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Abstract: Agriculture is dealing with numerous challenges of increasing production while decreasing
the amount of chemicals and fertilizers used. The intensification of agricultural systems has been
linked to the use of these inputs which nevertheless have negative consequences for the environment.
With new technologies, and progress in precision agriculture associated with decision support
systems for farmers, the objective is to optimize their use. This review focused on the progress made
in utilizing machine learning and remote sensing to detect and identify crop diseases that may help
farmers to (i) choose the right treatment, the most adapted to a particular disease, (ii) treat diseases
at early stages of contamination, and (iii) maybe in the future treat only where it is necessary or
economically profitable. The state of the art has shown significant progress in the detection and
identification of disease at the leaf scale in most of the cultivated species, but less progress is done
in the detection of diseases at the field scale where the environment is complex and applied only in
some field crops.

Keywords: algorithm; crop; plant disease detection; study scale

1. Introduction

The agriculture sector plays a crucial role in achieving the United Nations’ goals
of feeding the society by producing food to feed the growing population and providing
livelihoods for millions of people [1,2]. Achieving these goals needs increasing crops yields
by modern technologies but should encourage sustainable land use and practices to protect
the environment, such as reducing chemical spraying.

1.1. Impact of Crop Diseases on Production and Agricultural Sector

Crop diseases have a significant impact on crop production [3]. Plant diseases are
caused by pathogens such as viruses, bacteria, fungi, insects, and nematodes which may
act alone or in combination, whose effect depends on the species or varieties encountered,
the plant stage of development, the meteorological conditions [4], and the agroecological
context [5,6] known as the disease triangle (plant–pathogen–environment) [7]. These
different pathogens may cause significant reductions in crop yields, reduce the visual
aesthetic aspect of the produce [8–10], alter the organoleptic quality, or produce toxic
molecules [11–13]. The quantity or quality reduction generates direct losses for farmers
with less amounts produced, or indirectly with products that cannot be sold (such as
products presenting a visual damage), or not being able to sell at the highest price or having
products that do not reach the normal standard size. Lastly, some pathogens produce toxic
contaminants rendering the product inedible. This leads to economic losses for farmers
which affect the food chain and at the end may generate a problem of food security for the
population [14].
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If farmers want to control pests, they will face increased costs as they spend more
money on pesticides and other chemical treatments to control crop diseases, further re-
ducing their profits [14]. Overuse of chemical treatments can lead to the development
of resistance in pathogens, making it difficult or impossible to control crop diseases [15].
Furthermore, the overuse of phytochemicals may increase the risk of finding chemical
residues on food, leading to food contamination and inducing a cumulative risk [16].

Lastly, farmers exposed to these chemical products may develop diseases them-
selves [17,18]. To mitigate the impact of crop diseases on production and the agricultural
sector, it is important to implement effective disease management practices such as using
disease-resistant varieties, crop rotation, and cultural practices that improve soil health, as
well as Integrated Pest Management (IPM) techniques, which involve using a combination
of methods such as biological, cultural, and chemical controls. Additionally, the research
and development of new technologies such as genetic engineering and biotechnology can
also help to develop disease-resistant crops.

1.2. Data Acquisition to Assess Crop Diseases

The rapid advancement of image and data collection is transforming how we assess
crop disease. The reduced cost of unmanned aerial vehicles (UAVs) and the increased
density of satellites have accelerated their use for agricultural purposes. Remote sensing
with satellites and camera-equipped UAVs allows large-scale detection and mapping, en-
abling early intervention and targeted resource allocation to minimize yield loss [19–22]. If
the data are either acquired on a large scale or with proximal tools like handheld camera
supported by a stick, an armor, or ground vehicles, or just with a smartphone, the informa-
tion collected will depend on the detector integrated. Those data could be image based or
non-image-based approaches. Using imagery data has many advantages, including the
ability to cover large areas quickly, the ability to detect diseases at an early stage, and the
ability to monitor disease progression over time [23]. Early disease detection is crucial
for effective disease management as it allows farmers to act before the disease spreads
and generates a bigger yield loss [24,25]. Furthermore, the use of imagery data can also
provide a more accurate assessment of disease incidence and severity, which can help in
decision-making and resource allocation [24].

There are several image approaches using the following: RGB, multispectral, hyper-
spectral, thermal, and fluorescence imaging [26]. RGB imaging uses only the red, green,
and blue wavelengths and has been used to detect disease presence in leaves but also in
fruits [27,28]; multispectral imaging [21,29] uses a discontinuous but larger panel of wave-
lengths and hyperspectral [30] imaging uses a continuous and larger panel of wavelength.
Both methods have been used for detecting diseases as they provide more information
compared to RGB imaging. Lastly, fluorescence and thermal imaging provide comple-
mentary information to the three precedent ones as indicators of plant metabolism and
biotic and abiotic stress [31,32]. Methodologies that are non-imaging based have also
been developed to detect diseases in crops such as fluorescence, visible, and infra-red
spectrometry [23,26,33,34].

Sensors and Internet of Things (IoT) devices are also used at the field scale to measure
factors such as temperature, humidity, and light intensity that can affect disease develop-
ment [35]. Data collected by these sensors can be used to predict disease risk and to trigger
automatic responses such as applying pesticides [35,36].

1.3. Data Analysis to Detect and Identify Crop Diseases

Spectral data analysis, which examines light reflected from crops, plays a crucial role
in early disease detection by identifying subtle changes in leaf color or texture [37]. These
data, gathered from various sources, including ground-based sensors, aerial platforms, or
satellites, allows for a comprehensive monitoring of diseases, often the first signs of disease.
Machine learning algorithms analyze these image data to recognize patterns and track
trends in disease development. This approach not only aids in current disease management
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but also facilitates the prediction of future outbreaks and even builds models to optimize
disease management strategies [38].

Using vegetation indices, such as the Normalized Difference Vegetation Index (NDVI),
which reflects plant health, further enhances the ability to monitor and predict crop
health [39]. By employing these indices, researchers and farmers can develop advanced
predictions and management strategies that respond dynamically to crop health needs [20].
However, implementing these methods requires significant expertise and resources, with
each approach needing adaptation based on specific crops, diseases, and regional factors.

Machine learning (ML) and artificial intelligence (AI) techniques deployed to analyze
data collected by remote sensors is providing new insights in the field of agronomy by
its powerful learning algorithms [40]. ML and AI are deployed for different agronomical
purposes such as patterns identification and trends in disease development, predicting
disease risk, and to develop models that can be used to optimize disease management
strategies [40,41]. Such technologies have applications across various agronomic needs,
making them versatile tools for enhancing crop health and yield management [42].

Despite their benefits, it is important to note that the implementation of these technolo-
gies is not a one-size-fits-all solution. The selection and use of these tools must be tailored
to suit the specific requirements of the crop, disease, and region involved [43]. Practical
considerations, such as the costs of technology, the availability of trained personnel, and
local infrastructure, are crucial to ensuring these technologies are used effectively.

Tools for assessing crop disease presence have many advantages and can be a valuable
resource for farmers, researchers, and policymakers [19]. However, it is important to note
that these methods should be complemented with other information, such as weather data,
ground-based sensor data, and agronomic knowledge, to create a more comprehensive
view of crop health, disease progression, and treatment needs. Additionally, an awareness
of potential dataset limitations and biases in analytical methods is essential to achieving
accurate, reliable outcomes in disease detection and management.

The main goal of this review is to assess recent advancements in detecting and identi-
fying crop diseases through remote sensing and machine learning, spanning from leaf-scale
to field-scale, the various data collection vectors, data processing techniques, and exploring
practical applications for optimizing chemical use by enabling targeted treatment only
where necessary.

2. Methodology
2.1. Crop Disease Detection Systematic Search Approach (SSA)

To gain a comprehensive understanding of the current research directions and to
identify potential gaps in our knowledge, a two-pronged approach was employed. Firstly,
a bibliometric analysis was conducted using the R bibliometrix package (https://www.
bibliometrix.org/home/index.php (accessed on 25 September 2024)) and VOSviewer soft-
ware, version 1.6.20 [44,45]. This analysis leveraged data from the Scopus database to un-
cover emerging trends and frequently explored topics within the field of crop
disease detection.

The creation of the network maps from VOSViewer was based on keyword co-
occurrences, aimed at identifying the structural connections within the research landscape.
Author keywords were selected as the unit of analysis, with the full counting method
applied to provide equal weight to each co-occurrence. This approach allowed a detailed
examination of keyword relationships, where node proximity on the map indicated term
relatedness, while clusters suggested distinct research themes or subfields.

Regarding the precision of these clusters, the methodology ensures that identified
clusters offer an initial framework for interpreting core topics within the field. However, due
to limitations inherent in automated clustering, such as potential overlaps between thematic
areas or the absence of nuanced context, further analysis was necessary. Consequently, a
more detailed examination of individual papers was conducted. This secondary analysis
involved a fine-grained review of selected papers based on topics in Figure 1, allowing for
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a more accurate interpretation of research themes, emerging trends, and the intellectual
structure of the field.
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This combined approach provides a more nuanced perspective on the research land-
scape, highlighting not only the trending topics but also the prevalent methodologies in
plant disease detection based on artificial intelligence techniques.

Figure 1 unveils the evolving research trends in crop disease detection over the past
decade (between 2012 and 2024). The term frequency on the y-axis indicates the prevalence
of specific research topics within the analyzed body of literature. As the x-axis progresses
through the years, a clear upward trajectory emerges, signifying a growing global focus on
combating plant diseases.

Unsurprisingly, “plant disease detection” itself leads greatest throughout the ten-year
period, highlighting its enduring importance. However, a closer look reveals a fascinating
shift towards artificial intelligence-based (AI) techniques. The surging popularity of terms
like “deep learning” and “convolutional neural networks” underscores the dominance
of AI in contemporary research. The substantial rise in these terms, particularly when
compared to established methods like “support vector machines”, suggests a paradigm
shift towards AI-powered automated detection systems.

Intriguingly, Figure 1 also unveils a surge in interest for some exciting new research
directions. The rise of “spectroscopy” signifies a growing interest in analyzing the unique
spectral signatures of plants to identify diseases. Similarly, the increasing prevalence of
“phenotyping” indicates the exploration of how observable plant characteristics like growth
rate or size can be used to detect subtle health changes indicative of disease. Finally, the
significant upward trend for “remote sensing” highlights the potential of using satellites or
drones to monitor vast crop areas and detect potential disease outbreaks on the field scale.

The following analyses were then conducted in the literature from January 2012 to
May 2024, considering that prior to this period, the research done were preliminary works
and too scarce to be significant.

2.2. Data Retrieval and Extraction

Scopus was used to select metadata information for this study, as it is an authoritative
database offering extensive coverage of the literature and is widely recognized for citations.
Additionally, Scopus enables the exporting of up to 2000 publications at once, making it
a commonly used reference database for several bibliometric analyses. To focus on the
relevance of studies and increase consistency, a set of inclusion and exclusion criteria was
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established [46]. These criteria are essential to provide clear guidelines for this review
and to control its scope and size. The inclusion and exclusion criteria of this review are
provided within Table 1.

Table 1. Inclusion and exclusion criteria used to define the search area of the review.

Inclusion Criteria Exclusion Criteria

2000–2024 Before 2000
Peer-review and grey literature Websites and project pages

English Beyond English
Scopus Other search engines

Keywords: plant disease detection, artificial
intelligence, image, sensing

Other plant disease biology-based detection
methods

The inclusion and exclusion criteria are designed to ensure that the studies included in
the review are relevant to the research question and of high quality. The inclusion criteria
were data of a publication between 2000–2024, the peer-reviewed and grey literature,
written in English, sourced from Scopus and Google Scholar, and focused on crop disease
detection based on artificial intelligence and image processing. The inclusion criteria were
defined to select studies that meet the specific requirements essential for this review and
relevant to the research question.

On the other hand, the exclusion criteria were established to filter out studies that do
not meet these requirements. Studies published before 2000, from websites and project
pages, written in languages other than English, sourced from other search engines, and
employing other crop disease biology-based detection methods such as the following:
detecting the spores without symptoms (PCR) [47] or based on the thermal needs of the
pest reproduction cycle (meteorological) [48] were excluded. By applying these criteria,
the review ensures that the included studies are both relevant and of high quality, thereby
enhancing the credibility and utility of the review.

Overall, the carefully established inclusion and exclusion criteria help maintain the
focus and quality of the review, ensuring that the studies considered are pertinent to the
research objectives and meet high standards. This structured approach not only streamlines
the review process but also increases the reliability and relevance of the findings, ultimately
contributing to a more robust and impactful study.

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines was used to ensure a transparent and standardized approach in conducting
this review. Specifically, we followed the PRISMA checklist to structure our methodology,
reporting, and presentation of results. The guidelines helped us in ensuring the rigor and
reproducibility of our review process [49]. In this review the Preferred Reporting Items for
Reviews and Meta-Analyses (PRISMA) method was applied (Figure 2).

The systematic exploration of crop disease detection, sensing technologies, artificial
intelligence (AI), and imaging techniques began with an initial search on SCOPUS, yield-
ing a corpus of 1409 relevant papers. A first trial based on the title and the abstract has
eliminated 36 documents out of the topic. For example, we considered, out of the scope
of this review, studies where the goal was to predict the presence of the disease based on
meteorological conditions combined with agronomical parameters like Kundu et al. [50] or
Nie et al. [51]. The cleaned total corpus was used to make the trends, but then to extract
information, a second trial was performed to eliminate reviews (45) with not enough data
for our research and proceedings papers (737) which were not accessible, then other studies
were eliminated because their main research objective was to improve algorithms without
mentioning the crop or the disease clearly (56). Eight hundred and seventy-four (874)
papers were excluded, leaving a focused set of 535 papers for further analysis. This subset
formed the foundation for a structured literature review, meticulously organized into five
pivotal topics. The first topic, “Acquisition Methods and Data Sources”, delved into the
varied methodologies and sources employed in gathering data for crop disease detection
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via sensing technologies and AI. The second area, “Study Scale”, investigated the spectrum
of scales adopted in research endeavors, encompassing laboratory experiments, field trials,
and remote-sensing applications. “Algorithm Used” scrutinized the diverse array of AI
algorithms implemented for disease detection in plants, encompassing machine learning,
deep learning, and other computational techniques. Additionally, “Studied Disease” cate-
gorically explored the types of diseases scrutinized in the literature, shedding light on their
characteristics and nuances. Lastly, the topic “Crop Type” delved into the specific plant
species or crop types targeted within the reviewed studies. The meticulous organization
into these five thematic domains facilitated a comprehensive analysis, offering insights
into trends, patterns, and advancements within the realm of crop disease detection. This
approach systematically delineated diverse approaches, highlighted emerging applications,
identified research gaps, and paved the way for a holistic synthesis of the current state of
research in this field, thereby providing a valuable framework for further investigation and
scientific exploration.
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Several working scales have been identified during the literature analysis, the scale
report, the part of the crop that has been analyzed, and the environment background where
data have been collected. Firstly, there are terms which only consider the data treating a
single part of the crop, taking the data out of the field on a neutral or uniform background:
“Fruit”, “Leaf”, “Panicle”, “Pulp”, and “Stem”. Secondly, there are data taken on a single
plant called “Plant” or “Tree” with a more or less uniform background but without mixing
several plants together. Thirdly, there is a mixture of parts of the plants with nearly no
place to have a background: “Fruits”, “Leaves”, “Pods”, and “Spikes”. Four correspond to
several plants together, with no place to have the background close to a crop field but the
image is too close to catch the variability at the field level, which have been called “Plants”,
and the last scale represents the data collection of the field crop called “Field” including all
the plants parts, the background, and the variability within the field. There could also be a
mixture of two plant parts like fruits and leaves together, which has been indicated with
an “&”.

3. Results
3.1. Bibliometric Analysis

Figure 3 presents a thematic clustering visualization, that unveils the evolving land-
scape of crop disease detection research between 2000 and 2024. The information is gleaned
from keywords extracted from titles, abstracts, and keywords of academic publications
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within the SCOPUS database. The size of each node in the cluster directly corresponds to
the relative frequency of its associated keyword.
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The clustering map predominantly shows topics from 2018 to 2024 because these years
reflect a period of intensified research and significant advancements in crop disease detec-
tion through remote sensing and machine learning. Although the dataset spans from 2000
to 2024, earlier years had comparatively fewer publications or lower keyword frequencies,
making them less prominent in the visualization. The clustering method highlights periods
with dense, high-frequency keyword occurrences, hence the concentration on recent years
where techniques like convolutional neural networks (CNNs) and deep learning became
widely adopted and transformative in this field.

At the center of the clustering map, a prominent cluster emerges around key terms,
including “plant disease”, “convolutional neural networks (CNNs)”, “deep learning”, and
“feature extraction”. This central concentration underscores the dominance of CNNs and
deep learning as dominant approaches for extracting diagnostically relevant features from
imagery in the field of crop disease detection research.

Shifting to the left cluster, we encounter a thematic cluster dominated by terms like
“image processing methods”, “image enhancement”, “pre-processing”, and “principal
component analysis (PCA)”. These techniques likely serve as the preparatory steps before
feeding images into CNNs for disease detection purposes.
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On the other hand, the right cluster revolves around keywords such as “classification
models”, “spectroscopy”, “plant pathology”, and “hyperspectral imaging”. This suggests
that researchers are increasingly exploring spectroscopic techniques, in conjunction with
classification models, as a powerful tool for detecting plant diseases.

Further exploration reveals a cluster positioned at the bottom right, centering on “IoT”,
“machine learning”, “remote sensing”, and “precision agriculture”. This cluster signifies
a fascinating trend: the incorporation of these emerging technologies into crop disease
detection within the agricultural sector. This integration has the potential to revolutionize
how we monitor and manage crop health across vast fields.

Finally, the placement of terms along the timeline provides valuable insights into their
emergence and prominence over time. For instance, “k-means clustering” and “support
vector machines (SVM)” appear on the left side of the map, hinting at their prevalence in
earlier research. In stark contrast, terms like “deep learning” and “random forests” appear
on the right, indicating a significant rise in their use in recent years. This visual repre-
sentation underscores the dynamic nature of plant disease detection research, constantly
adapting and embracing new advancements in the field.

To provide further and more in-depth insights into how the research in crop disease
detection evolved, text mining was conducted to reveal prominent topics in the 535 sampled
papers (Figure 4). The expressed topics that the papers claim to cover (i.e., keywords) fall
in five main clusters: (1) the red cluster on plant disease detection methods; (2) the magenta
cluster on the type of algorithms used for crop disease detection; (3) the yellow cluster
of crop type where disease detection was performed; (4) the blue cluster for the dataset
and learning techniques and (5) the green cluster for the study scale. These clusters, while
informative, are based on co-occurrence patterns and inherently feature some overlap
between keywords. For example, certain keywords may appear within a cluster even
if their relevance is more closely aligned with another theme. This overlap reflects the
interconnected nature of research areas and underscores the complexity of categorizing
topics strictly by co-occurrence. Nonetheless, these clusters provide a structured view
of the field, showing both dominant themes and how various aspects of crop disease
detection research intersect and evolve. However, a more refined analysis is presented
in the following sections, where results are obtained from a detailed data analysis of the
selected papers.

The Sankey diagram in Figure 5 offers a compelling snapshot of the research landscape
in crop disease detection using artificial intelligence and image processing. It visually
depicts the interplay between the most active countries contributing to this field, the
prevalent research themes, and the leading journals publishing this work. Countries like
India, China, and the USA stand out on the left axis, indicating a strong research presence in
this domain. The center axis showcases the core keywords, with “deep learning”, “machine
learning”, and “plant disease detection” taking center stage. This reaffirms the dominance
of AI techniques in contemporary research in this field. The width of the connecting lines
between these keywords and countries like India suggests a significant focus on these
AI-powered approaches in these regions.

The Sankey diagram provides a comprehensive visualization of the global research
landscape in agricultural technology, with a particular focus on plant disease detection and
the application of AI methods.

The rightmost column of the diagram lists prominent journals that serve as outlets for
this research topic. The significant presence of journals such as “Computers and Electronics
in Agriculture” and “IEEE Access” highlights a notable intersection between agricultural
research and technological or engineering disciplines, underscoring the interdisciplinary
nature of this research domain. The frequent publication in these outlets reflects the
global research community’s commitment to cross-disciplinary approaches, integrating
innovations in both biosciences and computational sciences to address complex challenges
in agriculture. The thickness of the lines connecting these journals to keywords like “plant
disease detection” and “deep learning” implies a strong emphasis on these specific image
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analysis techniques within the published works. This co-occurrence analysis provides
valuable insights into the current trends and focus areas within this field.
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The central column delineates key research themes and methodologies prevalent in
this field of research. “plant disease detection” is identified as a major theme, reflecting the
pressing need for solutions to mitigate crop loss due to diseases. Methodologies applied
in this research area include “deep learning”, “machine learning”, “Convolutional Neural
Networks (CNNs)”, and “image processing”. These connections illustrate that advanced
AI and image-processing techniques are widely used across countries. The inclusion of
various AI-based approaches indicates a trend towards integrating sophisticated machine
learning models to address agricultural challenges, particularly in plant health monitoring
and automated disease detection.

Keywords such as “plant disease detection” and “deep learning” exhibit connections
to multiple countries and journals, underscoring their central role in agricultural research
aimed at enhancing food security and crop resilience. The choice of publication venues
demonstrates the importance of interdisciplinary journals that bridge agriculture, engi-
neering, and computer science, facilitating the dissemination of innovative technologies
applicable to agriculture.
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The leftmost column lists the countries actively contributing to this field. The diversity in
country participation underscores the international scope of research in agricultural technology.

By identifying the leading research hubs, the dominant themes, and the preferred
publication channels, this Sankey diagram serves as a springboard for further exploration
of specific research areas within the realm of AI-powered crop disease detection. The
Sankey diagram allows researchers to identify potential collaborators from active countries,
delve deeper into specific AI techniques highlighted by the keywords, and target relevant
journals for their own research contributions.

In the recent publications included in our analysis, there is a notable prevalence of the
term “plant” rather than “crop”. This observation can be attributed to the fact that many of
the authors contributing to this body of research come from non-agronomic institutions.
These researchers often publish their findings in journals that are not specifically focused
on agricultural sciences. As a result, the terminology they use tends to emphasize a
broader biological context, favoring “plant” over the more specific agricultural term “crop”.
This trend is also reflected in Figures 3 and 4, where the prominence of the word “plant”
indicates a shift in focus toward a more general understanding of plant health and disease,
rather than a focus solely on agricultural production.

3.2. Analysis of Disease in the Literature

The extraction of the data retrieved in this systematic review based on the research and
review articles in review is summarized in Table 2, where we identified the crops concerned
by the studies, the diseases detected or identified, and the study scale.

Table 2. Examples of studies performed on crop disease detection via machine learning techniques
listed by crop type.

Crop Disease Study Scale * Acquisition Methods ** Citations

Almond (Prunus
amygdalus)

Leaf blotch (Polystigma
ochraceum) Leaves UAV (RGB) [52]

Avocado (Persea
americana)

Laurel wilt (Raffaelea lauricola);
Phytophtora root rot
(Phytophthora spp.)

Tree Multispectral camera [53]
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Table 2. Cont.

Crop Disease Study Scale * Acquisition Methods ** Citations

Apple (Malus domestica)

Alternaria leaf blotch (Alternaria
spp.), Apple black spot (Venturia
inaequalis), and apple leaf miner

(Lyonetia clerkella)

Leaf,
Tree

Photo (Plant Village)
Own photo database

(VIS)
[54–58]

Asparagus (Asparagus
officinalis)

Purple spot disease (Stemphylium
vesicarium) Plant Photo (VIS & IR) and

Satellite [59]

Banana (Musa) Banana fusarium wilt (Fusarium
oxysporum f. sp. cubense) Plant UAV [60–62]

Barley (Hordeum vulgare) Powdery mildew (Blumeria
graminis f. sp. hordei) Leaf RGB [63]

Bean (Phaseolus vulgaris)
Rust (Uromyces phaseoli var.

typica) and Angular leaf spot
(Pseudocercospora griseola)

Leaf Photo (VIS) [64,65]

Cardamon (Elettaria
cardamomum)

Colletotrichum Blight
(Colletotrichum gloeosporioides)

and Phyllosticta Leaf Spot
(Phyllosticta capitalensis)

Leaves Photo (VIS) [66]

Cassava (Manihot
esculenta)

Brown leaf spot (Mycosphaerella
henningsii), Red mite damage

(Tetranychus urticae), Green mite
damage (Mononychellus tanajoa),

Cassava brown streak virus,
Cassava mosaic virus

Leaf Photo (VIS)
Photo (Kaggle) [67,68]

Citrus

Citrus black spot (Phyllosticta
citricarpa), Citrus bacterial canker
(Xanthomonas citri subsp. Citri),
Huanglongbing citrus greening
(Candidatus Liberibacter asiaticus)

Leaves,
Leaf

Photo (RGB)
Hyperspectral [69–74]

Coffee (Coffea arabica) Leaf miner (Leucoptera caffeine)
and Rust (Hemileia vastatrix) Leaves UAV [75]

Cotton (Gossypium
hirsutum) Several Leaf,

Plants

Photo (VIS)
Photo (Plant Village)

UAV
[76–79]

Cucumber (Cucumis
sativus) Several Leaf Photo (Plant Village) [80]

Durian (Durio zibethinus) Several Leaf Photo (VIS) [81]

Eggplant (Solanum
melongena)

Fruit rot, Alternaria leaf spot
(Alternaria sp.), Little leaf of

Brinjal (phytoplasma), Mosaic
virus, Collar rot (Sclerotinia

sclerotiorum)

Leaves,
Fruit,
Plant

Photo (VIS) [82]

Grapevine (Vitis vinifera)

Grapevine flavescence dorée
phytoplasma, Yellows, Esca
(Phaeomoniella chlamydospora,

Phellinus punctatus, Fomitiporia
mediterranea, Phaeoacremonium

minimum), Downy mildew
(Plasmopara viticola)

Leaves
Leaf

RGB; Spectroradiometer
Photo (in vitro)

Photo (Plant Village)
[36,83–87]

Guava (Psidium guajava
L.)

Guava rust (Austropuccinia
psidii), Scabby fruit canker
(Pestalotia psidii), Mummy

disease (Gloeosporium Psidii)

Fruits & Leaves Photo (VIS) [61,88]
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Table 2. Cont.

Crop Disease Study Scale * Acquisition Methods ** Citations

Maize (Zea mais L.)

Northern corn leaf blight
(Exserohilum turcicum), Southern
corn leaf blight (Bipolaris maydis),

Common rust (Puccinia sorghi)

Leaf Photo (VIS) [89–95]

Mango (Mangifera indica
L.)

Sooty mould (Capnodium
salicinum) Leaf, Leaves Photo (Plant Village, leaf

snap) [96–98]

Melon (Cucumis melo L.) Powdery mildew (Sphaerotheca
fuliginea) Leaves Photo (VIS)

UAV [37,99]

Mulberry (Morus nigra)
Leaf rust (Peridiospora mori)
and Leaf spot (Mycosphaerella

mori)
Leaf Photo (VIS) [100]

Oil palm (Elaeis
guineensis)

Basal stem rot of oil palm
(Ganoderma boninense) Leaf

Photo (VIS)
FTIR and Raman

spectroscopy
[8,101]

Olive tree (Olea europaea) Several Leaf Photo (VIS) [102,103]

Onion (Allium cepa L.) Onion Smudge (Colletotrichum
circinans) Satellite (VIS-NIR) [104,105]

Papaya (Carica papaya L.) Begomovirus (Geminiviridae) Leaf NIR and FT-IR ATR [106]

Pea (Pisum sativum L.) Rust disease (Uromyces
viciae-fabae Pers. de-Bary) Leaf Microscopic images [107]

Peanuts (Arachis
hypogaea) Peanut stem rot (Athelia rolfsii) Leaves UV, VIS, NIR, Thermal [108]

Pepper (Capsicum spp.)
Pepper yellow leaf curl virus

(PepYLClV),
Several

Leaf, Pulp, Stem

FT-IR
Photo (VIS, Plant Village

+ pepper diseased
dataset)

[109–113]

Pigeon pea (Cajanus
cajan)

Fusarium wilt (Fusarium udum),
Pigeonpea sterility mosaic virus

(PPSMV), Ashy stem blight
(Macrophomina phaseolina),

Phytophthora blight
(Phytophthora drechsleri f. sp.

cajani)

Leaf Photo (VIS) [114]

Plum (Prunus subg.
Prunus) Several Leaves, Leaves &

Fruit Photo (VIS) [115]

Potato (Solanum
tuberosum)

Early blight (Alternaria solani),
Late blight of potato

(Phytophthora infestans)
Leaf Photo (Plant Village) [116–119]

Rapeseed (Brassica napus
L.)

Sclerotinia stem rot (Sclerotinia
sclerotiorum) Leaves Hyperspectral [120]

Rice (Oryza sativa)

Bacterial leaf blight
(Xanthomonas oryzae pv. oryzae),
Brown spot of rice (Cochliobolus

miyabeanus), Tungrovirus oryzae,
Entyloma oryzae (leaf smut of

rice)

Leaves,
Panicle Photo (VIS) [121–130]

Rose (Rosa sp.)
Powdery mildew of rose

(Podosphaera pannosa) and Gray
mold of roses (Botrytis cinerea)

Leaf Thermal and visible
images [131]
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Table 2. Cont.

Crop Disease Study Scale * Acquisition Methods ** Citations

Solanum Blight (n.d.), several Leaf Photo (Plant Village) [132–134]

Soybean (Glycine max.)

Nematodes cyst nematode,
Anthracnose of soybean

(Colletotrichum truncatum)
Wildfire (Pseudomonas syringae

pv. tabaci)

Field,
Pods,

Leaves,

Satellite (hyperspectral)
VIS+NIR [135–137]

Squash (Cucurbita) Cucurbit powdery mildew
(Podosphaera xanthii) Plant UAV (multispectral) [138]

Strawberry (Fragaria x

ananassa)

Anthracnose (Colletotrichum
fragariae), Gray mold of

strawberries (Botrytis cinerea)
Leaf Photo (VIS)

Hyperspectral [139–141]

Sugar beet (Beta vulgaris) Cercospora leaf spot (Cercospora
beticola) Plants UAV [19,142,143]

Sugarcane (Saccharum
officinarum)

Orange rust disease of sugarcane
(Puccinia kuehnii), Sugarcane

yellow leaf virus (ScYLV), Eye
spot disease of sugarcane

(Helminthosporium saccahari),
Brown leaf spot of sugarcane

(Cercospora longipies), Red rot of
sugarcane (Colletotrichum

falcatum)

Leaf Photo (VIS) [144,145]

Tomato (Solanum
lycopersicum)

10 diseases, early blight
(Alternaria solani),

Tomato Spotted Wilt Virus
(TSWV)

Leaf

Photo (Plant Village)
Own database

VIS + NIR
Hyperspectral

[24,146–155]

Green Tea (Camellia
sinensis)

Blister blight of tea (Exobasidium
vexans), Leafhopper, Caterpillars,

Mosquito, Yellow mite
Leaf Photo (VIS) [156]

Walnut (Juglans regia L.) Diseased (n.d.) Leaf Photo (VIS) [157]

Wheat (Triticum aestivum
L.)

Wheat stripe (yellow) rust
(Puccinia striiformis f. sp. tritici),

Wheatbrown rust (Puccinia
triticina)

Fusarium head blight (Fusarium
graminearum)

Field,
Spikes,
Leaves

UAV VIS
Hyperspectral +

Fluorescence
Photo (VIS)

[20,158–167]

* Fruit, leaf, panicle, pulp, stem: a single organ photo in a neutral environment; fruits, leaves, spikes: several same
parts of a plant pictured together; plant, tree: a single entire plant of a crop in an image with a neutral background;
plants: several entire plants together; field: photo take above the crop, leaves, stems and soil included in the
photo.** RGB: Red Green Blue; VIS: visible; NIR spectroscopy; Near Infrared; FT-IR: Fourier-Transform Infrared
spectroscopy; ATR: Attenuated Total Reflection; UAV: Unmanned Aerial Vehicle; n.d.: not defined.

3.2.1. Study Scale

Based on the objectives and aims of each study, study scales are different. Most
manuscripts retrieved have, as the main study scale, a single leaf (Table 2) which has been
taken out of the plant to be placed in a neutral background that will be eliminated easily
at the first image treatment avoiding any interference with data acquisition. In addition,
most of the documents retrieved used an online database to find leaves that were already
annotated (diseased and healthy), Plant Village (https://datasets.activeloop.ai/docs/ml/
datasets/plantvillage-dataset/ accessed on 9 September 2024) being the most common.
This joins the precedent point, alerting us about how the disease detection subject is mainly
treated from an algorithmics or computational vision, with few agronomical points of view,
since annotated photos without an environmental context is easier to treat. There are a few

https://datasets.activeloop.ai/docs/ml/datasets/plantvillage-dataset/
https://datasets.activeloop.ai/docs/ml/datasets/plantvillage-dataset/
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studies where photos were taken on an entire plant where several leaves, and stem, or fruits
were included. Lastly, some research were based on UAV [52,60,75] or satellite [59,105]
data acquisition, considering several plants at the same time with a complex environment
that includes light/shadowing of some plants, ground presence, different maturity stages
of plants, several layers of leaves with a differentiate disease progression, or the presence
of weeds. These complex environments are difficult to treat, and the pre-treatment of the
image is longer and difficult.

3.2.2. Crop and Disease

The most studied crops were tomato [146], rice [130], wheat [20] and maize [90]
(Table 2), where other crops have been neglected or present little research. Another trend
is that quite a lot of documents (not reported in Table 2) do not focus the research on a
particular crop but were looking for the identification of one or several diseases [168–170],
and that they do not care about the crop nor the disease and there is only research on distin-
guishing health and diseased leaves [21]. The common characteristic of those manuscripts
is that the work focused on public photos available in databases like the Plant Village. In
nearly all the cases, the analysis and the identification are made between the diseased leaf
and a healthy leaf. At the level of UAV [20,171] and satellite acquisition, studies were able
not only to identify the disease but also started to indicate the disease pressure in the field
and others started to analyze the disease severity [158,172]. Most of the studies focused on
leaves with fungal diseases, but a few also studied stems [109] or fruits [82,88] diseases and
others have observed the impact of insects [156] or viruses [82] on the leaves. Major crops
have been studied and regarding the literature, no disease in any crop has had a particular
difficulty in being identified in a particular organ when detected outside the field with a
proximal data acquisition using high quality images. When it comes to the detection of
the diseases in the field, the number of crops evaluated is much reduced and the results
are not advanced enough when acquired with either UAVs or with satellites. First studied
in a large scale, they can detect the disease when it is largely expanded and can evaluate
a disease severity level but they are not accurate enough to develop a decision support
system based on those acquisitions.

3.2.3. Acquisition Method and Data Source

The efficiency of artificial intelligence methodologies in plant disease detection axes
on the variety of data sources is employed. A selection of these sources is guided by
the research objectives and the spatial scale of the targeted disease. For instance, high-
resolution ground-based imagery facilitates the detection of early disease stages in specific
plant types [162]. The detailed information captured allows for an accurate examination of
variations in a plant’s spectral reflectance, potentially revealing disease signatures before
visible symptoms manifest [155,165].

Conversely, monitoring vast fields necessitates a broader approach. In such cases,
multispectral data acquired by UAVs proves advantageous [19]. These aerial platforms can
be equipped with sensors that gather information beyond the visible spectrum, providing
valuable insights into plant health that are imperceptible to the human eye. For example,
near-infrared sensors can detect subtle changes in plant vigor, while thermal sensors can
identify areas with abnormal temperature fluctuations, which are potentially indicative of
disease presence [38,162,164].

The incorporation of data from supplementary sources can significantly enhance
model performance. Data from weather stations and strategically placed soil sensors can
contribute critical details regarding environmental factors like temperature, humidity, and
nutrient levels, all of which significantly influence disease development and spread [85]. By
strategically combining data from these diverse sources, plant disease detection can achieve
a comprehensive and refined understanding of crop health, enabling earlier interventions
and improved disease management strategies.



Agronomy 2024, 14, 2719 15 of 26

3.2.4. Algorithm Used and Annotation Tools

Further data processing steps are usually needed to make data ready for training. In
a deep learning architecture, annotations or image labelling is a major step to supervise
the algorithm and provide some regions of interest. These regions of interest generally are
the objects and patterns to be detected in images. Table 3 provides a summary of the most
used tools for labelling images.

Table 3. Frequently used image annotation tools.

Tool Source Advantages/Constraints

LabelImg
https:

//github.com/heartexlabs/labelImg
(accessed on 10 September 2024)

Python based, open-source, needs
programming skills

VGG Image Annotator (VIA)
https://www.robots.ox.ac.uk/~vgg/

software/via/ (accessed on 10 September
2024)

Web-based tool, open-source, requires
internet connection, some issues with

large dataset

Labelbox
https://labelbox.com/customers/

genetech-customer-story/ (accessed on
10 September 2024)

Python based, commercial, complex
feature set

SLOTH https://github.com/cvhciKIT/sloth
(accessed on 10 September 2024)

Python based, open-source, not
supported an all platforms, some issues

with large dataset

Hasty https://hasty.ai/v2 (accessed on 10
September 2024)

Cloud Annotations GUI, Commercial,
auto label function

IBM Cloud Annotations Tool

https://developer.ibm.com/blogs/ibm-
cloud-annotations-tool-eases-the-

process-of-ai-data-labeling/ (accessed on
10 September 2024)

Cloud Annotations GUI, auto label
function

RectLabel
https://github.com/ryouchinsa/
Rectlabel-support (accessed on 10

September 2024)

Support only Linux environment,
commercial

Labelme

https://developer.ibm.com/blogs/ibm-
cloud-annotations-tool-eases-the-

process-of-ai-data-labeling/ (accessed on
10 September 2024)

Python, based, open-source, some issues
with large dataset

Scale https://scale.com/image (accessed on 10
September 2024)

Cloud Annotations GUI, auto label
function, commercial

SUPERVISELY https://supervise.ly/ (accessed on 10
September 2024)

Cloud Annotations GUI, auto label
function, commercial

These advantages and constraints can vary based on the specific requirements of
the project and the preferences of the annotators. Some of these constraints may not be
significant for certain research, while others may be deal breakers. Table 3 summarizes
frequently used tools for image annotation.

Annotation tools exhibit significant heterogeneity in design and functionality to ad-
dress diverse research requirements. User interfaces can be graphical (GUI), web-based,
or command-line driven. Platform compatibility varies, with some operating tools being
system-specific or requiring additional software libraries. Additionally, annotation formats
differ, with support ranging from the widely used PASCAL VOC XML to COCO JSON [173].
Feature sets further distinguish these tools, with some offering collaborative annotation,
automation capabilities, and integrated data management, while others prioritize the core
annotation process. Finally, cost models diverge, with open-source options like LabelImg
freely available and commercially developed tools like RectLabel requiring licensing fees.

https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
https://www.robots.ox.ac.uk/~vgg/software/via/
https://www.robots.ox.ac.uk/~vgg/software/via/
https://labelbox.com/customers/genetech-customer-story/
https://labelbox.com/customers/genetech-customer-story/
https://github.com/cvhciKIT/sloth
https://hasty.ai/v2
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://github.com/ryouchinsa/Rectlabel-support
https://github.com/ryouchinsa/Rectlabel-support
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/
https://scale.com/image
https://supervise.ly/
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Only a few of the references retrieved have used one of these annotation tools, for
example [170], where most studies prefer to use already annotated images like those found
in the Plant Village database. Labelling is a tedious step which seems to have not been
largely combined with research developing the algorithms for disease detection.

When choosing an annotation tool, it is important to consider the specific requirements
of the project, such as the format of the data, the type of annotation, and the preferences of
the annotators.

Table 4 shows the use frequency of various algorithms used for plant disease prediction.
Convolutional Neural Networks (CNNs) are the most frequent algorithm, cited in 37% of
the references, followed by Generative Adversarial Networks (GANs) at 18%.

Table 4. Frequently used algorithms in plant disease detection within the references in the constituted
database.

Algorithms Use Frequency (%) Example References

CNN 37 [174–177]
DCNN 3 [88]
R-CNN 4 [178]

Mask R-CNN 1 [158]
Faster R-CNN 2 [70]

YOLO 3 [70,146,179]
RFCN 3 [180]
GAN 18 [24,181,182]
VGG 13 [183]
SVM 16 [184]

This suggests that CNNs and GANs are popular choices for researchers in this field.
CNNs are a type of deep learning algorithm that have been very successful in image
recognition tasks. They are well suited for analyzing images of plant leaves to detect
diseases. GANs are a type of generative model that can be used to create synthetic
data. This can be useful for training CNNs when there is a limited amount of real-world
data available.

Other algorithms listed in the table include Support Vector Machines (SVMs) and
VGG models, both at 16% and 13%, respectively. These are all machine learning algorithms
that can be used for classification tasks. In the context of plant disease prediction, they can
be used to classify images of plant leaves as healthy or diseased

Results also show the use of various deep learning object detection models, including
R-CNN, Mask R-CNN, Faster R-CNN, and YOLO. These models are designed to detect
and localize objects in images. In the context of plant disease prediction, they could be used
to identify the specific regions of a plant leaf that are infected with disease.

At the field level, high-resolution images captured by handheld devices are analyzed
using models like CNNs, known for their robust feature extraction in detecting specific
leaf diseases, such as tomato blight or grape mildew [185,186]. Transfer learning, which
adapts pre-trained CNNs to specific agricultural datasets, enhances detection efficiency.
Additionally, Support Vector Machines (SVMs) and Random Forests (RF) offer reliable
classification based on handcrafted features (e.g., color, texture), ideal for smaller datasets
and simpler disease identification tasks. These models make field-level disease detection
accessible even with limited computational resources.

Object detection models, such as YOLO and Faster R-CNN, localize disease patches for
targeted pesticide application, while vegetation indices (e.g., NDVI, EVI) reveal early stress
markers. Satellite-based detection, often using Deep Convolutional Networks (DCNs)
and temporal Recurrent Neural Networks (RNNs), monitors regional disease trends with
spectral and temporal data. GANs enhance low-resolution satellite data to improve detec-
tion precision and anomaly detection with vegetation indices that helps track large-scale
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disease outbreaks. Together, these ML and DL applications facilitate rapid, scalable, and
data-driven disease management in agriculture.

Despite its advantages for large-scale monitoring, the use of satellite data in crop
disease detection remains limited, particularly for detecting early-stage symptoms at the
leaf scale. Satellite imagery, even at high resolution, struggles to capture fine-grained
details, making it difficult to identify specific symptoms that are evident in close-up images,
such as small lesions or discolorations on individual leaves. These leaf-level symptoms,
crucial for early detection and intervention, are often imperceptible from space due to
resolution constraints and atmospheric interference.

3.3. Uses of the Data Acquired

To date, few uses have been developed to use these ML or DL techniques except some
mobile applications to help farmers in the identification of diseases at leaf level [187–189]
whose advantages and limitations have already been reviewed [43]. A few other studies
have started research on the possibility of combining ML with weather data and agronomic
knowledge to find a tool that helps farmers with disease detection [190], and a few others
have combined AI to detect diseases at the field level to decide when is more convenient
to make the treatment [191]. However, to the date, there is a gap between the disease
detection and the treatment by farmers, as most of the researchers found work at the leaf
level. Research has achieved the recognition and identification of pathogens and disease
symptoms compared to sane or not contaminated organs. However, they have not tested
their accuracy at the field level, so we can expect that their use is limited. They could help
low-skilled farmers to identify the disease, but it will require agronomical knowledge to
determine if it is necessary to make a treatment, the product that needs to be applied, and
the amount to be applied.

4. Perspectives and Challenges

Once the technology is developed, it will be extended to farmers’ fields. Then, other
issues may rise. Technically, one major problem will be the quality of the acquired images,
particularly with latent symptoms and small-sized lesions. There is a challenge in capturing
the diseases present in the lower leaves of the canopy, in motion but also because of the
presence of shadows or bad light depending on the time of acquisition and the weather
conditions. The second challenge will be the speed of data treatment before disease
management actions are taken on the field.

From an agronomic point of view, another major challenge will be the annotation
of diseases on leaves in non-controlled environments such as field conditions. In those
situations, the progression of the diseases relies on many factors such as the meteorological
conditions and the crop density. The developmental stage of each individual plant in the
crop’s field may not result in a uniform distribution of the disease in the field. Additionally,
in general, there are several concomitant pests in a field combined with the progression
of the senescence of older leaves due to natural optimization of allocation of nutrients to
maximize photosynthesis in the upper leaves. Even for trained personnel, it is difficult to
distinguish those symptoms combined in the canopy if the data (for annotations or for the
data acquisition) are not collected with a high quality (proximal way), in which case the
information will be less accurate, demanding a leaf-by-leaf annotation within a field which
would be tedious and long.

On the contrary, machine learning tools do not require such detailed annotations
because they are going to have a global grade of disease level (considering the global
health status of the plant) with not many details, making the step of annotation quicker but
less precise.

If the variable rate of application is considered, then there are several possibilities with
different consequences which could be observed on field yield or produce quality, disease
resistance development and disease spreading, conducting to a need for re-treatment. Once
there is an identified risk on the parcel that may require a chemical treatment, it is necessary
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to determine the rules that decide if a person should apply or not apply the chemical
product and which quantity will be necessary. Firstly, the choice may be to cover the
whole parcel but with modulated application quantities depending on the risk of infection.
Secondly, the choice may be to apply the product only where the disease is present or to
apply only where the disease is present with or without a surrounding margin around the
target to avoid proximal contamination. Lastly, the choice may be to use a reduction of
the recommended doses in cases of low risk to prevent the development of resistance by
pathogens due to mutations [192].

Field-level and drone-based imaging provide high-resolution, actionable insights, en-
abling early detection and targeted interventions. Despite current limitations in resolution
and computational demand, drones fitted with multispectral sensors should be considered
for monitoring extensive agricultural areas, while there is a need to further investigate the
potential of satellite data for regional crop health monitoring.

The integration of advanced sensing techniques like fluorescence imaging, spec-
troscopy, and thermal imaging at the leaf level represents a promising direction for crop
disease detection. When combined with ML and DL models, these methods could pro-
vide precise, early-stage disease identification, allowing for timely interventions. Future
research should focus on optimizing these tools for field use, potentially transforming pre-
cision agriculture with enhanced disease monitoring and management capabilities at the
plant level.

The field of crop disease detection can be significantly enhanced by the adoption of
new ML and DL technologies. Federated learning allows for the training of models on
decentralized data sources while preserving data privacy, enabling diverse agricultural
datasets from multiple farms to improve disease detection accuracy. Additionally, transfer
learning and domain adaptation can optimize model performance across different crops
and environmental conditions, addressing the challenge of limited labelled datasets. En-
semble learning techniques can further enhance predictive performance by combining
outputs from multiple models to reduce variance and bias. Advances in edge computing
will facilitate real-time data processing from IoT sensors and drones, ensuring timely dis-
ease detection and response. Furthermore, multi-modal data integration merging visual
images, spectral data, soil health information, and climatic conditions promises a compre-
hensive understanding of crop health dynamics. Finally, enhancing user-friendly mobile
applications that leverage ML and DL algorithms can empower farmers to diagnose dis-
eases using smartphones, offering immediate guidance for effective management practices.
Collectively, these innovations hold great potential in improving crop health management,
increasing yields, and promoting sustainable agricultural practices.

5. Conclusions

This review shows that there are many crops where artificial intelligence using deep
learning or machine learning methods have been used to detect and identify diseases. Un-
fortunately, even if the algorithms developed presented a high accuracy, as they are mainly
developed with the image of one leaf out of an agronomical context (other leaves, other
plants, or varying environmental conditions), their use remains difficult in establishing a
field diagnosis.

Nevertheless, some smartphone applications may help farmers to identify the disease
present in their field as a decision support system. Future research is needed to extend their
use to field applications and combine them with localized treatments.
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