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Abstract

The acoustic response of a passive single point scatterer under grazing flow is shown theoretically and exper-

imentally to have both monopolar and dipolar contributions. The monopolar response is dominated by the

pressure-induced flux Qp, which is related to the specific acoustic impedance of the point scatterer as ζ = −1/Qp.

By contrast, the principal dipolar response is the pressure-induced force Fp, which is experimentally proven to

be modelled by introducing a complex-valued factor η. In fact, η is related to the ratio between Qp and Fp. By

employing these two complex-valued parameters ζ and η in the proposed theoretical transfer matrix model, the

scattering properties of a single point scatterer (e.g., a Helmholtz resonator) subjected to grazing flow can be

well predicted. This model can be readily used in practical applications such as the design of passive absorbers

and silencers in ventilation systems.

Keywords: grazing flow effect, stress-impedance model, Helmholtz resonator, monopolar and dipolar

responses, point scatterer

1. Introduction

Passive acoustic treatments are widely used to realize various desired wave phenomena. Among them, the

reduction of airborne sound [1], e.g., for targeted sound absorption [2, 3] or transmission loss [4, 5], represents

one of the most important applications. Passive metamaterials [6, 7, 8, 9], e.g., detuned Helmholtz resonators

[3, 10], degenerated resonators [11, 12], etc., make use of wave resonances and are introduced in the treatments

nowadays. The efficiency in dealing with low-frequency and broadband acoustic waves has thus been significantly

improved with compact designs.

Note that, difficulties arise when applying the aforementioned design strategies to, for instance, a ventilation

system or an aircraft engine, where a grazing flow exists above the acoustic treatment. Specifically, when the

Helmholtz resonators are subjected to the flow: (1) acoustic energy can be possibly extracted from the flow

and the system is no longer passive [13] and (2) the acoustic response of the treatment depends on the flow

conditions, which makes its accurate modelling difficult in the design process. The former problem is mainly

due to the sound-flow interactions near the sharp edges of the resonator necks [14, 15, 16]. This problem can be

fixed by either attaching a resistive layer (e.g., a Kevlar cloth or a wiremesh, etc.) on the top of the resonator’s
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neck [13], or employing a perforated plate over the resonator array [17, 18] to prevent the direct contact between

the flow and resonators. In the opposite, how to reasonably predict the acoustic response of a passive treatment

under grazing flow, indicated in the latter problem, is still an open question. The impedance modelling of

either an aperture, a Helmholtz resonator, or a perforated liner under grazing flow has been extensively studied

[14, 16, 19, 20, 21, 22, 23, 24]. These studies aimed at deriving either theoretically or empirically a formula which

explicitly expresses the acoustic impedance of the passive treatment as a function of the geometric parameters

and the operating parameters such as the frequency, the grazing flow speed, the incident sound pressure level,

etc. However, a usually overlooked principle lies in the reasonability of assuming that the acoustic response of

these treatments under grazing flow can be fully described by an impedance boundary condition. In fact, both

experimental [25, 26, 27] and numerical [28, 29] studies have strongly challenged this assumption. Specifically,

two distinct impedances of the same locally reacting liner are obtained if the incident wave is in the same or in

the opposite direction compared to the flow, even if the mean flow Mach number M0 is small (|M0| < 0.2). To

explain this, an additional stress boundary condition, i.e., a tangential force along the liner induced by either the

normal acoustic velocity [30, 31] or the acoustic pressure [29], was introduced (see also Ref. [32]). Note that, the

impedance (or the admittance, defined as the inverse of the impedance) merely refers to a monopolar response

of the liner. By introducing the stress boundary condition, the dipolar response of the liner was accounted for.

However, there is still a lack of theoretical or empirical models of the stress response which can be applied for

the design of liners.

The stress (or dipolar) response observed in the measurements of a perforated liner may be generated by

several distinct effects, for instance, the convective momentum transfer due to the boundary layer [30, 31, 29, 32],

the interaction of either acoustic or hydrodynamic modes between adjacent orifices [32], the development of near-

wall turbulent flow structures along the flow direction (according to the numerical simulation [33], the wake

behind an upstream orifice can interact with a downstream one), etc. However, these effects are not yet well

understood. Thus, instead of accounting for all of them, in this work we focus on the acoustic response of a single

passive point scatterer (e.g., a single orifice, a Helmholtz resonator, etc.) under grazing flow conditions, the

modelling of which is necessary before a homogenization can be applied to derive that of a perforated liner. A

theory is proposed to model both the monopolar and dipolar responses, according to which, the dipolar response

(if it exists) can have a significant effect on the maximum absorption coefficient (αmax) in the unidimensional

(1D) transmission problem: if the acoustic response of the scatterer is fully described by an impedance (i.e.,

the dipolar response is negligible), αmax = 1/2 can be obtained, which is the same as the case without grazing

flow [34]. Otherwise, αmax = 1/2 +O(M0) at low Mach numbers. This implies that αmax < 1/2 or αmax > 1/2

when the incident wave is in the same or in the opposite directions of the flow, respectively. Then, the existence

of the dipolar effect can be experimentally validated by achieving α > 1/2 particularly when the wave is against

the flow.

This paper is organized as follows. In Sec. 2, we theoretically investigate the 1D transmission problem of

a passive point scatterer under uniform grazing flow. The acoustic response of the scatterer is modelled by

a linear combination of monopolar and dipolar transfer functions. Then, the transfer and scattering matrices

of the 1D system are derived. The maximum absorption of the system with or without the dipolar effect is

analysed with these matrices. In Sec. 3, the theoretical predictions are validated experimentally using the
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flow-duct measurements, where the point scatterers are Helmholtz resonators covered by wiremeshes on the top

of the necks. Conclusions are drawn in Sec. 4.

2. Monopolar and dipolar acoustical responses of a passive point scatterer in the 1D scattering

problem

2.1. Transfer-matrix modelling of the problem
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Figure 1: Schematic illustration of the 1D scattering problem of a point scatterer subjected to a uniform grazing mean flow.

We consider the 1D acoustic scattering problem, shown in Fig. 1, in which a locally reacting element, such

as a Helmholtz resonator, is connected in parallel to a waveguide and is subjected to a grazing air flow. We

denote U0 the mean flow speed in the waveguide, c0 the adiabatic sound speed, and ρ0 the mean density.

All the losses in the system are assumed to be solely due to the locally reacting element. Besides, this

element can be approximated as a point scatterer located at x = x0 when its width is much less than the

acoustic wavelength. The governing equations for the propagation of small-amplitude perturbations within the

waveguide are the 1D linearized Euler equations, written here in conservative form:

∂

∂t

 ρ′

ρ0u
′ + ρ′U0

+
∂

∂x

 ρ0u
′ + ρ′U0

2ρ0U0u
′ + ρ′U2

0 + p′

 =

 q′s

q′sU0 + f ′
s

 δ(x− x0), (1)

where ρ′, u′, and p′ are the perturbations of density, velocity, and pressure, respectively. In addition, we assume

homentropic perturbations, hence p′ = c20ρ
′.

In the equation above, we have introduced jumps of mass and momentum at x = x0 with terms proportional

to the Dirac delta function δ(x − x0). They correspond to the influence of the passive point scatterer on the

fluid. Their amplitudes, i.e., the volume sink q′s and the force term f ′
s, represent the monopolar and dipolar

responses of the point scatterer to the acoustic field in the waveguide. Note that the volume sink q′s also appears

in the momentum conservation equation, i.e., the second equation in (1). This is because the mean flow U0

contributes to the momentum carried by the fluid elements added or removed by the volume flux.

To convert the problem into the frequency domain, we assume that every fluctuating quantity has a time

dependence given by e−iωt with ω the angular frequency. In addition, the following dimensionless quantities are
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introduced: u = u′/c0, p = p′/(ρ0c
2
0), qs = q′s/(ρ0c0), and fs = f ′

s/(ρ0c
2
0). The governing Eq. (1) becomes:

−ik0

 p

u+M0p

+
∂

∂x

 u+M0p

2M0u+M2
0 p+ p

 =

 qs

M0qs + fs

 δ(x− x0), (2)

where k0 = ω/c0 is the acoustic wavenumber and M0 = U0/c0 is the Mach number of the mean flow.

To relate the acoustic pressure and velocity on either sides of the scatterer, the governing Eq. (2) are

integrated over a control volume around the scatterer (shown as the region encapsulated by the dashed blue

lines in Fig. 1). This involves integrating Eq. (2) between x1 and x2 (where x1 and x2 are the left and right

boundaries of the control volume, respectively), using the divergence theorem, and then taking the limit x1 → x−
0

and x2 → x+
0 (see, for instance, page 512 in Ref. [35]). This leads to the following result: u2 +M0p2

2M0u2 +M2
0 p2 + p2

−

 u1 +M0p1

2M0u1 +M2
0 p1 + p1

 =

 qs

M0qs + fs

 , (3)

where the subscripts 1 and 2 refer to quantities evaluated at x−
0 and x+

0 , respectively.

The monopolar and dipolar responses qs and fs of the passive point scatterer are solely induced by the

acoustic field in the vicinity of the scatterer at x = x0. The acoustic pressure and velocity at that point are

p = (p1 + p2)/2 and u = (u1 + u2)/2, respectively. Without loss of generality, the scatterer responses qs and

fs can be written as proportional to p and u. We therefore define the following relation between the scatterer

responses and the acoustic pressure and velocity at x = x0:qs

fs

 =

Qp Qu

Fp Fu

p

u

 , (4)

where we have introduced four transfer functions Qp,u and Fp,u. The rest of this paper is devoted to measuring

and modelling these transfer functions for a Helmholtz resonator.

The transfer matrix TM that relates the state vectors ⟨p, u⟩T on both sides of the point scatterer is defined

as follows:  p2

u2

 = TM

 p1

u1

 =

 t11 t12

t21 t22

 p1

u1

 . (5)

With Eqs. (3) and (4), two linear equations with variables p1, p2, u1, and u2 are derived. By rearranging these

equations into the form of Eq. (5), the elements of the transfer matrix can be easily obtained:

t11 =
4(1−M2

0 )− 2M0(Qp − Fu)− 2(Qu − Fp) +QuFp −QpFu

4(1−M2
0 ) + 2M0(Qp + Fu)− 2(Qu + Fp) +QuFp −QpFu

,

t12 =
4(Fu −M0Qu)

4(1−M2
0 ) + 2M0(Qp + Fu)− 2(Qu + Fp) +QuFp −QpFu

,

t21 =
4(Qp −M0Fp)

4(1−M2
0 ) + 2M0(Qp + Fu)− 2(Qu + Fp) +QuFp −QpFu

,

t22 =
4(1−M2

0 ) + 2M0(Qp − Fu) + 2(Qu − Fp)−QuFp +QpFu

4(1−M2
0 ) + 2M0(Qp + Fu)− 2(Qu + Fp) +QuFp −QpFu

.

(6)

As illustrated in Fig. 1, the pressure waves coming from upstream or downstream direction and on each side

of the point scatterer are defined as p1+(x) = A1e
ik+x, p1−(x) = A2e

−ik−x, p2+(x) = A3e
ik+x, and p2−(x) =
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A4e
−ik−x, respectively, where A1 to A4 are the wave amplitudes and the wavenumbers are k± = k0/(1±M0).

Then, the four scattering coefficients of the point scatterer are well defined and can be expressed with the

elements of the transfer matrix as:

R+ =
p1−(x0)

p1+(x0)
=

−t11 − t12 + t21 + t22
t11 − t12 − t21 + t22

,

T+ =
p2+(x0)

p1+(x0)
=

2(t11t22 − t12t21)

t11 − t12 − t21 + t22
,

R− =
p2+(x0)

p2−(x0)
=

t11 − t12 + t21 − t22
t11 − t12 − t21 + t22

,

T− =
p1−(x0)

p2−(x0)
=

2

t11 − t12 − t21 + t22
.

(7)

The absorption coefficient of the system is thus defined as (see Ref. [36]):

α± = 1−
(
1∓M0

1±M0

)2

|R±|2 − |T±|2. (8)

2.2. The simplified transfer matrix

Several important observations follow from the definitions of the four transfer functions in Eq. (4).

Firstly, the pressure-driven flux Qp corresponds to the admittance of the point scatterer, or equivalently,

the inverse of its specific acoustic impedance ζ:

Qp = −1

ζ
= − 1

θ − iχ
, (9)

in which θ and χ are the specific resistance and reactance, respectively. Note that the specific impedance ζ is

the commonly used boundary condition that fully describes the acoustic response of a point scatterer in parallel

of the waveguide in the absence of grazing flow (see Chapter 4 in Ref. [9]). However, difficulties arise for the

prediction of ζ in the presence of grazing flow: the impedance of the scatterer usually depends on the flow Mach

number M0. For instance, considering a Helmholtz resonator as a point scatterer (with the neck radius RH

much smaller than the wavelength), the resistance θ increases linearly with M0 whereas the reactance χ slightly

decreases with M0, when the Strouhal number k0RH/M0 is sufficiently small [15, 16]. This effect is induced by

the sound-flow interactions near the sharp edge of the neck as evidenced by several investigations [14, 15, 16, 24].

Besides, when all the other three transfer functions are negligible, the acoustic energy is proportional to the

resistance θ: θ > 0 refers to a dissipation effect, whereas θ < 0 implies a gain or amplification effect.

Secondly, experimental evidences have shown that the acoustic response of a liner under grazing flow is

not fully described by an impedance boundary condition. The paradox arises from the observation that the

measured liner impedances are different when the incident wave is in the same or opposite directions of the

flow [25, 26, 27]. In Ref. [29], the pressure-driven force response Fp is introduced in addition to the impedance

boundary condition to model the effect of flow direction. As indicated in that paper, Fp can be induced by

either viscous effects or momentum transfers between the flow and the lined wall, which can be important as

well when a point scatterer is accounted for.

Thirdly, the dipolar response of a point scatterer caused by the velocity-driven force1 Fu has been theoreti-

cally derived in the absence of grazing flow [37]. It was found that this dipolar effect was observable when two

1In Refs. [30, 31], the momentum transfer impedance, defined as ZT = −τ/v, is introduced to model the dipolar acoustic
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channels were sufficiently close to each other (i.e., the separation distance was subwavelength). In contrast, the

dipolar effect from Fu is negligible compared to that from the monopolar response Qp for a single channel or

for channels separated by distances of the order of the wavelength.

Finally, there is still no clear evidence of a non-negligible effect induced by the velocity-driven flux Qu in

the published literature, either with or without grazing flow.

In this work, we consider the simple and usual case of a single point scatterer under grazing flow. The

transfer matrix Eq. (6) is heuristically simplified by omitting the velocity-driven transfer functions Qu and Fu

(this simplification will be validated against measurements in Section 3.2), which results in

t11 = 1 +
2(Fp −M0Qp)

2(1−M2
0 ) +M0Qp − Fp

,

t12 = 0,

t21 =
2(Qp −M0Fp)

2(1−M2
0 ) +M0Qp − Fp

,

t22 = 1.

(10)

On the one hand, the monopolar transfer function Qp can be expressed as an impedance shown in Eq. (9).

On the other hand, it is assumed and will be experimentally proven that the dipolar transfer function Fp is

proportional to Qp. Note that, this is equivalent to assume that the momentum jump due to the point scatterer

is mainly induced by the convection of the flux. It follows that, according to the right-hand side of Eq. (2), the

(pressure-driven) momentum jump can be expressed as

M0Qp + Fp = MCQp, (11)

where MC is the convection Mach number of the pressure-driven flux. Due to the effect of boundary layer over

the scatterer, MC is in general different from M0 (otherwise the dipolar transfer function Fp vanishes). Thus,

the factor η is introduced as

MC = ηM0, (12)

where η = ηr − iηi is assumed as complex valued without loss of generality. It is found in experiments that, in

usual cases when the system is passive, 0 ≤ ηr ≤ 1, and ηi ≥ 0. Despite this, the cases ηr > 1, ηr < 0, and

ηi < 0 are possible, for instance, when the boundary layer above the scatterer is unstable. However, this is out

of the scope of this work. With Eqs. (11) and (12), the pressure-driven force Fp can thus be fixed as

Fp = (η − 1)M0Qp =
(1− η)M0

ζ
=

(1− η)M0

θ − iχ
. (13)

Introducing the monopolar and dipolar transfer functions provided by Eqs. (9) and (13), respectively, the

response of a liner under grazing flow. In the above expression, τ is the stress (or tangential force) and v is the normal acoustic

velocity at the surface of the liner. It should be noticed that ZT is not related to Fu in this work. In the low-frequency limit that

the acoustic response of the liner in the waveguide approaches to that of a point scatterer in the 1D transmission problem, v tends

to be proportional to the flux (u2 − u1) rather than the averaged velocity u = (u2 + u1)/2 used in the expression of Fu. In fact,

ZT corresponds to −Fp/Qp by definition.
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elements of the transfer matrix in Eq. (10) become

t11 = 1 +
(2− η)M0

(1−M2
0 )ζ − (1− η/2)M0

,

t12 = 0,

t21 = − 1 + (1− η)M2
0

(1−M2
0 )ζ − (1− η/2)M0

,

t22 = 1.

(14)

The behaviour of the transfer matrix at low Mach numbers is obtained by using a Taylor expansion of the

above equations for small M0, which yields
t11 = 1 +

(2− η)M0

ζ
+

(2− η)2M2
0

2ζ2
+O(M3

0 ),

t21 = −1

ζ
− (2− η)M0

2ζ2
− (2− η)(2− η + 4ζ2)M2

0

4ζ3
+O(M3

0 ).

(15)

In early investigations [38, 39, 40], the acoustic response of the scatterer under grazing flow was modelled as an

admittance (or impedance) following the case without flow. Thus, the theoretical transfer matrix proposed by

these models refers to the special case of Eq. (14) with η = 1, obtained when the force term in Eq. (13) vanishes.

However, as shown in Ref. [41], the above transfer matrix fails to predict the correct scattering coefficients of

locally reacting acoustic treatments with perforations and backed cavities. An empirical transfer matrix was

proposed in Ref. [41] with the elements

t11 = 1 +
1.5M0

(1− 1.5M2
0 )ζ − 0.75M0

,

t12 = 0,

t21 = − 1

(1− 1.5M2
0 )ζ − 0.75M0

,

t22 = 1.

(16)

Note that, in Ref. [41], the impedance ζ was defined with the upstream pressure p1, whereas in Eq. (16) the

averaged pressure (p1 + p2)/2 has been used following the convention of this work. Using again a Taylor

expansion of Eq. (16) at low Mach numbers:
t11 = 1 +

1.5M0

ζ
+

1.125M2
0

ζ2
+O(M3

0 ),

t21 = −1

ζ
− 0.75M0

ζ2
− (0.5625 + 1.5ζ2)M2

0

ζ3
+O(M3

0 ),

(17)

which corresponds to the special case of Eq. (15) with η = 0.5. A theoretical investigation was then carried

out in Ref. [42]. Specifically, the effect of boundary layer on the scatterer was accounted for by using the

two-dimensional governing equations of the perturbation field. Then, the perturbations were averaged in the

transverse direction of the wave propagation to derive the lumped one-dimensional model, which provides the
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transfer matrix of the system as 

t11 = 1 +
(2− η)Me

(1−M2
e )ζ − (1− η/2)Me

,

t12 = 0,

t21 = −M0

Me

1 + (1− η)Me

(1−M2
e )ζ − (1− η/2)Me

,

t22 = 1,

(18)

where Me = M0/(1 + bM2
0 ), with b a factor that is related to the mean flow velocity profile. However, Eq. (18)

has the same asymptotic expansion as that of Eq. (14) up to the order of M2
0 (shown in Eq. (15)). In fact, the

factor b does not appear until the M3
0 term, which implies that the effect of the flow profile is insignificant at

low Mach numbers. Besides, the coefficient η was assumed to be real valued in Ref. [42].

2.3. The effect of the pressure-driven force

Due to the geometric symmetry of the 1D system, R−, T−, and α− can be derived by changing the sign of

the Mach number (i.e., by using −M0 instead of M0) in the expressions of R+, T+, and α+, respectively. Thus,

we consider the expression of α+ in the following discussions, where M0 can be either positive or negative. The

superscript will be omitted and α with positive or negative M0 corresponds to α+ or α−, respectively.

With Eqs. (14), (7), and (8), α can be explicitly expressed as a function of five real-valued variables, i.e.,

α = α(M0, ηr, ηi, θ, χ). (19)

When M0, ηr, and ηi are fixed, the stationary point of α(θ, χ), denoted as (θopt, χopt), is determined by the

unique solution of the following equations

∂α

∂θ
= 0 and

∂α

∂χ
= 0. (20)

This stationary point corresponds to the optimal impedance of the point scatterer (ζopt = θopt− iχopt) required

to achieve maximum absorption, i.e., αmax = α(θopt, χopt). The closed-form expressions of αmax and ζopt are

αmax =
1

2
− (1− ηr)M0

1 +M2
0 [(1− ηr)2 + η2i ]

=
1

2
− (1− ηr)M0 +O(M3

0 ) (21)

and

θopt =

1

2
− M0(2ηr −M0(2− ηr +M2

0 (2− ηr)((1− ηr)
2 + η2i )− 2M0((2− ηr)η

2
i + (1− ηr)(2− 2ηr + η2r ))))

2(1−M2
0 )(1 +M2

0 ((1− ηr)2 + η2i )− 2M0(1− ηr))

=
1

2
− ηrM0 +

(
1− 5

2
ηr + 2η2r

)
M2

0 +O(M3
0 ),

χopt = ηi
M0(2−M0 −M3

0 ((1− ηr)
2 + η2i ) + 2M2

0 (η
2
i − (1− ηr)ηr)))

2(1−M2
0 )(1 +M2

0 ((1− ηr)2 + η2i )− 2M0(1− ηr))

= ηi

[
M0 +

(
3

2
− 2ηr

)
M2

0 +O(M3
0 )

]
,

(22)
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respectively. According to Eq. (21), αmax is well approximated as a linear function of M0 and the slope depends

on the real part of the factor η.

The effect of the dipolar transfer function Fp (which is proportional to (1− η)) on the maximum absorption

as well as the corresponding optimal impedance is shown in Fig. 2. When η = 1, Fp vanishes and αmax = 1/2 for

any flow speed shown as the red curve in Fig. 2(a). This behaviour is the same as that in the 1D transmission

problem in the absence of flow [34]. However, when Fp exists (i.e., 0 ≤ ηr < 1), αmax is affected by the

O(M0) term at low Mach numbers, as shown in Eq. (21). Consequently, αmax > 1/2 when the acoustic wave

propagates against the flow; αmax < 1/2 when the acoustic wave and the flow are in the same direction.

This results in different absorber-design strategies from those traditionally used in the absence of grazing flow.

When η = 0, the point scatterer provides a no-slip boundary for the perturbations and the corresponding αmax

is shown as the black dashed curve in Fig. 2(a). When η = 0.5 (this value is suggested due to the previous

investigations [41, 42]), αmax and ζopt are shown as the blue dot-dashed curves in Fig. 2. The curves with

η = 0.5 are bounded by those with η = 1 and η = 0, as one would expect.
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Figure 2: Theoretical predictions based on the simplified transfer matrix in Eq. (14) with different factor η. Particularly, η = 1

corresponds to the case where the dipolar response vanishes, whereas η = 0 implies that the point scatterer provides a no-slip

boundary for the perturbations: (a) maximum absorption coefficient αmax, (b) optimal resistance θopt, and (c) optimal reactance

χopt. Note that in (c) the three curves with η = 0, 0.5, and 1 overlap.

According to the measurements of this work (provided in Section 3), the factor η usually has a non-negligible

imaginary part, i.e., ηi is in the same order of ηr. From the above theory, ηi has negligible effects on αmax and

θopt at low Mach numbers (|M0| < 0.3), since ηi does not appear up to M2
0 terms in their asymptotic expressions
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shown in Eqs. (21) and (22), respectively. In contrast, χopt is proportional to ηi as shown in Eq. (22). When

ηi vanishes, χopt is identically zero. A parametric study is presented with η = 0.5 − 0.3i which is close to the

experimental values from this work (see Section 3). The results are illustrated by the blue circles in Fig. 2.

3. Experimental investigations of the problem

3.1. Experimental setup

W

T

Flow

L

H

A

B

Microphone
s

Microphone
s

Wireme
shes

(a) (b)

Figure 3: (a) Schematic illustration of the experimental setup. The rectangular waveguide has height A = 40 mm and width

B = 50 mm. Two identical Helmholtz resonators are mounted at the same axial position to form a single point scatterer. This

configuration ensures that the flow profile is symmetric in the waveguide. Three microphones are located on each side of the

scatterer to measure the scattering matrix. (b) Photograph of one Helmholtz resonator with wiremesh covering the top of the neck.

To validate the above theoretical analyses, the following experimental investigation is carried out. As

illustrated in Fig. 3, the 1D scattering properties of a single point scatterer under grazing flow conditions are

experimentally investigated in a straight waveguide with rectangular cross-section of height A = 40 mm and

width B = 50 mm. A compressor is employed to produce the mean flow, with a mean Mach number in the

waveguide reaching up to 0.25, approximately. In the experiments, the flow velocity at the center of the duct is

measured by a Pitot tube connected to a differential pressure sensor. This measurement provides the maximum

flow Mach number (Mmax). Then, an empirical formula M0 = 0.8Mmax provides the mean Mach number.

Note that this formula is accurate for fully developed turbulent flow profile [43], and has been validated by

previous work employing the same experimental setup [44, 13]. For more details about this flow-duct facility,

see Refs. [44, 13].

The single point scatterer studied in this work consists of two identical flush mounted Helmholtz resonators

facing each other in the walls of the waveguide. This mounting aims at preventing the effect of asymmetric

boundary layers in the waveguide. Both the necks and the cavities of the resonators are rectangular with

dimensions L×H and W × T , respectively, and extend over the entire width of the waveguide B (see Fig. 3).

Besides, wiremeshes with measured specific impedance ζmesh = 0.127−0.000114ik0 (note: the constant 0.000114

10



has the dimension of meter) are glued on the top of the necks of the resonators. The purpose of using wiremeshes

is threefold: (1) introducing sufficient losses in the scatterers to prevent whistling effects [13], (2) ensuring that

there is no amplification of the incident wave and the system is passive, and (3) tuning the resonators to achieve

αmax. Two samples are proposed in this work, whose geometric parameters are provided in Table 1. Specifically,

Sample 1 aims at achieving the optimal impedance at 1000 Hz when M0 = ±0.2, assuming that η = 0. Note

that, from Eq. (22), ζopt = 0.54− 0i for M0 = ±0.2 if η = 0. In contrast, Sample 2 is designed for the optimal

impedance ζopt = 0.5− 0i at 1000 Hz in the absence of grazing flow (i.e., M0 = 0).

Table 1: Geometric parameters of the two samples.

Sample 1 Sample 2

Width of the neck: W (mm) 4.4 5.1

Thickness of the neck: T (mm) 5.0 8.2

Height of the cavity: H (mm) 30.0 30.0

Width of the cavity: L (mm) 33.6 33.3

Three microphones are located on both the upstream and downstream sides of the test section to acquire

the acoustic pressures in order to compute the scattering matrix (i.e., the four scattering coefficients). The

method introduced in Ref. [13] is applied, where one measurement is performed using only the acoustic sources

upstream the scatterer, and the other measurement using only the sources located downstream. In both cases,

the amplitude of the incident plane wave is controlled and kept constant at 140 dB (±0.1 dB). Note that, this

incident sound pressure level (SPL) ensures that the signal-to-noise ratio is sufficient at the maximum flow

speed M0 = 0.2. In addition, this SPL is insufficient to produce any nonlinear effect on the impedance of the

resonator in the absence of grazing flow, i.e., M0 = 0. This was validated by measurements at lower SPLs. The

input signal is a sine sweep going from 100 Hz to 3000 Hz with a step of 5 Hz. Then, the transfer matrix is

derived with the measured scattering coefficients as



t11 =
(1 +R+)(1−R−) + T+T−

2T+
,

t12 = − (1 +R+)(1 +R−)− T+T−

2T+
,

t21 = − (1−R+)(1−R−)− T+T−

2T+
,

t22 =
(1−R+)(1 +R−) + T+T−

2T+
.

(23)

3.2. The four transfer functions Qp,u and Fp,u

According to Eq. (6), the four transfer functions Qp,u and Fp,u are uniquely determined by the measured

transfer matrix as

11





Qp =
4t21 + 2M0(t11 − t22 − t12t21 + t11t22 − 1)

1 + t11 + t22 − t12t21 + t11t22
,

Qu = 2− 4(1 + t11 −M0t12)

1 + t11 + t22 − t12t21 + t11t22
,

Fp =
2(t11 − t22 + 2M0t21 − t12t21 + t11t22 − 1)

1 + t11 + t22 − t12t21 + t11t22
,

Fu = 2M0 −
4(M0 +M0t11 − t12)

1 + t11 + t22 − t12t21 + t11t22
.

(24)

Fig. 4 shows the results of Sample 1 with M0 = 0.15 and 0.2. It can be found that |Qu| and |Fu| are much

less than |Qp| and |Fp| in these cases. Due to this experimental evidence, the simplified transfer matrix (derived

by neglecting Qu and Fu) in Eq. (14) can be used to model the acoustic behaviour of the system.
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Figure 4: Measured magnitudes of the four transfer functions of Sample 1 at (a) M0 = 0.15 and (b) M0 = 0.2.

3.2.1. The impedance ζ for the monopolar response
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Figure 5: Measured acoustic impedance ζ = θ − iχ = −1/Qp of Sample 1 with various flow Mach numbers: (a) Resistance θ and

(b) Reactance χ.

According to Fig. 4, the monopolar transfer function Qp is dominant in all the four transfer functions. The

measured acoustic impedance ζ (i.e., −1/Qp) of Sample 1 is shown in Fig. 5. Note here that the impedance of
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each individual Helmholtz resonator (denoted as ζHR) is related to the point-scatterer impedance ζ as ζHR =

ζ × (2SNeck)/SDuct, where SNeck = W × B and SDuct = A × B are the areas of the resonator neck and cross

section of the waveguide, respectively. From the results in Fig. 5, the impedance ζ is almost unaffected by the

grazing flow when M0 ≤ 0.1. However, when M0 = 0.15 and 0.2, the effect of flow is non-negligible. This has

been discussed in Section 2.2: the resistance exhibits a significant increase while the reactance decreases with

M0 (i.e., the resonance frequency increases with M0). The modelling of the grazing flow effect on the impedance

ζ has been widely investigated and is out of the scope of this work.

3.2.2. The factor η for the dipolar response

From the theoretical analyses in Section 2.2, the dipolar transfer function Fp can be modelled as proportional

to the monopolar one Qp, and thus the convection Mach number MC as well as the factor η have been introduced

in Eq. (12). The assumption used in the theory that Fp ∼ MCQp is verified by the experiments: the measured

pressure-driven transfer functions Qp and Fp are plotted in Fig. 6, which indicates the similarity of their spectra

and supports the theory that the unsteady force Fp is mainly generated by the convection of the unsteady flux

Qp.
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Figure 6: Measured transfer functions Qp and Fp of Sample 1 at (a) M0 = 0.15 and (b) M0 = 0.2.
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Figure 7: Measured factor η of Sample 1 at (a) M0 = 0.15 and (b) M0 = 0.2.

Moreover, with Qp and Fp provided from measurements, the factor η is readily derived with Eq. (13). Results

13



from Fig. 7 indicate that η is a complex quantity with real and imaginary parts (ηr and −ηi, respectively) of the

same order of magnitude. Besides, η = η(f,M0) and thus generally depends on both the frequency f and the

flow Mach number M0. However, due to the experimental evidence, neglecting the frequency dependence of

η around the resonance frequency is acceptable when η is used for predictions of the scattering (or absorption)

coefficients. It is thus assumed that η(f,M0) ≈ η(M0) with the frequency-averaged factor η introduced as

η(M0) =
1

f2 − f1

∫ f2

f1

η(f,M0)df, (25)

where f1 = 500 Hz and f2 = 2000 Hz are used in all the cases in this work. The results of η(M0) for the two

samples at various flow Mach numbers are provided in Table 2. However, as shown in Fig. 8, neither ηr nor ηi

are monotonic functions of M0. Moreover, η(M0) behaves differently between Sample 1 and 2, although their

geometries are close to each other. Thus, it is still difficult to derive a closed-form expression of η(M0) from the

experimental results of this work, which remains an open question.

Table 2: Frequency-averaged factor η = ηr − iηi of the two samples at various flow Mach numbers.

Sample 1 Sample 2

M0 = 0.05 0.1639− 0.2026i 0.1492− 0.1277i

M0 = 0.10 0.3691− 0.1607i 0.4802− 0.0327i

M0 = 0.15 0.3153− 0.2798i 0.5013− 0.0987i

M0 = 0.20 0.2822− 0.1968i 0.3842− 0.1808i
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Figure 8: Frequency-averaged factor η = ηr − iηi at various flow Mach numbers.

3.3. Scattering and absorption coefficients

The experimental scattering and absorption coefficients are then compared with the theory using the simpli-

fied transfer matrix in Eq. (14) with two complex-valued parameters, i.e., the impedance of the point scatterer

ζ and the factor η. In the theoretical computations, the measured impedances (shown in Figs. 5 and A.1 for

Sample 1 and 2, respectively) are used; the effect of the factor η is checked by using either η = 1, 0.5, 0, and η.

Note here that η = 1 or 0 refer to the special cases that the convection Mach number MC is either the mean

Mach number M0 or zero, respectively. The former implies that the dipolar effect does not exist and the latter

corresponds to the opposite extreme characterized by a pronounced dipolar effect. Besides, the value η = 0.5
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was suggested by the previous works [41, 42] and the averaged factor η is derived from measurements of this

work (given in Table 2).

The magnitudes of the scattering and absorption coefficients of Sample 1 with M0 = 0.15 and 0.2 are

provided in Figs. 9 and 10. The relative error caused by the theoretical prediction with factor η is defined as

ϵη = 1
f2−f1

∫ f2
f1

|(ST − SE)/SE|df , where ST and SE denote the magnitudes of the theoretical and experimental

scattering (or absorption) coefficients, respectively, and the integration is carried out in the frequency range

from 500 Hz to 2000 Hz. The prediction errors are provided with Figs. 9 and 10. In most cases, the model using

η achieves better agreement with the experimental data compared to those employing the other three values.

For instance, by using η = 1 and η = 0 in the model, the dipolar effect on the absorption (which is implied

by the difference between α+ and α−) is either underestimated or overestimated, respectively. The usage of

η = 0.5 in the theory improves the prediction of both α+ and α− compared to those with η = 1 and η = 0.

However, it is still not as good as that using the averaged factor η, which shows the necessity of introducing the

frequency-averaged and complex-valued factor η to account for the dipolar effect properly. The comparisons

between the experiment and the theory using η on the complex-valued scattering coefficients of Sample 1 with

M0 = 0.15 and 0.2 are given in Appendix B. Validations of the theory with η (i.e., comparison between the

simplified-transfer-matrix predictions and measurements of the scattering and absorption coefficients) in all the

cases studied in this work (i.e., both Sample 1 and 2 with M0 = 0, 0.05, 0.1, 0.15, and 0.2) are provided in the

Supplementary Material. The excellent agreements between the theoretical predictions and the measurements

indicate that the effects of the velocity-driven transfer functions Qu and Fu are negligible compared to the

pressure-driven transfer functions Qp and Fp. In addition, it is reasonable to neglect the frequency-dependence

of the η factor for describing the scattering properties of the point scatterer. Based on the present experimental

results, ηr slightly lower than 0.5 and ηi around 0.2 to 0.3 can be heuristically used in practical applications.

3.4. Maximum absorption

According to the theoretical analyses shown in Section 2.3, the maximum absorption can be achieved when

the impedance of the point scatterer reaches the optimum value, which is close to that at the resonance frequency

of the Helmholtz resonators (i.e., the optimum reactance is close to zero). In Table 3, the experimental maximum

absorption of Sample 1 and the absorption-peak frequency (i.e., fp) are provided. It can be found that fp varies

with the flow Mach number. This is because the impedance of the scatterer is affected by the flow as discussed

in Section 3.2. The experimental maximum absorptions of Sample 1 and 2 are shown in Fig. 11(a). The effect

of the dipolar response of the point scatterer is clearly observed since max(α−) achieves values higher than

1/2, while max(α+) is always less than 1/2 in the experiments. Besides, the experimental maximum absorption

coefficients are bounded by the theoretical curves in two extreme cases with η = 1 and 0. The experimental

αmax of Sample 1 is compared with theoretical predictions using either the averaged factor η given in Table 2

or the η factor acquired experimentally at the absorption-peak frequency. The latter is denoted as ηf whose

values are listed in Table 3. The agreement between experiment and the predictions is reasonable as shown in

Fig. 11(b). Moreover, the theoretical optimal impedances for maximum absorption (i.e., using Eq. (22) with

η and ηf ) are compared with measured impedance at fp (given in Table 3), as shown in Figs. 11(c) and (d).

Similar comparisons for Sample 2 are presented in Appendix C. The theory proposed in this work is thus
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Figure 9: Comparison between the theoretical prediction under different values of the factor η and the experimental scatter-

ing/absorption coefficients of Sample 1 at M0 = 0.15: (a) |R+| with relative error: ϵη = 4.28%, ϵ1 = 5.12%, ϵ0.5 = 2.16%, and

ϵ0 = 8.28%; (b) |R−| with relative error: ϵη = 1.69%, ϵ1 = 10.11%, ϵ0.5 = 1.63%, and ϵ0 = 7.13%; (c) |T+| with relative error:

ϵη = 0.46%, ϵ1 = 3.55%, ϵ0.5 = 1.42%, and ϵ0 = 2.08%; (d) |T−| with relative error: ϵη = 1.97%, ϵ1 = 7.22%, ϵ0.5 = 3.69%, and

ϵ0 = 2.72%; (e) α+ with relative error: ϵη = 3.78%, ϵ1 = 17.20%, ϵ0.5 = 5.99%, and ϵ0 = 13.75%; (f) α− with relative error:

ϵη = 2.42%, ϵ1 = 18.91%, ϵ0.5 = 5.92%, and ϵ0 = 7.70%.

validated by these comparisons.

16



500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

(a)
500 1000 1500 2000

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

500 1000 1500 2000
0.6

0.7

0.8

0.9

1

(c)
500 1000 1500 2000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

(e)
500 1000 1500 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f)

Figure 10: Comparison between the theoretical prediction under different values of the factor η and the experimental scatter-

ing/absorption coefficients of Sample 1 at M0 = 0.2: (a) |R+| with relative error: ϵη = 6.66%, ϵ1 = 5.99%, ϵ0.5 = 3.52%, and

ϵ0 = 11.37%; (b) |R−| with relative error: ϵη = 2.21%, ϵ1 = 16.17%, ϵ0.5 = 4.09%, and ϵ0 = 8.26%; (c) |T+| with relative error:

ϵη = 0.81%, ϵ1 = 4.52%, ϵ0.5 = 1.66%, and ϵ0 = 2.12%; (d) |T−| with relative error: ϵη = 3.23%, ϵ1 = 10.93%, ϵ0.5 = 5.56%,

and ϵ0 = 3.47%; (e) α+ with relative error: ϵη = 6.02%, ϵ1 = 22.82%, ϵ0.5 = 7.67%, and ϵ0 = 16.21%; (f) α− with relative error:

ϵη = 3.36%, ϵ1 = 22.75%, ϵ0.5 = 7.99%, and ϵ0 = 7.08%.

4. Conclusions

In the unidimensional (1D) scattering problem, the acoustic performance of a locally reacting element is

equivalent to that of a point scatterer if its characteristic dimension in the wave direction is much smaller than

the acoustic wavelength. This work indicates that, under a low-Mach-number grazing air flow, the acoustic
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Figure 11: Theoretical and experimental results of the maximum absorption and the corresponding impedance with various flow

Mach numbers: (a) Experimental maximum absorption coefficients of Samples 1 and 2 bounded by the theoretical αmax with η = 0

and η = 1, (b) Comparison between the measured αmax of Sample 1 and theoretical predictions with η and ηf , (c) Comparison

between the measured resistance θ of Sample 1 at the absorption-peak frequency (i.e., fp) and theoretical predictions of optimal

resistance to achieve αmax with η and ηf , and (d) Comparison between the measured reactance χ of Sample 1 at fp and theoretical

predictions of optimal reactance with η and ηf . Note here that η or ηf refer to experimental values of η either averaged within

500 Hz to 2000 Hz or at fp, respectively.

Table 3: The frequency of absorption peak fp, maximum absorption coefficient αmax, impedance ζ at fp, and the factor ηf at fp,

measured with Sample 1.

M0 fp αmax ζ = θ − iχ ηf

−0.2 1130 0.6683 0.7719 + 0.1114i 0.2366− 0.2247i

−0.15 1140 0.6267 0.5933 + 0.0248i 0.3361− 0.3035i

−0.1 1060 0.5749 0.4812 + 0.0808i 0.3464− 0.0961i

−0.05 1060 0.5455 0.4742 + 0.0011i 0.2289− 0.0613i

0 1080 0.5054 0.4657− 0.0145i -

0.05 1070 0.4702 0.4754− 0.0171i 0.2610− 0.0624i

0.1 1135 0.4531 0.4662− 0.0579i 0.4508− 0.1533i

0.15 1195 0.4236 0.5749− 0.0738i 0.4445− 0.2643i

0.2 1230 0.3914 0.7336− 0.0613i 0.4560− 0.3357i
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response of a passive single point scatterer mounted in the wall of a waveguide has both monopolar and dipolar

contributions, which is different from the case without grazing flow. Specifically, the monopolar response is a

volume flux induced by the incident wave, whereas the dipolar response corresponds to a force along the wave

direction.

Without loss of generality, we can assume that the acoustic performance of the scatterer is fully described

by a linear combination of four independent transfer functions, i.e., the pressure-driven flux and force (Qp

and Fp, respectively) as well as the velocity-driven flux and force (Qu and Fu, respectively). Moreover, these

four transfer functions are uniquely defined by the scattering (or transfer) matrix of the 1D system and can

be directly derived from measurements. According to the experimental results, the velocity-driven transfer

functions are negligible compared to the pressure-driven ones. The pressure-driven flux Qp is the inverse of

the specific impedance ζ of the scatterer. In contrast, the modelling of Fp can be simplified by introducing a

complex-valued factor η for the ratio between Fp and Qp. With ζ and η given, the acoustic behaviour of the

point scatterer can be accurately predicted by using the simplified transfer matrix in Eq. (14), which is validated

experimentally in this work.

According to the proposed theory, the dipolar transfer function is a relatively small quantity compared to the

monopolar one (i.e., Fp/Qp ∼ O(M0)) at low flow Mach numbers. However, the dipolar effect on the scattering

coefficients can be of the first-order of M0 as well, which is usually non-negligible. In the 1D transmission

problem, the maximum absorption coefficient αmax achieved by a single passive point scatterer is 1/2 at any

M0 if the dipolar response is omitted (i.e., Fp = 0). In the opposite, with Fp ̸= 0, then αmax = 1/2 + O(M0).

Because of this leading odd-order term of M0, αmax > 1/2 when the flow is against the incident wave (i.e.,

M0 < 0); αmax < 1/2 when the wave is with the flow (i.e., M0 > 0). The experiments in this work confirm

that Fp ̸= 0, which implies that the impedance ζ is not sufficient to describe the complete behaviour of a

point scatterer (e.g., an orifice, a Helmholtz resonator, etc.) under grazing flow. For accurate predictions in

practical applications such as the design of passive silencers or absorbers in ventilation systems, at least another

complex-valued parameter besides ζ should be used. From the measurements of this work, it is suggested to use

the frequency averaged factor η (η = ηr− iηi) with ηr slightly lower than 0.5 and ηi = 0.2 to 0.3 for a reasonable

approximation.

The case with multiple passive scatterers will be studied in the future, as this is closer to the situation of

a real perforated liner. Besides, the acoustic response of non-passive point scatterers (with amplifications of

acoustic wave due to sound-flow interactions) can be investigated following the method of this work as well.
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Appendix A. Measured acoustic impedance of Sample 2

The experimental impedances ζ of Sample 2 in all the cases studied in this work are shown in Fig. A.1. The

impedance exhibits a similar dependence on M0 compared to that of Sample 1 as shown in Fig. 5.
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Figure A.1: Measured acoustic impedance ζ = θ− iχ = −1/Qp of Sample 2 with various flow Mach numbers: (a) Resistance θ and

(b) Reactance χ.

Appendix B. Validation of the simplified transfer matrix in Eq. (14)

In this appendix, the comparisons between the experimental results and the theoretical predictions of the

scattering coefficients of Sample 1 with M0 = 0.15 and 0.2 are provided. In the theoretical predictions, the

simplified transfer matrix Eq. (14) is applied with ζ from measurements and the factor η given in Table 2. The

comparisons for all the cases studied in this work (i.e., both Sample 1 and 2 with M0 = 0, 0.05, 0.1, 0.15, and

0.2) are provided in the Supplementary Material.
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Figure B.1: Comparison between the prediction with the simplified transfer matrix (STM) and the experimental scattering coeffi-

cients of Sample 1 at M0 = 0.15: (a) R+, (b) R−, (c) T+, and (d) T−.

Appendix C. Additional information on the maximum absorption of Sample 2

The comparisons between the experimental and theoretical results of αmax and the corresponding impedance

at the absorption-peak frequency fp of Sample 2 are shown in Figure C.1.

Table C.1: The frequency of absorption peak fp, maximum absorption coefficient αmax, impedance ζ at fp, and the factor ηf at

fp, measured with Sample 2.

M0 fp αmax ζ = θ − iχ ηf

−0.2 1110 0.6574 0.6454− 0.0866i 0.1982− 0.0620i

−0.15 1060 0.5890 0.4801− 0.0316i 0.4441− 0.0648i

−0.1 970 0.5468 0.4002 + 0.0627i 0.4617− 0.0042i

−0.05 970 0.5431 0.4340 + 0.0206i 0.1413− 0.0161i

0 1000 0.5016 0.4344− 0.0173i -

0.05 1000 0.4653 0.4353− 0.0404i 0.1629− 0.0049i

0.1 1015 0.4619 0.3957− 0.0368i 0.5302 + 0.0554i

0.15 1155 0.4378 0.4525− 0.2038i 0.5305− 0.1933i

0.2 1300 0.4133 0.5480− 0.3820i 0.6227− 0.1209i
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Figure B.2: Comparison between the prediction with the simplified transfer matrix (STM) and the experimental scattering coeffi-

cients of Sample 1 at M0 = 0.2: (a) R+, (b) R−, (c) T+, and (d) T−.
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Figure C.1: Theoretical and experimental results of Sample 2: (a) Comparison between the measured αmax and theoretical

predictions with η and ηf , (b) Comparison between the measured resistance θ at the absorption-peak frequency (i.e., fp) and

theoretical predictions of optimal resistance to achieve αmax with η and ηf , and (d) Comparison between the measured reactance

χ at fp and theoretical predictions of optimal reactance with η and ηf .
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