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GLOBAL BOUNDEDNESS INDUCED BY ASYMPTOTICALLY

NON-DEGENERATE MOTILITY IN A FULLY PARABOLIC CHEMOTAXIS

MODEL WITH LOCAL SENSING

JIE JIANG AND PHILIPPE LAURENÇOT

Abstract. A fully parabolic chemotaxis model of Keller–Segel type with local sensing is consid-
ered. The system features a signal-dependent asymptotically non-degenerate motility function, which
accounts for a repulsion-dominated chemotaxis. Global boundedness of classical solutions is proved
for an initial Neumann boundary value problem of the system in any space dimension. In addition,
stabilization towards the homogeneous steady state is shown, provided that the motility is monotone
non-decreasing. The key steps of the proof consist of the introduction of several auxiliary functions
and a refined comparison argument, along with uniform-in-time estimates for a functional involving
nonlinear coupling between the unknowns and auxiliary functions.

1. Introduction

Let Ω be a smooth bounded domain of RN , N ≥ 1, and consider the following initial-boundary
value problem

∂tu = ∆
(

uγ(v)
)

, (t, x) ∈ (0, Tmax) × Ω, (1.1a)

τ∂tv = ∆v − v + u, (t, x) ∈ (0, Tmax) × Ω, (1.1b)

∇
(

uγ(v)
)

· n = ∇v · n = 0, (t, x) ∈ (0, Tmax) × ∂Ω, (1.1c)

(u, v)(0) = (uin, vin), x ∈ Ω, (1.1d)

where n denotes the outward unit normal vector field to ∂Ω.
System (1.1) was originally proposed by Keller and Segel in their seminal work [20] to model the

chemotaxis phenomenon induced by a local sensing mechanism. In some recent bio-physics work [9],
its non-homogeneous version with an additional logistic source in the first equation is applied to model
formation of stripe patterns. In (1.1), u and v denote the density of cells and the concentration of
chemical signal, respectively. The motility γ(v) explicitly depends on v with a motility function γ,
and its monotonicity accounts for the influence of chemical stimuli on cellular movement. Indeed,
through a direct expansion ∆(uγ(v)) = div(γ(v)∇u + uγ′(v)∇v), it is easily seen that cells are
attracted when γ′ < 0, while they are repelled when γ′ > 0.
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Recent progress on the theoretical analysis on (1.1) has uncovered certain interesting relation
between its dynamics and the properties of γ. Roughly speaking, in the monotone non-increasing
case, a classical solution always exists globally in any space dimension N ≥ 1, whatever the value
of τ ≥ 0 [15, 16], while its boundedness is closely related to N and the decay rate of γ at infinity
[12, 14, 16, 18]. For the specific choice of motility function γ(s) = e−s, unbounded solutions are
constructed in any space dimension N ≥ 2 [11,13,15,19], which well captures a concentration trend
of the population due to the chemoattraction effect.

On the contrary, a monotone non-decreasing motility seems to stabilize the dynamics. In [17], we
analyze the dynamics of (1.1) with τ = 0 and γ being asymptotically unbounded, corresponding to
a chemorepulsion dominated situation. It is proved in that case that classical solutions exist globally
and are always uniformly-in-time bounded. Moreover, if γ is monotone non-decreasing, then explicit
upper bounds for both u and v are derived, and their stabilization towards a homogeneous steady
state is shown as well. In contrast, when τ > 0, neither global existence, nor boundedness of classical
solutions, have been thoroughly investigated and the situation is yet unclear. As far as we know,
the only contribution in that direction deals with bounded positive motility functions, for which the
existence and uniqueness of a uniformly-in-time bounded global classical solution are established in
arbitrary space dimension in [21].

In the present contribution, it is our aim to verify the same boundedness-enforcing effect of an
asymptotically non-degenerate motility function in (1.1) when τ > 0, which in particular allows for
unbounded motility function. The current work, together with our previous one [17], then implies
that, when chemorepulsion dominates in the Keller–Segel model with local sensing, classical solutions
always exist globally and stay bounded.

Throughout this paper, we assume that

γ ∈ C3((0,∞)), γ > 0 on (0,∞), (1.2)

and moreover, that γ is asymptotically non-degenerate, or in other words, it is asymptotically
bounded from below in the sense that

γ∞ := lim inf
s→∞

γ(s) > 1/τ. (1.3)

For the initial conditions, we assume that
(

uin, vin
)

∈ W 1,N+1(Ω;R2) , uin 6≡ 0 ,

uin ≥ 0 , vin > 0 in Ω̄ .
(1.4)

Our first main result states that the initial-boundary value problem (1.1) has a unique global
bounded classical solution provided γ is asymptotically bounded from below by 1/τ .

Theorem 1.1. Assume that γ satisfies (1.2) and (1.3). For any given initial conditions (uin, vin)
satisfying (1.4), the initial-boundary value problem (1.1) has a unique global non-negative classical
solution (u, v) ∈ C([0,∞) × Ω̄;R2) ∩ C1,2((0,∞) × Ω̄;R2), which satisfies the conservation of mass

‖u(t)‖1 = m|Ω| , ‖uin‖1, t ≥ 0, (1.5)
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and is uniformly-in-time bounded in the sense that

sup
t≥0

{‖u(t)‖∞ + ‖v(t)‖∞} < ∞.

In the particular case where the motility function γ is non-decreasing, which corresponds to a fully
chemorepulsive behavior, we may relax the asymptotic lower bound (1.3) and prove that bounded
classical solutions exist globally and converge to the homogeneous steady state as time increases to
infinity.

Theorem 1.2. Assume that (1.2) and that γ′ ≥ 0. For any given initial conditions (uin, vin) sat-
isfies (1.4) with m = ‖uin‖1/|Ω|, the initial-boundary value problem (1.1) has a unique global non-
negative classical solution (u, v) ∈ C([0,∞)×Ω̄;R2)∩C1,2((0,∞)×Ω̄;R2), which is uniformly-in-time
bounded and moreover,

lim
t→∞

(‖u(t) −m‖∞ + ‖v(t) −m‖W 1,∞) = 0.

Remark 1.3. Let us emphasize that Theorem 1.2 provides the global existence of classical solutions
to the chemorepulsion model with local sensing in arbitrary space dimension, a feature with contrasts
markedly with the current knowledge on the classical Keller-Segel chemorepulsion model, for which
such a result is only available in space dimensions N ∈ {1, 2} [8].

In view of the signal-dependent feature of γ, a positive lower bound, along with an upper one,
for the signal concentration plays a crucial role in the analysis. While the former can be obtained
by a well-established result due to [10, Lemma 2.6] and the conservation of mass (1.5), the main
obstacle lies in deriving the latter upper bound estimate for v. In a series of recent research [11,
13,21], a comparison argument is developed to achieve this goal. However, the essential assumption
lim sup

s→∞
γ(s) < 1/τ is needed therein, which obviously excludes unbounded motility functions. In our

recent work [17], the difficulty stemming from the unboundedness of motility functions is overcome
by the development of new comparison techniques, taking advantage of the delicate duality structure
of the system (1.1) when τ = 0, but the technique developed in [17] does not seem to extend to
positive values of τ .

In the present work, we achieve a fundamental refinement of the key idea in [13], allowing us to
cope with unbounded motility function in (1.1). Specifically, besides the introduction of the auxiliary
function w satisfying an elliptic problem as done in [13], we construct a new auxiliary function Ψ,
which is the solution of a heat equation with the external source term uγ(v). Making use of the
nice duality structure, we are able to establish an important identity, unveiling the intrinsic relation
between the original unknowns (u, v) and the auxiliary functions (w,Ψ), see Lemma 3.2. A suitable
application of parabolic comparison principles then shows a pointwise upper control of v by Ψ, see
Lemma 4.1 and Lemma 4.4. Next, an iteration argument based on elliptic regularity, along with the
above mentioned identity, surprisingly gives rise to an upper control of v by an L1-estimate on Ψ, see
Lemma 4.6. The final step is the derivation of a uniform-in-time L1-estimate for Ψ by constructing
energy estimates for a functional involving a nonlinear coupling term between the unknowns and
auxiliary functions, using again the above mentioned identity.
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The paper is organized as follows. In section 2, the local well-posedness of (1.1) is established
in the framework of classical solutions, along with some useful lemmas. In section 3, we introduce
the auxiliary functions and establish two key identities that play important roles in the proofs.
In section 4, we derive a pointwise control on v by L1-bounds for the new auxiliary function via
comparison and iteration. We first consider the simpler case γ′ ≥ 0, and then generalize the result
to non-monotone motility functions. In section 5, we establish uniform-in-time L1-estimates of the
auxiliary function by energy methods. We prove Theorem 1.1 and Theorem 1.2 in the last section.

2. Preliminaries

In this section, we recall some useful results. We begin with the local well-posedness in a suitable
functional setting, which mainly follows from the theory developed by Amann in [3–6] and the
comparison principle, along with positivity properties of the heat equation. A proof can be found
in [18, Proposition 2.1].

Proposition 2.1. Suppose that γ and (uin, vin) satisfy (1.2) and (1.4), respectively. Then there
exists Tmax ∈ (0,∞] such that problem (1.1) has a unique non-negative classical solution

(u, v) ∈ C([0, Tmax) × Ω̄;R2) ∩ C1,2((0, Tmax) × Ω̄;R2),

which satisfies the mass conservation
∫

Ω
u(t, x) dx = m|Ω| =

∫

Ω
uin(x) dx > 0 for all t ∈ (0, Tmax) . (2.1)

Moreover, there holds

‖v(t)‖1 = ‖vin‖1e
−t/τ + ‖uin‖1(1 − e−t/τ ) ≤ max{‖uin‖1, ‖v

in‖1} for all t ∈ (0, Tmax), (2.2)

and there is v∗ > 0 depending only on Ω, vin, and ‖uin‖1 such that

v(t, x) ≥ v∗ , (t, x) ∈ [0, Tmax) × Ω̄ . (2.3)

Finally, if Tmax < ∞, then

lim sup
tրTmax

‖u(t)‖∞ = ∞.

We next show that an L∞-estimate for v on (0, T ) for some T > 0 guarantees that Tmax ≥ T .

Proposition 2.2. Under the assumption of Proposition 2.1, if there is T > 0 such that

V(T ) , sup
[0,T ]∩[0,Tmax)

{

‖v(t)‖∞

}

< ∞ , (2.4)

then Tmax ≥ T and

U(T ) , sup
[0,T ]

{

‖u(t)‖∞

}

< ∞ .

In addition, if (2.4) holds true for all T > 0 and there is V∞ > 0 such that V(T ) ≤ V∞ for all T > 0,
then there is U∞ > 0 such that U(T ) ≤ U∞ for all T > 0.
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Proof. The proof relies on a well-established argument already described in [18], see also [14, 15],
and we refer the interested reader to [21, Section 1] for an outline of the key steps of the proof. As
mentioned in [21], no monotonicity property of γ is needed, provided there are positive upper and
lower bounds on γ(v). �

Next, we let (·)+ = max{·, 0} and recall the following result, see [2, (9.2) Proposition], [7,
Lemme 3.17], or [1, Lemma 2.2].

Lemma 2.3. Let f ∈ L1(Ω). For any 1 ≤ q < N
(N−2)+

, there exists a positive constant C(q) depending

only on Ω and q such that the solution z ∈ W 1,1(Ω) to

−∆z + z = f, x ∈ Ω , ∇z · n = 0 , x ∈ ∂Ω ,

satisfies ‖z‖q ≤ C(q)‖f‖1.

3. Auxiliary functions

In this section, we aim to improve the approach proposed in [13] and later developed in [14,18,21].
The main novelty is to introduce several auxiliary functions in connection with the original unknown
functions u and v via linear parabolic/elliptic equations involving (u, v)-dependent non-homogeneous
terms.

3.1. Auxiliary problems. To begin with, we recall the definition of the first auxiliary function
already introduced in [13]. Let A be the Laplace operator on L2(Ω) supplemented with homogeneous
Neumann boundary conditions; that is,

dom(A) , {z ∈ H2(Ω) : ∇z · n = 0 on ∂Ω} , Az , −∆z + z , z ∈ dom(A) .

It is well-known that A generates an analytic semi-group
(

e−tA
)

t≥0
on Lp(Ω) and is invertible on

Lp(Ω) for all p ∈ (1,∞). We then set

w(t) , A−1[u(t)] , t ∈ [0, Tmax) .

In other words, w satisfies the following Helmholtz problem:

A[w] = −∆w + w = u, (t, x) ∈ (0, Tmax) × Ω,

∇w · n = 0, (t, x) ∈ (0, Tmax) × ∂Ω.

Note that w(t, x) ≥ 0 on [0, Tmax) × Ω, due to the non-negativity of u and the elliptic comparison
principle. Thanks to the time continuity of u,

win , w(0) = A−1[uin] ,

and it follows from the regularity assumption (1.4) on the initial conditions that win belongs to
W 3,N+1(Ω), and in particular to C2(Ω̄).
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Next, we define the linear parabolic operator L := τ∂t + A, and introduce the second auxiliary
function Ψ as the unique solution to

L[Ψ] = τ∂tΨ − ∆Ψ + Ψ = uγ(v), (t, x) ∈ (0, Tmax) × Ω,

∇Ψ · n = 0, (t, x) ∈ (0, Tmax) × ∂Ω,

Ψ(0) = 0, x ∈ Ω.

(3.1)

According to the parabolic comparison principle, we infer from the non-negativity of uγ(v) that
Ψ(t, x) ≥ 0 for (t, x) ∈ (0, Tmax) × Ω. For further use, we set ψ , A−1[Ψ] ≥ 0 and readily deduce
from (3.1) that ψ satisfies

L[ψ] = τ∂tψ − ∆ψ + ψ = A−1[uγ(v)], (t, x) ∈ (0, Tmax) × Ω,

∇ψ · n = 0, (t, x) ∈ (0, Tmax) × ∂Ω,

ψ(0) = 0, x ∈ Ω.

(3.2)

Lastly, set ηin , win − vin and let η be the solution to the following heat equation:

L[η] = τ∂tη − ∆η + η = 0, (t, x) ∈ (0,∞) × Ω,

∇η · n = 0, (t, x) ∈ (0,∞) × ∂Ω,

η(0) = ηin, x ∈ Ω;

(3.3)

that is, η(t, x) = e−tA/τ [ηin](x) for (t, x) ∈ (0,∞) × Ω. Since both uin and vin are bounded due
to (1.4) and the continuous embedding of W 1,N+1(Ω) in L∞(Ω) and since ‖A−1[uin]‖∞ ≤ ‖uin‖∞ by
the elliptic comparison principle, the parabolic comparison principle applied to (3.3) readily implies
the boundedness of η with

sup
t≥0

‖η(t)‖∞ ≤ ‖ηin‖∞ = ‖A−1[uin] − vin‖∞ ≤ max{‖uin‖∞, ‖v
in‖∞}. (3.4)

3.2. Two key identities. In terms of the auxiliary functions, we find two useful key identities
that play fundamental roles in the forthcoming analysis. The first one stated below is uncovered
in [13, Lemma 5] (see also [11, Lemma 3.1]) and can be obtained by taking A−1 on both sides
of (1.1a) and using the definition of w.

Lemma 3.1. For all (t, x) ∈ [0, T
max

) × Ω, there holds

∂tw + uγ(v) = A−1[uγ(v)] . (3.5)

Building upon (3.5) and the definition of the auxiliary functions (Ψ, ψ, η), we are now ready to
derive the other key identity.

Lemma 3.2. For all (t, x) ∈ [0, T
max

) × Ω, there holds

w + τΨ = v + τψ + η . (3.6)
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Proof. Multiplying the key identity (3.5) by τ and adding u = A[w] to both sides of the resulting
identity, we obtain that

τ∂tw + A[w] + τuγ(v) = τA−1[uγ(v)] + u.

Since u = L[v] by (1.1b), it readily follows from the definitions (3.1) and (3.2) of Ψ and ψ that the
above identity can be rewritten as

L[w + τΨ] = L[v + τψ].

Since L[η] = 0 and ηin = win − vin by (3.3), one easily verifies that

L[w + τΨ − v − τψ − η] = 0, (t, x) ∈ (0, Tmax) × Ω,

∇(w + τΨ − v − τψ − η) · n = 0, (t, x) ∈ (0, Tmax) × ∂Ω,

(w + τΨ − v − τψ − η)(0) = 0, x ∈ Ω.

Then identity (3.6) follows from the uniqueness of classical solutions to heat equations. This com-
pletes the proof. �

We conclude this section with a straightforward consequence of (3.6) and the boundedness (3.4)
of η.

Corollary 3.3. For all (t, x) ∈ [0, T
max

) × Ω̄,

v + τψ ≤ w + τΨ + max{‖uin‖∞, ‖v
in‖∞}, (3.7a)

and

w + τΨ ≤ v + τψ + max{‖uin‖∞, ‖v
in‖∞}. (3.7b)

4. Intertwined estimates on (v, w,Ψ, ψ) via comparison arguments

Complementing additional assumptions on γ, we derive a direct upper control of v by the auxiliary
function Ψ via comparison techniques.

4.1. Monotone non-decreasing motility functions. We begin with the simple case γ′ ≥ 0. We
first remark that, if γ has a generic upper bound on (0,∞), then the monotonicity of γ and (2.3)
entail that γ(v) is also bounded from below by a positive constant γ(v∗) on [0, Tmax) × Ω. We may
thus directly apply [21, Theorem 1.2] to get global existence and uniform-in-time boundedness of v
and u. We are then left with the case where γ is non-decreasing on (0,∞) and is unbounded, i.e.,

lim
s→∞

γ(s) = ∞. (4.1)

Lemma 4.1. Assume that γ satisfies (1.2), γ′ ≥ 0 on (0,∞) and (4.1). For any ε > 0, there is
Cε > 0 depending on ε, γ and the initial data such that

v(t, x) ≤ εΨ(t, x) + Cε in [0, Tmax) × Ω (4.2)

and

w(t, x) + (τ − ε)Ψ(t, x) ≤ τψ(t, x) + Cε in [0, Tmax) × Ω. (4.3)
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Before proceeding with the proof of Lemma 4.1, let us gather in the next lemma some useful
properties of the indefinite integral

Γ(s) ,
∫ s

v∗

γ(σ) dσ, s ≥ v∗.

of γ when γ is monotone non-decreasing and unbounded.

Lemma 4.2. Consider γ satisfying (1.2) and γ′ ≥ 0 on (0,∞). Then

0 ≤ Γ(s) ≤ sγ(s), s ≥ v∗. (4.4)

Assume further that γ satisfies (4.1). Then, for any ε > 0, there is sε > v∗ depending only on γ such
that

s ≤ εΓ(s) + sε, s ≥ v∗. (4.5)

Proof. First, since γ is non-decreasing and positive, there holds

0 ≤ Γ(s) ≤ γ(s)(s− v∗) ≤ sγ(s), s ≥ v∗.

Next, let ε > 0. Owing to (4.1), there is sε > v∗ such that γ(s) ≥ 1/ε for all s ≥ sε. Then, either
s ∈ [v∗, sε] and (4.5) is obviously true due to the non-negativity of Γ. Or s > sε and the monotonicity
and positivity of γ imply that

Γ(s) =
∫ s

v∗

γ(σ) dσ =
∫ s

sε

γ(σ) dσ +
∫ sε

v∗

γ(σ) dσ ≥ (s− sε)/ε,

from which (4.5) readily follows. �

Proof of Lemma 4.1. It follows from (1.1b), (4.4) and γ′ ≥ 0 that, for (t, x) ∈ (0, Tmax) × Ω,

uγ(v) = γ(v)(τ∂tv − ∆v + v) = L[Γ(v)] + γ′(v)|∇v|2 + vγ(v) − Γ(v) ≥ L[Γ(v)].

Thus,

L[Ψ + e−tA/τ [Γ(vin)]] ≥ L[Γ(v)] in (0, Tmax) × Ω,

since L[Ψ] = uγ(v), and L[e−tA/τ [Γ(vin)]] = 0. Furthermore,

∇(Ψ + e−tA/τ [Γ(vin)]) · n = ∇Γ(v) · n = 0 on (0, Tmax) × ∂Ω

and
(

Ψ + e−tA/τ [Γ(vin)]
)

(0) = Γ(vin). Consequently, we deduce from the parabolic comparison

principle that

Γ(v)(t, x) ≤ Ψ(t, x) + e−tA/τ [Γ(vin)] ≤ Ψ(t, x) + ‖Γ(vin)‖∞ in [0, Tmax) × Ω. (4.6)

Consider now ε > 0. Combining (4.5) and (4.6) entails that

v(t, x) ≤ εΨ(t, x) + sε + ε‖Γ(vin)‖∞ in [0, Tmax) × Ω.

Finally, (4.3) follows from (3.7b) and (4.2), and the proof is complete. �
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Remark 4.3. If we only assume that γ satisfies (1.2) and γ′ ≥ 0 on (0,∞), but not (4.1), then we
still obtain the following upper bound on v in terms of Ψ:

v(t, x) ≤
(

Ψ(t, x) + ‖Γ(vin)‖∞

)

/γ(v∗) + v∗ in [0, Tmax) × Ω,

as a consequence of the estimate

Γ(s) =
∫ s

v∗

γ(σ) dσ ≥ γ(v∗)(s− v∗).

The above upper bound on v is weaker than (4.2) and does not allow us to perform the next step of
the proof provided in Lemma 4.5 below.

4.2. Asymptotically non-degenerate motility functions. We now consider the generic case
where γ is not necessarily monotone non-decreasing, i.e., γ′ may change sign. Recall that we have
the following asymptotically non-degenerate assumption:

γ∞ = lim inf
s→∞

γ(s) > 1/τ. (1.3)

Lemma 4.4. Suppose that γ satisfies (1.2) and (1.3). Then, for any ε ∈ (0, 1), there is Cε > 0
depending on ε, γ and the initial data such that

v ≤
τΨ

ε(τγ∞ − 1) + 1
+ Cε in (0, Tmax) × Ω (4.7a)

and

w +
ε(τγ∞ − 1)τ

ε(τγ∞ − 1) + 1
Ψ ≤ τψ + Cε in (0, Tmax) × Ω. (4.7b)

In addition, if γ∞ = ∞; that is,
lim

s→∞
γ(s) = ∞,

then, for any ε > 0, there exists Cε > 0 depending on ε, τ , γ and the initial data such that

v ≤ εΨ + Cε in (0, Tmax) × Ω, (4.8a)

and
w + (τ − ε)Ψ ≤ τψ + Cε in (0, Tmax) × Ω. (4.8b)

Proof. Let ε > 0 and j ≥ 1. Owing to the assumption (1.3), there is sj,ε > v∗ such that

γ(s) ≥ αj,ε , εmin{j, γ∞} + (1 − ε)
1

τ
, for all s ≥ sj,ε.

Moreover, by the continuity and positivity of γ on (0,∞), we have βj,ε , minv∗≤s≤sj,ε
γ(s) ∈ (0,∞).

Therefore, we can construct a non-decreasing positive C1-function γj,l such that

γj,l = min{αj,ε/2, βj,ε} on [v∗, sj,ε] and γj,l = αj,ε on [sj,ε + 1,∞).

Notice that γj,l ≤ γ on [v∗,∞). We then argue as in the proof of Lemma 4.1 to deduce that

uγ(v) ≥ uγj,l(v) = (τ∂tv − ∆v + v)γj,l(v) ≥ τ∂tΓj,l(v) − ∆Γj,l(v) + Γj,l(v)
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in (0, Tmax) × Ω, where

Γj,l(s) :=
∫ s

v∗

γj,l(σ) dσ ≤ Γ(s), s ≥ v∗,

and, subsequently, that

Γj,l(v)(t, x) ≤ Ψ(t, x) + ‖Γj,l(v
in)‖∞ ≤ Ψ(t, x) + ‖Γ(vin)‖∞ in (0, Tmax) × Ω,

by the parabolic comparison principle. Now, we notice that, for s ≥ sj,ε + 1, the positivity of γj,l

ensures that

Γj,l(s) ≥
∫ s

sj,ε+1
γj,l(σ) dσ = αj,ε(s− sj,ε − 1).

It then follows that, for (t, x) ∈ [0, Tmax) × Ω,

αj,ε(v(t, x) − sj,ε − 1)+ ≤ Γj,l(v)(t, x) ≤ Ψ(t, x) + ‖Γ(vin)‖∞,

whence

v(t, x) ≤
τΨ(t, x)

ε
(

τ min{j, γ∞} − 1
)

+ 1
+

τ‖Γ(vin)‖∞

ε
(

τ min{j, γ∞} − 1
)

+ 1
+ sj,ε + 1. (4.9)

At this point, either γ∞ < ∞ and we fix any j ≥ γ∞ in (4.9) to obtain (4.7a), from which (4.7b)
follows thanks to (3.7b). Or γ∞ = ∞ and we pick jε large enough satisfying τ − ε ≤ ε2(τjε − 1) and
apply (4.9) with j = jε to obtain

v(t, x) ≤ εΨ(t, x) +
τ‖Γ(vin)‖∞

ε
(

τjε − 1
)

+ 1
+ sjε,ε + 1, in (0, Tmax) × Ω.

We have shown (4.8a) and we complete the proof by deducing (4.8b) from (3.7b) as above. �

Lemma 4.5. Under the assumptions of, either Lemma 4.1, or Lemma 4.4, there is a positive constant
C > 0 depending on τ , γ and the initial data such that

‖Ψ(t)‖∞ ≤ C‖Ψ(t)‖1 + C, t ∈ [0, Tmax).

Proof. Due to the non-negativity of w, one deduces from either (4.3) (with ε = τ/2) in Lemma 4.1,
or (4.7b) (with ε = 1/2) in Lemma 4.4 that there is C > 0 depending on τ , γ and the initial data
such that

Ψ(t, x) ≤ Cψ(t, x) + C = CA−1[Ψ](t, x) + C, (t, x) ∈ [0, Tmax) × Ω.

Consequently, by the elliptic comparison principle, for each k ∈ N ∪ {0},

A−k[Ψ](t, x) ≤ CA−k−1[Ψ](t, x) + C, (t, x) ∈ [0, Tmax) × Ω. (4.10)

Iterating (4.10), we are led to

Ψ(t, x) ≤ CkA−k[Ψ](t, x) +
Ck+1 − 1

C − 1
, (t, x) ∈ [0, Tmax) × Ω. (4.11)

Next, we claim that there is a finite integer k0 > 0 such that A−k0[Ψ] ≤ C‖Ψ‖1. Indeed, we
infer from Lemma 2.3 that ‖A−1[Ψ]‖p1 ≤ C(p1)‖Ψ‖1 for any p1 ∈ (1, N/(N − 2)+). Then classical
regularity theory of elliptic equations indicates that ‖A−k[Ψ]‖W 2(k−1),p1 ≤ C(k, p1)‖A−1[Ψ]‖p1 for any
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integer k ≥ 1. Now, choosing k = k0 , (N+2)/2 and noting that W 2(k0−1),p1(Ω) embeds continuously
in L∞(Ω), we end up with

‖A−k0[Ψ]‖∞ ≤ C(k0)‖Ψ‖1.

Combining the above inequality with (4.11) (with k = k0) completes the proof. �

According to Lemma 4.1, Lemma 4.4 and Lemma 4.5, we finally arrive at the main result of this
section.

Proposition 4.6. Under the assumptions of Lemma 4.5, there is a positive constant C0 > 0 depend-
ing on τ , γ and the initial data such that

‖v(t)‖∞ ≤ C0‖Ψ(t)‖1 + C0, t ∈ [0, Tmax).

In addition, if γ∞ = ∞, then for any ε > 0, there is Cε > 0 depending on ε, τ , γ and the initial data
such that

‖v(t)‖∞ ≤ ε‖Ψ(t)‖1 + Cε, t ∈ [0, Tmax).

Proof. The first statement readily follows from (4.7a) and Lemma 4.5, while the second one is an
immediate consequence of (4.2), (4.8a) and Lemma 4.5. �

5. Uniform-in-time L1-bounds for Ψ

According to Proposition 4.6, in order to prove the uniform boundedness of v, it suffices to derive
a uniform L1-bound for Ψ, which is achieved by the following delicate energy estimates.

5.1. Monotone non-decreasing motility functions. First, we consider the case γ′ ≥ 0, a feature
which allows us to construct a Lyapunov functional. Before stating our result, let us recall that,
given z ∈ L2(Ω) with

〈z〉 ,
1

|Ω|

∫

Ω
z(x)dx = 0,

there is a unique solution K[z] ∈ H2(Ω) to

−∆K[z] = z in Ω, ∇K[z] · n = 0 on ∂Ω, (5.1a)

satisfying

〈K[z]〉 = 0. (5.1b)

Lemma 5.1. Recall that m = ‖uin‖1/|Ω| = 〈uin〉, see (2.1), and set

I(u, v) ,
1

2
‖∇K[u−m]‖2

2 +mτ‖Γ(v)‖1 −mγ(m)τ‖v‖1.

Then there holds
d

dt
I(u(t), v(t)) + D(u(t), v(t)) = 0, t ∈ [0, Tmax), (5.2)
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with

D(u, v) , m
∫

Ω
γ′(v)|∇v|2 dx+

∫

Ω
γ(v)(u−m)2 dx

+m
∫

Ω
(v −m)(γ(v) − γ(m)) dx ≥ 0.

Proof. First, the non-negativity of D follows from the monotonicity of γ. By (1.1a) and (5.1), a
direct computation yields that

1

2

d

dt
‖∇K[u−m]‖2

2 =
∫

Ω
uγ(v)(m− u) dx

= −
∫

Ω
γ(v)(u−m)2 dx−m

∫

Ω
γ(v)(u−m) dx,

while, using (1.1b),

mτ
d

dt

∫

Ω
Γ(v) dx = m

∫

Ω
τγ(v)∂tv dx

= m
∫

Ω
γ(v)(u− v + ∆v) dx

= m
∫

Ω
γ(v)(u−m) dx−m

∫

Ω
γ′(v)|∇v|2 dx−m

∫

Ω
γ(v)(v −m) dx

= m
∫

Ω
γ(v)(u−m) dx−m

∫

Ω
γ′(v)|∇v|2 dx−m

∫

Ω

(

γ(v) − γ(m)
)

(v −m) dx

−mγ(m)
∫

Ω
(v −m) dx.

Also, by integration of (1.1b) over Ω, together with (2.1),

τ
d

dt

∫

Ω
v dx = −

∫

Ω
(v − u) dx = −

∫

Ω
(v −m) dx.

Collecting the above identities gives (5.2) and completes the proof. �

Thanks to the positivity of γ and the non-negativity of γ′, the three terms involved in D(u, v) are
non-negative, while the control (2.2) on ‖v‖1 guarantees that I(u, v) is bounded from below. Hence,
there is a positive constant C1 depending only on γ and the initial data such that

−C1 ≤ I(u(t), v(t)) ≤ I(uin, vin), t ∈ [0, Tmax),
∫ Tmax

0
D(u(s), v(s)) ds ≤ I(uin, vin) + C1.

(5.3)

Lemma 5.2. There holds

m‖γ(v(t))‖1 ≤
∫

Ω
(γ(v(t)) − γ(m))(v(t) −m)dx+m|Ω|γ(2m), t ∈ [0, Tmax).
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Proof. Owing to the monotonicity of γ,
∫

Ω
(γ(v) − γ(m))(v −m) dx

≥
∫

Ω
1[2m,∞)(v)(γ(v) − γ(m))(v −m) dx

≥ m
∫

Ω
1[2m,∞)(v)(γ(v) − γ(m)) dx

= m‖γ(v)‖1 −m
∫

Ω
1(0,2m)(v)γ(v) dx−mγ(m)

∫

Ω
1[2m,∞)(v) dx

≥ m‖γ(v)‖1 −mγ(2m)
∫

Ω
1(0,2m)(v) dx−mγ(2m)

∫

Ω
1[2m,∞)(v) dx

≥ m‖γ(v)‖1 −mγ(2m)|Ω|.

This completes the proof. �

Now we are ready to derive a uniform bound for ‖Ψ‖1.

Lemma 5.3. Assume (1.2) and that γ′ ≥ 0. There is C > 0 depending on γ, τ and the initial data
such that

sup
0≤t<Tmax

‖Ψ(t)‖1 ≤ C.

Proof. First, an integration of (3.1) yields that

τ
d

dt
‖Ψ‖1 + ‖Ψ‖1 =

∫

Ω
uγ(v) dx. (5.4)

It then follows from (5.4), Lemma 5.2, and Young’s inequality that

τ
d

dt
‖Ψ‖1 + ‖Ψ‖1 =

∫

Ω
(u−m)γ(v) dx+m‖γ(v)‖1

≤
1

4

∫

Ω
(u−m)2γ(v) dx+ (m+ 1)‖γ(v)‖1

≤
∫

Ω
(u−m)2γ(v) dx+

m+ 1

m

∫

Ω
(γ(v) − γ(m))(v −m) dx

+ (m+ 1)γ(2m)|Ω|

≤
(

1 +
m+ 1

m2

)

D(u, v) + (m+ 1)γ(2m)|Ω|.

Hence,

d

dt

(

et/τ ‖Ψ(t)‖1

)

≤
C2

τ
et/τ (1 + D(u(t), v(t))), t ∈ [0, Tmax).
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Integrating the above differential inequality with respect to time and using (5.3) give, for t ∈ [0, Tmax)

‖Ψ(t)‖1 ≤ C2(1 − e−t/τ ) +
C2

τ

∫ t

0
e(s−t)/τ D(u(s), v(s)) ds

≤ C2 +
C2

τ

∫ Tmax

0
D(u(s), v(s)) ds

≤ C2 +
C2

τ
(C1 + I(uin, vin)).

This completes the proof. �

5.2. Asymptotically non-degenerate motility functions. We now turn to generic motility func-
tions γ satisfying (1.2) and (1.3), but not necessarily monotone. In this case, the key step is to
establish an estimate for a functional involving a nonlinear coupling term of the unknowns and the
auxiliary functions.

Lemma 5.4. There is K > 0 depending only on τ , γ and the initial data such that

‖Ψ(t)‖1 ≤ K, t ∈ [0, Tmax).

Proof. Since τγ∞ > 1 by (1.3) and Ψ is non-negative, it readily follows from (4.7b) (with ε = 1/2)
that there is K0 > 0 such that

τψ − w ≥ −K0 in (0, Tmax) × Ω. (5.5)

We next recall that the following identities

∂tw + uγ(v) = A−1[uγ(v)] = L[ψ] = τ∂tψ + Ψ in (0, Tmax) × Ω, (5.6)

which follow from (3.1), (3.5), and the definition of ψ. On the one hand, we infer from (1.1a), (3.6),
and (5.6) that

d

dt

∫

Ω
u(τψ − w +K0) dx =

∫

Ω
(τψ − w +K0)∆(uγ(v)) dx+

∫

Ω
u(τ∂tψ − ∂tw) dx

=
∫

Ω
uγ(v)∆(τψ − w) dx+

∫

Ω
u(uγ(v) − Ψ) dx

= −
∫

Ω
uγ(v)A[τψ − w] dx+

∫

Ω
uγ(v)(τψ − w) dx

+
∫

Ω
u(uγ(v) − Ψ) dx

= −
∫

Ω
uγ(v)(τΨ − u+ w − τψ − u) dx−

∫

Ω
uΨ dx

= 2
∫

Ω
u2γ(v) dx−

∫

Ω
uγ(v)(v + η) dx−

∫

Ω
uΨ dx,

where we have also used the identity that A[τψ − w] = τΨ − u following from the definitions of the
auxiliary functions. On the other hand, it follows from (1.1a), (3.1), and the definition (5.1) of K
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that
d

dt
‖∇K[u−m]‖2

2 + 2
∫

Ω
u2γ(v) dx = 2m

∫

Ω
uγ(v) dx

and

τ
d

dt
‖Ψ‖1 + ‖Ψ‖1 =

∫

Ω
uγ(v) dx.

Combining the above differential equations and introducing

F := ‖∇K[u−m]‖2
2 +

1

2

∫

Ω
u(τψ − w +K0) dx+ τ‖Ψ‖1,

we note that F ≥ 0 by (5.5) and obtain

dF

dt
+

∫

Ω
u2γ(v) dx+

1

2

∫

Ω
uvγ(v) dx+

1

2

∫

Ω
uΨ dx+ ‖Ψ‖1

= (2m+ 1)
∫

Ω
uγ(v) dx−

1

2

∫

Ω
ηuγ(v) dx.

(5.7)

Owing to (3.4),

(2m+ 1)
∫

Ω
uγ(v) dx−

1

2

∫

Ω
ηuγ(v) dx ≤ (2m+ 1 + ‖η‖∞)

∫

Ω
uγ(v) dx

≤ K1

∫

Ω
uγ(v) dx,

where K1 := 2m + 1 + max{‖uin‖∞, ‖v
in‖∞}. Splitting the integral on the right hand side of the

above inequality gives

(2m+ 1)
∫

Ω
uγ(v) dx−

1

2

∫

Ω
ηuγ(v) dx ≤ K1

∫

Ω

[

1[v∗,2K1](v)uγ(v) + 1(2K1,∞)(v)uγ(v)
]

dx

≤ K1 sup
[v∗,2K1]

{γ}
∫

Ω
u dx+

1

2

∫

Ω
uvγ(v) dx

≤
1

2

∫

Ω
uvγ(v) dx+K2,

with K2 := mK1|Ω| sup[v∗,2K1]{γ}. Thus, (5.7) becomes

dF

dt
+

∫

Ω
u2γ(v) dx+

1

2

∫

Ω
uΨ dx+ ‖Ψ‖1 ≤ K2. (5.8)

We now note that the positivity of γ∞ and γ, along with the continuity of γ, entails that

γ∗ := inf
[v∗,∞)

{γ} > 0,

so that, by the Poincaré-Wirtinger inequality,
∫

Ω
u2γ(v) dx ≥ γ∗

∫

Ω
(u−m+m)2 dx ≥ γ∗

∫

Ω

[

(u−m)2

2
−m2

]

dx

=
γ∗

2
‖u−m‖2

2 − γ∗m
2|Ω| ≥ γ∗K3‖∇K[u−m]‖2

2 − γ∗m
2|Ω| (5.9)
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for some K3 > 0 depending only on Ω. Also, by (3.4) and (3.6),

τ
∫

Ω
uΨ dx =

∫

Ω
u(v + τψ − w + η) dx

≥
∫

Ω
u(τψ − w +K0) dx− (K0 + ‖η‖∞)

∫

Ω
u dx

≥
∫

Ω
u(τψ − w +K0) dx−K4, (5.10)

with K4 := m(K0 + max{‖uin‖∞, ‖v
in‖∞})|Ω|.

Collecting (5.9) and (5.10), we are led to the lower bound
∫

Ω
u2γ(v) dx+

1

2

∫

Ω
uΨ dx+ ‖Ψ‖1 ≥ K5F −K6,

for some positive constants K5 < 1 < K6 depending only on γ, τ and the initial data. Combining
the just derived lower bound with (5.8), we find

dF

dt
+K5F ≤ K7 := K2 +K6,

whence

τ‖Ψ(t)‖1 ≤ F(t) ≤ max
{

F(0),
K7

K5

}

, t ∈ [0, Tmax),

the lower bound being a consequence of (5.5). This completes the proof. �

6. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Under the assumption of Theorem 1.1, we have already shown the uniform-
in-time boundedness of v on [0, Tmax), according to Lemma 5.4 and Proposition 4.6, and the bound
does not depend on Tmax. Then the uniform-in-time boundedness of u on [0, Tmax) follows from
Proposition 2.2 and, since the bound does not depend on Tmax, it also excludes the finiteness of Tmax,
according to Proposition 2.1. This completes the proof. �

Proof of Theorem 1.2. Assume that γ′ ≥ 0. We first point out that, if γ ∈ L∞(v∗,∞), the positive
lower bound on γ(v) stemming from the positivity (1.2) of γ and (2.3) allows us to apply [21,
Theorem 1.2] to conclude the proof.

Otherwise, lim
s→∞

γ(s) = ∞. The proof of the global well-posedness and uniform-in-time bounded-

ness statements in Theorem 1.2 is then the same as that of Theorem 1.1, thanks to Lemma 5.3 and
Proposition 4.6.

The convergence to the homogeneous steady state can be verified in the same manner as done
in [18, Section 7.2], to which we refer. This completes the proof. �
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