
HAL Id: hal-04788484
https://hal.science/hal-04788484v1

Submitted on 18 Nov 2024 (v1), last revised 18 Dec 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware/Software Runtime for GPSA Protection in
RISC-V Embedded Cores

Louis Savary, Simon Rokicki, Steven Derrien

To cite this version:
Louis Savary, Simon Rokicki, Steven Derrien. Hardware/Software Runtime for GPSA Protection in
RISC-V Embedded Cores. DATE 2025, Mar 2025, Lyon, France. �hal-04788484v1�

https://hal.science/hal-04788484v1
https://hal.archives-ouvertes.fr


Hardware/Software Runtime for GPSA Protection
in RISC-V Embedded Cores

Louis Savary, Simon Rokicki
Univ Rennes, Inria, CNRS, IRISA

Steven Derrien
UBO, Lab-STICC

Abstract—State-of-the-art hardware countermeasures against
fault attacks are based, among others, on control-flow and
code integrity checking. Generalized Path Signature Analysis
and Continuous Signature Monitoring can assert these integrity
properties. However, supporting such mechanisms requires a
dedicated compiler flow and does not support indirect jumps.
This work proposes a technique based on a hardware/software
runtime to generate those signatures while executing unmodified
off-the-shelf RISC-V binaries. To the best of our knowledge, this
is the first solution for providing this level of protection against
fault injection on unmodified binaries. The proposed approach
has been implemented on a pipelined processor, and experimental
results show an average slowdown of ×3.35 and an area overhead
of at least ×1.86 compared to unprotected implementations.

I. INTRODUCTION

Due to their exposure to physical threats, embedded systems
are particularly vulnerable to fault injection attacks. Numerous
studies have shown that even well-designed cryptographic
applications, considered secure in their implementation, can
be compromised through such attacks. These attacks can be
executed using various techniques (e.g., laser, electromagnetic
interference, clock glitches, or power glitches) with the goal
of causing incorrect processor behavior or leaking sensitive
data [1].

Countermeasures against fault injection attacks are catego-
rized based on the type of integrity they protect. Mechanisms
may be designed to safeguard: Data integrity, ensuring the
correctness of the values used in computations; Code integrity,
ensuring that the instructions being executed have not been
tampered with; Control-flow integrity (CFI), ensuring that the
execution path of the program follows the intended flow;
Control integrity, ensuring that micro-architectural control
signals remain uncorrupted. These countermeasures can be
implemented in software or hardware. Software-based solu-
tions, applied during compilation, typically involve program
duplication to detect faults. Hardware-based solutions, on the
other hand, modify the processor’s microarchitecture to detect
faulty signals directly.

Among the numerous techniques for ensuring CFI, Gener-
alized Path Signature Analysis (GPSA) and Continuous Sig-
nature Monitoring (CSM) [2] provide an effective balance be-
tween sensitivity and performance/area overhead. GPSA+CSM
utilizes cryptographic signatures to verify control-flow in-
tegrity. During execution, the processor generates a dynamic
signature based on previously executed instructions. Patches
are applied to adjust this signature when control-flow instruc-
tions (e.g., jumps or branches) are executed, maintaining a

The ARSENE project was funded by the “France 2030” government
investment plan managed by the French National Research Agency, under
the reference “ANR-22-PECY-0004”

consistent signature for each instruction. At designated check-
points, this dynamic signature is compared with a reference to
detect control-flow errors.

However, existing GPSA+CSM implementations share sev-
eral key limitations: They require a custom compilation pro-
cess to embed signature references and patches in the applica-
tion; Indirect branches are difficult to handle without making
strong assumptions about their possible targets; Handling func-
tion calls, returns, and interrupts requires saving and restoring
signatures, increasing the potential attack surface.

In this paper, we introduce a method that addresses
these limitations. Rather than relying on a custom compiler
toolchain, our approach uses a hardware/software runtime that
dynamically computes patches and signature references during
the execution of unmodified RISC-V binaries. As a result, the
proposed solution can transparently handle indirect branches,
function calls, interrupts, and context switches.

In summary, the key contributions of this paper are:
• A hardware/software runtime that dynamically computes

the necessary information for signature-based control-
flow integrity on unmodified binaries;

• Support for indirect branches, function calls, interrupts,
and context switches without requiring strong assump-
tions or custom compilation flows;

• An interrupt-driven mechanism that triggers the software
routine on demand when the information needed for CFI
is required;

• An extension to the processor architecture that includes
components aimed at minimizing the overhead introduced
by the dynamic analysis;

• An implementation of the proposed approach on the
Comet processor [3], along with an experimental eval-
uation of its area and performance overhead.

The remainder of this paper is organized as follows: Section
II provides a background on control-flow integrity techniques
from the literature. Section III presents an overview of our
approach, with detailed explanations of both the software and
hardware components. Section IV discusses the experimental
results and analyzes the performance and area overhead of the
proposed solution.

II. BACKGROUND AND RELATED WORK

In this Section, we provide all the necessary background
on the signature system used in this paper, and we present
previous work on control-flow integrity against fault attacks.
A. Signature system for control-flow integrity

The signature system operates on the principle that each
instruction is assigned a unique signature, which is determined



Support for:
Attacker modelLegacy

binaries
Indirect
jumps

Data
protection

Mafia [4] ✘ ✘ Out-of-Scope Multiple occurrence of multi-bit faults
SWIFT [5] ✘ ✔ ✔ Single occurrence of single-bit fault
On-line monitoring [6] ✔ ✔ Out-of-Scope No faults on first execution
CONFIDAENT [7] ✔ ✘ ✔ Data/Instr. corruption outside of CPU
Dual-core Lockstep [8] ✔ ✔ ✔ Single occurrence of single-bit fault
Proposed approach ✔ ✔ Out-of-Scope Multiple occurrence of multi-bit faults

TABLE I: Comparison of previous approach on control-flow integrity and data-protection

using a cryptographic function, denoted f , applied on the
binary value of the current instruction and the signature of
the preceding instruction. When dealing with control-flow
instructions, patch values are applied to the signature to align
it with the target instruction’s signature. This is particularly
important in cases of convergent control-flows, where multiple
distinct execution paths lead to the same instruction. Without a
patch, the signature would differ based on the execution path,
causing a mismatch even when control-flow is correct. The
patch values ensure that despite different paths, the signature
at the target instruction converges to the correct reference
signature, thus resolving this issue.

The function f exhibits several key properties: reliability,
error preservation, non-associativity, and invertibility, as pre-
viously established in the literature [2, 9].

• Reliability ensures that any control-flow error results in
a signature that deviates from the expected value.

• Error preservation prevents an erroneous signature from
reverting to the correct value, even if the correct instruc-
tion sequence is subsequently executed.

• Non-associativity means that for the same set of in-
structions, altering their order will produce a different
signature.

• Invertibility simplifies the process of generating patch
values and calculating signatures.

A cyclic redundancy check (CRC) function is often used, as
it satisfies these properties.

While the system could verify the signature after every in-
struction, this would impose significant overhead. Instead, due
to the error preservation property of function f (see below),
the dynamic signature only needs to be checked at control-
flow instructions—such as jumps, branches, or returns—where
deviations in flow are more likely to occur.

At runtime, when a control-flow instruction is encountered,
the system compares the dynamically computed signature with
the expected reference signature associated with the target
instruction. If they match, execution continues as intended.
If not, a control-flow error is detected, signaling potential
tampering or corruption in the program’s execution.

B. Control-flow integrity against fault attacks

Several approaches have been proposed to address control-
flow integrity (CFI) in the context of fault attacks.

Some techniques rely entirely on software-based solutions.
For example, SWIFT [5], a software-implemented hardware
fault tolerance technique, uses a compiler pass to duplicate
program instructions and compare register values to detect data
errors. To protect against control-flow errors, static signature
checks are inserted at the boundaries of basic blocks and in
complex control-flow structures, ensuring that store instruc-
tions are not compromised by faults. The COMPAS compiler
[10] can be use in order to protect RISC-V binaries with
SWIFT. This compiler aims at realizing software modifications
for Software Implemented Hardware Fault Tolerance on RISC-
V applications.

Other approaches are implemented purely in hardware. Kim
et al. [6] proposed a technique similar to GPSA and CSM
signature systems, where signatures are generated during the
program’s first execution. However, this method assumes that
the initial execution is fault-free, which is often an unrealistic
assumption in the context of fault attack mitigation.

Hybrid solutions, combining both hardware and software,
have also been explored. MAFIA [4] uses a compiler to
generate signature references and patch values, while hardware
modifications dynamically compute signatures and protect
control signals throughout the execution pipeline. MAFIA also
extends the GPSA implementation by introducing the concept
of pipeline state, where control signals from the pipeline
are encoded in the dynamic signature alongside the executed
instructions. However, because the signature references are
statically generated, MAFIA is unable to handle indirect jumps
or context switches.

Beyond the control-flow integrity, several existing works
tackle the problem of data integrity. In hardware-only redun-
dancy techniques, the dual-core lockstep method by Nikiema
et al. [8] duplicates the entire core to compare control and
data signals in real time, allowing the detection of bit flips.
However, this technique is limited by design to detecting only
a single fault injection during execution, making it unsuitable
for more complex fault injection attacks, like faults considered
in Section II-C.

There are also several solutions aimed at protecting data
integrity from fault injection. The work of Medwed et al. [11]
and Fetzer et al. [12] are examples of data path protection
techniques. These solutions use redundancy mechanisms, such
as residue number systems or AN-codes, to detect multiple-bit
faults within the processor’s datapath. Such techniques can be

2



implemented either entirely in software, requiring a specialized
toolchain, or entirely in hardware, with corresponding changes
to the micro-architecture.

Other solutions focus on defending against fault injection
attacks targeting areas outside the processor. For instance,
CONFIDAENT by Savry et al. [7] addresses fault injection in
memory regions external to the processor. Their work proposes
a fault model that specifically targets external memory, and
their solution involves encrypting both data and instructions
to protect them from fault attacks while ensuring control-flow
integrity. However, this approach requires a custom compiler
toolchain and specialized micro-architecture support.

Table I summarizes the different existing techniques and
their assumptions. The proposed approach tackle the limita-
tions of previous signature-based CFI mechanisms, as it works
on unmodified binaries and support indirect jumps.

C. Threat Model

The attacker is considered to have only physical access
to the device and can inject faults multiple times during
execution. We consider two types of faults: overwriting up
to 32 bits with a random value or overwriting up to 8 bits
with a value chosen by the attacker. The attacker does not
have logical access to the device. The datapath is assumed to
be protected by another mechanism, as described in Section
II-B, and the memory is assumed to be protected by error-
correcting codes. Fault tolerance solutions aiming at Single
Event Upset (SEU) model, like modular redundancy (DMT,
TMR), are too weak to handle this attacker model.

III. OUR APPROACH

A. Overview

The proposed approach is designed to ensure control-flow
integrity (CFI) for processors running off-the-shelf binaries.
As discussed in the previous section, the GPSA+CSM mecha-
nism offers robust protection, but current implementations rely
on compile-time analysis to generate the necessary runtime
data (i.e., signature references and patches). Moreover, existing
methods face challenges with indirect branches, as the target
address is not always known at compile-time. Function calls,
returns, and interrupts also present difficulties for similar
reasons.

In this work, we propose a runtime method that dynamically
computes signature references whenever the CFI mechanism
requires them. By introducing this dynamic analysis, our
approach addresses the limitations of previous methods. How-
ever, this introduces the challenge of minimizing performance
overhead. The dynamic analysis has only partial visibility of
the binary being executed, requiring it to determine which
sections to analyze.

To achieve this, we employ an on-demand generation mech-
anism. When the CFI system requires a signature reference or
patch, an interrupt is triggered, invoking the GPSA generation
routine. Once the required reference or patch is computed,
execution resumes with all the necessary information to ensure
control-flow integrity. To optimize future execution of the

Fig. 1: CFI component scheme

same instructions, the GPSA routine builds a partial control-
flow graph of the running application, caching generated
signature references and patches in a dedicated memory, as
discussed later. More details on the GPSA generation routine
are provided in Subsection III-B.

. In addition to this interrupt-based mechanism, several
new components are added to the processor architecture. To
compute and update the dynamic signature, a CFI block with
a hardware CRC operator is integrated into the processor’s
Execute stage, as depicted in Figure 1. The dynamic signature
is updated using its previous value, the instruction leaving the
decode stage, and the patch value if the instruction involves a
taken branch. This CFI block is also responsible for triggering
the GPSA routine when required values are unavailable.

Furthermore, a CSI component is added to other pipeline
stages to detect faults in control signals during instruction
execution. This component utilizes redundant pipeline regis-
ters, which are compared against the original values to detect
potential faults.

Previous approaches such as MAFIA and SWIFT [4, 5]
stored signature references and patch values in the program
binaries, which required additional instructions to load or to
compute these values before each control-flow instruction.
However, in our approach, modifying the binaries to insert
extra instructions is inefficient, as it would also require updat-
ing all branch targets. To resolve this, we introduce a dedicated
memory, referred to as ps-mem, which provides parallel access
to signature references and patch values. This memory is
managed as a set-associative cache by the GPSA routine,
utilizing several privileged custom instructions, as detailed
in Subsection III-D. Access to this memory is restricted to
the CFI component or through the aforementioned custom
instructions.
B. GPSA generation routine

This routine generates the signature references and the patch
values and stores these values in the ps-mem.

The dynamic signature is only verified when executing
control-flow instructions to reduce the memory cost of ver-
ification. When a control-flow instruction is executed, its
corresponding values are loaded from the ps-mem for patching
and verification. If both values are available in the ps-mem,

3



CFG Instructions Routine
references

ref: known
patch set to 0

nxtbr: jal 0x251a0

src: bge a1, r0, 0x1f8

tgt: lw a3, -4(a5)
addi a5, a5, -4

slli a4, a4, 3

srli a3, a3, 29

ref = 
no patch

(a) Common case

CFG Instructions Routine
references

nxtbr: jal 0x251a0

src: bge a1, r0, 0x1f8

tgt: lw a3, -4(a5)
addi a5, a5, -4

slli a4, a4, 3

srli a3, a3, 29

ref: known
patch set to 
ref

(b) Join case

ref: known
no patch

CFG Instructions Routine
references

nxtbr: jal 0x21a0

src: bge a1, r0, 0x1f8

addi a4, s0, 744

sw ra, 12(sp)

sw s0, 8(sp)

lui a5, 22

lui s0, 22

sw s2, 0(sp)

ref = 
invalidates nxtbr 
predecessors patches

(c) Fallthrough case

Fig. 2: Signature Generation Cases

the dynamic signature is verified and is patched if the branch
is taken. Otherwise, if one of these values is missing, the
instruction and the signature computation are canceled. An
interrupt signal is raised, which triggers the routine in charge
of computing the missing value.

For example, let’s consider that the control-flow instruction
src is executed by the processor while its patch value is not
available in the ps-mem. The routine follows this scheme: First,
the dynamic CFG is accessed to find the entry corresponding
to src. An entry of the CFG contains the signature reference
and the patch value, computed in a previous call to the routine.

As signature references are always computed ahead of the
execution of corresponding instructions, the entry correspond-
ing to src should always exist. A missing entry can only
happen in case of erroneous control-flow.

When the entry is found in the CFG, the signature reference
is stored in the ps-mem. If it contains a valid patch, it is also
stored, and the routine ends. Otherwise, a patch value must
be computed. To this end, the next control-flow instruction
(nxtbr) must be identified. It is found by enumerating the
instructions following the target instruction (tgt) of src.
The nxtbr instruction is added to the CFG, with src as
a predecessor. There are three different cases for computing a
patch, as illustrated in Figure 2:

a) The common case: the src instruction jumps to tgt
and executes normal instruction until the next control-
flow instruction nxtbr. The nxtbr instruction does
not have a signature reference yet. In this situation, a
default patch is given to src, and a signature for nxtbr
is computed by calling the f function on each instruction
between tgt and nxtbr, then stored in the ps-mem.

b) The join case: the src instruction jumps to tgt and
executes normal instruction until the next control-flow
instruction nxtbr. The nxtbr instruction already has
a signature reference. To get the signature of tgt, the
f−1 function is applied from nxtbr to tgt. Then a
patch value for src is computed by xoring its signature
and that of tgt, and stored in the ps-mem.

c) The fallthrough case: the src instruction is a condi-
tional branch, we have to handle the fallthrough case
(i.e. when a conditional branch is not taken). After
the src, normal instructions are executed until the
next control-flow instruction nxtbr. As the conditional
branch already uses the patch to handle the case where
the branch is taken, we cannot apply a patch for the

fallthrough case. Consequently the signature of nxtbr
is directly constrained by the signature of src. The
signature for nextbr is computed by calling the f
function on each instruction between src and nxtbr.
If nxtbr already have a reference signature in the CFG
and/or in the ps-mem, this signature is updated and all
the patches built based on this signature are marked as
incorrect and cleared from the ps-mem.

Then the program execution resumes at the src instruction,
now with the needed values available in the ps-mem.
C. Protection of the routine software

Adding complex control-flow to the execution widens the
attack surface: a fault occurring during the execution of the
routine has to be detected. Moreover, as the system relies
on an interrupt mechanism to trigger the routine, we have
to manage carefully the dynamic signature during the whole
routine execution depicted in Figure 3: i) The signature has
to be modified when jumping to the interrupt handler; ii) The
signature is updated and checked during the execution of the
routine; iii) The dynamic signature has to be restored to its
initial value when the execution of the program resumes.

When an interrupt is triggered, the execution jumps to
the interrupt handler which has its own signature. As an
interruption can be triggered at any point of the execution, we
cannot rely on a patch mechanism to obtain the entry signature
of the interrupt handler. Consequently, the Dynamic Signature
Register has to be writable.

In their work, Chamelot et al. [4] loads the entry signatures
of interrupt handlers from an interrupt vector table to the
Dynamic Signature Register. The Dynamic Signature Register
is reset to the previous signature from a context register
when returning from the interrupt handler. However, having
a mechanism capable of overwriting the dynamic signature
with different values might induce vulnerabilities. In this work,
the dynamic signature register can only be overwritten with a
hard-coded value, corresponding to the entry signature of the
Interrupt Handler, as illustrated in Figure 1. However, over-
writing the dynamic signature when interrupting might erase
an erroneous dynamic signature, and lead to an undetected
control-flow error. To prevent this, the overwritten dynamic
signature must be saved when the interruption is triggered
and restored when the program execution resumes. We use
a dedicated CSR to store this value.

During the execution of the routine, control-flow instruc-
tions are executed, which require signature references and

4



Fig. 3: Control-flow and handling of GPSA interrupts.

patch values. If one of these values were missing, the routine
would trigger itself in an endless loop. To avoid the routine
being triggered while running, all its signature references and
patch values are statically computed and cannot be evicted
from the ps-mem.

Finally, when the routine ends, the execution jumps to
the interrupt terminator which is in charge of restoring the
correct dynamic signature from the value stored in the CSR.
As the Dynamic signature register can only be overwritten
with a constant value, it uses the patch mechanism to obtain
the correct value. The needed patch value is built by the
terminator for its last instruction (i.e. the mret instruction
used to return from an interrupt). It is built by xoring the
signature stored in the CSR, and the signature reference of the
mret instruction, which is statically known. After applying
this patch, the execution resumes, restoring the exact state of
the execution before the interrupt, along with eventual control-
flow errors encoded in the dynamic signature.

In previous approaches relying on a compiler to generate
the GPSA values, the indirect jumps cannot be handled. Here,
as a routine is used to generate these values on demand,
indirect jumps can be handled dynamically. The routine needs
the source address and the target address, which can change
between executions, to compute a correct patch value. Con-
sequently, the target of the control-flow instruction, which is
known at the end of the decode stage, is also stored in a CSR
when an interrupt is triggered. Based on these two values, the
routine builds a valid patch value and stores it in a part of
the ps-memory dedicated to indirect branches, as detailed in
III-D. If an indirect branch is executed while a valid ps-mem
entry with the same source and target couple is available, its
patch value can be reused.
D. Micro-architecture modifications

In addition to the CFI and CSI components used to ensure
the control-flow and execution integrities, we have modified
the processor micro-architecture to simplify the dynamic gen-
eration of signatures. As mentioned before, we use a dedicated
memory to store the signature reference and patch values:
the ps-mem. It prevents loading those values from memory
before executing a branch. Several dedicated instructions have
been defined to manage the ps-mem and to compute CRC and
CRC−1 functions on 32-bit values. Additionally, the outcome

of branch conditions is inserted in the signature mechanism,
as depicted in Figure 1. Indeed Schilling et al. [13] state that
branch conditions should also be encoded in dynamic signature
to prevent an undetected control-flow error caused by a simple
bit flip.

The ps-mem contains three different parts: the main mem-
ory, the private memory and the indirect jumps memory.

The main memory is a set-associative memory containing
all the signature references and patch values dynamically
generated by the routine. This memory is accessed by the CFI
component every time a control-flow instruction is executed.
The routine can write signature references and patch values in
this memory using three different dedicated instructions:

• The stw-ref instruction is used to allocate an entry in
the main memory and store a signature value. It takes
two 32-bit operands: the PC value of the control-flow
instruction processed by the routine and the signature
value to be stored. The instruction first allocates the entry.
If none is available in the given set, the least recently used
value is evicted.

• The stw-patch instruction stores a patch in the main
memory. It takes two operands: the PC and patch values.
It is assumed that a stw-ref instruction has already
allocated an entry.

• The stw-v instruction is used for writing the valid bit
in a given entry. It takes the PC value and the boolean
value as operands.

The private memory is a read-only memory containing the
signature references and patch values for the routine control-
flow. Those values are computed statically. Using a dedicated
memory for the routine GPSA values prevents their eviction
from the memory. As for the main memory, this memory
is accessed by the CFI component every time a control-
flow instruction is executed. The ps-mem selects the correct
memory based on the PC value (the routine is placed in a
known range of addresses).

Finally, the indirect jumps memory is a direct-mapped small
memory containing the signature and patch values for the
last indirect branch executed. This memory is accessed using
the address of the indirect jumps. The tag value contains the
indirect jumps’ source and target addresses. Consequently, the
different patches can be distinguished if a single indirect jump
has multiple targets.

IV. EXPERIMENTAL STUDY

The proposed approach has been implemented on the Comet
RISC-V processor [3]. This processor supports rv32im RISC-
V ISA, along with two 32kb caches for instructions and data.
We use a 32-bit CRC function for the signature mechanism,
and an AN-code redundancy system for the CSI, where the
protected signals are multiplied by 5.

The benchmark application are taken from Embench-IOT
[14]. The proposed software routine is compiled statically,
analyzed to compute all the patch and signature values, and
statically linked with the application being run. The resulting
executable file is executed on the modified micro-architecture

5



Fig. 4: Embench-IOT slowdowns, normalized over baseline Comet

to obtain performance results. The hardware blocks are synthe-
sized for STElectronics 28 nm FDSOI technology to measure
the area overhead. Subsection IV-A presents and discuss the
performance results, while Subsection IV-B is focused on the
area overhead.

A. Performance overhead

In order to evaluate the impact of the proposed approach,
we have executed the different benchmarks with the hard-
ware/software runtime described in Section III. The impact
of the ps-mem is also evaluated by varying its size and its
associativity. Figure 4 shows the slowdown factors of the
proposed approach, normalized over the unprotected execution
of the benchmarks. Note that these results are measured after
the warm-up phase used in Embench-IOT. We can see that the
performance level varies depending on the size of the ps-mem
size. Indeed, if a value is evicted from the ps-mem, the routine
has to be called again the next time the corresponding control-
flow instruction is executed. Evictions are more frequent if the
cache memory is smaller.

We can see on Figure 4 that the proposed approach in-
duce a slowdown between ×1 and ×25, with an average
between ×3.35 and ×4.36, depending on the ps-mem size.
We can observe that most of the benchmarks have low impact
on their performance, as the signatures and patches fit in
the ps-mem. However, several benchmarks see an important
slowdown because of the important number of control-flow
instructions, leading to an increased number of evictions. The
worst benchmark is nsichneu which has more than a thousand
branch instructions on its code. This example if symptomatic
of what could be inefficient in the proposed approach.

Existing solutions requiring compile-time modifications can
have up to 128, 88% execution time overhead [5, 10]. However
this solution assumes a SEU fault model, which is weaker
than the fault model used for the proposed approach. On the
other hand, the MAFIA countermeasure [4] offers the same
level of protection than the proposed approach, and causes an
average slowdown of 18.4%. Still, note that the comparison is
not fair as we handle a more general use case: we can handle
any unmodified binaries, regardless of the presence of indirect
jumps.

B. Area overhead

The modified micro-architecture has been synthesized to
evaluate the area overhead of the proposed approach. As for
the previous experiment, we used different sizes for the ps-
mem main memory. The size of the private memory and
structure depends on the implementations of the GPSA routine.
In this experimental study, we used a 7-associative read-only
memory of 32 rows. Additionally, 16 128-bit registers are used
to store indirect jumps signature and patch values. Note that
the memory and datapath are considered protected (as stated
in Section II). The area numbers presented here does not take
into account a potential overhead caused by these protections.

The obtained results show an area overhead factor between
×1.86 and ×2.27, depending on the size of the ps-mem main
memory.

Compared to other solutions relying on a compiler, as
MAFIA [4] which has an area overhead of 6.5%, the obtained
overhead is important for the same level of protection. This
is due to the need for a dedicated cache memory for storing
signature and patch values. For solutions which do not rely on
a compiler, as hardware duplication or triplication (DMR or
TMR), these solutions have an approximate area overhead of
×2 and ×3. The area overheads may be equivalent between
these solutions and our approach, but our protection level
is higher, as DMR and TMR target simpler attacker model,
usually SEU tolerance.
C. Security analysis

A first validation of the proposed protection has been
performed following the methodology from previous work
[15]. We have performed random fault injections of up to
32-bit random values on either the pipeline control registers,
the dynamic signature register, and the program counter.
All injections have either been successfully detected by our
approach, or does not impact the execution of the benchmark.
Further evaluation of the proposed protection needs to be
conducted.

As we add components to the micro-architecture, we widen
the attackable surface. However, added components are in-
trinsically protected, as faulting them causes the verification
values to be different from the dynamic values. For example,
faulting the CRC operator only impacts the signature reference

6



and patch value computations. The fault is detected when
the next verification involving either value fails. In the case
of multiple faults, the cryptographic nature of f , and the
imprecision of fault injection make the risk of collusion
between the faulty signature and the erroneous control-flow
very unlikely.

V. CONCLUSION AND FUTURE WORKS

We propose a new Hardware/Software runtime aiming at
protecting any RISC-V off-the-shelf program without having
to recompile it. The proposed approach achieves GPSA and
CSM protection thanks to computation of reference signatures
during the execution of the program. The protection comes at
the price of a ×3.35 slowdown, for a ×2.27 area increase.
Future work will be focused on finding solution to handle
applications where the number of branch is too large for the
size of the signature memory. We also consider varying the
size of the signature function to trade the security level and
the area overhead.

REFERENCES

[1] Johan Laurent et al. “Fault Injection on Hidden Reg-
isters in a RISC-V Rocket Processor and Software
Countermeasures”. In: 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2019,
pp. 252–255. DOI: 10.23919/DATE.2019.8715158.

[2] Mario Werner, Erich Wenger, and Stefan Mangard.
“Protecting the Control Flow of Embedded Processors
against Fault Attacks”. In: Smart Card Research and
Advanced Applications. Ed. by Naofumi Homma and
Marcel Medwed. Cham: Springer International Publish-
ing, 2016, pp. 161–176. ISBN: 978-3-319-31271-2.

[3] Simon Rokicki et al. “What You Simulate Is What
You Synthesize: Designing a Processor Core from C++
Specifications”. In: ICCAD 2019 - 38th IEEE/ACM
International Conference on Computer-Aided Design.
Westminster, CO, United States: IEEE, Nov. 2019,
pp. 1–8. URL: https://hal.science/hal-02303453.

[4] Thomas Chamelot, Damien Couroussé, and Karine Hey-
demann. “MAFIA: Protecting the Microarchitecture of
Embedded Systems Against Fault Injection Attacks”.
In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2023), pp. 1–1. DOI:
10.1109/TCAD.2023.3276507.

[5] G.A. Reis et al. “SWIFT: software implemented fault
tolerance”. In: International Symposium on Code Gen-
eration and Optimization. 2005, pp. 243–254. DOI: 10.
1109/CGO.2005.34.

[6] Seongwoo Kim and A.K. Somani. “On-line integrity
monitoring of microprocessor control logic”. In: Pro-
ceedings 2001 IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors.
ICCD 2001. 2001, pp. 314–319. DOI: 10.1109/ICCD.
2001.955045.

[7] Olivier Savry, Mustapha El-Majihi, and Thomas His-
cock. “Confidaent: Control FLow protection with In-
struction and Data Authenticated Encryption”. In: 2020
23rd Euromicro Conference on Digital System Design
(DSD). 2020, pp. 246–253. DOI: 10.1109/DSD51259.
2020.00048.

[8] Pegdwende Romaric Nikiema et al. “Design with
low complexity fine-grained Dual Core Lock-Step
(DCLS) RISC-V processors”. In: 2023 53rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks - Supplemental Volume (DSN-
S). 2023, pp. 224–229. DOI: 10 .1109 /DSN- S58398 .
2023.00062.

[9] Thomas Chamelot, Damien Couroussé, and Karine Hey-
demann. “SCI-FI: Control Signal, Code, and Control
Flow Integrity against Fault Injection Attacks”. In:
2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE). Antwerp, Belgium: IEEE, Mar.
2022, pp. 556–559. DOI: 10.23919/DATE54114.2022.
9774685.

[10] Uzair Sharif, Daniel Mueller-Gritschneder, and Ulf
Schlichtmann. “COMPAS: Compiler-assisted Software-
implemented Hardware Fault Tolerance for RISC-V”.
In: 2022 11th Mediterranean Conference on Embedded
Computing (MECO). 2022, pp. 1–4. DOI: 10 . 1109 /
MECO55406.2022.9797144.

[11] Marcel Medwed and Stefan Mangard. “Arithmetic logic
units with high error detection rates to counteract fault
attacks”. In: 2011 Design, Automation & Test in Europe.
2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763261.

[12] Christof Fetzer, Ute Schiffel, and Martin Süßkraut.
“AN-Encoding Compiler: Building Safety-Critical Sys-
tems with Commodity Hardware”. In: Computer Safety,
Reliability, and Security. Ed. by Bettina Buth, Gerd
Rabe, and Till Seyfarth. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 283–296. ISBN: 978-3-
642-04468-7.

[13] Robert Schilling, Mario Werner, and Stefan Mangard.
“Securing conditional branches in the presence of fault
attacks”. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1586–1591.
DOI: 10.23919/DATE.2018.8342268.

[14] David Patterson et al. Embench: Open Benchmarks for
Embedded Platforms. https : / / github . com / embench /
embench-iot.

[15] Joseph Paturel, Angeliki Kritikakou, and Olivier Sen-
tieys. “Fast Cross-Layer Vulnerability Analysis of Com-
plex Hardware Designs”. In: 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). 2020,
pp. 328–333. DOI: 10.1109/ISVLSI49217.2020.00067.

7


