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Adjusting the Balance between Alpha and Beta Risks in 
NN Classifiers 

 
By Philippe Thomas∗, Marie-Christine Suhner± &  

Hind Bril El Haouzi° 
 

This paper delves into classification tasks, where data is categorized into binary 
classes, such as fraudulent/non-fraudulent or sick/not sick as example. Employing 
a statistical approach, this task entails utilizing hypothesis testing. Tuning this 
test involves selecting an acceptable risk alpha (associated with false positives), 
thereby implicating a beta risk (related to false negatives). In classification 
challenges, the principal aim is to mitigate the misclassification rate. However, 
the determination of these two risks is not be discretionary but rather enforced 
by the learning process, particularly evident when employing neural networks. 
This paper seeks to propose a modification of the learning algorithm for multilayer 
perceptron aimed at effectively balancing these risks. This adaptation hinges on 
leveraging a weighted criterion to minimize errors, accounting for the signs of 
different error types. This methodology is assessed across two benchmarks: a 
simulated dataset and a genuine medical dataset.  
 
Keywords: neural network, multilayer perceptron, learning, classification, 
hypothesis test 

 
 
Introduction 

 
A common challenge in various domains is the ability to confidently classify 

data into two exclusive classes. This is particularly relevant in fields such as fraud 
detection (O’Kelly 2004), IT security (Hänisch & Karg 2019), medical diagnosis 
(Guyatt et al. 1995), and banking loan approval (Hidayah & Saptarini 2019). 
Historically, a statistical approach has been employed to address such problems 
using hypothesis testing. 

Hypothesis testing entails the evaluation of competing hypotheses regarding 
population characteristics, typically denoted as H0 (null hypothesis) and H1 
(alternative hypothesis). This methodology introduces two potential errors: Type I 
error (alpha), representing the risk of falsely rejecting the null hypothesis H0, and 
Type II error (beta), indicating the risk of falsely accepting H0. The interrelation 
between these risks, alpha and beta, is notable; an increase in alpha risk leads to a 
decrease in beta risk and vice versa. Thus, the fundamental principle of statistical 
studies involves selecting an acceptable alpha risk to construct the test, facilitating 
risk management. 
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Another, more recent approach is to use machine learning tools, in particular 
neural networks, to solve these classification problems (Bao et al. 2022, 
Chandrasekaran 1983, Mytnyk et al. 2023, Joolfoo & Hosany 2023). However, these 
tools work differently. It involves defining a criterion to be minimized (generally the 
quadratic criterion) and using a criterion minimization algorithm (gradient 
backpropagation) to minimize the misclassification rate. The risks of false positives 
and false negatives are then imposed. This point is particularly critical when the data 
is poorly balanced, as in reliability studies where few data correspond to defects. In 
this case, these approaches lead to models that are biased in favor of the most 
represented class (Castro & Braga 2013). In extreme cases, a classification model 
that always assigns data to the same class will perform very well in terms of 
misclassification rate. To address this problem, cost-sensitive approaches have been 
proposed (Thomas 2015, Zadrozny et al. 2003, Zadrozny & Elkan 2001). However, 
these approaches still do not allow to control first- and second-species risks. 

The main objective of this paper is to propose a modification of the learning 
algorithm based on a particular choice of the criterion to be minimized, exploiting 
the fact that the errors associated with a false alarm or non-detection are not of the 
same sign. A second objective is to illustrate the use of this approach in a medical 
context, in order to differentiate the treatment of patients according to the degree of 
confidence we have in the classification result. 

In the next section, the structure of the multilayer perceptron used is described 
and the proposed learning algorithm is presented. Part 3 is dedicated to the 
presentation of the simulation example used to illustrate the performance of the 
algorithm. An application to a medical field is proposed and discussed in the 
following section before concluding. 
 
 
Multilayer Perceptron 
 
Structure 

 
According to Cybenko (1989) and Funahashi (1989), a multilayer neural 

network that includes only one hidden layer with a sigmoidal activation function 
and an output layer can accurately approximate all nonlinear functions. For the sake 
of simplicity, we will only focus on the single output case in this presentation. 
However, it is important to note that the multi-output case can be derived from this 
scenario with ease. The equation for the network output 𝑦𝑦� is defined as follows: 

 
𝑦𝑦� = 𝑔𝑔𝑜𝑜�∑ 𝑤𝑤ℎ2.𝑔𝑔ℎ�∑ 𝑤𝑤ℎ𝑖𝑖1 . 𝑥𝑥𝑖𝑖 + 𝑏𝑏ℎ1

𝑛𝑛𝑖𝑖
𝑖𝑖=1 �+ 𝑏𝑏𝑛𝑛𝑜𝑜

ℎ=1 � (1) 
 
where xi represents the ni inputs, 𝑤𝑤ℎ𝑖𝑖1  represents the connecting weights between the 
input and hidden layers, 𝑏𝑏ℎ1 represents the hidden neuron biases, gh(.) represents the 
activation function of the hidden neurons (hyperbolic tangent), 𝑤𝑤ℎ2 represents the 
connecting weights between the hidden and output layers, b represents the bias of 
the output neuron, and go(.) represents the activation function of the output neuron.  
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Because the problem at hand is a classification task, the sigmoidal function go(.) 
was chosen. The accuracy of the model is heavily influenced by the initial parameter 
set due to the local search for minimum during MLP learning. Various initialization 
algorithms have been proposed in the past (Thomas & Bloch 1997). The 
modification of the Nguyen and Widrow (NW) algorithm (Nguyen & Widrow 
1990) utilized in this study allows for a random initialization of weights and biases 
while to be optimally placed in the input space (Demuth et al. 1994). 
 
Proposed learning Algorithm  

 
The primary objective of the learning algorithm in a classification problem is 

to devise a model capable of correctly associating each pattern with its respective 
class. This model is directly derived from a training dataset. To achieve this, the goal 
is to minimize the mean square error between the predicted output of the model and 
the actual desired output. Therefore, the classical quadratic criterion to minimize is 
expressed as: 

 
𝑉𝑉(𝜃𝜃) = 1

2𝑛𝑛
∑ 𝜀𝜀2(𝑘𝑘,𝜃𝜃)𝑛𝑛
𝑘𝑘=1  (2) 

 
where θ encompasses all the unknown network parameters (weights and biases), n 
is the size of the training dataset, and ε represents the prediction error or residual 
given by: 
 

𝜀𝜀(𝑘𝑘,𝜃𝜃) = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘,𝜃𝜃) (3) 
 
where y(k) is the actual desired class of pattern k and 𝑦𝑦�(𝑘𝑘,𝜃𝜃) is the predicted class by 
the network. 

 
This criterion does not allow for adjusting the model based on the selected 

acceptable risks (alpha and beta). However, the sign of the residual ε(k,θ) provides 
information about the type of error. If hypothesis H0 (or H1) suggests that the data 
under consideration, k, belongs to class 0 (or class 1), then a residual of 𝜀𝜀(𝑘𝑘,𝜃𝜃) < 0 
corresponds to a false positive error (type I or alpha error), while a residual of 
𝜀𝜀(𝑘𝑘,𝜃𝜃) > 0 corresponds to a false-negative error (type II or beta error). 

To utilize this information, the criterion to be minimized (2) can be modified 
by assigning weight Cαβ(k) to the residual k based on its sign, giving more or less 
importance as necessary: 

 
𝑉𝑉(𝜃𝜃) = 1

2𝑛𝑛
∑ 𝐶𝐶𝛼𝛼𝛼𝛼(𝑘𝑘). 𝜀𝜀2(𝑘𝑘,𝜃𝜃)𝑛𝑛
𝑘𝑘=1  (4) 

 
where the weight is determined by: 
 

�
𝐶𝐶𝛼𝛼𝛼𝛼(𝑘𝑘) = 𝐶𝐶𝛼𝛼 𝑖𝑖𝑖𝑖 𝜀𝜀(𝑘𝑘,𝜃𝜃) < 0
𝐶𝐶𝛼𝛼𝛼𝛼(𝑘𝑘) = 𝐶𝐶𝛽𝛽 𝑖𝑖𝑖𝑖 𝜀𝜀(𝑘𝑘,𝜃𝜃) > 0 (5) 
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Here, Cα (or Cβ) is a positive integer value that adjusts the influence of the 
considered residual 𝜀𝜀(𝑘𝑘,𝜃𝜃) if it corresponds to a type I error (or type II). Choosing 
Cα and Cβ such that Cα > Cβ (or Cα < Cβ) implies that the learned model will reduce 
the alpha risk (or beta risk). Setting Cα = Cβ corresponds to the classical quadratic 
criterion (2).  

The classical Gauss-Newton algorithm is obtained by the 2nd-order Taylor 
series expansion of the minimization criterion (4): 

 
𝜃𝜃�𝑖𝑖+1 = 𝜃𝜃�𝑖𝑖 − (𝐻𝐻(𝜃𝜃�𝑖𝑖))−1𝑉𝑉′(𝜃𝜃�𝑖𝑖) (6) 

 
where 𝜃𝜃�𝑖𝑖 is the set of network parameters estimated at iteration i, 𝑉𝑉′(𝜃𝜃�𝑖𝑖) is the 
criterion gradient and 𝐻𝐻(𝜃𝜃�𝑖𝑖) is the Hessian Matrix. The gradient of the criterion is given 
by: 
 

𝑉𝑉′(𝜃𝜃) = − 1
𝑛𝑛
∑ 𝜓𝜓(𝑘𝑘,𝜃𝜃).𝐶𝐶𝛼𝛼𝛼𝛼(𝑘𝑘). 𝜀𝜀(𝑘𝑘,𝜃𝜃)𝑛𝑛
𝑘𝑘=1   (7) 

 
where 𝜓𝜓(𝑘𝑘, 𝜃𝜃) is the gradient of 𝑦𝑦�(𝑘𝑘, 𝜃𝜃) with respect to q. 

 
The Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) update rule 

can be used to estimate the Hessian matrix: 
 

𝐻𝐻(𝜃𝜃) = 1
𝑛𝑛
∑ 𝜓𝜓(𝑘𝑘,𝜃𝜃).𝐶𝐶𝛼𝛼𝛼𝛼(𝑘𝑘).𝜓𝜓𝑇𝑇(𝑘𝑘,𝜃𝜃)𝑛𝑛
𝑘𝑘=1 + 𝛽𝛽𝛽𝛽  (8) 

 
where I is the identity matrix and b a small non negative scalar which must be 
adapted during the learning process.  
 
 
Simulation Example 

 
To demonstrate the proposed learning algorithm, we use a simple simulation 

example derived from the one proposed by (Lin et al. 2002). The example involves 
a population comprising two subpopulations. The positive subpopulation follows a 
bivariate normal distribution with a mean of (0, 0)T and a covariance matrix of 
diag(1, 1). On the other hand, the negative subpopulation follows two bivariate 
normal distributions. The first subpopulation has a mean of (2, 2)T with a covariance 
of diag(2, 1), while the second subpopulation has a mean of (-2, -2)T with a 
covariance of diag(2, 1). The population consists of a positive subpopulation and a 
negative subpopulation. The positive and negative subpopulations account for 80% 
and 20% of the total population, respectively. The subpopulation with negative 
values is balanced and follows two distinct laws to prevent linear separability of the 
two classes. 

Figure 1 displays the distribution of the two classes in the space of the two 
inputs. The red circles represent class0, while the blue triangles represent class1. It 
is evident that these two classes are partially overlapping. This fact implies that even 
the most accurate classifier is unable to perform its task without producing 
misclassifications. 

beta
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Figure 1. Representation of the Simulation Dataset 

 
 

A dataset of 2,000 data points is generated based on the aforementioned 
distribution. The dataset is then randomly split into a training set and a validation 
set, each containing 1,000 data points. The training set is utilized to construct a 
neural classifier (MLP) with a structure consisting of 2 inputs and 10 hidden 
neurons, which is deemed appropriate for the problem. The size of the hidden layer 
was determined through a trial-and-error approach. 

To prevent the issue of local minimum trapping, the training process utilizes 20 
distinct sets of initial weights for each experience.   

The misclassification rate, also known as the error rate or 'zero-one' score 
function (Hand et al. 2001), is the classical criterion for evaluating classifiers: 

 
𝑆𝑆01 = 1

𝑛𝑛
∑ 𝐼𝐼(𝑦𝑦(𝑘𝑘), 𝑦̑𝑦(𝑘𝑘,𝜃𝜃))𝑛𝑛
𝑘𝑘=1  (9) 

 
where 𝐼𝐼(𝑎𝑎, 𝑏𝑏) = 1 when 𝑎𝑎 ≠ 𝑏𝑏 and 0 otherwise. 

 
Two other indicators must be determined: the false alarm rate (FA) and the non-

detection rate (ND). These indicators are: 
 

�
𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

𝑁𝑁𝑁𝑁 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

  (10) 

 
where FP represents the number of false positives, TN represents the number of true 
negatives, FN represents the number of false negatives, and TP represents the 
number of true positives.   

First, we will examine the effect of parameters choice on the misclassification 
rate. Specifically, we will focus on the impact of the Cα and Cβ parameters (Cα =1 
when Cβ≠1 and vice versa) in equations 4 and 5. Figure 2 displays the dispersion 

-8 -6 -4 -2 0 2 4 6
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(boxplot) of misclassification rates obtained from 20 different sets of initial weights 
as the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratio varies between 1/10 and 10.  

 

Figure 2. Boxplot of the 𝑆𝑆01 in Function of the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratio for Simulation Example 

 
 

The reference model is the model that gives the lowest misclassification rate 
using the classical quadratic criterion (𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽� = 1). The results of all other models 
are compared with this model using a hypothesis test (proportion comparison) with 
a confidence level of 95%. The red line represents the acceptance limit of the test. 
Below this line, the considered model is statistically equivalent to the reference 
model; above this line, the considered model is statistically worse than the reference 
model. Figure 2 demonstrates that selecting a 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratio between 1/3 and 3 does 
not result in a decline in performance. In fact, for all boxplots analyzed, the median 
value remains below the red line, indicating that at least 50% of the models produce 
results that are statistically equivalent to those of the reference model. However, for 
values less than 1/3 or greater than 3, this statement no longer holds true. Therefore, 
it is important to make a reasonable choice for the 𝐶𝐶𝛼𝛼 and 𝐶𝐶𝛽𝛽 parameters and not 
exceed a value of 3. 

Table 1 shows the rates (misclassification 𝑆𝑆01, false alarm FA and non-detection 
ND) for the best model among the 20 trained with different 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratios obtained 
on the validation dataset. According to the results shown in figure 2, only ratios 
between 1/3 and 3 are shown.  

The misclassification rates obtained with these five best models are statistically 
equivalent. Therefore, the proposed learning algorithm does not improve or degrade 
the misclassification rate. Additionally, a study of the false alarm rate 
(corresponding to the alpha risk) reveals that adjusting the 𝐶𝐶𝛼𝛼 and 𝐶𝐶𝛽𝛽 parameters can 
result in a range of rates between 1% and 7%. Similarly, adjusting these same 

1/10 1/7 1/5 1/4 1/3 1/2 1 2 3 4 5 7 10
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0.1
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parameters can cause the non-detection rate (beta risk) to vary between 17% and 
38%. 
 
Table 1. Misclassification, False Alarm and Non-detection Rates for the Best 
Models in Function of the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  Ratio 

 
 

Figure 3 displays the classification results obtained using two extreme models. 
The classification limits of the models are represented by a black curve for the model 
obtained with the ratio 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽⁄ = 3 and a pink curve for the model obtained with the 
ratio 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽⁄ = 1 3⁄ . Rounds represent data belonging to class 0, while triangles 
represent data belonging to class 1. The blue data points are well classified by both 
models, while the red data points are misclassified by both models. Data in green 
are those well classified by one model and misclassified by the other. It illustrates 
the usefulness of the proposed approach by defining three zones: a zone of high 
probability of belonging to class 0 (inside the black line), a zone of high probability 
of belonging to class 1 (outside the pink curve), and a zone of uncertainty between 
the two curves. 
 
Figure 3. Results of the Classification Models 

 
 
 
Medical Example 
 

To illustrate the application of the approach, a medical example using a real 
dataset is presented. The dataset considered here concerns breast cancer diagnosis 

Cα/Cβ 1/3 1/2 1 2 3
S01 9.2% 8.6% 8.8% 9.0% 9.6%

FA (α risk) 0.9% 3.5% 3.7% 5.0% 7.6%
ND (β risk) 38.5% 26.7% 26.7% 23.1% 16.7%
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(Mangasarian & Wolberg 1990) and can be downloaded from the UCI website1. 
This dataset includes 569 instances. For each instance, 11 variables are collected 
including the sample ID (not used here), the diagnosis (benign/malignant) which is 
the target of our model, and 9 features describing the tumor: clump thickness, 
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial 
cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses, which are used as 
input of our model.  

This dataset is subdivided into learning and validation datasets including 300 
and 383 instances respectively (instances including missing data are removed).  

The structure of the MLP used to learn this classification problem is composed 
of 9 inputs, 1 output and the size of the hidden layer is fitted to 5 neurons by using 
a trial-and-error strategy. As for the preceding example, to prevent the issue of local 
minimum trapping, the training process utilizes 20 distinct sets of initial weights for 
each experience.   

Figure 4 is based on the same principle as figure 2. It shows the dispersion of 
misclassification rates obtained from 20 different sets of initial weights as the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  
ratio varies between 1/10 and 10. As for the figure 2, the reference model is the 
model that gives the lowest misclassification rate using the classical quadratic 
criterion (𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽� = 1). The results of all other models are compared with this model 
using a hypothesis test with a confidence level of 95% and the red line represents 
the acceptance limit of the test.  

Figure 4 illustrates that the conventional quadratic criterion is not optimal in 
this context. In fact, the boxplot (𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽� = 1) reveals that over three-quarters of the 
models exhibit statistically inferior results relative to the reference model. Only the 
1/4, 1/5, 1/7, and 1/10 ratios exhibit inferior performance in this regard. 
Furthermore, the impact of the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratio is not symmetrical. Indeed, selecting 
𝐶𝐶𝛼𝛼 > 𝐶𝐶𝛽𝛽 (alpha risk reduction) leads to markedly improved results (for ratios 2, 3, 4, 
and 5, more than half of the models are statistically equivalent to the reference 
model). Conversely, selecting the opposite choice leads to only about one quarter of 
the models being statistically equivalent to the reference model. This may be 
attributed to the fact that the data are slightly unbalanced (2/3 class 0; 1/3 class 1). 
  

 
1https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original. 
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Figure 4. Boxplot of the 𝑆𝑆01 in Function of the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  Ratio for Breast Cancer Problem 

 
 

Table 2 shows the rates (misclassification 𝑆𝑆01, false alarm FA and non-detection 
ND) for the best model among the 20 trained with different 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  ratios obtained on 
the validation dataset. As for the preceding case, only ratios between 1/3 and 3 are 
shown.  

The misclassification rates obtained with these five best models are statistically 
equivalent. Therefore, the proposed learning algorithm does not improve or degrade 
the misclassification rate. Additionally, a study of the false alarm rate 
(corresponding to the alpha risk) reveals that adjusting the 𝐶𝐶𝛼𝛼 and 𝐶𝐶𝛽𝛽 parameters can 
result in a range of rates between 1.2% and 3%. Similarly, adjusting these same 
parameters can cause the non-detection rate (beta risk) to vary between 0% and 5%. 
 
Table 2. Misclassification, False Alarm and Non-detection Rates for the Best 
Models in Function of the 𝐶𝐶𝛼𝛼 𝐶𝐶𝛽𝛽�  Ratio for Breast Cancer Problem 

  
 

In a similar vein as illustrated Figure 3, it is possible to select two distinct 
models in order to differentiate treatments according to the cancer predictions 
provided by the two models. The two models selected here are the optimal models 
obtained with ratios of ½ and 3, respectively, and indicated in yellow in Table 2. The 
use of the ratio 3 model is particularly advantageous, as it offers a risk of non-
detection of 0%. With this model, there is a high probability of correctly diagnosing 
all sick patients. Nevertheless, with this model, over 3% of cases are false positives. 
In contrast, the model obtained with the ratio ½ leads to a non-detection rate of 5.5% 

1/10 1/7 1/5 1/4 1/3 1/2 1 2 3 4 5 7 10
0

0.05

0.1

0.15

0.2

Cα/Cβ 1/3 1/2 1 2 3
S01 2.6% 2.6% 2.1% 2.1% 2.1%

FA (α risk) 1.6% 1.2% 2.8% 2.8% 3.1%
ND (β risk) 4.7% 5.5% 0.8% 0.8% 0.0%
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but reduces the false positive rate to 1.2%. It is then possible to easily construct three 
groups of patients according to the results of these two models: 

 
• Group 1: Patients declared healthy by both models. In this case, it can be 

assumed with a high degree of certainty that the patients are indeed healthy, 
and that regular follow-up will be sufficient. 

• Group 2: Patients diagnosed with cancer by both models. In this case, the 
probability is very high that these patients do in fact have cancer, and 
treatment can begin very quickly. 

• Group 3: Patients whose diagnose differ between the two models. In this 
instance, the risk of error is high, necessitating further investigations to 
refine the diagnosis. 

 
Table 3 is derived from the confusion matrices. It presents the results obtained 

on the validation set by mapping predicted classes to actual classes. In comparison 
to a conventional confusion matrix, an additional column entitled "undetermined" 
is added, indicating the number of instances that are well classified by one model 
and poorly classified by the other. The "class 0" column corresponds to Group 1 of 
patients reported as not ill. Here, we find our non-detection rate of 0. The class 1 
column corresponds to Group 2 of patients who were declared to have cancer. We 
note that only three of these patients were in fact healthy. The undetermined column 
corresponds to Group 3, which requires further investigation. This group includes 
almost as many healthy patients as cancer patients. 
 
Table 3. Modified Confusion Matrix 

  
 
 
Conclusion 
 

This paper addresses the issue of two-class classification using neural networks, 
while controlling for first- and second-species risks. The primary concept is based 
on the use of a criterion to be minimized, including a weight that allows for the 
reduction of type I or type II errors to be given priority. 

The proposed approach was tested on a simulation example where the impact 
of the choice of weight on the performance of the model learned in terms of 
misclassification, false alarm, and non-detection rates was evaluated. The results 
demonstrated that this weight favored a reduction in the number of false alarms or, 
conversely, non-detections, without compromising the misclassification rate. The 
proposed algorithm was then tested on a medical dataset to illustrate the value of the 
approach in differentiating patient treatment according to diagnostic results.  

healthy undetermined cancer
healthy 245 7 3
cancer 0 10 118

real 
class

Predicted class



Athens Journal of Sciences XY 
 

11 

One limitation of this approach that has not been addressed here is the potential 
impact of data pollution by outliers. Future work will be directed towards 
investigating the impact of outliers on the robustness of learned models. 
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