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Abstract
Background: Comparative neuroanatomists have long
sought to determine which part of the pallium in non-
mammals is homologous to the mammalian neocortex. A
number of similar connectivity patterns across species have
led to the idea that the basic organization of the vertebrate
brain is relatively conserved; thus, efforts of the last de-
cades have been focused on determining a vertebrate
“morphotype” – a model comprising the characteristics
believed to have been present in the last common ancestor
of all vertebrates. Summary: The endeavor to determine
the vertebrate morphotype has been riddled with con-
troversies due to the extensive morphological diversity of
the pallium among vertebrate taxa. Nonetheless, most
proposed scenarios of pallial homology are variants of a
common theme where the vertebrate pallium is sub-
divided into subdivisions homologous to the hippocam-
pus, neocortex, piriform cortex, and amygdala, in a one-to-
one manner. We review the rationales of major proposi-
tions of pallial homology and identify the source of the
discrepancies behind different hypotheses. We consider
that a source of discrepancies is the prevailing assumption
that there is a single “morphotype of the pallial subdivi-
sions” throughout vertebrates. Instead, pallial subdivisions

present in different taxa probably evolved independently
in each lineage. Key Messages: We encounter discrep-
ancies when we search for a single morphotype of sub-
divisions across vertebrates. These discrepancies can be
resolved by considering that several subdivisions within
the pallium were established after the divergence of the
different lineages. The differences of pallial organization
are especially remarkable between actinopterygians (in-
cluding teleost fishes) and other vertebrates. Thus, the
prevailing notion of a simple one-to-one homology be-
tween the mammalian and teleost pallia needs to be
reconsidered. © 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Human cognitive skills are mainly thought to rely on
the architecture and computing capabilities of the neo-
cortex. The six-layered neocortex is muchmore expanded
in primates, notably in great apes, than in rodents. For
this reason, the size and complexity of the neocortex have
often been considered to reflect the cognitive capacity in
mammalian species.

There is no such cortical structure in the telencephalon
in nonmammals. In the classical perspective, which was
influenced by scala naturae, a telencephalon devoid of a
neocortex was interpreted as being “less evolved” than one
with a layered neocortex. In this view, brain complexity
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increased linearly with the phylogenetic “modernity” of
vertebrate species, and the “neo” cortex was thought to be
added on top of the “ancient” brain structures inherited
from the common ancestor [1, 2]. Such a notion is now
considered outdated [3]. Currently, it is considered that the
basic organization of the vertebrate brain is relatively
conserved, and that the mammalian neocortex develops as
a part of the pallium, whose homolog is present
throughout vertebrates. Note that “pallium” refers to the
dorsal part of the telencephalon (where the neocortex is
located in the case of mammals). In contrast, “subpallium”
refers to the ventral part of the telencephalon where the
striatum is located.

Having reached a consensus that brain structures are
comparable among vertebrates, a main question of

comparative neuroanatomy has been to identify which
part of the nonmammalian pallium is homologous to
the mammalian neocortex. Despite a number of dif-
ferent hypotheses, a common assumption is that the
pallium is divided into several subdivisions inherited
from the common ancestor, which is referred to as a
“morphotype” – a model comprising the characteristics
believed to have been present in the last common
ancestors of all vertebrates [4].

Holmgren proposed to divide the pallium into three
subdivisions (Fig. 1): the hippocampal pallium (hp),
general pallium (gp), and piriform pallium (pp) [5, 6]. In
this view, the hippocampal pallium is homologous to the
mammalian hippocampus, and the general pallium is
homologous to the mammalian neocortex. The piriform

Fig. 1. Classical view of evagination and eversion. The top sche-
matic drawings show the comparison of pallial development in
eversion (actinopterygians) and evagination (all other vertebrates)
proposed by Holmgren (1925). The bottom shows a simplified
phylogenetic tree of vertebrates. The italic blue numbers indicate

divergence dates (million years ago [mya]) of each clade calculated
using http://www.timetree.org/ [7]. Based on cladistics analysis, it
is concluded that evagination is the ancestral form, and that the
everted pallium specifically evolved in actinopterygians including
teleost fishes.
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pallium contains a superficial cortical structure (the
piriform cortex) and a deep nuclear structure (the piri-
form lobe) containing the claustrum/amygdala complex.

In recent literature, the hippocampal, general, and
piriform pallia are more commonly called the medial
pallium (MP), dorsal pallium (DP), and lateral pallium
(LP), respectively, reflecting their topology in the pallium
of the sarcopterygians (the group of lobe-finned fishes
that contains mammals; see Fig. 1 for the phylogenetic
relationship of vertebrate groups). In addition, Puelles
and his colleagues have introduced the notion of a ventral
pallium (VP). Originally defined by the absence or weak
expression of the transcription factor Emx1 in the ventral
half of the tetrapod LP [8–10], the studies claiming the
presence of VP underlined the importance of field ho-
mology, in which adult brain regions thought to be de-
rived in different species from homologous embryonic
precursors can be considered homologous as fields [11].
However, this model of field homology has been modified
repeatedly, and accordingly, the definition and bound-
aries of LP and VP have changed extensively [9, 12–14].

A recent hypothesis by Striedter and Northcutt [15]
proposes that the common ancestor of vertebrates did not
have a DP homolog, and that DP-like structures evolved
independently in cartilaginous fishes, teleosts, and am-
niotes. Amid the enduring debate over the regional ho-
mology of the pallium, particularly the DP, an emerging
idea suggests that the similarities in functional/
connectional properties between mammalian neocortex
and nonmammalian pallia might be due to convergent
evolution, rather than conservation [16].

Here we push this idea further: if DP-like functions can
emerge several times during evolution, why do we assume
that MP (hippocampal pallium) and LP/VP (piriform
pallium) are conserved throughout vertebrates? Isn’t it
simply because we think that they “should” be more
conserved than the neocortex? Classically, the hippo-
campus and the piriform cortex were called the archi- and
paleocortices, considered “evolutionarily ancient” and
preceding the emergence of the neocortex of mammals.
In reality, based on thorough analyses of the currently
available data, the presence of a morphotype of the LP/VP
also proves doubtful. The area corresponding to the LP/
VP is far from conserved, in terms of both developmental
and functional aspects.

In this review, we summarize the historical aspects of
the long-lasting controversy on pallial homology in the
field of comparative neurobiology. We first review how
pallial homology has been argued in sarcopterygians
(mainly in tetrapods) and then discuss the pallial orga-
nization of actinopterygians (mainly teleosts), with new

developmental data. By doing so, it becomes evident that
there are no conserved pallial subdivisions across ver-
tebrates, at least not as currently proposed, and that
several subdivisions arose independently in different
lineages.

What Is the “General Pallium” or “Dorsal Pallium”?

The nomenclature MP/DP/LP/VP is based on the
concept of field homology. Thus, it should be purely
defined by the topology of embryonic brains. But in
practice, the term DP (formerly called the “general”
pallium) is used as a synonym for the area “homologous
to the mammalian neocortex.” For all nonmammalian
vertebrates that do not have a six-layered cortical
structure in the pallium, DP has been notoriously difficult
to delineate [15].

It is even defined in a negative manner, as the non-
hippocampal, nonolfactory pallium [17]. The question
then becomes: how can we define the hippocampal and
olfactory (piriform) pallium? If we consider the example
of the olfactory (piriform) pallium, it has been principally
defined as a major recipient area from the olfactory bulb,
which is a connectivity (hodological) criterion. As such,
historically, the original concept of pallial subdivisions
was established by mixing hodological, functional, and
developmental data. Importantly, developmental studies
using gene expression data arose relatively recently, long
after the concept of pallial subdivisions and their
boundaries already existed. Since most recent literature
uses the term MP for the hippocampal pallium, DP for
the general pallium, and LP/VP for piriform pallium, we
will apply “MP/DP/LP/VP” nomenclature in the fol-
lowing for the sake of simplicity. Nonetheless, our use of
this nomenclature should not be interpreted to mean that
field homology has been verified by developmental data.

The reason that researchers started to agree that
nonmammals may have a neocortex homolog in the first
place is largely based on similar connectivity patterns,
such as sensory afferents to the pallium. Tract-tracing
techniques developed in the late 1960s–70s have revealed
that some nonmammalian vertebrates such as birds,
reptiles, and teleosts possess sensory ascending projec-
tions reaching the pallium, with connectivity patterns
comparable to the thalamocortical projections of mam-
mals. Accordingly, the pallium has been considered an
integration center of different sensory modalities, and DP
has been defined as the area receiving sensory projections
from the thalamus [18–20]. Notably, visual systems are
intensively studied in various vertebrate species. Since the
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seminal work by Schneider proposing the presence of
“two visual systems” terminating in the mammalian
cortex [21], most data in nonmammals have been in-
terpreted based on this notion, seeking to identify which
mammalian pathway their nonmammalian counterparts
correspond to [22–27]. This data from visual systems
fostered the concept that the basic brain organization of
vertebrates is relatively conserved.

Neocortex-Like Connectivity in the Avian Pallium

This concept of “conservation” is further reinforced by
the remarkable similarity of pallial connectivity between
mammals and birds. Although the avian telencephalon does
not have a mammal-like, layered neocortex, its functions
and neural circuitry are surprisingly similar to those of
mammals (Fig. 2). Similar to the mammalian neocortex, the
avian pallium possesses visual, auditory, and somatosensory
representations [28–32]. These major sensory areas receive
ascending projections from the dorsal thalamus in a to-
pographically discrete manner, which is similar to the
primary sensory cortices in mammals [18–20]. Examples of
visual and auditory pathways are shown in Figure 2. No-
tably, the notion of “two visual systems” [21, 23, 24] em-
phasized the similarity of neural connectivity in mammals
and birds [33, 34]: one is the thalamofugal visual pathway
(retina – thalamus – pallium; also known as the geniculate
visual pathway in mammals) in which the retinal projec-
tions directly reach the thalamus, while the other is the
tectofugal pathway (retina – tectum – thalamus – pallium;
also known as the extrageniculate visual pathway in
mammals) in which the retinal projections first reach the
tectum, where tectal neurons project to the thalamus.

Similarly to the mammalian sensory cortices, the avian
primary sensory pallium receiving modality-specific
sensory information projects to other pallial areas lo-
cated at their periphery, which are comparable to the
secondary or higher order sensory cortices [35–37]. A
recent publication in the pigeon pallium further dem-
onstrated that the intra-pallial circuitry of these sensory
areas shows a “cortex-like” layered organization [38].

The higher order sensory areas are further inter-
connected with the nidopallium caudolaterale (NCL),
which is functionally comparable to the mammalian
prefrontal cortex (PFC) (Fig. 2; executive). The PFC and
NCL are both characterized by dopaminergic innervation
from the midbrain dopaminergic neurons [39–42]. The
functions of the mammalian PFC and NCL can be
summarized as “executive functions” [35, 42], the core of
which is context-dependent regulation: inhibition,

working memory, and cognitive flexibility. Expansion of
the executive area is correlated with the evolution of
higher order cognitive functions: a crow’s NCL is much
larger compared to other birds [43], as is the case of the
primate PFC compared to other mammals.

Motor-related pallial areas are not as readily identi-
fiable as the sensory pallial areas in the avian pallium.
There are two lines of studies proposing different
candidates of the motor cortex-like area. In pigeons,
motor cortex-like pallial areas were proposed to be lo-
cated in the hyperpallium and in the dorsal arcopallium,
based on the presence of descending projection neurons
similar to the mammalian corticostriatal projection
neurons and to pyramidal tract projection neurons
[44–46]. In songbirds, neurons in the robust nucleus of
the arcopallium (RA) project to the brainstem nuclei
that control trachea and syrinx muscles, involved in song
production. This has often been compared to the pro-
jections from the motor cortex to the nucleus ambiguus
that control larynx muscles in mammalian vocal learners
[47]. On the other hand, a study based on the expression
of immediate early genes identified movement-related
areas in the anterior nidopallium and mesopallium [48].
It is not clear whether these motor-related areas cor-
respond to parts of the motor cortex or to the premotor
cortex of mammals.

The “Dorsal” Topological Feature Is Not an Important
Factor for Evolving Neocortex-Like Functions

In mammals, the neocortical areas performing sensory-
motor integration develop from the dorsal portion of the
telencephalic vesicle, flanked by the medially located
hippocampus and the laterally located piriform (olfactory)
cortex. For this reason, the major point of contention in
the argument on the neocortex homolog in amniotes has
been whether the thalamocortical-like sensory integration
described above resides in the dorsal portion of the avian
pallium or not. Based on topology, there is a consensus
that the hyperpallium (also known as the Wulst, which
occupies the dorsal portion of the avian pallium) of birds
is homologous to the mammalian superior neocortex (the
neocortical area dorsal to the lateral sulcus). However, the
evolutionary origin of the dorsal ventricular ridge (DVR:
the ventral portion of the avian pallium containing the
nidopallium and arcopallium) has long been debated
among comparative neuroanatomists.

Based on functional/hodological similarities, some
authors proposed that the avian DVR is homologous to
the mammalian temporal neocortex (the neocortical area
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ventral to the lateral sulcus). Notably, the thalamor-
ecipient pallial areas within the DVR (Fig. 2; primary
sensory areas) were proposed to be homologous to the
thalamorecipient cell population (layer 4) of the visual,
auditory, and somatosensory cortices [18, 33, 34, 49–51]
(DVR = DP hypothesis; Fig. 3a). In this hypothesis, the
posterior DVR is homologous to the mammalian
amygdala, and the anterior DVR is considered to be
homologous to the mammalian neocortex. Contrary to
this hypothesis, other authors claim that the entire DVR
is homologous to the non-layered structures deep to the
piriform cortex, the claustro-amygdaloid region of
mammals [8, 9, 17, 52, 53] (DVR = LP/VP hypothesis;
Fig. 3b). Here we will not discuss each claim in detail, but
in short, the best accepted argument supporting the
DVR = LP/VP hypothesis was the absence or weak ex-
pression of the transcription factor Emx1 in the DVR
(notably in the nidopallium), similarly to the amygdaloid
area of mammals [8, 9].

The Emx1-poor domain of the pallium corresponds to
the ventral half of the area classically known as LP. In
2000, Puelles and his colleagues proposed the first tet-
rapartite model, in which he divided the classical LP into
two, redefining the Emx1-positive dorsal portion as LP
and the Emx1-negative (poor) ventral portion as VP
(Fig. 3b), introducing a fourth subdivision [9]. Following
this model, the avian DVR corresponds to the LP/VP.

However, some authors argue against the validity of
this fourth pallial subdivision VP [54, 55]. First, Emx1 is
expressed in a gradient within the pallium, and its ex-
pression pattern does not delineate a clear-cut border. In
mammals, Emx1 is transiently expressed even in the area
identified as VP in mice [56]. Moreover, the absence of

Emx1 expression is the only marker that can define the
VP, and no other molecular/genetic marker labels the
ventral portion of the pallium in both mammals and
birds.

Regardless of the validity of VP, the gradient ex-
pression of Emx1 indicates that the nidopallium (the
ventral part of the DVR that is Emx1-negative) appears to
be the most ventral part of the pallium. A histological
observation of the brain of tuatara (Sphenodon puncta-
tus), the closest extant relative to both snakes and lizards,
also clearly shows that the DVR is derived from the most
ventral part of the pallium (Fig. 4). In the avian brain, it is
very difficult to tell the topological position of the DVR
along the neural tube, because it is hypertrophied and
completely fills in the ventricular zone (Fig. 2; birds). In
contrast, in frontal sections of tuatara [57], one can
observe a continuation of cell layers from the medio-DP
toward the striatum (Fig. 4), clearly showing that DVR is
located ventral to the piriform cortex, next to the stria-
tum. Thus, unless the tuatara piriform cortex is mis-
identified, the sauropsid DVR is derived from the most
ventral portion of the pallium.

These studies from sauropsids suggest that the de-
velopmental origin (topological position within the
pallium) is not an important factor for generating
neocortex-like connectivity patterns and functions since
the DVR, being the ventral-most portion of the pallium,
displays those neocortex-like connectivity and functions.

It is also noteworthy that, in amphibians, the area
receiving thalamic inputs is the medial part [17, 18, 58,
59], rather than the dorsal part of the pallium (Fig. 2;
amphibians). Unlike in amniotes, pallial connectivity is
much less developed in amphibians and is generally

Fig. 2. Dorsal pallium (DP)-like connectivity found in mammals and
birds. Simplified diagram of neural inputs and outputs related to the
pallium, whose patterns are found to be similar betweenmammals and
birds. Modality-specific sensory inputs are indicated in red arrows.
Here visual and auditory pathways are shown as an example of
modality-specific sensory afferents to the pallium. In the visual system,
two parallel afferents are found: the tectofugal- or collo-pathway
(“collo” stands for the colliculus, which is relayed via the midbrain
roof), and thalamofugal- or lemno-pathway (“lemno” stands for
lemniscal inputs, but the term is generally used to refer to non-collicular
inputs). Motor outputs are indicated in blue (the detailed basal ganglia
[BG] circuits are omitted for the sake of simplicity). Dopaminergic
(DA) projections from the mesencephalon (A9/A10) to the telen-
cephalon are indicated in purple. DA inputs to the striatum are
considered to be critical for BG function throughout tetrapods, while
those to the pallium (PFC in mammals and NCL in birds) are critical
for executive functions. The solid arrows indicate the connectivity
found in mammals, birds, and amphibians, while the dotted arrows

indicate those found only inmammals and birds. Note thatmany of the
pallial connections are absent in amphibians. The top brain schemas (in
frontal section) show the pallial area receiving thalamic projections
(circled in gray in the diagram: “A” for auditory and “V” for visual
areas), similarly to the primary sensory areas of the mammalian
neocortex. The brain areas with filled gray indicate the agreed ho-
mology of DP due to its “dorsal” topology. The brain areas with slanted
gray lines are areas receiving thalamic sensory inputs for which ho-
mology to the mammalian DP remains debated: this area is located at
the ventral end of the pallium in birds, while it is at the medial end of
the pallium in amphibians. A, auditory area; Amy, amygdala; BG, basal
ganglia; Ctx, neocortex; DA, dopaminergic neuron; DP, dorsal pallium
(amphibian structure); DVR, dorsal ventricular ridge (avian structure);
H, hyperpallium (avian structure); Hp, hippocampus; LP, lateral
pallium (amphibian structure); lp-v, ventral part of the lateral pallium
(amphibian structure); MP, medial pallium (amphibian structure); Olf,
olfactory (piriform) cortex; V, visual area. Brain orientation; D, dorsal;
V, ventral; L, lateral; M, medial.
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multimodal without modality-specific sensory inputs.
The majority of the sensory inputs terminate in the
striatum (subpallium), thus it is possible that the sensory-
motor integration is mainly performed at the level of the
striatum [18, 19, 60, 61]. Nonetheless, due to some
afferent/efferent projection patterns, some authors
compare the MP of amphibians with the mammalian
cortex or the avian DVR [17, 59].

Altogether, these studies suggest that any part of the
pallium could potentially evolve neocortex-like connec-
tivity patterns. Interestingly, Striedter and Northcutt
reached a similar conclusion arguing against the pre-
vailing notion of the “conserved pallium,” based on the
cladistics analysis of olfactory projection patterns [15]. In
both sarcopterygians and actinopterygians, the basal
groups possess widespread olfactory projections to the
pallium. Based on these observations, they hypothesize
that the olfactory pallium (classical LP) may have rep-
resented a larger pallial domain in the common ancestor,
and that DP (with thalamic sensory inputs) may have
evolved independently in different lineages like mam-
mals, birds, and teleosts. This idea questions the presence
of DP in the morphotype of the vertebrate pallium.

Is the Limbic System Really Conserved?

Unlike DP, whose definition and presence can be de-
bated in some species, the presence of the hippocampus,
piriform cortex, and amygdala (corresponding to MP, LP/
VP in the first tetrapartite model; Fig. 5b) throughout
vertebrates has never been debated, with the assumption
that these should be conserved pallial regions. This as-
sumption may be related to the notion of the “limbic
system” [62, 63] in which the hippocampus, piriform
cortex, and amygdala were considered to be “evolutionary
ancient” compared to neocortical structures.

All vertebrates possess a pallial domain with specific
olfactory inputs, although their extent varies depending on
the animal group. Since the pallium of the basal vertebrate
lineages (cyclostomes, lungfishes, Polypterus) are mainly
occupied by olfactory bulb inputs, it is considered that
widespread olfactory projections to the palliummay be the
ancestral situation in vertebrates [1], and that they have
become more restricted in some lineages [15].

Lying next to the piriform cortex in mammals, the
amygdala is also believed to be conserved. In mammals,
the amygdala was described as a distinct structure just

a b

Fig. 3. Pallial homologies between mammals (top) and birds
(bottom) debated during 1990s–early 2000s. The left side of the
frontal section (a) represents “DVR = DP hypothesis,” whereas
the right side of the section (b) represents “DVR = LP/VP hy-
pothesis” based on the first tetrapartite model. The two different
hypotheses propose different mammalian homolog of the avian

DVR. Amy, amygdaloid complex; Ctx, cerebral cortex; DP, dorsal
pallium (as morphotype); DVR, dorsal ventricular ridge; h,
hyperpallium; Hp, hippocampus; LP, lateral pallium (as mor-
photype); M, mesopallium; MP, medial pallium (as morphotype);
N, nidopallium; Pir, piriform cortex; VP, ventral pallium (as
morphotype).
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because it appears as a distinct almond-shaped structure.
Later on, it turned out that the amygdala is not a de-
velopmentally uniform entity, but is derived from pallial
and subpallial parts [64]. Thus, apart from its peculiar
“almond-shaped” appearance, there is no clear definition
of the mammalian amygdala.

How then has the amygdala been identified in non-
mammals? Here again, similarly to the case of the
neocortex homolog, initial identification of the non-
mammalian amygdala relied on hodological or func-
tional properties, not on developmental data. A struc-
ture named “amygdala” in the amphibian brain ap-
peared in the early 1900s literature in relation to the
vomeronasal system [65]. Later, other amygdaloid
connectivity such as with the hypothalamus was eluci-
dated [17, 66]. Such connectivity has been crucial for
identifying the amygdala in vertebrates. For instance, the
currently accepted “avian pallial amygdala” consists of
nuclei of the formerly named archistriatum that are
highly associated with the hypothalamus (visceral-re-
lated connectivity) [67, 68] and that are involved in
Pavlovian conditioning (CS-US association) [69].

Without these cytoarchitectonic/functional/hodological
criteria, the identity of the “amygdala” itself collapses, as no
developmental or molecular criteria exist to define this
structure. Ever since Puelles’s first tetrapartite model was
accepted by developmental neurobiologists in the early
2000s, molecular data were favored over functional or
hodological data as criteria of regional homology. The
problem of the current situation is that despite the
developmental/molecular heterogeneity of themammalian
amygdala [12, 64, 70], most people stick to the notion that
the amygdala should be conserved and should be found as
a structural entity in nonmammalian pallia.

In reality, if we accept the DVR = LP/VP hypothesis
(Fig. 3b) based on the first tetrapartite model (Fig. 5b), it
goes against the concept of a “conserved amygdala.” As
described in the sections above, the avian nidopallium
(ventral part of DVR) is functionally more similar to the
mammalian neocortex (considered DP) than to the
mammalian amygdala (considered VP). If we acknowl-
edge that the nidopallium is homologous to the amygdala
(Fig. 3b), it suggests that the functions of the amygdala
homolog have significantly diversified within amniotes.

a b c

Fig. 4. Topological organization of the DVR of tuatara, Sphenodon
punctatus. Schematic representations of the developing (a) and
mature (b) telencephalic vesicle (left side of frontal sections). c A
cresyl violet-stained section (from Reiner and Northcutt 2000)
showing the mirror image of b. The tectofugal visual area (Vt) and
the primary auditory area (A1) are situated within the DVR. The
pallium of Sphenodon possesses a three-layered cytoarchitecture
that resembles the cortical cell plate (shown as a red line in the

schema). This cell plate-like structure is continuous from the
medial/DP, through the piriform cortex up to the ventral edge of
the DVR. This clearly demonstrates that the DVR is topologically
ventral to the piriform cortex, adjacent to the subpallium (stria-
tum). A1, primary auditory area; cd, dorsal cortex; cm, medial
cortex; cp, piriform cortex; DP, dorsal pallidum; DVR, dorsal
ventricular ridge; S, septum; St, striatum; Vt, tectofugal visual area.
Brain orientation: D, dorsal; V, ventral; L, lateral; M, medial.
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How Many Pallial Subdivisions Are There in a
“Vertebrate Morphotype”?

Confusingly enough, the first tetrapartite model was
later abandoned by Puelles himself, and the pallial sub-
divisions were completely redefined [13, 71]. Until then,
the tetrapartite model was within the frame of the
Holmgren tripartite model: DP was synonymous with
“homologous to themammalian neocortex,” and there was
no argument regarding the boundary between DP (general
pallium) and LP (piriform pallium). The only difference
was whether the LP was considered to be a single sub-

division or two subdivisions, LP and VP (Fig. 5a, b). By
contrast, in the new tetrapartite model proposed in 2017,
Puelles repudiates the original tripartite model, modifying
the border between the DP and LP (Fig. 5c). LP was re-
defined as the area homologous to the claustrum and the
insular cortex of mammals, and VP as the area homol-
ogous to the piriform cortex, the endopiriform nucleus,
and the pallial amygdala [13]. Two years later, Puelles
further modified this model, considering pallial subdivi-
sions as concentric rings, DP being situated as an “island”
in a conceptually flattened forebrain [71].

As more data accumulated, the classification became
even more ambiguous, with proposals from two to six
subdivisions [14, 15, 72, 73]. Recent single-cell tran-
scriptomic studies in amphibians indicated five pallial
sectors showing distinct molecular profiles [72, 73]. These
data were interpreted so that the five sectors would
correspond to the previously proposed MP, DP, LP, VP,
and an additional ventral sector that was proposed as the
pallial amygdala. However, if the amygdala is a subdi-
vision different fromVP, what is VP? Note that originally,
the VP was defined as the most ventral part of the pallium
containing the amygdala.

Medina and her colleagues [14] also proposed a
hexapartite model, in which they consider the newly
defined LP by Puelles (2017) as the “dorsolateral pallium”
(Fig. 5e). What is the “dorsolateral” pallium? Is it an area
that shares characteristics of DP and LP? Then, why not
define an area that shares characteristics of DP andMP as
DMP? Although we tend to think that the neocortex
(originally defined as DP) is somewhat special, the nature
of the six-layered neocortex and the rest of the pallium
may not be that different, to the degree that they are easily
misidentified. In that sense, the organization of the
pallium may be gradient (Fig. 5f).

This profusion of models raises the question: how
many divisions does the vertebrate pallium actually
contain? Or how many pallial divisions did the common
ancestor of vertebrates possess? The foundations defining
the first tetrapartite model have already collapsed, yet all
the authors stick to the term MP/DP/LP/VP out of
convenience.

There is no doubt that there exists a dorsoventral or-
ganization in the developing pallium along the pallial wall
inherited from the common ancestor, at least within
tetrapods (Fig. 5f). However, it is not clear how this or-
ganization corresponds to the subdivisions (as identified in
the mature pallium) of different vertebrates in a one-to-
one manner. It is possible that the pallium evolved dif-
ferent numbers of subdivisions in different lineages in-
dependently, and some subdivisions may not be

b

d

a c

e

f

Fig. 5. Modifications of the classification of pallial subdivisions in
sarcopterygians. a–e Frontal sections through the pallium (left
side) summarizing different hypotheses of pallial subdivisions. See
the text for details. The boundaries and number of pallial sub-
divisions keep being modified over time, depending on the criteria
and species examined. Importantly, the first tetrapartite model
(b) that was widely accepted after 2000’s has been abandoned by
the authors themselves (c), and there is no consensus proposition
since then. f Our new interpretation. The neural tube organization
is gradient and boundaries of the pallial subdivisions are not as
clear as it has classically been assumed. Amy, amygdala; DLP,
dorsolateral pallium; DP, dorsal pallium; LP, lateral pallium; MP,
medial pallium; VP, ventral pallium. Brain orientation: D, dorsal;
V, ventral; L, lateral; M, medial.

238 Brain Behav Evol 2024;99:230–247
DOI: 10.1159/000537746

Yamamoto/Estienne/Bloch

D
ow

nloaded from
 http://karger.com

/bbe/article-pdf/doi/10.1159/000537746/4298071/000537746.pdf?casa_token=xiA4P_ubPQ
AAAAAA:5nEdiq12U

2nD
fBvw

8LtiLU
YG

Zm
J7ujjzkEeXbvaExtC

px3G
rG

0E-kLTKQ
z8ALTLLD

l2vSQ
Y by Institut Pasteur - C

eR
IS user on 22 N

ovem
ber 2024

https://doi.org/10.1159/000537746


homologous across species. This would mean that there is
not a “single morphotype” of the pallial subdivisions that
can be generalized throughout vertebrates. For example,

studies on the distribution of active enhancers allowed to
delineate up to eight protodomains in the developing
mouse pallium [74, 75], but this may only reflect the

ba

Fig. 6. New eversion theory of the teleost pallium. a Classical
model of the pallial development of actinopterygians, color-coded
with one of the prevailing pallial homology (based on the first
tripartite model; Fig. 5b). The left side of the mature brain shows
the zebrafish pallium, while the right side shows the goldfish
pallium. Historically, pallial regions in actinopterygians have been
considered as a simply reversed version of the sarcopterygian
pallium (compare also with Fig. 1). b New model based on lineage
tracing data, adapted from Dirian et al. [84] and Furlan et al. [85].
The construction of the actinopterygian pallium is not simply a
reversed version of the sarcopterygian pallium. The teleost pallium
does not develop by extension of the preexisting three or four

embryonic subdivisions. Instead, newly born neurons are pro-
gressively “stacking-up” on top of the old ones. All the lateral parts
of the pallium containing Dl and Dp are derived from the her6+
progenitors located at the dorsal tip of the neural tube until 2 dpf.
Dc, central zone of the pallium; Dd, dorsal zone of the pallium; Dl,
lateral zone of the pallium; Dl-d, dorsal part of Dl; Dl-v, ventral
part of Dl; Dm, medial zone of the pallium; Dm-d, dorsal part of
Dm; Dm-v, ventral part of Dm; Dp, posterior zone of the pallium;
dpf, days post-fertilization; DP, dorsal pallium (as morphotype);
LP, lateral pallium (as morphotype); MP, medial pallium (as
morphotype); mpf, months post-fertilization; s, somites; VP,
ventral pallium (as morphotype).
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situation of the mammalian (or mouse) pallium, and not
that of the pallia of other vertebrate groups.

It is also important to note that all the recent claims
described above, except Striedter and Northcutt [15], only
take into account the tetrapod pallium that is constituted
by evagination. To be accepted as parts of the “mor-
photype,” such claims need to be validated throughout
vertebrates, including those with an everted pallium.

Teleost Data Further Disprove the Current Dogma of
the Pallial Subdivisions

Tetrapods, including mammals, birds, and amphib-
ians, belong to the sarcopterygians (lobe-finned fish),
while teleosts belong to the actinopterygians (ray-finned
fish), the other group of bony vertebrates (Osteichthyes).
The development of the pallium is largely different
between the sarcopterygians and the actinopterygians
(Fig. 1). In most vertebrates, including the sarcoptery-
gians, the telencephalon develops via a process termed
“evagination.” In this process, the central lumen of the
neural tube enlarges to form two lateral ventricles (Fig. 1;
left). In the pallium of actinopterygians, the lateral
ventricles are not formed, since the roof of the neural
tube elongates outwards to cover the pallium. This way
of morphogenesis has been called “eversion” (Fig. 1;
right). According to the classical eversion theory, the
medial-lateral organization of the pallium of actino-
pterygians pallium was considered to be an inverted
version of that of sarcopterygians (i.e., dorsal tip of the
neural tube becomes a medial structure in sarcoptery-
gians, while it becomes a lateral structure in actino-
pterygians). Since the pallium of cartilaginous verte-
brates (Chondrichthyes) and cyclostomes develops by
evagination, it is very likely that the eversion process has
evolved specifically in the common ancestor of acti-
nopterygians (Fig. 1).

Historically, the teleost pallium is abbreviated as “D”
for the “dorsal telencephalic area,” and its subdivisions
are named according to their topology: lateral (Dl),
medial (Dm), dorsal (Dd), posterior (Dp), and central
(Dc) zones of the pallium [76–78] (Fig. 6). Different
authors have proposed several hypotheses regarding
which part of the teleost pallium would correspond to
each of the mammalian pallial subdivisions [78–83],
without any consensus so far.

These hypotheses are based on the two following
assumptions: (1) the teleost pallium should have one-
to-one homologs of MP/DP/LP/VP of mammals (either
within the frame of the tripartite or the first tetrapartite

models; Fig. 5a, b); (2) the medial-lateral organization
of the pallium in actinopterygians is inverted compared
to sarcopterygians (the color code represented in
Fig. 1). In the following, we first introduce proposed
hypotheses of pallial homology, and then, we will
discuss our interpretation by assembling the current
knowledge on the pallia in both sarcopterygians and
actinopterygians.

Current Hypotheses of Pallial Homology in Teleosts
A set of studies in several teleost species have dem-

onstrated that the sensory-recipient areas are distributed
throughout the pallium, in a somewhat modality-specific
way. For example, visual inputs terminate in the dorsal
Dl, auditory inputs in the dorsal Dm, and olfactory inputs
in the Dp [78, 86, 87] (Fig. 6a). The areas receiving
nonolfactory inputs have been often compared to the
mammalian neocortex [88].

Other sets of studies by Salas and his colleagues in
goldfish have indicated that a hippocampus-like function
(spatial learning) resides in the ventral Dl [89], and an
amygdala-like function (active avoidance learning) re-
sides in the ventral Dm [90]. Although there is another
study showing that a medio-dorsal part of the pallium is
involved in spatial learning [91], the hypothesis by Salas’s
group that Dl-v and Dm-v are the hippocampal and
amygdalar homologs, respectively, has been widely ac-
cepted because it fits better with the eversion theory.

Mueller and his colleagues proposed a modified ver-
sion in which the goldfish data were transferred to the
zebrafish pallium [83, 92]. This however poses a problem,
as there are significant differences in size and complexity
between the goldfish and zebrafish pallia (compare
zebrafish and goldfish in Fig. 6a), and the zebrafish brain
is not representative of “the teleost brain.” Nonetheless,
zebrafish is becoming a popular model species in neu-
roscience, so the simplified zebrafish version is becoming
a prevailing basis for subsequent studies [93–95]. Recent
models of teleost pallium organization have adapted the
first tetrapartite model. Thus, homology with tetrapods is
schematized as follows: Dl = hippocampus (MP), Dc =
neocortex (DP) (with nonolfactory sensory inputs); and
Dp = piriform cortex (LP) (with olfactory bulb inputs),
Dm = amygdala (VP).

Assumptions Constituting the Current Hypotheses of
Pallial Homology between Amniotes and Teleosts
Have Fallen Apart
It is important to remember that all the proposed

pallial homology hypotheses between teleosts and
mammals principally rely on hodological or functional
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(brain lesion) studies. Even though some authors aimed
for molecular comparison with the mammalian and
teleost pallia [92, 96], the data were interpreted with the
assumption that one-to-one regional homology should
exist betweenmammals and teleosts, and the focus was on
seeking similarities while ignoring rather substantial
differences.

In addition, the studies were conducted in mature
brains, thus the data are not directly comparable with
those conducted in developing brains in tetrapods. For
example, the use of transcription factors like Emx1 as a
regional marker makes sense only at a certain stage
during development, as their expression patterns
largely vary in adulthood. Regarding the Emx genes, a
zebrafish study shows that emx3, instead of emx1 or

emx2, plays a critical role in pallial development [97].
The Emx3 gene has been lost in many tetrapod species
except a few species such as Xenopus and opossum.
This indicates that the role of each Emx paralogous
gene may be different in tetrapods and teleosts, and the
importance of Emx1 expression may be limited to the
tetrapods.

Another critical point is that all these studies using
molecular markers/genes have been interpreted relying
on the first tetrapartite model (Fig. 5b), which has already
been abandoned by many authors (Fig. 5c–e). All the data
should thus be reinterpreted, integrating the newly
proposed models.

Moreover, in order to support homology between
mammals and teleosts based on similar phenotypes

Fig. 7. Schematic representation of the new view of pallial
organization in vertebrates taking into account the everted
pallium. A representative embryonic neural tube (both hemi-
spheres) is shown on the left, and adult pallia (left side of the
telencephalic hemisphere) of mammals, birds, and amphibians
(evaginated pallium) and of teleosts (everted pallium) are
shown on the right. The gradient organization along the neural
tube (Fig. 5f) is shared within the tetrapod pallium (presumably
all sarcopterygians), while the dorsoventral, medial-lateral
organization is very different in the teleost pallium (see
Fig. 6b). None of the current models can provide a compre-

hensive morphotype across vertebrates, and homology needs to
be discussed at the level of smaller cell clusters or cell types,
instead of the level of cytoarchitectonically distinct subdivisions
in the mature brain (e.g., neocortex, amygdala, nidopallium,
Dm, Dl). Amy, amygdala (mammalian structure); Ctx, neo-
cortex (mammalian structure); Dl, lateral part of the pallium
(teleost structure); Dm, medial part of the pallium (teleost
structure); Dp, posterior part of the pallium (teleost structure);
H, hyperpallium (avian structure); M, mesopallium (avian
structure); N, nidopallium (avian structure). Brain orientation:
D, dorsal; V, ventral; L, lateral; M, medial.
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(regardless of function, morphology, or gene expression
pattern), the phenotypes shared between mammals and
teleosts should also be shared in the majority of bony
vertebrates. If a similarity found between teleosts and
mammals is not found in birds, amphibians, or other
members of actinopterygians (e.g., Polypterus, sturgeons,
or gars), the similarity is unlikely to be a consequence of
conservation, but of convergence. With careful cladistic
analyses, many features that had been thought “con-
served” turned out to be a consequence of convergent
evolution [98–101].

Questionable Dogma of the “Conserved Amygdala”
The hypothesis of “Dm = amygdala” is the first ex-

ample lacking satisfactory evidence in favor of “evolu-
tionary continuity.” Dm is in fact not recognizable in
some non-teleost actinopterygians like the Polypterus
[102, 103]. Thus, the conservation of Dm is not at all clear
even among actinopterygians.

The major arguments claiming the hypothesis of
“Dm = amygdala” come from behavioral studies showing
that Dm is involved in the conditioned avoidance re-
sponse [90, 104]. However, using functional similarities
as a claim of regional homology has been criticized by
developmental neurobiologists. As discussed above in the
section on the tetrapod limbic system, for instance, if the
hypothesis of “avian nidopallium = VP” is true, it means
that the functional properties of VP are very flexible, as
the avian nidopallium is functionally rather similar to the
mammalian DP.

But even more fundamentally, can we really define the
amygdala by the involvement of a structure in aversive
learning? Classically, the pallial amygdala (lateral and
basal nuclei of amygdala) was proposed to be critical for
the acquisition of Pavlovian fear conditioning (CS-US
association), which led to the idea that the amygdala is a
conditioned fear center [105–107]. However, this dogma
on amygdala functions has been challenged by subse-
quent studies [108–110]. Furthermore, fMRI analyses
have shown that fear learning may not be a represen-
tative function of the human amygdala, while other
brain areas, such as the midcingulate cortex, anterior
insula, also showed activation in response to learned
threat [111]. Thus, the functional definition of the
amygdala as a center for fear/aversive conditioning has
become ambiguous.

Other than the involvement of Dm in the conditioned
avoidance response, there are no developmental/
molecular data supporting the similarity of the teleost
Dm with the tetrapod amygdala. For example, Emx1
expression, whose absence was the original definition of

VP, does not support the regional homology of the teleost
Dm and the tetrapod amygdala; there are no data showing
the presence of embryonic Tbr1-positive/Emx1-negative
territory that gives rise to Dm in the mature pallium.
Moreover, all these studies follow the first tetrapartite
model of Puelles et al. (2000), so that Dm corresponds
to the tetrapod VP (“Dm = amygdala = VP”) [83].
However, it is important to remember that this model is
now abandoned by Puelles himself (as discussed
above).

Overall, these factors weaken the justifications cur-
rently used for identifying the amygdala (or VP) in
nonmammals including teleosts, making it hard to de-
duce its ancestral situation.

New Eversion Theory Suggests a Shared
Developmental Origin of the Hippocampal-Like and
Olfactory Areas in the Teleost Pallium
A large assumption of all the claims of pallial ho-

mology between teleosts and mammals is the classical
“eversion theory,” in which the MP is supposed to be
laterally located, and the LP to be medially located in the
teleost pallium [4, 20, 83].

Nonetheless, projections from the olfactory bulb
(which identify the piriform [olfactory] cortex in amni-
otes) terminate at the lateral end of the pallium, which is
identified as Dp in teleost species [78, 112–114]. Para-
doxically, the homology of Dp = piriform cortex has
never been argued against, even though it is clearly not
supported by the eversion theory, as the lateral end of the
pallium should be hippocampal according to topology.
To explain this discrepancy, Mueller et al. [83] hypoth-
esized that the Dp is constituted by migrated cells from a
part of Dm, proposing the medial and lateral edges to be
the LP (Fig. 6a).

However, detailed cell lineage studies of the
zebrafish pallium reject this hypothesis [84, 85]. It has
been confirmed that Dl (the area proposed to be
similar to the hippocampus) and Dp (the area pro-
posed to be similar to the piriform cortex) both de-
velop from the progenitor pools located at the dorsal
tip of the early telencephalic neural tube (Fig. 6b; blue)
[84, 85]. If we consider that this dorsal tip of the
embryonic neural tube (Fig. 6b; blue) corresponds to
MP, it means that, the teleost MP gives rise to neural
populations not only playing a hippocampus-like role
in spatial memory (ventral Dl), but also in visual
sensory (dorsal Dl) and in olfactory sensory (part of
Dp) processing. Thus, in teleosts, a simple “Dl =
hippocampus = MP” framework is not supported by
developmental data.
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Indeed, contrary to the previous eversion theory, the
lateral pallial area is not pushed away from the midline
laterally by mechanical pressure due to neural tube
growth (Fig. 6a). Instead, newly born neurons are
progressively “stacking-up” on top of the old ones, like
a snowball (Fig. 6b) [84, 85]. In this way, the deepest
cell populations are the oldest ones, while the most
superficial cells are the younger ones. The organization
of the teleost pallium is thus not at all an inverted
version of the tetrapod pallium. As all the hypotheses
on the teleost pallium are based on this classical
eversion theory, the proposed pallial homology needs
to be reconsidered by taking into account this new
viewpoint of eversion.

Convergent Evolution of Tectofugal Visual Pathways
The simplified hypothesis of “Dl = hippocampus” [83]

appears not to contradict the eversion theory, as it develops
from the dorsal tip of the embryonic neural tube like the
amniote hippocampus. However, this hypothesis ignores
the heterogeneity of Dl. Due to its sensory nature, the
dorsal part of Dl has also been compared to the thala-
morecipient visual areas of amniotes [87, 88, 115]. With
new developmental data, the diversity of this area has been
underlined further.

We have recently revealed that the tectofugal visual
pathway terminating in the dorsal Dl is not homol-
ogous to the amniote ones but independently evolved
in the teleost lineage [101]. In teleosts, different
sensory modalities (visual, auditory, lateral lines, etc.)
terminate in the pallium [78, 86, 87], but major
sensory inputs are not from the thalamus, but from a
structure called the preglomerular nuclear complex
(PG) that has specifically evolved in the group of
teleosts. The PG-pallium sensory projections of tele-
osts may be similar to the thalamocortical pathways of
amniotes, but there is no continuity in the evolution of
these sensory pathways [101].

As described above, the homology of tectofugal
pathways in tetrapods has already been debated. In ad-
dition, prominent tectofugal visual inputs to the pallium
are observed only in mammals, birds, and teleosts, and
not in the intermediate taxa such as amphibians [18, 19,
60, 61, 116], sturgeons [117, 118], or Polypterus
[119–121]. Thus, it is more probable that visual recipient
areas of the pallium have emerged at least 3 times in
vertebrates and were not inherited from their common
ancestor. Our conclusion is consistent with the hy-
pothesis by Striedter and Northcutt [15] that the
thalamocortical-like projections would have evolved in-
dependently in different lineages.

To summarize, the teleost pallium is organized very
differently from the tetrapod pallium, and although
some similar functional properties are found, there are
no data so far supporting the fact that similar func-
tions reside in homologous (that is, of the same de-
velopmental origin within the neural tube) pallial
subdivisions.

Conclusion

One hundred years ago, vertebrate brain evolution
was believed to be unilinear, brains having evolved from
a fish-type old brain toward a mammalian-type new
brain with a neocortex [1–3, 122]. It turned out that the
mammalian neocortex is a part of the pallium, the dorsal
telencephalon that is present in all vertebrates. Since
then, the hypothetical pallial subdivisions have been
useful for promoting the comparative analysis of brains
using nonmammalian species, leading to a large accu-
mulation of knowledge on the vertebrate brain. How-
ever, as more data came, it turned out that the mor-
phological divisions of the pallium are often difficult to
define and not clearly conserved across all vertebrates.
We have encountered serious discrepancies when we
search for a single morphotype of subdivisions across
vertebrates.

These discrepancies can be resolved by considering
that pallium subdivisions have evolved independently;
that is, several cytoarchitectonic subdivisions were
established after the divergence of the different line-
ages. The conserved elements lie not in the cytoarch-
itectonic structure, but rather at the cellular or mo-
lecular level. The similar functional/hodological or-
ganization found in different taxa may be constructed
using genetic “tool-kits” inherited from a common
ancestor, but each tool-kit may have been recruited
independently in different lineages, resulting in similar
neural networks in a convergent manner. This view
coincides with the idea of “cell-type homology” (Fig. 7),
which is beginning to be accepted by comparative
neuroanatomists investigating sauropsids [50, 55,
123, 124].

As exemplified by the independent emergence of
neocortex-like functions in a relatively short time in birds
(after the separation of mammals and sauropsids), the
evolution of neural functions is more flexible than pre-
viously thought. This raises the possibility that brain areas
that play a role in aversive or spatial learning could also
evolve in a convergent manner. What makes our com-
munity cling to the idea of conservation of these
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structures is the notion that the limbic brain structures
should be more conserved than the neocortical structure.
This is a remnant of the scala naturae point of view, and it
is high time we fully emancipate from this dogma.

Acknowledgments

We would like to thank Drs. Glenn Northcutt, Ann Butler, and
Laura Bruce for sharing their thoughts behind their publications.
Some ideas were clarified during the writing and discussion of
K.Y.’s HDR (habilitation à diriger des recherches), and we thank
Drs. Georg Striedter and Onur Güntürkün for their inputs. Finally,
we thank Drs. Florian Razy-Krajka and Rose Tatarsky for their
critical reading.

Conflict of Interest Statement

The authors have no conflict of interests to declare.

Funding Sources

This work was supported by Université Paris-Saclay, CNRS,
INSB Call “Diversity of Biological Mechanisms” (K.Y.).

Author Contributions

All authors made conceptual contributions to this work. K.Y.
wrote the first draft of the manuscript, and P.E. and S.B. con-
tributed to revision of the manuscript.

References

1 Edinger L, Rand HW. The relations of
comparative anatomy to comparative
psychology. Comp Neurol Psychol. 1908;
18(5):437–57. https://doi.org/10.1002/cne.
920180502

2 Ariëns Kappers CU. The phylogenesis of the
paleo-cortex and archi-cortex compared
with the evolution of the visual neo-cortex.
Arch Neurol Psychiatry. 1909;4:161–73.

3 Jarvis ED, Gunturkun O, Bruce L, Csillag A,
Karten H, Kuenzel W, et al. Avian brains and
a new understanding of vertebrate brain
evolution. Nat Rev Neurosci. 2005;6(2):
151–9. https://doi.org/10.1038/nrn1606

4 Northcutt RG. The forebrain of gnathos-
tomes: in search of a morphotype. Brain
Behav Evol. 1995;46(4–5):275–318. https://
doi.org/10.1159/000113279

5 Holmgren N. Points of view concerning
forebrain morphology in lower vertebrates.
J Comp Neurol. 1922;34(5):391–459.
https://doi.org/10.1002/cne.900340502

6 Holmgren N. Points of view concerning
forebrain morphology in higher vertebrates.
Acta Zool. 1925;6(3):413–59. https://doi.
org/10.1111/j.1463-6395.1925.tb00271.x

7 Kumar S, Suleski M, Craig JM, Kasprowicz
AE, Sanderford M, Li M, et al. TimeTree 5:
an expanded resource for species diver-
gence times. Mol Biol Evol. 2022;39(8):
msac174. https://doi.org/10.1093/molbev/
msac174

8 Fernandez AS, Pieau C, Reperant J, Boncinelli
E, Wassef M. Expression of the Emx-1 and
Dlx-1 homeobox genes define three molecu-
larly distinct domains in the telencephalon of
mouse, chick, turtle and frog embryos: im-
plications for the evolution of telencephalic
subdivisions in amniotes. Development. 1998;
125(11):2099–111. https://doi.org/10.1242/
dev.125.11.2099

9 Puelles L, Kuwana E, Puelles E, Bulfone A,
Shimamura K, Keleher J, et al. Pallial and sub-

pallial derivatives in the embryonic chick and
mouse telencephalon, traced by the expression of
the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and
Tbr-1. J Comp Neurol. 2000;424(3):409–38.
https://doi.org/10.1002/1096-9861(20000828)
424:3<409::aid-cne3>3.0.co;2-7

10 Brox A, Puelles L, Ferreiro B, Medina L.
Expression of the genes Emx1, Tbr1, and
Eomes (Tbr2) in the telencephalon of
Xenopus laevis confirms the existence of a
ventral pallial division in all tetrapods.
J Comp Neurol. 2004;474(4):562–77.
https://doi.org/10.1002/cne.20152

11 Puelles L, Medina L. Field homology as a way
to reconcile genetic and developmental vari-
ability with adult homology. Brain Res Bull.
2002;57(3–4):243–55. https://doi.org/10.1016/
s0361-9230(01)00693-1

12 Medina L, Legaz I, Gonzalez G, De
Castro F, Rubenstein JL, Puelles L. Ex-
pression of Dbx1, Neurogenin 2, Sem-
aphorin 5A, Cadherin 8, and Emx1
distinguish ventral and lateral pallial
histogenetic divisions in the developing
mouse claustroamygdaloid complex.
J Comp Neurol. 2004;474(4):504–23.
https://doi.org/10.1002/cne.20141

13 Puelles L. Comments on the updated tetra-
partite pallium model in the mouse and chick,
featuring a homologous claustro-insular
complex. Brain Behav Evol. 2017;90(2):
171–89. https://doi.org/10.1159/000479782

14 Medina L, Abellán A, Desfilis E. Evolving
views on the pallium. Brain Behav Evol.
2022;96(4–6):181–99. https://doi.org/10.
1159/000519260

15 Striedter GF, Northcutt RG. The independent
evolution of dorsal pallia inmultiple vertebrate
lineages. Brain Behav Evol. 2021;96(4–6):
200–11. https://doi.org/10.1159/000516563

16 Striedter G, Northcutt RG. Brains through
time: a natural history of vertebrates. New
York: Oxford University Press; 2020.

17 Bruce LL, Neary TJ. The limbic system of
tetrapods: a comparative analysis of cortical
and amygdalar populations. Brain Behav
Evol. 1995;46(4–5):224–34. https://doi.org/
10.1159/000113276

18 Butler AB. The evolution of the dorsal pallium
in the telencephalon of amniotes: cladistic
analysis and a new hypothesis. Brain Res Brain
Res Rev. 1994;19(1):66–101. https://doi.org/10.
1016/0165-0173(94)90004-3

19 Butler AB. The evolution of the dorsal
thalamus of jawed vertebrates, including
mammals: cladistic analysis and a new hy-
pothesis. Brain Res Brain Res Rev. 1994;
19(1):29–65. https://doi.org/10.1016/0165-
0173(94)90003-5

20 Butler AB, Hodos W. Comparative verte-
brate neuroanatomy: evolution and adap-
tation. 2nd ed. New Jersey: John Wiley and
Sons; 2005.

21 Schneider GE. Two visual systems. Science.
1969;163(3870):895–902. https://doi.org/10.
1126/science.163.3870.895

22 Ingle D. Two visual systems in the frog.
Science. 1973;181(4104):1053–5. https://doi.
org/10.1126/science.181.4104.1053

23 Karten HJ, Hodos W, Nauta WJ, Revzin
AM. Neural connections of the « visual
wulst » of the avian telencephalon. Experi-
mental studies in the piegon (Columba livia)
and owl (Speotyto cunicularia). J Comp
Neurol. 1973;150(3):253–78. https://doi.
org/10.1002/cne.901500303

24 Karten HJ, Hodos W. Telencephalic
projections of the nucleus rotundus in
the pigeon (Columba livia). J Comp
Neurol. 1970;140(1):35–51. https://doi.
org/10.1002/cne.901400103

25 Hall WC, Ebner FF. Thalamotelence-
phalic projections in the turtle (Pseu-
demys scripta). J Comp Neurol. 1970;
140(1):101–22. https://doi.org/10.1002/
cne.901400107

244 Brain Behav Evol 2024;99:230–247
DOI: 10.1159/000537746

Yamamoto/Estienne/Bloch

D
ow

nloaded from
 http://karger.com

/bbe/article-pdf/doi/10.1159/000537746/4298071/000537746.pdf?casa_token=xiA4P_ubPQ
AAAAAA:5nEdiq12U

2nD
fBvw

8LtiLU
YG

Zm
J7ujjzkEeXbvaExtC

px3G
rG

0E-kLTKQ
z8ALTLLD

l2vSQ
Y by Institut Pasteur - C

eR
IS user on 22 N

ovem
ber 2024

https://doi.org/10.1002/cne.920180502
https://doi.org/10.1002/cne.920180502
https://doi.org/10.1038/nrn1606
https://doi.org/10.1159/000113279
https://doi.org/10.1159/000113279
https://doi.org/10.1002/cne.900340502
https://doi.org/10.1111/j.1463-6395.1925.tb00271.x
https://doi.org/10.1111/j.1463-6395.1925.tb00271.x
https://doi.org/10.1093/molbev/msac174
https://doi.org/10.1093/molbev/msac174
https://doi.org/10.1242/dev.125.11.2099
https://doi.org/10.1242/dev.125.11.2099
https://doi.org/10.1002/1096-9861(20000828)424:3<409::aid-cne3>3.0.co;2-7
https://doi.org/10.1002/1096-9861(20000828)424:3<409::aid-cne3>3.0.co;2-7
https://doi.org/10.1002/cne.20152
https://doi.org/10.1016/s0361-9230(01)00693-1
https://doi.org/10.1016/s0361-9230(01)00693-1
https://doi.org/10.1002/cne.20141
https://doi.org/10.1159/000479782
https://doi.org/10.1159/000519260
https://doi.org/10.1159/000519260
https://doi.org/10.1159/000516563
https://doi.org/10.1159/000113276
https://doi.org/10.1159/000113276
https://doi.org/10.1016/0165-0173(94)90004-3
https://doi.org/10.1016/0165-0173(94)90004-3
https://doi.org/10.1016/0165-0173(94)90003-5
https://doi.org/10.1016/0165-0173(94)90003-5
https://doi.org/10.1126/science.163.3870.895
https://doi.org/10.1126/science.163.3870.895
https://doi.org/10.1126/science.181.4104.1053
https://doi.org/10.1126/science.181.4104.1053
https://doi.org/10.1002/cne.901500303
https://doi.org/10.1002/cne.901500303
https://doi.org/10.1002/cne.901400103
https://doi.org/10.1002/cne.901400103
https://doi.org/10.1002/cne.901400107
https://doi.org/10.1002/cne.901400107
https://doi.org/10.1159/000537746


26 Riss W, Jakway JS. A perspective on the
fundamental retinal projections of verte-
brates. Brain Behav Evol. 1970;3(1):30–5.
https://doi.org/10.1159/000125461

27 Hagio H, Sato M, Yamamoto N. An as-
cending visual pathway to the dorsal telen-
cephalon through the optic tectum and nu-
cleus prethalamicus in the yellowfin goby
Acanthogobius flavimanus (Temminck &
Schlegel, 1845). J CompNeurol. 2018;526(10):
1733–46. https://doi.org/10.1002/cne.24444

28 Hodos W, Karten HJ. Visual intensity and
pattern discrimination deficits after lesions of
ectostriatum in pigeons. J Comp Neurol.
1970;140(1):53–68. https://doi.org/10.1002/
cne.901400104

29 Pettigrew JD, Konishi M. Neurons selective
for orientation and binocular disparity in
the visual Wulst of the barn owl (Tyto alba).
Science. 1976;193(4254):675–8. https://doi.
org/10.1126/science.948741

30 Bonke D, Scheich H, Langner G. Respon-
siveness of units in the auditory neostriatum
of the Guinea fowl (Numida meleagris) to
species-specific calls and synthetic stimuli:
I. Tonotopy and functional zones of field L.
J Comp Physiol. 1979;132(3):243–55.
https://doi.org/10.1007/bf00614496

31 Wild JM, Zeigler HP. Central representation
and somatotopic organization of the jaw
muscles within the facial and trigeminal
nuclei of the pigeon (Columba livia).
J Comp Neurol. 1980;192(1):175–201.
https://doi.org/10.1002/cne.901920112

32 Funke K. Somatosensory areas in the telen-
cephalon of the pigeon. I. Response charac-
teristics. Exp Brain Res. 1989;76(3):603–19.
https://doi.org/10.1007/BF00248917

33 Karten HJ, Shimizu T. The origins of neo-
cortex: connections and lamination as dis-
tinct events in evolution. J Cogn Neurosci.
1989;1(4):291–301. https://doi.org/10.1162/
jocn.1989.1.4.291

34 Karten HJ. Homology and evolutionary
origins of the « neocortex. Brain Behav Evol.
1991;38(4–5):264–72. https://doi.org/10.
1159/000114393

35 Güntürkün O. The avian « prefrontal cortex »
and cognition. Curr Opin Neurobiol. 2005;
15(6):686–93. https://doi.org/10.1016/j.conb.
2005.10.003

36 Atoji Y, Wild JM. Afferent and efferent
projections of the mesopallium in the pigeon
(Columba livia). J CompNeurol. 2012;520(4):
717–41. https://doi.org/10.1002/cne.22763

37 Stacho M, Ströckens F, Xiao Q, Güntürkün
O. Functional organization of telencephalic
visual association fields in pigeons. Behav
Brain Res. 2016;303:93–102. https://doi.org/
10.1016/j.bbr.2016.01.045

38 Stacho M, Herold C, Rook N, Wagner H,
Axer M, Amunts K, et al. A cortex-like
canonical circuit in the avian forebrain.
Science. 2020;369(6511):369. https://doi.
org/10.1126/science.abc5534

39 Arnsten AF. Catecholamine modulation of
prefrontal cortical cognitive function. Trends

Cogn Sci. 1998;2(11):436–47. https://doi.org/
10.1016/s1364-6613(98)01240-6

40 Divac I, Mogensen J. The prefrontal «
cortex » in the pigeon catecholamine
histofluorescence. Neurosci juill. 1985;
15(3):677–82. https://doi.org/10.1016/
0306-4522(85)90069-7

41 Waldmann C, Güntürkün O. The dopa-
minergic innervation of the pigeon caudo-
lateral forebrain: immunocytochemical ev-
idence for a « prefrontal cortex » in birds?
Brain Res. 1993;600(2):225–34. https://doi.
org/10.1016/0006-8993(93)91377-5

42 Güntürkün O. Avian and mammalian «
prefrontal cortices »: limited degrees of
freedom in the evolution of the neural
mechanisms of goal-state maintenance.
Brain Res Bull. 2005;66(4–6):311–6. https://
doi.org/10.1016/j.brainresbull.2005.02.004

43 vonEugenK, Tabrik S,GüntürkünO, Ströckens
F. A comparative analysis of the dopaminergic
innervation of the executive caudal nidopallium
in pigeon, chicken, zebra finch, and carrion
crow. J Comp Neurol. 2020;528(17):2929–55.
https://doi.org/10.1002/cne.24878

44 Veenman CL, Wild JM, Reiner A. Organi-
zation of the avian « corticostriatal » pro-
jection system: a retrograde and anterograde
pathway tracing study in pigeons. J Comp
Neurol. 1995;354(1):87–126. https://doi.org/
10.1002/cne.903540108

45 Reiner A, Medina L, Veenman CL. Struc-
tural and functional evolution of the basal
ganglia in vertebrates. Brain Res Brain Res
Rev. 1998;28(3):235–85. https://doi.org/10.
1016/s0165-0173(98)00016-2

46 Reiner A. Functional circuitry of the avian
basal ganglia: implications for basal ganglia
organization in stem amniotes. Brain Res
Bull. 2002;57(3–4):513–28. https://doi.org/
10.1016/s0361-9230(01)00667-0

47 Wang R, Chen CC, Hara E, Rivas MV,
Roulhac PL, Howard JT, et al. Convergent
differential regulation of SLIT-ROBO axon
guidance genes in the brains of vocal learners.
J Comp Neurol. 2015;523(6):892–906.
https://doi.org/10.1002/cne.23719

48 Feenders G, Liedvogel M, Rivas M, Zapka M,
Horita H, Hara E, et al. Molecular mapping of
movement-associated areas in the avian brain:
a motor theory for vocal learning origin. PLoS
One. 2008;3(3):e1768. https://doi.org/10.1371/
journal.pone.0001768

49 Reiner A. Levels of organization and the
evolution of isocortex. Trends Neurosci.
1996;19(3):89–92; author reply 91-92. https://
doi.org/10.1016/s0166-2236(96)80034-8

50 Dugas-Ford J, Rowell JJ, Ragsdale CW. Cell-
type homologies and the origins of the
neocortex. Proc Natl Acad Sci U A. 2012;
109(42):16974–9. https://doi.org/10.1073/
pnas.1204773109

51 Briscoe SD, Ragsdale CW. Homology,
neocortex, and the evolution of develop-
mental mechanisms. Science. 2018;
362(6411):190–3. https://doi.org/10.1126/
science.aau3711

52 Striedter GF. The telencephalon of tetra-
pods in evolution. Brain Behav Evol. 1997;
49(4):179–213. https://doi.org/10.1159/
000112991

53 Puelles L, Kuwana E, Puelles E, Rubenstein
JL. Comparison of the mammalian and
avian telencephalon from the perspective of
gene expression data. Eur J Morphol. 1999;
37(2–3):139–50. https://doi.org/10.1076/
ejom.37.2.139.4756

54 Butler AB, Reiner A, Karten HJ. Evolution of
the amniote pallium and the origins of
mammalian neocortex. Ann N Y Acad Sci.
2011;1225:14–27. https://doi.org/10.1111/j.
1749-6632.2011.06006.x

55 Dugas-Ford J, Ragsdale CW. Levels of
homology and the problem of neocortex.
Annu Rev Neurosci. 2015;38:351–68.
https://doi.org/10.1146/annurev-neuro-
071714-033911

56 Gorski JA, Talley T, Qiu M, Puelles L,
Rubenstein JLR, Jones KR. Cortical excit-
atory neurons and glia, but not GABAergic
neurons, are produced in the Emx1-
expressing lineage. J Neurosci. 2002;
22(15):6309–14. https://doi.org/10.1523/
JNEUROSCI.22-15-06309.2002

57 Reiner A, Northcutt RG. Succinic dehy-
drogenase histochemistry reveals the loca-
tion of the putative primary visual and
auditory areas within the dorsal ventricular
ridge of Sphenodon punctatus. Brain Behav
Evol. 2000;55(1):26–36. https://doi.org/10.
1159/000006639

58 Vesselkin NP, Agayan AL, Nomokonova
LM. A study of thalamo-telencephalic
afferent systems in frogs. Brain Behav
Evol. 1971;4(4):295–306. https://doi.org/
10.1159/000125439

59 Bruce LL. Evolution of the nervous system
in reptiles. In: Kaas JH, editor. Éditeur.
Evolution of nervous systems Elsevier; 2007.
p. 125–56.

60 Kicliter E. Some telencephalic connections in
the frog, Rana pipiens. J Comp Neurol. 1979;
185(1):75–86. https://doi.org/10.1002/cne.
901850105

61 Wilczynski W, Northcutt RG. Connec-
tions of the bullfrog striatum: afferent
organization. J Comp Neurol. 1983;
214(3):321–32. https://doi.org/10.1002/
cne.902140309

62 MacLean PD. Psychosomatic disease and the
visceral brain; recent developments bearing on
the Papez theory of emotion. PsychosomMed.
1949;11(6):338–53. https://doi.org/10.1097/
00006842-194911000-00003

63 Maclean PD. Some psychiatric implications
of physiological studies on frontotemporal
portion of limbic system (visceral brain).
Electroencephalogr Clin Neurophysiol.
1952;4(4):407–18. https://doi.org/10.1016/
0013-4694(52)90073-4

64 Swanson LW, Petrovich GD. What is the
amygdala? Trends Neurosci. 1998;21(8):
323–31. https://doi.org/10.1016/s0166-
2236(98)01265-x

Problem of Pallial Subdivisions Brain Behav Evol 2024;99:230–247
DOI: 10.1159/000537746

245

D
ow

nloaded from
 http://karger.com

/bbe/article-pdf/doi/10.1159/000537746/4298071/000537746.pdf?casa_token=xiA4P_ubPQ
AAAAAA:5nEdiq12U

2nD
fBvw

8LtiLU
YG

Zm
J7ujjzkEeXbvaExtC

px3G
rG

0E-kLTKQ
z8ALTLLD

l2vSQ
Y by Institut Pasteur - C

eR
IS user on 22 N

ovem
ber 2024

https://doi.org/10.1159/000125461
https://doi.org/10.1002/cne.24444
https://doi.org/10.1002/cne.901400104
https://doi.org/10.1002/cne.901400104
https://doi.org/10.1126/science.948741
https://doi.org/10.1126/science.948741
https://doi.org/10.1007/bf00614496
https://doi.org/10.1002/cne.901920112
https://doi.org/10.1007/BF00248917
https://doi.org/10.1162/jocn.1989.1.4.291
https://doi.org/10.1162/jocn.1989.1.4.291
https://doi.org/10.1159/000114393
https://doi.org/10.1159/000114393
https://doi.org/10.1016/j.conb.2005.10.003
https://doi.org/10.1016/j.conb.2005.10.003
https://doi.org/10.1002/cne.22763
https://doi.org/10.1016/j.bbr.2016.01.045
https://doi.org/10.1016/j.bbr.2016.01.045
https://doi.org/10.1126/science.abc5534
https://doi.org/10.1126/science.abc5534
https://doi.org/10.1016/s1364-6613(98)01240-6
https://doi.org/10.1016/s1364-6613(98)01240-6
https://doi.org/10.1016/0306-4522(85)90069-7
https://doi.org/10.1016/0306-4522(85)90069-7
https://doi.org/10.1016/0006-8993(93)91377-5
https://doi.org/10.1016/0006-8993(93)91377-5
https://doi.org/10.1016/j.brainresbull.2005.02.004
https://doi.org/10.1016/j.brainresbull.2005.02.004
https://doi.org/10.1002/cne.24878
https://doi.org/10.1002/cne.903540108
https://doi.org/10.1002/cne.903540108
https://doi.org/10.1016/s0165-0173(98)00016-2
https://doi.org/10.1016/s0165-0173(98)00016-2
https://doi.org/10.1016/s0361-9230(01)00667-0
https://doi.org/10.1016/s0361-9230(01)00667-0
https://doi.org/10.1002/cne.23719
https://doi.org/10.1371/journal.pone.0001768
https://doi.org/10.1371/journal.pone.0001768
https://doi.org/10.1016/s0166-2236(96)80034-8
https://doi.org/10.1016/s0166-2236(96)80034-8
https://doi.org/10.1073/pnas.1204773109
https://doi.org/10.1073/pnas.1204773109
https://doi.org/10.1126/science.aau3711
https://doi.org/10.1126/science.aau3711
https://doi.org/10.1159/000112991
https://doi.org/10.1159/000112991
https://doi.org/10.1076/ejom.37.2.139.4756
https://doi.org/10.1076/ejom.37.2.139.4756
https://doi.org/10.1111/j.1749-6632.2011.06006.x
https://doi.org/10.1111/j.1749-6632.2011.06006.x
https://doi.org/10.1146/annurev-neuro-071714-033911
https://doi.org/10.1146/annurev-neuro-071714-033911
https://doi.org/10.1523/JNEUROSCI.22-15-06309.2002
https://doi.org/10.1523/JNEUROSCI.22-15-06309.2002
https://doi.org/10.1159/000006639
https://doi.org/10.1159/000006639
https://doi.org/10.1159/000125439
https://doi.org/10.1159/000125439
https://doi.org/10.1002/cne.901850105
https://doi.org/10.1002/cne.901850105
https://doi.org/10.1002/cne.902140309
https://doi.org/10.1002/cne.902140309
https://doi.org/10.1097/00006842-194911000-00003
https://doi.org/10.1097/00006842-194911000-00003
https://doi.org/10.1016/0013-4694(52)90073-4
https://doi.org/10.1016/0013-4694(52)90073-4
https://doi.org/10.1016/s0166-2236(98)01265-x
https://doi.org/10.1016/s0166-2236(98)01265-x
https://doi.org/10.1159/000537746


65 Herrick CJ. The connections of the vom-
eronasal nerve, accessory olfactory bulb and
amygdala in amphibia. J Comp Neurol.
1921;33(3):213–80. https://doi.org/10.1002/
cne.900330303

66 Neary TJ. Afferent projections to the hy-
pothalamus in ranid frogs. Brain Behav
Evol. 1995;46(1):1–13. https://doi.org/10.
1159/000113254

67 Zeier H, Karten HJ. The archistriatum of
the pigeon: organization of afferent and
efferent connections. Brain Res. 1971;
31(2):313–26. https://doi.org/10.1016/
0006-8993(71)90185-5

68 Reiner A, Perkel DJ, Bruce LL, Butler AB,
Csillag A, Kuenzel W, et al. Revised no-
menclature for avian telencephalon and
some related brainstem nuclei. J Comp
Neurol. 2004;473(3):377–414. https://doi.
org/10.1002/cne.20118

69 Cohen DH. Involvement of the avian
amygdalar homologue (archistriatum pos-
terior and mediale) in defensively condi-
tioned heart rate change. J Comp Neurol.
1975;160(1):13–35. https://doi.org/10.1002/
cne.901600103

70 Garcia-Calero E, Martínez-de-la-Torre M,
Puelles L. A radial histogenetic model of the
mouse pallial amygdala. Brain Struct Funct.
2020;225(7):1921–56. https://doi.org/10.
1007/s00429-020-02097-4

71 Puelles L, Alonso A, García-Calero E,
Martínez-de-la-Torre M. Concentric ring
topology of mammalian cortical sectors and
relevance for patterning studies. J Comp
Neurol. 2019;527(10):1731–52. https://doi.
org/10.1002/cne.24650

72 Woych J, Ortega Gurrola A, Deryckere A,
Jaeger ECB, Gumnit E, Merello G, et al. Cell-
type profiling in salamanders identifies in-
novations in vertebrate forebrain evolution.
Science. 2022;377(6610):eabp9186.

73 Deryckere A, Woych J, Jaeger ECB, Tosches
MA. Molecular diversity of neuron types in the
salamander amygdala and implications for
amygdalar evolution. Brain Behav Evol. 2023;
98(2):61–75. https://doi.org/10.1159/000527899

74 Visel A, Taher L, Girgis H, May D, Golonzhka
O, Hoch RV, et al. A high-resolution enhancer
atlas of the developing telencephalon. Cell.
2013;152(4):895–908. https://doi.org/10.1016/
j.cell.2012.12.041

75 Pattabiraman K, Golonzhka O, Lindtner S,
Nord AS, Taher L, Hoch R, et al. Tran-
scriptional regulation of enhancers active in
protodomains of the developing cerebral
cortex. Neuron. 2014;82(5):989–1003. https://
doi.org/10.1016/j.neuron.2014.04.014

76 Northcutt RG. Evolution of the telencephalon
in nonmammals. Annu Rev Neurosci. 1981;4:
301–50. https://doi.org/10.1146/annurev.ne.04.
030181.001505

77 Wullimann MF, Rupp B, Reichert H. Neu-
roanatomy of the zebrafish brain: a topo-
logical atlas. Basel: Birkhäuser Verlag; 1996.

78 Yamamoto N, Ishikawa Y, Yoshimoto M,
Xue HG, Bahaxar N, Sawai N, et al. A new

interpretation on the homology of the tel-
eostean telencephalon based on hodology
and a new eversion model. Brain Behav
Evol. 2007;69(2):96–104. https://doi.org/10.
1159/000095198

79 Braford MR. Comparative aspects of forebrain
organization in the ray-finned fishes: touch-
stones or not? Brain Behav Evol. 1995;46(4–5):
259–74. https://doi.org/10.1159/000113278

80 Wullimann MF, Mueller T. Teleostean and
mammalian forebrains contrasted: evidence
from genes to behavior. J Comp Neurol. 2004;
475(2):143–62. https://doi.org/10.1002/cne.
20183

81 Northcutt RG. Connections of the lateral
and medial divisions of the goldfish telen-
cephalic pallium. J Comp Neurol. 2006;
494(6):903–43. https://doi.org/10.1002/cne.
20853

82 Yamamoto N. Studies on the teleost brain
morphology in search of the origin of
cognition. Jpn Psychol Res. 2009;51(3):
154–67. https://doi.org/10.1111/j.1468-
5884.2009.00397.x

83 Mueller T, Dong Z, BerberogluMA, Guo S. The
dorsal pallium in zebrafish, Danio rerio (Cyp-
rinidae, Teleostei). Brain Res. 2011;1381:95–105.
https://doi.org/10.1016/j.brainres.2010.12.089

84 Dirian L, Galant S, Coolen M, Chen W,
Bedu S, Houart C, et al. Spatial regionali-
zation and heterochrony in the formation of
adult pallial neural stem cells. Dev Cell.
2014;30(2):123–36. https://doi.org/10.1016/
j.devcel.2014.05.012

85 Furlan G, Cuccioli V, Vuillemin N, Dirian L,
Muntasell AJ, Coolen M, et al. Life-long
neurogenic activity of individual neural
stem cells and continuous growth establish
an outside-in architecture in the teleost
pallium. Curr Biol. 2017;27(21):3288–01.e3.
https://doi.org/10.1016/j.cub.2017.09.052

86 Yamamoto N, Ito H. Fiber connections of
the anterior preglomerular nucleus in cyp-
rinids with notes on telencephalic connec-
tions of the preglomerular complex. J Comp
Neurol. 2005;491(3):212–33. https://doi.
org/10.1002/cne.20681

87 Yamamoto N, Ito H. Visual, lateral line,
and auditory ascending pathways to the
dorsal telencephalic area through the ros-
trolateral region of the lateral pre-
glomerular nucleus in cyprinids. J Comp
Neurol. 2008;508(4):615–47. https://doi.
org/10.1002/cne.21717

88 Ito H, Yamamoto N. Non-laminar cerebral
cortex in teleost fishes? Biol Lett. 2009;5(1):
117–21. https://doi.org/10.1098/rsbl.2008.
0397

89 Rodriguez F, Lopez JC, Vargas JP, Gomez
Y, Broglio C, Salas C. Conservation of
spatial memory function in the pallial
forebrain of reptiles and ray-finned
fishes. J Neurosci. 2002;22(7):2894–903.
https://doi.org/10.1523/JNEUROSCI.22-
07-02894.2002

90 Portavella M, Torres B, Salas C. Avoidance
response in goldfish: emotional and tem-

poral involvement of medial and lateral
telencephalic pallium. J Neurosci. 2004;
24(9):2335–42. https://doi.org/10.1523/
JNEUROSCI.4930-03.2004

91 Saito K, Watanabe S. Deficits in acquisition
of spatial learning after dorsomedial telen-
cephalon lesions in goldfish. Behav Brain
Res. 2006;172(2):187–94. https://doi.org/10.
1016/j.bbr.2006.04.014

92 Porter BA, Mueller T. The zebrafish
amygdaloid complex - functional
ground plan, molecular delineation, and
everted topology. Front Neurosci. 2020;
14:608. https://doi.org/10.3389/fnins.
2020.00608

93 von Trotha JW, Vernier P, Bally-Cuif L.
Emotions and motivated behavior converge
on an amygdala-like structure in the zebra-
fish. Eur J Neurosci. 2014;40(9):3302–15.
https://doi.org/10.1111/ejn.12692

94 Naumann RK, Ondracek JM, Reiter S,
Shein-Idelson M, Tosches MA, Yamawaki
TM, et al. The reptilian brain. Curr Biol.
2015;25(8):R317–321. https://doi.org/10.
1016/j.cub.2015.02.049

95 Lal P, Kawakami K. Integrated behavioral,
genetic and brain circuit visualization
methods to unravel functional anatomy of
zebrafish amygdala. Front Neuroanat. 2022;
16:837527. https://doi.org/10.3389/fnana.
2022.837527

96 Ganz J, Kroehne V, Freudenreich D, Ma-
chate A, Geffarth M, Braasch I, et al. Sub-
divisions of the adult zebrafish pallium
based on molecular marker analysis.
F1000Res. 2014;3:308. https://doi.org/10.
12688/f1000research.5595.2

97 Viktorin G, Chiuchitu C, Rissler M, Varga
ZM,WesterfieldM. Emx3 is required for the
differentiation of dorsal telencephalic neu-
rons. Dev Dyn. 2009;238(8):1984–98.
https://doi.org/10.1002/dvdy.22031

98 Fontaine R, Affaticati P, Bureau C, Colin I,
Demarque M, Dufour S, et al. Dopami-
nergic neurons controlling anterior pi-
tuitary functions: anatomy and ontogen-
esis in zebrafish. Endocrinology. 2015;
156(8):2934–48. https://doi.org/10.1210/
en.2015-1091

99 Yamamoto K, Bloch S. Overview of brain
evolution : lobe-finned fish vs. Ray-finned
fish. In: Watanabe S, Hofman MA, Shimizu
T, editors. Éditeurs. Evolution of the brain,
cognition, and emotion in vertebrates. To-
kyo: Springer; 2017. p. 3–33.

100 Yamamoto K, Bloch S, Vernier P. New
perspective on the regionalization of the
anterior forebrain in Osteichthyes. Dev
Growth Differ. 2017;59(4):175–87. https://
doi.org/10.1111/dgd.12348

101 Bloch S, Hagio H, Thomas M, Heuzé A,
Hermel JM, Lasserre E, et al. Non-
thalamic origin of zebrafish sensory nu-
clei implies convergent evolution of visual
pathways in amniotes and teleosts. Elife.
2020;9:e54945. https://doi.org/10.7554/
eLife.54945

246 Brain Behav Evol 2024;99:230–247
DOI: 10.1159/000537746

Yamamoto/Estienne/Bloch

D
ow

nloaded from
 http://karger.com

/bbe/article-pdf/doi/10.1159/000537746/4298071/000537746.pdf?casa_token=xiA4P_ubPQ
AAAAAA:5nEdiq12U

2nD
fBvw

8LtiLU
YG

Zm
J7ujjzkEeXbvaExtC

px3G
rG

0E-kLTKQ
z8ALTLLD

l2vSQ
Y by Institut Pasteur - C

eR
IS user on 22 N

ovem
ber 2024

https://doi.org/10.1002/cne.900330303
https://doi.org/10.1002/cne.900330303
https://doi.org/10.1159/000113254
https://doi.org/10.1159/000113254
https://doi.org/10.1016/0006-8993(71)90185-5
https://doi.org/10.1016/0006-8993(71)90185-5
https://doi.org/10.1002/cne.20118
https://doi.org/10.1002/cne.20118
https://doi.org/10.1002/cne.901600103
https://doi.org/10.1002/cne.901600103
https://doi.org/10.1007/s00429-020-02097-4
https://doi.org/10.1007/s00429-020-02097-4
https://doi.org/10.1002/cne.24650
https://doi.org/10.1002/cne.24650
https://doi.org/10.1159/000527899
https://doi.org/10.1016/j.cell.2012.12.041
https://doi.org/10.1016/j.cell.2012.12.041
https://doi.org/10.1016/j.neuron.2014.04.014
https://doi.org/10.1016/j.neuron.2014.04.014
https://doi.org/10.1146/annurev.ne.04.030181.001505
https://doi.org/10.1146/annurev.ne.04.030181.001505
https://doi.org/10.1159/000095198
https://doi.org/10.1159/000095198
https://doi.org/10.1159/000113278
https://doi.org/10.1002/cne.20183
https://doi.org/10.1002/cne.20183
https://doi.org/10.1002/cne.20853
https://doi.org/10.1002/cne.20853
https://doi.org/10.1111/j.1468-5884.2009.00397.x
https://doi.org/10.1111/j.1468-5884.2009.00397.x
https://doi.org/10.1016/j.brainres.2010.12.089
https://doi.org/10.1016/j.devcel.2014.05.012
https://doi.org/10.1016/j.devcel.2014.05.012
https://doi.org/10.1016/j.cub.2017.09.052
https://doi.org/10.1002/cne.20681
https://doi.org/10.1002/cne.20681
https://doi.org/10.1002/cne.21717
https://doi.org/10.1002/cne.21717
https://doi.org/10.1098/rsbl.2008.0397
https://doi.org/10.1098/rsbl.2008.0397
https://doi.org/10.1523/JNEUROSCI.22-07-02894.2002
https://doi.org/10.1523/JNEUROSCI.22-07-02894.2002
https://doi.org/10.1523/JNEUROSCI.4930-03.2004
https://doi.org/10.1523/JNEUROSCI.4930-03.2004
https://doi.org/10.1016/j.bbr.2006.04.014
https://doi.org/10.1016/j.bbr.2006.04.014
https://doi.org/10.3389/fnins.2020.00608
https://doi.org/10.3389/fnins.2020.00608
https://doi.org/10.1111/ejn.12692
https://doi.org/10.1016/j.cub.2015.02.049
https://doi.org/10.1016/j.cub.2015.02.049
https://doi.org/10.3389/fnana.2022.837527
https://doi.org/10.3389/fnana.2022.837527
https://doi.org/10.12688/f1000research.5595.2
https://doi.org/10.12688/f1000research.5595.2
https://doi.org/10.1002/dvdy.22031
https://doi.org/10.1210/en.2015-1091
https://doi.org/10.1210/en.2015-1091
https://doi.org/10.1111/dgd.12348
https://doi.org/10.1111/dgd.12348
https://doi.org/10.7554/eLife.54945
https://doi.org/10.7554/eLife.54945
https://doi.org/10.1159/000537746


102 Nieuwenhuys R. The comparative anat-
omy of the actinopterygian forebrain.
J Hirnforsch. 1963;7:171–92.

103 Northcutt RG, Braford MR. New observa-
tion on the organization and evolution of
the telencephalon of actinopterygian fishes.
Ebbesson SOE, éditeur. Comparative neu-
rology of the telencephalon. New York:
Plenum; 1980. p. 41–98.

104 Lal P, Tanabe H, Suster ML, Ailani D,
Kotani Y, Muto A, et al. Identification of a
neuronal population in the telencephalon
essential for fear conditioning in zebrafish.
BMC Biol. 2018;16(1):45. https://doi.org/10.
1186/s12915-018-0502-y

105 Weiskrantz L. Behavioral changes associ-
ated with ablation of the amygdaloid com-
plex in monkeys. J Comp Physiol Psychol.
1956;49(4):381–91. https://doi.org/10.1037/
h0088009

106 LeDoux JE, Cicchetti P, Xagoraris A, Ro-
manski LM. The lateral amygdaloid nucleus:
sensory interface of the amygdala in fear
conditioning. J Neurosci. 1990;10(4):1062–9.
https://doi.org/10.1523/JNEUROSCI.10-04-
01062.1990

107 LeDoux JE. Emotion circuits in the brain.
Annu Rev Neurosci. 2000;23:155–84. https://
doi.org/10.1146/annurev.neuro.23.1.155

108 Cahill L, Weinberger NM, Roozendaal B,
McGaugh JL. Is the amygdala a locus of «
conditioned fear »? Some questions and
caveats. Neuron. 1999;23(2):227–8.
https://doi.org/10.1016/s0896-6273(00)
80774-6

109 Wilensky AE, Schafe GE, LeDoux JE. The
amygdala modulates memory consolidation
of fear-motivated inhibitory avoidance
learning but not classical fear conditioning.

J Neurosci. 2000;20(18):7059–66. https://doi.
org/10.1523/JNEUROSCI.20-18-07059.2000

110 LeDoux JE. Thoughtful feelings. Curr Biol
Juin. 2020;30(11):R619–23. https://doi.org/
10.1016/j.cub.2020.04.012

111 Visser RM, Bathelt J, Scholte HS, Kindt M.
Robust BOLD responses to faces but not to
conditioned threat: challenging the
amygdala’s reputation in human fear and
extinction learning. J Neurosci. 2021;
41(50):10278–92. https://doi.org/10.1523/
JNEUROSCI.0857-21.2021

112 Bass AH. Olfactory bulb efferents in the
channel catfish, Ictalurus punctatus.
J Morphol. 1981;169(1):91–111. https://doi.
org/10.1002/jmor.1051690108

113 Levine RL, Dethier S. The connections be-
tween the olfactory bulb and the brain in the
goldfish. J Comp Neurol. 1985;237(4):427–44.
https://doi.org/10.1002/cne.902370402

114 Miyasaka N, Morimoto K, Tsubokawa T,
Higashijima S, Okamoto H, Yoshihara Y.
From the olfactory bulb to higher brain
centers: genetic visualization of secondary
olfactory pathways in zebrafish. J Neurosci.
2009;29(15):4756–67. https://www.jneurosci.
org/content/29/15/4756.

115 Ito H, Vanegas H, Murakami T, Morita Y.
Diameters and terminal patterns of reti-
nofugal axons in their target areas: an HRP
study in two teleosts (Sebastiscus and Na-
vodon). J Comp Neurol. 1984;230(2):179–97.
https://doi.org/10.1002/cne.902300204

116 Neary TJ, Northcutt RG. Nuclear organi-
zation of the bullfrog diencephalon. J Comp
Neurol. 1983;213(3):262–78. https://doi.
org/10.1002/cne.902130303

117 Albert JS, Yamamoto N, Yoshimoto M,
Sawai N, Ito H. Visual thalamotelence-

phalic pathways in the sturgeon Acipenser,
a non-teleost actinopterygian fish. Brain
Behav Evol. 1999;53(3):156–72. https://doi.
org/10.1159/000006591

118 YamamotoN, YoshimotoM, Albert JS, Sawai
N, Ito H. Tectal fiber connections in a non-
teleost actinopterygian fish, the sturgeon
Acipenser. Brain Behav Evol. 1999;53(3):
142–55. https://doi.org/10.1159/000006590

119 Holmes PH, Northcutt RG. Connections
of the pallial telencephalon in the Senegal
bichir, Polypterus. Brain Behav Evol.
2003;61(3):113–47. https://doi.org/10.
1159/000069750

120 Northcutt RG, Plassmann W, Holmes PH,
Saidel WM. A pallial visual area in the
telencephalon of the bony fish Polypterus.
Brain Behav Evol. 2004;64(1):1–10. https://
doi.org/10.1159/000077538

121 Northcutt RG. Phylogeny of nucleus me-
dianus of the posterior tubercle in ray-finned
fishes. Integr Zool. 2009;4(1):134–52. https://
doi.org/10.1111/j.1749-4877.2008.00141.x

122 Northcutt RG. Changing views of brain
evolution. Brain Res Bull. 2001;55(6):
663–74. https://doi.org/10.1016/s0361-
9230(01)00560-3

123 Tosches MA, Yamawaki TM, Naumann
RK, Jacobi AA, Tushev G, Laurent G.
Evolution of pallium, hippocampus, and
cortical cell types revealed by single-cell
transcriptomics in reptiles. Science. 2018;
360(6391):881–8. https://doi.org/10.1126/
science.aar4237

124 Güntürkün O, von Eugen K, Packheiser J,
Pusch R. Avian pallial circuits and cogni-
tion: a comparison to mammals. Curr Opin
Neurobiol. 2021;71:29–36. https://doi.org/
10.1016/j.conb.2021.08.007

Problem of Pallial Subdivisions Brain Behav Evol 2024;99:230–247
DOI: 10.1159/000537746

247

D
ow

nloaded from
 http://karger.com

/bbe/article-pdf/doi/10.1159/000537746/4298071/000537746.pdf?casa_token=xiA4P_ubPQ
AAAAAA:5nEdiq12U

2nD
fBvw

8LtiLU
YG

Zm
J7ujjzkEeXbvaExtC

px3G
rG

0E-kLTKQ
z8ALTLLD

l2vSQ
Y by Institut Pasteur - C

eR
IS user on 22 N

ovem
ber 2024

https://doi.org/10.1186/s12915-018-0502-y
https://doi.org/10.1186/s12915-018-0502-y
https://doi.org/10.1037/h0088009
https://doi.org/10.1037/h0088009
https://doi.org/10.1523/JNEUROSCI.10-04-01062.1990
https://doi.org/10.1523/JNEUROSCI.10-04-01062.1990
https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.1016/s0896-6273(00)80774-6
https://doi.org/10.1016/s0896-6273(00)80774-6
https://doi.org/10.1523/JNEUROSCI.20-18-07059.2000
https://doi.org/10.1523/JNEUROSCI.20-18-07059.2000
https://doi.org/10.1016/j.cub.2020.04.012
https://doi.org/10.1016/j.cub.2020.04.012
https://doi.org/10.1523/JNEUROSCI.0857-21.2021
https://doi.org/10.1523/JNEUROSCI.0857-21.2021
https://doi.org/10.1002/jmor.1051690108
https://doi.org/10.1002/jmor.1051690108
https://doi.org/10.1002/cne.902370402
https://www.jneurosci.org/content/29/15/4756
https://www.jneurosci.org/content/29/15/4756
https://doi.org/10.1002/cne.902300204
https://doi.org/10.1002/cne.902130303
https://doi.org/10.1002/cne.902130303
https://doi.org/10.1159/000006591
https://doi.org/10.1159/000006591
https://doi.org/10.1159/000006590
https://doi.org/10.1159/000069750
https://doi.org/10.1159/000069750
https://doi.org/10.1159/000077538
https://doi.org/10.1159/000077538
https://doi.org/10.1111/j.1749-4877.2008.00141.x
https://doi.org/10.1111/j.1749-4877.2008.00141.x
https://doi.org/10.1016/s0361-9230(01)00560-3
https://doi.org/10.1016/s0361-9230(01)00560-3
https://doi.org/10.1126/science.aar4237
https://doi.org/10.1126/science.aar4237
https://doi.org/10.1016/j.conb.2021.08.007
https://doi.org/10.1016/j.conb.2021.08.007
https://doi.org/10.1159/000537746

	Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist?
	Introduction
	What Is the “General Pallium” or “Dorsal Pallium”?
	Neocortex-Like Connectivity in the Avian Pallium
	The “Dorsal” Topological Feature Is Not an Important Factor for Evolving Neocortex-Like Functions
	Is the Limbic System Really Conserved?
	How Many Pallial Subdivisions Are There in a “Vertebrate Morphotype”?
	Teleost Data Further Disprove the Current Dogma of the Pallial Subdivisions
	Current Hypotheses of Pallial Homology in Teleosts
	Assumptions Constituting the Current Hypotheses of Pallial Homology between Amniotes and Teleosts Have Fallen Apart
	Questionable Dogma of the “Conserved Amygdala”
	New Eversion Theory Suggests a Shared Developmental Origin of the Hippocampal-Like and Olfactory Areas in the Teleost Pallium
	Convergent Evolution of Tectofugal Visual Pathways

	Conclusion
	Acknowledgments
	Conflict of Interest Statement
	Funding Sources
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


