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Abstract—Energy constraints are still a significant challenge in
numerous IoT applications, particularly due to the excessive power
consumption of microcontrollers. To overcome this limitation,
novel circuit designs have been introduced, with the integration of
spiking neurons and analog computing emerging as a promising
solution, facilitating substantial reductions in power consumption.
However, the operation within the analog domain introduces
complexities in managing the sequential processing of incoming
signals, a critical requirement for diverse applications.

This study employs the Saturating Synapses Leaky Integrate
and Fire (SLIF) model, a bio-inspired neuron model, to develop a
signature recognition system based on a Spiking Neural Network,
without the need of non-biological techniques such as synaptic
delays. SLIF neurons exhibit spiking behavior exclusively in
response to two consecutive spikes with an Inter Spike Timing
(IST) within a specific range, remaining unresponsive to other
ISTs. We present the joint design of IST-based signatures and the
corresponding network. Subsequently, we evaluate the system’s
efficiency in recognizing its specific sequence and discriminating
against alternative sequences. The novelty of this paper lies in
the proposition of a new type of temporal sequence recognition
networks based on ISTs, offering significantly lower energy
consumption compared to conventional approaches.

Index Terms—Spiking Neural Network, Low power design,
Spiking Neurons, Synaptic interactions, Temporal integration

I. INTRODUCTION

The sustainability of the Internet of Things (IoT) and its
widespread adoption [1] hinges on enhancing the energy
efficiency of devices. While current cellular networks, including
5G, aim to optimize performance and reduce core energy
consumption, the objects longevity becomes a critical factor
in various applications [2]. The efforts to reduce consumption
focus on the employed algorithms, the PHY layer, and the
protocols. Notably, the usage of Wake-Up Radios (WuRs) in
the IoT has permitted to reduce the consumption of the nodes.
Such device allows the IoT node to be asleep most of the
time, and awake only if needed. However, current WuRs rely
on microcontrollers for pattern recognition, consuming around
200µW [3], which is too high for the intended battery lifespan
[2].

A promising avenue for achieving ultra-low-power circuits
draws inspiration from biology, particularly the brain, through
spiking networks. Analog spiking communication, as proposed
in [4], offers energy savings compared to conventional methods

[5], [6], where analog-to-digital conversion is a major energy-
consuming step.

Taking this approach further, exploring analog reception
solutions is crucial. Spiking Neural Networks (SNNs) have
emerged as low-power solutions for signal processing, finding
applications in image activity recognition [7], [8] and neuro-
science studies [9]. These bio-inspired systems mimic neuronal
behavior using transistors, achieving comparable computational
speed with significantly lower power consumption, around
100pW per neuron [10], [11].

A fully analog, brain-inspired design has the potential to
reduce WuR consumption by several orders of magnitude,
contributing to prolonged battery life. Nevertheless, managing
time in the analog domain poses a challenge, as seen in [12]. In
this paper, inspired by biology [13], [14], we propose to exploit
the synapse saturation effect, akin the impact of dendrites on
cortical pyramidal neurons. We demonstrated that this saturation
enables the recognition of specific time intervals between two
spikes [15]. By parameterizing the system, we target to choose
and identify desired time intervals or sequences of spikes, as
expected in the development of wake-up radios (WuRs) [16],
[17]. The paper presents several noteworthy contributions:

• Proposition of a neural network model based on the
Saturating Leaky Integrate and Fire (SLIF) architecture,
designed to emulate the impact of dendrites on cortical
pyramidal neurons in biological systems.

• In-depth analysis of the behavior of the proposed network
when exposed to a sequence of eight spikes, providing
a detailed understanding of its performance in a more
complex scenario.

• Evaluation of the system’s capability to identify specific
sequences based on the temporal intervals between spikes,
offering insights into its pattern recognition abilities.

These findings enable the definition of sequences that can
be reliably detected by the proposed neurons with a saturating
effect, potentially serving as a crucial component in the
development of an analog ultra-low power Wake-up Radio
(WuR).

The paper is organized as follows: Section II provides an
introduction to the neuron model along with its corresponding
equations. In Section III, the topology of our network is
described, elucidating its functioning and the co-design ap-
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Fig. 1: Schematic representation of a biological neuron

proach for the targeted sequence. The evaluation of recognition
performances is conducted in Section IV. Finally, Section V
serves as the conclusion of the paper.

II. NEURON MODEL

In cognitive processes, the biological brain employs neurons,
i.e. specialized cells serving as messengers. Communication
among neurons occurs through electrical pulses, or ”spikes,”
transmitted across synapses. Those spikes are emitted by a
neuron when its membrane potential reaches its threshold volt-
age. This phenomenon initiates the transmission of messages,
constituting the fundamental process of neural communication
as illustrated in Fig. 1.

The artificial spiking current replicates this behavior in
response to incoming spike trains. The membrane voltage of
the postsynaptic neuron is described by the Saturating Leaky
Integrate and Fire (SLIF) model (1) :

Cm
dv

dt
= gs(t)(Es − v(t))− gL(v(t)− vrest) (1)

where Cm is the membrane capacity, gs the synapse
conductance, Es the synaptic reversal potential, set to 0mV ,
v(t) the membrane potential, gL the membrane conductance
and vrest = −65mV the resting potential.

There are two parts in (1), one corresponding to the behavior
in response to the incoming spike, ruled by gs(t) which
increases the neuron voltage, and the neuron leaky behavior
ruled by gL, which decreases the voltage. There is thus a
competition between the 2 parts. The first one prevails just
after the incoming spike while the second one predominates
in a second time. As can be deduced from the second part,
the leaky behavior leads to an exponential decrease of the
membrane voltage to the resting potential vrest tending to
reduce the voltage as we can see on the grey curve of Fig. 2.

Meanwhile, the first part describes the way an incoming spike
permits to increase the neuron voltage. By default gs(t) = 0,
cancelling the first term. However, an incoming spike will
make gs(t) increase instantly to its saturating value gmax

s .
This term gs(t)(Es − v(t)) increases and becomes higher

than 0 tending to increases the voltage.
Then, gs(t) decreases exponentially :

dgs(t)

dt
=

−gs(t)

τs
(2)
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Fig. 2: Response of the SLIF neurons to different ISTs

where τS is the synaptic time constant which determines
the dynamic.

The interest of this model is apparent during the successive
transmission of multiple spikes. The restricted growth of gs(t)
slows the rise to the target membrane voltage, contributing to
the observed behavior depicted in the red curve in Fig. 2.

When we send two spikes, the maximal amplitude reached
by the membrane potential will depend on the delay between
those two spikes, called Inter-Spike Timing (IST). If those two
spikes are sent too close together, then gs(t) has only slightly
decreased. So the second spike, which sets gs(t) back to its
maximum, has only a small impact. Indeed, the amplitude
gained with the second spike will be reduced compared to
the first one, as we can see on the red curve in Fig. 2. On
the contrary, if these two spikes are sent too far apart, then
the leaky phenomenon of the neuron will decrease the voltage
between the reception of those two spikes, leading to a voltage
lower than what we could have expected, as depicted on the
green curve in Fig. 2. But, in between we can see on the black
curve that there is a better IST that realises a trade-off between
the saturation and the voltage leak and leads to the optimal
membrane voltage. We can thus find an optimal IST that we
call the ”Favorite IST” of the neuron.

Usually, when a neuron voltage reaches its threshold, it
instantly fall to its resting potential, as we can see in Fig. 3,
and send a spike to the following neurons. But the thresholds
represented in dashed lines on Fig. 2 are fictitious and were
not implemented in the shown neurons, so that we can see



the entire dynamic of the neurons. The black curve on Fig.
2 represents the response to the Favorite IST leading to the
highest amplitude. The threshold is placed arbitrarily 0.1mV
under this amplitude. However, there are other ISTs than the
favorite one which permit to reach an amplitude higher than the
threshold. We call this range of ISTs the ”Timewidth” (TW).

III. NETWORK MODEL

We have constructed our neural network as a fully feed-
forward network comprising SLIF neurons. In this study, we
focus on evaluating a network consisting of three neurons,
each with a distinct Favorite IST, as depicted in the left part of
Fig. 3. The selection of both the network architecture and the
corresponding sequence is an intertwined process. Generally, an
n-neuron network is associated with a 2n sequence, structured
similarly to the one illustrated in Fig. 3. Each neuron Ni is
dedicated to ISTi, its favorite IST. Consequently, when it
receives two consecutive spikes separated by its IST, it emits a
spike to the next neuron in the network. In Fig. 3 our 3-neuron
network processes an 8-spikes sequence. Examining the first
line, we observe four instances where two spikes are spaced
by IST1, resulting in the transmission of four spikes to neuron
N2. Upon reception, neuron N2 interprets these spikes as two
pairs, received with an interval of time corresponding to IST2,
subsequently dispatching two spikes to neuron N3, each spaced
by IST3. This intricate process ensures that the final neuron
fires a single spike.

IV. PERFORMANCES

A key constraint in this model is the requirement for ISTs
to be at least double than the duration of the preceding one.
This constraint arises from the potential overlapping of spikes
and ISTs, leading to undesirable outcomes. Thus, we chose to
design an example network with 3 neurons as defined in Table
I whose ISTs are 4.57× 10−6, 7.41× 10−5 and 2.31× 10−4

respectively and verify the previous constraint.
The time-varying synapse conductance gs(t) is influenced

by incoming spikes, remaining within the range of 0 to a
saturation value gmax

s , set at 100pS for our simulations.

TABLE I: Neurons parameters and metrics

Neuron Cm(F.cm−2) gL(S.cm
−2) τS(s) IST (s) TW (s)

Neuron 1 10−10 10−5 3× 10−6 4.57× 10−6 1.47× 10−6

Neuron 2 10−9 10−5 10−4 7.41× 10−5 2.81× 10−5

Neuron 3 10−8 10−4 10−3 2.31× 10−4 1.64× 10−4

In our previous work, we showed that the Timewidth (TW)
of our neurons is not zero, implying that a minor shift could
potentially trigger a spike in the network. Thus, a single neuron
is capable of recognising IST even if there is a little shift
in a spike timing. In this paper, we extend this study to a
neuron network to provide a comprehensive evaluation and
quantification of this selectivity and to determine the overall
performance metrics of the network.

This study focus on evaluating the probabilities of False
Alarms (FA) and Misdetections (MD).
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Fig. 3: System operation

Misdetection: For MD evaluation, we now introduce a
frequency jitter. Rather than sending the unaltered sequence to
the corresponding network, we randomly draw numbers from a
normal distribution centered around 1. These randomly drawn
factors are then multiplied to all spike timings, effectively
introducing variability in the sequence pace. This process
resulted in either accelerating or decelerating the sequence.
Subsequently, we observed whether the altered sequence
reached the membrane threshold for different threshold values.
This analysis allowed us to gauge the network’s ability to still
detect the sequence subject to the variations in timing induced
by frequency jitter.

The measured probabilities are presented in Fig. 4 for
five distinct threshold values, impacting the selectivity of our
neurons. The chosen thresholds for our neurons fall within
the range of 10−5 to 10−3 Volts below the amplitude that the
neuron reaches when it receives two spikes with the Favorite
IST.

The observation reveals that a smaller threshold margin value
leads to reduced network selectivity. This is attributed to the
narrow range of amplitude values that can trigger the neuron
to reach its threshold. Consequently, only a minuscule range
of jitter values permits this, resulting in high Misdetection
probabilities. Conversely, a higher threshold margin value
increases the likelihood of reaching the neuron threshold
for numerous jitter values, thereby reducing selectivity. Thus,
the network becomes less discerning, detecting almost every
sequence but potentially incurring a higher rate of False Alarms.

False Alarms with totally random sequence: To evaluate
the False Alarms probability, we consider random spike
timings within a range corresponding to the total duration
of the sequence, effectively representing the transmission of a
completely random sequence. We introduced various threshold
margin values to quantify the system’s performance. The
threshold margin represents the amplitude range within which
the neuron can initiate a spike to the subsequent neurons, and
impacts TW. A larger margin corresponds to a lower threshold
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Fig. 4: Probability of Misdetection as a function of the number
of neurons for a jitter of N(1,0.01)

and a higher TW. In this approach, we set the first spike at
t = 0s and then draw ns = 2n − 1 spikes. The FA probability
can be approximated by :

P (FA) =

∏n
i=1 TWi × n!

(Ttot)
n (3)

This equation evaluates the likelihood of each spike being
drawn within the correct time window around the intended
IST. If a spike should occur ISTi seconds after the previous
spike, it must fall within a specific range defined by the time
width TWi within the total time duration Ttot. Consequently,
the probability of accurately drawing the spike timing within
this window is calculated as TWi/Ttot.

The probability of False Alarms, considering a random
drawing of ns = 2n − 1 spikes, for a varying number of
neurons and threshold margin, is illustrated in Fig. 5 for the
neurons described in table I. This range of threshold margin
values allows us to explore different levels of sensitivity and
selectivity in our network’s response to spike sequences. The
graph demonstrates a rapid decline of the probability towards
zero when we reduce the threshold margin and thus, when the
TW is reduced. This is attributed to the necessity of drawing
each IST within the range of the TW of the neurons, centered
on the original IST value to get a FA. The first neuron has
the smallest TW, so if the spike timing is outside of this thin
TW, the first neuron will not emit a spike. As this TW is
relatively small compared to the overall sequence range, even
a slight shift of one spike timing outside this TW renders the
occurrence of False Alarms nearly impossible, even if all other
spikes are perfectly chosen. Then, if a second neuron is added,
3 spikes are needed to be well placed in the sequence instead
of only one. The second one must be around IST1 after the
beginning, the third spike must be placed around IST2, and
the last one must be IST1 after the penultimate. This is why
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Fig. 5: Theoretical probability of False Alarm as a function of
the number of neurons

the FAs are rarer when we use more neurons.
We can observe that the simulations and the theory get

almost the same probabilities, but the simulation is a bit worse
than what we computed when we use only one or two neurons.
This is due to the fact that, in practice, for a pair of spikes,
when one is drawn at the very left of the TW, and the next
one is drawn at the very right of its TW, the IST will be too
large to make the neuron spike, even if there are both in their
predetermined TW. This phenomenon leads to a smaller risk of
getting FAs when we add neurons and spikes. One may note
that, when there are 3 neurons and high threshold margins,
the third TW exceeds the range in which we draw our spike
timings. Consequently, our simulations leads to smaller FAs
than the number we should have had from (3). We thus assume
that our theoretical expression acts as an upper approximation
for the chances to get a FA in simulation.

Besides, some simulation points are missing. Indeed, for
ns = 7 spikes and the smallest threshold margin, an occurrence
is exceedingly rare, standing at P (FA) = 3.25 · 10−12.
Given that running 106 iterations takes approximately 1 hour,
simulating enough iterations to encounter a False Alarm would
take around 100 years. We tested and did not get a single False
Alarm in 108 iterations for the 10−4 threshold margin with 3
neurons, which is consistent with the theoretical approach.

False Alarms with partially random sequences: However,
the non desired sequences might not be completely random,
but rather designed with the same logic. In particular, the
ISTs might be chosen in different orders of magnitude. We
thus define 3 different ISTs within each of 3 different ranges
(between 2µs and 10µs, between 20µs and 100µs and between
200µs and 1ms). Codes are constructed by choosing one IST
in each range. Thus, 33 = 27 different codes can be obtained.
We consider one of these as the targeted sequence. Then, we
create new sequences by selecting another set of ISTs. Each
one is either the reference one (with probability of 1/2) or
another one within the corresponding range.

The results presented in Fig. 6 show the False Alarm
probability for five distinct threshold margin values: 10−5V ,
3× 10−5V , 10−4V , 3× 10−4V , and 10−3V verifying the last
constraint. The graph illustrates an increase in the probability
as the threshold margin increases, indicating a decrease in
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the threshold value. This observation aligns with expectations,
as a larger threshold margin permits the neuron to fire for
ISTs that are further from the favorite one. Consequently, this
broader range allows the triggering of False Alarms for a
larger spectrum of ISTs, leading to a decrease in the overall
performance of our network. Thus, our preference leans towards
employing a lower threshold margin value, as it enhances
network selectivity. However, it comes with the trade-off of
increasing the probability of Misdetection in the presence of
spike timing shifts.

As demonstrated earlier, the adjustment of this threshold
margin value allows for a strategic choice between minimizing
Misdetection and False Alarms. Alternatively, a compromise
can be struck by selecting a value in between, yielding to
moderate results for both metrics.

False Alarms with constrained sequences: In our sim-
ulations, we are currently able to use 6 ISTs which TW
doesn’t overlap the other ISTs, for each of range. Following our
sequence design, we can recognize 6n orthogonal sequences,
with n the number of neurons and ranges in the network. For
this example with 3 neurons, it allow us to use 216 different
sequences. But, we are able to do the same with any other time
ranges and number of neurons in other simulations. We created
these 216 receivers and for each of them we presented all the
sequences except for their own, to verify that the neurons won’t
response for other Favorite ISTs in our list. We indeed get
zero FA in the simulations, implying that these 216 sequences
are orthogonal with respect to this receiver.

V. CONCLUSION

In this paper, we proposed a SNN architecture based on
SLIF neurons for pattern recognition. We showed that this
type of SNN is able to discriminate an IST based pattern from
others and only spike for the targeted signature. We used a
simple but effective topology which consists of a totally feed

forward architecture. We also jointly created the corresponding
sequence and showed that it is indeed the one that makes the
network spikes. We studied the performances of this network
in terms of False Alarms and Misdetection, and discussed the
impact of the neurons threshold margin on this metrics, and
the trade-off we need to make. Currently, n neurons in the
networks implies that we are able to create 6n orthogonal
sequences for the IoT. But, it necessitates 2n spikes. However,
more spikes means more consumption, this is why one of
our next research focus will be to study other topologies that
allowed us to use less spikes for the same number of neurons.
We will also study the interest of multi-IST for each neuron to
potentially allow us to get more selectivity and less neurons
for the same number of spikes.

REFERENCES

[1] Rishika Mehta, Jyoti Sahni, and Kavita Khanna. Internet of things:
Vision, applications and challenges. Procedia Computer Science, 132,
2018.

[2] Halil Yetgin, Kent Tsz Kan Cheung, Mohammed El-Hajjar, and La-
jos Hanzo Hanzo. A survey of network lifetime maximization techniques
in wireless sensor networks. IEEE Communications Surveys & Tutorials,
19(2):828–854, 2017.

[3] Nafiseh Seyed Mazloum and Ove Edfors. Performance analysis and
energy optimization of wake-up receiver schemes for wireless low-
power applications. IEEE Transactions on Wireless Communications,
13(12):7050–7061, 2014.

[4] Florian et Al. Roth. Spike-based sensing and communication for highly
energy-efficient sensor edge nodes. In 2022 2nd IEEE International
Symposium on Joint Communications & Sensing (JC&S), 2022.

[5] Paul A. Merolla et Al. A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science, 345, 2014.

[6] Mike et Al. Davies. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99, 2018.
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