the complex real-world systems learned in everyday life,
implicit statistical learning studies use reduced, simple artificial musical
systems with a shorter exposure phase (see above). This allows for investi-
gating the strengths and limits of the cognitive capacity of implicit learn-
ing in the case of nonverbal musical materials. To bridge the gap between
the real-world enculturation process and the simplified experimental situ-
ation, some studies have started to use more complex systems for expo-
sure, which are based on features of real-world music. For example, the
modal melodic features of North Indian classical music (Rohrmeier &
Widdess, 2017) or twelve-tone atonal music (Bigand et al., 2003). Rohr-
meier and Widdess (2017) showed that Western participants unfamiliar
with Indian music learned distinctive features of each mode (raga) based
on exposure to melodies following one raga and succeeded in distinguish-
ing them from melodies based on another raga. Crossing the use of one
raga as either exposure or test material ensured that performance in the
test phase was based on the manipulated raga and not on other musical
features. Bigand et al. (2003) investigated the implicit learning of twelve-
tone music in the laboratory. First, listeners were exposed to musical
pieces composed with a specific 12-tone row, following atonal musical
style. In the test phase, participants listened to new excerpts presented by
pair and had to select the excerpt that “was composed by the same com-
poser”. More specifically, one excerpt was based on the same row as in the
exposition phase, and the other excerpt on a different row. Participants
(musicians and nonmusicians) performed above chance level in this test,
but a control group, which had been exposed to excerpts based on both
rows, did not differ from chance. This experiment suggests that the listen-
ers became sensitive to the specific atonal structures in the exposure phase
despite the complexity of the material. Taken together, these investiga-
tions using short exposures of realistic, ecologically valid materials
provide evidence that incidental learning constitutes a powerful mecha-
nism that plays a fundamental role in musical acquisition and encul-
turation.
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WHAT IS LEARNED? THEORIES AND MODELS

Regularities in music and language systems can be acquired implicitly. 
However, there is still some debate about what is learned and via which 
mechanisms. Concerning music and language segmentation, Saffran and 
collaborators suggested that the learning mechanism involves the compu-
tation of transitional probabilities between events (e.g., Saffran, Aslin, 
et al. 1996; Saffran, Newport, et al., 1996). Learners would compute tran-
sitional probabilities between events and when the transitional probabili-
ties are low, this would be perceived as a boundary and would allow the 
segmentation of the stream in “words”. In a similar vein, Pearce and 
Wiggins (2006) proposed a computational model based on a statistical 
learning algorithm applied to music; it acquires melodic regularities from 
a reasonably sized corpus of music and is used to predict listeners’ percep-
tion (see Rohrmeier & Rebuschat, 2012, for a review).

For stream segmentation (as in artificial languages), Perruchet and 
Vinter (1998) proposed a more parsimonious explanation with the 
PARSER model, a chunking model without computational assumptions. 
PARSER postulates that the stream would be first perceived as segmented 
with subjective boundaries. These first boundaries are the consequence of 
attentional mechanisms, which naturally segment the stream into small 
chunks of various lengths. Only a few of these provisional chunks are 
relevant for the stream structure. The fate of these chunks depends on 
their probability to be encountered later on again. The relevant chunks 
emerge through a selection process based on forgetting, the end-product 
of decay and interference. The less cohesive chunks among all the initial 
perceived chunks are eliminated, while the relevant chunks reoccurring 
more frequently, are strengthened and are used as new primitives to con-
tinue the stream segmentation. The PARSER model is thus based on plau-
sible psychological mechanisms and does not use sophisticated statistical 
computations (see also Johnson & Tyler, 2010; Perruchet & Poulin-Char-
ronnat, 2012; Perruchet et al., 2014; Yang, 2004, for studies that minimize 
the role of transitional probability computations in word segmentation).

Concerning artificial grammar and syntax acquisition, the interpreta-
tion of Reber (1967, 1989) was that participants learned an abstract repre-
sentation of the rules of the grammar. This position has been challenged 
by Perruchet and Pacteau (1990), who defended a theoretical framework 
based on chunk formation. They showed that participants, who were 
exposed to grammatical bigrams (i.e. two letters) only, performed as well 
as participants who were exposed to the complete letter strings, suggesting
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that being exposed to fragments/chunks was sufficient to perform well in
the test phase. Implicit learning performance might thus be based on the
learning of chunks of letters that were partly formed based on their fre-
quency of occurrence. This interpretation is more parsimonious as it
avoids the need of an unconscious and abstract structured representation
of the grammar. Several models based on chunking mechanisms have
been developed both for language material (e.g., Competitive chunking,
Servan-Schreiber & Anderson, 1990; PARSER, Perruchet & Vinter, 1998;
TRACX, French et al., 2011 and TRACX2, Mareschal & French, 2017)
and music material (TRACX2, Defays et al., 2023). Today, the interpreta-
tion of statistical learning based on chunk mechanisms and other inter-
pretations based on statistical computations and rule learning are further
discussed and tested. This debate continues not only for children and
adults with typical development, but also for populations with atypical
development or disorders (e.g., dyslexia, developmental language disor-
ders, Parkinson disease) and across life spans (from newborns to the
elderly).

Although most of the studies summarized in the present review are
behavioral studies, the capacity of statistical learning has also been investi-
gated with neuroscience methods (e.g., see Daltrozzo & Conway, 2014;
Daikoku 2018; Batterink et al., 2019 for reviews), contributing to disen-
tangle the underlying mechanisms involved in statistical learning, as well
as, providing new information about the generality/specificity of the proc-
esses at work (e.g., Pesnot Lerousseau & Schön, 2021).
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