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Pipe flows are commonly found in nature and industry as an effective mean of
transporting fluids. They are primarily characterized by their resistance law, which
relates the mean flow rate to the driving pressure gradient. Since Poiseuille and
Hagen, various flow regimes and fluid rheologies have been investigated, but the
behavior of shear-thickening suspensions, which jam above a critical shear stress,
remains poorly understood despite important applications (e.g., concrete or food
processing). In this study, we build on recent advances in the physics of shear-thickening
suspensions to address their flow through pipes and establish their resistance law. We
find that for discontinuously shear-thickening suspensions (large particule volume
fractions), the flow rate saturates at high driving stress. Local pressure and velocity
measurements reveal that this saturation stems from the emergence of a frictional
soliton: a unique, localized, superdissipative, and backpropagating flow structure
coexisting with the laminar frictionless flow phase observed at low driving stress. We
characterize the remarkably steep effective rheology of the frictional soliton and show
that it sets the resistance law at the whole pipe scale. These findings offer an unusual
perspective on low-Reynolds suspension flows through pipes, intriguingly reminiscent
of the transition to turbulence for simple fluids. They also provide a predictive law for
the transport of such suspensions in pipe systems, with implications for a wide range
of applications.

pipe flow | shear-thickening suspension | jamming | soliton | friction

In 1840, Poiseuille and Hagen (1–3) established experimentally the laminar resistance
law for a Newtonian liquid, Q ∝ −R4

∇P/�l , by which the volume flow rate Q increases
with pipe radius R and pressure gradient∇P, and decreases with liquid viscosity �l . Since
then, a vast literature initiated by Reynolds (4) has documented the limit of this laminar
regime, beyond which, inertial eddying flow structures (turbulent puffs and slugs) form
and the hydraulic resistance starts deviating from Poiseuille law (5–10). Investigations
have also concerned more complex materials (elasto-visco-plastic fluids or particulate
suspensions), for which the effective rheology or interphase flow may modulate Poiseuille
law (11–14) or alter the transition to turbulence (15–19). By contrast, the case of shear-
thickening suspensions has received much less attention (20), and it is still unclear
how these suspensions flow through pipes, even though they are frequently encountered
in industry, from high-performance concretes (21) to food (22), and in nature, from
diseased blood (23) to crystal-rich lava (24, 25).

The problem is rather general since most suspensions of small (∼5 to 50 μm)
nonaggregating particles actually show a steep shear-thickening behavior controlled by
the shear stress level. At sufficiently large particle volume fractions, these suspensions
flow under a mild stress, but discontinuously shear-thicken or jam, above a critical stress.
This peculiar rheology has been shown to stem from a change in the effective friction
coefficient between particles, as their mutual repulsive force is overcome (26–28). On
a macroscopic scale, it has also been shown to promote new flow instabilities (29–
34), complex transient flow structures (35–39), and nontrivial drag laws (40, 41), in a
few common flows (in Couette cells, down inclines, or past cylinders). These jamming
structures raise questions about how shear-thickening suspensions can actually flow in
highly confined wall-bounded configurations. In particular, it is currently not known
how they flow through a pipe, where bulk incompressibility imposes uniformity of the
flow rate along the pipe.

The present work tackles this question on experimental grounds. We use a gravitational
pipe drainage protocol offering a precise control on the key parameter of the flow:
the mean shear stress at the wall. Near-wall visualizations combined with local and
global hydraulic resistance measurements reveal the fascinating way by which the flow
proceeds: At high stress, the flow nucleates a solitary backpropagating flow phase, with a
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plug-like velocity profile. We characterize the flow bifurcation,
identify the frictional and superdissipative nature of the soliton,
and show how it sets the resistance law of the suspension along the
whole pipe. Last, we address the universality of the phenomenol-
ogy for discontinuously shear-thickening suspensions and discuss
the mechanism behind the superdissipation.

Results
Experimental Set-Up. To study the intrinsic pipe flow, without
pumping fluctuations or entrance effects, we use the con-
figuration sketched in Fig. 1A: the gravitational drainage of
a long inclined pipe, initially filled with a shear-thickening
suspension (seeM&M for details on setup, materials or protocol).
This configuration has two crucial advantages. i) It avoids
convergent/divergent flow sections (20), which could localize
stresses and trigger jamming (see experiments and discussion on
convergent inlet in SI Appendix, SI.2). ii) Gravity ensures a steady
and controllable average forcing of the flow. Indeed, since inertial
effects are small (Reynolds number ≲ 10 with slowly varying
flow), the force balance over the flow length L implies that the
mean shear stress at the wall 〈�w〉 ≡ 1

L
∫ L

0 �wdx = �gR sin �/2
is constant for the whole drainage and is simply set by the
suspension density �, gravity g, the inner pipe radius R and
the pipe inclination � (Fig. 1 A, Inset).
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Fig. 1. (A) Sketch of the gravity-driven setup allowing to control the mean
wall shear stress 〈�w 〉 through pipe inclination, measure global flow rate
and local bulk pressure, and visualize near-wall flow. (Inset) Force balance
on a slice of suspension. (B) Suspension rheology (70): shear stress versus
shear rate for aqueous suspensions of cornstarch grains (optical microscope
image) at various solid volume fractions � obtained with a cylindrical Couette
cell (sketch). Solid lines: fit to Wyart–Cates rheological model � = �S(�0 −
(�0 − �1)e−�∗/� − �)−2 ̇ setting the viscosity prefactor �S = 0.28 mPa s,
the frictionless and frictional jamming volume fractions �0 = 0.445 and
�1 = 0.385, respectively, and the short-range repulsive stress scale �∗ = 8 Pa
(semitransparent symbols are not used to fit). Red dashed line: critical stress
�c(�) at which Wyart–Cates curves become negatively sloped (∂ ̇/∂� < 0, gray
region).
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Fig. 2. Global resistance law (70). (A) Top: drained mass of suspension vs
time for fixed volume fraction (� = 0.405 > �DST) and increasing pipe
inclination. Bottom: corresponding flow rate Q vs mean wall stress. (B) Q
for various volume fractions. Red dashed line: flow rate saturation onset
criterion 〈�w 〉 = �c(�), for the Wyart–Cates rheological laws fitted in Fig. 1B.
Dashed lines: experimental average highlighting flow rate saturation in the
gray region (where ∂ ̇/∂�|�=〈�w 〉< 0, for a laminar flow). Solid lines: flow rate
expected for a steady laminar flow (see also SI Appendix, SI.3). Symbol shape
indicates experimental observation of the laminar phase only (◯) or laminar
phase + frictional soliton (�). R = 5.15 mm in (A) and (B).

Most experiments are performed with an aqueous suspension
of cornstarch grains (Fig. 1B image). This widely documented
system is known for its marked discontinuous shear-thickening
rheology, which we characterize at different solid volume frac-
tions � with a Couette cell apparatus (other particles are used
to verify that results are generic of shear-thickening suspensions,
see below and M&M ). Rheograms are fitted with Wyart–Cates
model (27) (solid lines in Fig. 1B) to obtain the low-stress
(frictionless) viscosity �0(�) = �S(�0 − �)−2 and the critical
shear stress �c(�) ≡ �|∂ ̇/∂�=0 (red dashed line), above which
suspensions with a sufficiently high particle volume fraction
(� > �DST ≈ 0.37) show a discontinuous shear-thickening
(see caption of Fig. 1 for the definition of �S and �0).

Saturation of the Flow Rate. We investigate, first, the global
resistance law of the pipe, i.e., the evolution of the flow rate
with the forcing, starting with a discontinuously shear-thickening
suspension (� = 0.405 > �DST). The forcing 〈�w〉 is varied
through the pipe inclination and flow rate is obtained by weighing
the drained suspension at the pipe outlet (Fig. 1A). As shown in
Fig. 2A, the drained mass m increases linearly with time over the
whole range of inclination 0.5◦ < � < 90◦ (i.e., 0.27 Pa ≤
〈�w〉 ≤ 31 Pa), which indicates the flow rate Q ≡ ṁ/� does not
vary during drainage. However, Q depends on inclination, with
two strikingly different trends. At low forcing (〈�w〉 ≲ 4 Pa), flow
rate increases quasi-linearly with 〈�w〉, as for the laminar flow of a
Newtonian liquid. By contrast, for higher forcings (〈�w〉 ≳ 4 Pa),
the flow rate is found to saturate: the same value (Q ≈ 1.8 ml/s)
is obtained over a more than 10-fold increase in the forcing.
Notably, the mean wall stress at the onset of saturation closely
matches the discontinuous shear-thickening onset stress �c(� =
0.405) ≈ 4.0, as obtained from the rheological characterization
(Fig. 1B).

To confirm and generalize these two global responses of the
flow, we extend experiments to a wide range of particle volume
fraction (0.35 ≤ � ≤ 0.425) and recover that flow rate saturates
at high forcings (〈�w〉 > �c(�)), provided volume fraction is
sufficiently high (� > �DST). The region of flow rate saturation
(highlighted with horizontal lines) coincides with the region
where ∂ ̇/∂�|�=〈�w〉 < 0 (highlighted in gray). This confirms
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that flow rate saturation is triggered by the discontinuous shear-
thickening of the suspension at the pipe wall, where the shear
stress is maximal for a laminar flow.

This indicates that available S-shape rheological models, which
capture the dependence of �c with �, are sufficient to capture
the onset of flow rate saturation. However, such models do not
explain, alone, why and how the flow saturates. Indeed, the base-
state flow rate predicted from these rheological laws for a steady
laminar flow does not plateau but, actually, decreases strongly
at high forcings (see solid lines in Fig. 2B, and SI Appendix,
SI.3, for the derivation). Therefore, additional information on
the structure of the flow is needed to elucidate the mechanism
behind flow rate saturation.

Evidence of a Localized Flow Structure: The Frictional Soliton.
To obtain such information we use a transparent pipe, seed
the suspension with fluorescent tracers, shine a laser sheet
through the wall and optically monitor the flow over a ∼8R-
long pipe section located ≈40 cm upstream the pipe outlet (see
Fig. 1A, SI Appendix, Movies in SI.1 and more details on optical
measurements in M&M ). Given the suspension opacity, light
only penetrates a thin layer of suspension (with an estimated
thickness∼100 μm, see SI Appendix, SI.4), which gives access to
the near-wall velocity of the suspension (see sketches in Fig. 3 A
and B).

As shown in Fig. 3, the spatiotemporal evolution of the near-
wall flow differs qualitatively between the low and high-forcing
regimes. For low forcings (〈�w〉 < �c(�), Fig. 3A, SI Appendix,
SI.1 Movie S1), the near-wall flow is uniform and steady, which
is consistent with a Poiseuille-like laminar flow in the pipe, as
expected from the quasi-Newtonian behavior of the suspension
at low stresses. The mean near-wall velocity Uw ≈ 0.10U
(averaged over the observation depth, see SI Appendix, SI.4), is
approximatively one decade smaller than the mean-flow velocity
U = Q/�R2. By contrast, at high forcings (〈�w〉 > �c(�),
Fig. 3B, SI Appendix, SI.1 and Movie S2) the near-wall flow
reveals an intriguing flow structure. While the near-wall flow
(within the camera field of view) is initially steady and uniform,
as in the low forcing regime, a short, nonsteady, nonuniform

region is observed, which propagates upstream with a constant
velocity c and a preserved length `, before the flow returns to its
previous laminar (frictionless) state. This reveals that flow rate
saturation is associated with the inception of a new flow phase:
a localized, purely propagative structure, which we call frictional
soliton.

Near-wall velocimetry also provides information on the cross-
sectional velocity profile within the different flow phases. Up-
stream and downstream from the soliton, the near-wall velocity
(Uw ≈ 0.06U and 0.13U , respectively) remains one order of
magnitude below the mean velocity U , which suggests the flow
profile is Poiseuille-like, as in the low-forcing regime. However,
in the frictional soliton, the near-wall velocity U FS

w ≈ 0.6U has
typically the same magnitude as U , which suggests a velocity
profile closer to a plug flow, as schematized in Fig. 3B (additional
measurements of the velocity variations across the near-wall
observation depth also suggests a finite slip velocity at the wall,
see details in SI Appendix, SI.4).

To document the soliton characteristics and their dependence
to the suspension and flow conditions, we perform systematic
near-wall observations, for varied flow forcings, particle volume
fractions, and pipe radii. Measurements (Fig. 3C ) reveal that
the length ` = (1.5 ± 0.5)2R of the soliton is essentially set
by the local length scale of the pipe, namely its diameter 2R
with, however, a mild trend toward shorter solitons close to
the onset forcing (〈�w〉 ≲ 3�c), where solitons are sometimes
found to be evanescent. Moreover, the (upstream) propagation
velocity of the soliton, c = (1.5 ± 1)U , is found to be of the
order of the mean flow velocity, regardless of applied stress or
particle volume fraction. This suggests a different mechanism
from those reported for shear-jamming fronts (35, 42–44), whose
propagation velocity is typically one order of magnitude larger
than the flow velocity and strongly depends on volume fraction.

A crucial piece of information about the frictional soliton
is also provided by observing microscopic air bubbles, which
are seldomly and fortuitously trapped in the suspension. Fig. 3D
shows the behavior of such bubbles as the frictional soliton passes.
Upstream of the soliton, bubbles (tiny white spots) have a stable
size of approximately 20 μm. Within the soliton, however, they

Fig. 3. Identification of the frictional soliton. (A and B) Spatiotemporal images of the near-wall flow along a pipe generatrix, at ≈40 cm upstream the pipe
outlet (� = 0.405 > �DST, R = 5.15 mm, see SI Appendix, Movies in SI.1). The (x, t) trajectory of the tracing particles (black) indicates the near-wall velocity Uw
[different velocities at a given (x, t) reflect different distances of the tracing particles to the wall]. (A) At low forcing (� = 4.9◦, 〈�w 〉 = 2.6 Pa < �c ), a single laminar
phase of steady, uniform and low near-wall velocity is observed (Uw ≈ 0.10U). (B) At large forcing (� = 22.0◦, 〈�w 〉 = 11.6 Pa > �c ), a localized frictional-soliton
phase of high wall-velocity (Uw ≈ 0.6U) separates two laminar phases and propagates against the flow. Sketches: Inferred velocity profiles in the laminar and
frictional-soliton phases. (C) Scaled velocity and width of the soliton vs scaled mean wall stress (70). The dashed lines are c/U = 1.5 and `/2R = 1.5. (D) Top:
Spatiotemporal image of the near-wall flow highlighting the liquid pressure drop in the frictional soliton through the expansion of small probe air bubbles
(white) transported by the suspension (� = 0.39, see SI Appendix, Movie in SI.1). Bottom: Snapshot images showing the same two bubbles upstream (Left), inside
(Middle), and downstream (Right) the soliton.
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grow notably, increasing their diameter by a factor 2 to 4, before
collapsing back to their original size once the soliton has passed.
This transient expansion of the bubbles reveals a pressure drop in
the liquid of the suspension, inside the soliton. This pore pressure
drop actually reflects a symmetric increase in the particulate
pressure, i.e., the pressure supported by contacts between grains
and between grains and the pipe wall (45–49). The magnitude of
the bubbles expansion (1 to 2 decades in volume) suggests a pore
pressure drop by typically one atmosphere or more (see details in
SI Appendix, SI.5), i.e., a massive increase in the granular pressure
at the wall, which controls the shear stress of the suspension.
This observation suggests that the frictional soliton is the locus
of a strong resistance to the flow, which calls for a more direct
estimation of the stress distribution along the pipe.

The Frictional Soliton Is a Superdissipative Structure. To obtain
the evolution of the wall stress along the pipe, the bulk pressure
P′ (relative to ambient) is measured at several distances from the
pipe outlet (see Fig. 1A and M&M ). In the presence of pressure
gradients and neglecting inertia, the force balance on a slice of
suspension gives �w = −(R/2)∇(P′ + �gz), with �w the local
wall stress and z = − sin �x the elevation relative to the pipe
outlet. Fig. 4 presents the evolution of the reconstructed total
pressure, P = P′ + �gz, which quantifies the loss between the
current abscissa x and the pipe outlet, together with the time
evolution of the suspension surface position−L. For low forcings
(〈�w〉 < �c(�), Fig. 4A), P is fixed in time at each sensor, and
values from different sensors show a linear decrease along the pipe.
These measurements confirm the steadiness and uniformity of the
flow, and imply that the assessed local wall stress �w is uniform
and equal to 〈�w〉 (see profile of P at 30 s).

For high forcings, (〈�w〉 > �c(�), Fig. 4B), the frictional
soliton changes the evolution of the total pressure P qualitatively.
Let us consider, first, the temporal evolution for a fixed position;
that of the most downstream sensor S1. At flow start (t = 0), P is
much higher than expected for a uniform resistance (≈0.5 kPa,
dark blue dashed line), which indicates a large overdissipation
downstream. At t ≈ 5 s, the pressure P suddenly drops to a
fraction of the uniform-flow expectation (dark blue dashed line),
signaling that the overdissipation has moved upstream of sensor
S1 within a very short time (tdrop ≈ 0.4 s). Subsequently, P
remains essentially constant for a long period (t ≲ 44 s), reflecting

steady losses downstream. A similar signal is obtained at sensors
S2, S3, and S4, albeit for the delay before pressure drop, which
increases linearly with sensor distance to the pipe outlet. These
sudden pressure drops are found to be exactly synchronous with
the passage of the frictional soliton, as inferred from the passing
time and velocity measured by near-wall flow observations
between S2 and S3. This reveals that the frictional soliton is
the locus of a superdissipation, since local (bulk) pressure drop
directly reflects local dissipation (given the constant flow rate and
negligible inertia). Wall stress is highly increased within a short
length `drop ≡ ctdrop ≈ 1.4R, of order the soliton length ` ≈ 3R
identified from near-wall velocimetry (Fig. 3C ). The typical
magnitude of the local wall stress can be inferred from the pressure
drop across the soliton, ΔPdrop ∼ 5 kPa, and the length `drop
according to �w ∼ RΔPdrop/2`drop ∼ 2 kPa, i.e., �w ∼ 102

〈�w〉.
Conversely, upstream and downstream, wall stress is uniform and
steady. Measurements reveal a constant substress �w ≈ 3.3 Pa
(< 〈�w〉 = 11.6 Pa), which actually compares with the critical
shear stress of the suspension �c ≈ 4.0 Pa (see profile of P at 25 s).

Additionally, the extrapolation of the soliton trajectory in-
tersects x = 0 at t = 0, indicating that the soliton nucleates
at the pipe outlet when flow starts (see Fig. 4 B, Left and
M&M ). Crucially, when the soliton reaches the upper surface
of the suspension (intersect of red and green trajectories in
Fig. 4 B, Left), the total pressures of the four sensors step back,
synchronously, to a large value, signaling the inception of a new
soliton at the pipe outlet, at the instant the first one extinguishes.
This indicates that a single soliton is actually maintained to
accommodate the high forcing. Last, a slight increase in the flow
rate, by a typical factor 2, is observed as the second soliton replaces
the first one, which suggests that the passage of the first soliton
somehow modifies the distribution or structure of the suspension
grains (as a reference, no change in flow rate is observed for the
same drained mass in the low forcing regime, Fig. 4A).

Altogether, these measurements highlight that flow rate
saturation at high forcings is the consequence of the inception
and self-preserving upstream propagation of a single, localized,
and superdissipative flow structure: a frictional soliton. The
localization of high stresses in the soliton actually allows the rest
of the suspension, both upstream and downstream, to sustain
only a mild stress ∼ �c , compatible with the frictionless state,
hence, a laminar flow.

Low-forcing regime High-forcing regime
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Fig. 4. Dissipation along the pipe (70). (A and B, Left) Temporal evolution of the total flow pressure P = P′ − �g sin �x at sections S1 to S4 (blue curves) for
� = 0.405 > �DST (R = 5.15 mm). (A) Low-forcing regime (� = 4.9◦, 〈�w 〉 = 2.6 Pa < �c ). (B) High-forcing regime (� = 22.0◦, 〈�w 〉 = 11.6 Pa > �c ). Green line:
free-surface position (inferred from drained suspension mass). Blue dashed lines: expected values of P for a steady uniform flow. Red line in (B): frictional-soliton
position (red circles mark passing times at S1 to S4, the line is a linear fit). (A and B, Right) Inferred longitudinal profile of RP/2 (at fixed time). The inverse slope
�w ≡ −R∇P/2 is the local wall stress.
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Two-Flow-Phase Model of the High-Forcing Regime. The obser-
vations reported above allow to envision the high-forcing regime
as the coexistence of two flow phases, providing guides for
establishing quantitative local resistance laws for all flow regimes
and phases. In the low-forcing regime (〈�w〉 ≲ �c(�)), the steady
and uniform resistance is simply 〈�w〉. In the high-forcing regime
(〈�w〉 ≳ �c(�)), the resistance of the laminar phase is close to the
critical stress �c(�), whereas the frictional-soliton phase carries
the global load 2�RL〈�w〉 minus the part ≈2�R(L − `)�c(�)
taken by the laminar phase. This can be summarized with the
following laws, valid at resolution down to the cross-sectional
scale R:

Low-forcing regime (〈�w〉 < �c(�))
�w = 〈�w〉 , everywhere. [1]

High-forcing regime (〈�w〉 > �c(�))

�w ≈
∣∣∣∣ �c(�) ,
�c(�) + L

`
(〈�w〉 − �c(�)) ,

in the laminar phase,
in the soliton phase.

[2]

These laws can be tested against experiments. Fig. 5A presents
systematic measurements of the local wall stress, �w ≡ −R∇P/2,
as inferred from the pressure measurements along the pipe (see
Fig. 5 caption). At low forcings (〈�w〉 < �c(�)), the local wall
stress �w matches the mean imposed stress 〈�w〉 in agreement
with Eq. 1. For high forcings (〈�w〉 > �c(�)), the local wall stress
strongly depends on the flow phase. In the laminar phase (yellow
and orange squares) the wall stress is close to the critical stress
(�w ≈ �c(�)), independently of the average forcing 〈�w〉 and of
the flow length L, consistently with Eq. 2. By contrast, the local
wall stress measured in the soliton phase (red and pink squares)
is much larger and depends on both quantities. For a fixed flow
length L, it increases linearly with the excess forcing 〈�w〉 − �c ,
as anticipated by Eq. 2. The agreement is not only observed
up to the largest gravitational forcing 〈�w〉 = �gR/2 ≈ 8�c
obtained for a vertical pipe, but also for a higher forcing 〈�w〉 ≈
26�c (stroked red square in Fig. 5A) obtained by imposing an
additional pressure difference between the top and bottom of the
pipe, using pressurized air. The resistance also follows the linear
trend in the flow length L of Eq. 2, as verified by using a ten
times shorter pipe (pink squares in Fig. 5A).

Importantly, if the local resistance laws give information on
the stress with a resolution down to the pipe radius—which is
useful to address the load and fatigue on the pipe structure down
to this scale—they also embed the global resistance law of the
flow. Indeed, the pipe always contains a laminar phase, with a
wall stress following �w ≈ 4�0

�R3 Q , up to the critical flow rate
Qc ≡

�R3

4�0
�c(�) obtained at 〈�w〉 ≈ �c(�). Integrating Eqs. 1

and 2 along the pipe thus yields:

Low-forcing regime
(〈�w〉 < �c(�)) Q ≈

�R3

4�0
〈�w〉 , [3]

High-forcing regime
(〈�w〉 > �c(�)) Q ≈

�R3

4�0
�c(�) ≡ Qc(�, R), [4]

which is the global flow curve discussed in Fig. 2, with a linear
increase at low-forcing and a saturation at high-forcing. Notably,
Eq. 3 is experimentally verified for varied pipe radii (R ≈ 3, 5,
and 17 mm, see SI Appendix, SI.6). Therefore, flow saturates at
highly different Reynolds numbers, including values much below
1 (�Q/��0R ≈ 0.04 − 7), which indicates that flow saturation

A

B

Low-forcing
regime

High-forcing
regime

soliton

Laminar
phases

Laminar
phase

Newtonian

100

102

10-2

100 10210-2

104

10010-1

100

102

10-2

104

10110-1

101

10-1

103

Fig. 5. Local resistance law of the laminar and soliton phases (70) (� =
0.405). (A) Local wall stress vs mean applied wall stress (both scaled by the
critical shear stress �c measured in Fig. 1B). Yellow lines: Eq.1 (solid) and
laminar branch of Eq.2 (dashed). Red and pink lines: frictional-soliton branch
of Eq.2, for different initial flow length (L = 0.2 and 2 m). (B) Local wall stress
vs scaled flow rate (Qc ≡ �R3�c/4�0, with values of �0 and �c obtained in
Fig. 1B). Yellow line: base-state expectation from the Wyart–Cates rheological
law. Red-pink dashed line: Eq.4. (A and B) Symbol color refers to L = 2 m
(red, yellow) and L = 0.2 m (pink, orange). Symbol shape indicates laminar
phase only (◯), or laminar phase + frictional soliton (�; ⊠ indicates 〈�w 〉 is
imposed by gravity + air pressure difference, see text; the wall stress in the
soliton is obtained from the pressure drop across the pipe portion containing
the soliton and by subtracting the laminar contribution over the length
SiSi+1 − `; vertical error bars indicate the SD between measurements over
S1S2, S2S3, and S3S4). (Inset) Same data nondimensionalized by the laminar
stress 4�0Q

�R3 highlighting the functional difference between the frictional-
soliton bifurcation (symbols, yellow and red-pink lines, Eqs.1 and 2 with
Qc = �R3�c(�)/4�0) and the inertial transition of a Newtonian liquid [purple

line, �R
3�w

4�0Q
≈

(
Q
Qc

)1/4
with Qc ≈

(
64

0.3164
)4/3 ��0R

� (9)].

is not of inertial origin but stems from the specific rheological
response of the suspension to the flow.

Last, it must be realized that the local resistance law of the
soliton phase (Eq. 2) is of a very peculiar kind and actually reveals
a singularly steep rheology. This is highlighted in Fig. 5B, by
presenting the evolution of the local wall stress �w with the pipe
flow rate Q . At low flow rates (Q < Qc), the flow is in the
laminar regime and local stresses follow the global forcing, as
already discussed in Figs. 2C and 5A. However, close to Qc , a
frictional soliton forms and the wall stress in the soliton shows a
very steep increase (red-pink dashed line), which reflects that the
frictional soliton actually behaves as a sharp flow rate limiter: it
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Fig. 6. Universality of the frictional soliton phenomenology. Top: rheograms for four different aqueous shear-thickening suspensions (70). Bottom:
Spatiotemporal images of the near-wall flow at large forcing highlighting the same frictional-soliton phenomenology (the origin of t is arbitrary, here). (A)
Potato-starch, (B) Cassava-starch, (C) Polystyrene spheres coated with cellulose, (D) Calcite grains (CaCO3) + “superplasticizer” additive (polycarboxylate ether).
� = 0.42, 0.448, 0.595, and 0.543, and 〈�w 〉 = 4.8, 7.7, 138.5, and 41.5 Pa, respectively, see M&M and SI Appendix, SI.8.

accommodates the global overload with almost no change in the
flow rate it sets.

Universality of the Frictional Soliton. All the observations and
measurements discussed so far, concern suspensions of corn-
starch. To probe the general relevance of the phenomenology
reported above, we extend experiments to four other types of
shear-thickening suspensions (Fig. 6) having different applicative
context, particle shape, size polydispersity or composition: (A and
B) potato and cassava starch grains, having a presumably similar
biological polymeric-induced repulsion mechanism as cornstarch
grains, but a more rounded shape and broader polydispersity, (C )
highly monodisperse polystyrene spheres, coated with repulsive
cellulosic polymers, and (D) calcite particles (CaCO3)—a model
fine granulometry component of high-performance concretes—
which have a crystalline shape with sharp edges and are stabilized
with an industrial admixture (polycarboxylate ether superplas-
ticizer, kindly supplied by CHRYSO) aimed at improving
flowability at high solid fractions. As shown in Fig. 6 (Top),
dense aqueous suspensions of each of these particles present a
similar discontinuously shear-thickening rheology, as cornstarch
particles: a close to Newtonian behavior at low stress and a
large and steep shear-thickening above a critical shear stress (see
rheological characterization in M&M and SI Appendix, SI.8).

In all four cases, we observe a similar saturation of the pipe
flow rate at large forcing, at a value approximately matching the
expected saturationQc ≡ (�R3/4�0)�c inferred from rheological
characterization (0.8 ≤ Q/Qc ≤ 4.6, see SI Appendix, SI.8).
The saturation is also found to result from the inception of a
frictional soliton (Fig. 6, Bottom), whose length compares with
the pipe diameter (0.9 ≤ l/2R ≤ 1.5), and velocity remains
of the order of the mean flow velocity (0.8 ≤ c/U ≤ 6.2, the
larger values being obtained with particles A and D). Last, near-
wall velocimetry (2 ≤ U FS

w /Uw ≤ 8.3) recovers that the cross-
sectional velocity profile changes qualitatively from Poiseuille-like
to plug-like flow within the soliton. These observations confirm
that the phenomenology associated to the frictional soliton is not
specific to cornstarch, but in fact relevant for a broad class of
shear-thickening suspensions.

Discussion
The set of observations reported above draw a very unconven-
tional picture of low-Reynolds pipe flows, in the particular case of
shear-thickening suspensions. They reveal remarkable behaviors,

both from a global perspective and in the structuration of the
flow at the scale of the pipe radius R, which are controlled
by the mean applied wall stress relative to the discontinuous
shear-thickening onset �̃ ≡ 〈�w〉/�c(�) = −R∇P/2�c(�). For
highly concentrated suspensions (� > �DST), a bifurcation of
the flow is observed for �̃ ≳ 1: a second flow phase, coined
frictional soliton, nucleates and coexists with the steady, laminar,
Poiseuille-like flow obtained at low applied stress. The frictional
soliton is a longitudinally localized, upstream propagative, shape-
preserving flow structure, which spans the pipe cross-section. It
is, above all, a superdissipative structure, concentrating most of
the dissipation over a flow length of order R. Its steep (local)
resistance law, summarized by Eq. 2 and valid at the pipe radius
scale, actually determines the singularly steep resistance law at
the whole pipe scale (Eqs. 3 and 4), i.e., a Poiseuille law, for
low applied stress, continued by a saturation of the flow rate, at
higher stress, at a value ≈Qc ≡ �R3�c(�)/4�0 set by �c(�) and
the low-stress (frictionless) viscosity �0.

Various aspects of this remarkable phenomenology require
comments. First, it does not depend on flow inertia. Regarding
the inception of the frictional soliton, the same onset stress (�̃ =
1) is observed for a broad range of Reynolds numbers (Re =
�Q/��0R ∼ 10−2

− 10), as R is varied. Regarding the self-
sustained propagation, the local effective viscosity in the soliton
∼�R3�FSw /4Qc , is larger than the laminar phase viscosity �0 by
a factor ∼�FSw /�c(�) ∼ L/`, see Eq. 2. Hence, the relevant local
Reynolds number ∼(`/L)Re ∼ 10−4

− 10−1 is much below
1, which confirms the subdominant role of inertia in the soliton
dynamics.

Second, the emergence of a localized propagative flow phase
(the frictional soliton) coexisting with a laminar phase, is
reminiscent of other solitary waves or intermittent flow structures
so far identified in pipe flows at high forcings, such as turbulent
puffs and slugs in the inertial transition regime (4, 7, 8, 10),
density/concentration waves in compressible or incompressible
two-phase media (50–53), or bulging waves in elastically or
viscously compliant pipes (54–56). However, the frictional
soliton is distinct in nature from these previously reported
examples. For instance, inertial puffs are memoryless structures,
which stochastically nucleate, decay, and coexist (6, 7), without
affecting drastically the global resistance or flow rate, because
the local resistance law of the puff/slug phases is not steep
enough (9) (Inset of Fig. 5B). In contrast, frictional solitons are
characterized by their deterministic uniqueness—in the range
of parameter investigated, one and only one soliton actually
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emerges and propagates above �c(�)—and their singularly steep
resistance law, Eq. 2. This law and the low bulk compressibility
of the suspension (liquid+grains) imply that the nucleation
of a frictional soliton affects the resistance of the whole pipe
flow within milliseconds (∼L/csound, with csound ∼ 1 km/s the
sound speed), and acts as a particularly efficient flow limiter,
accommodating large variations in the total applied load with
minimal change in the flow rate. They also allow the uniqueness
of the soliton, since the resulting saturation of the flow rate at
Qc maintains the coexisting flow phase in a frictionless, hence
laminar, state. Note, however, that a different phenomenology
might emerge for sufficiently slender pipes or high applied
stresses, since the stress in the soliton ∼(L/R)〈�w〉 could deform
the particles or trigger cavitation.

The phenomenology of the frictional soliton also differs,
qualitatively, from the mechanisms proposed so far for other
unsteady shear-thickening flows. At high stress, these flows
feature large stress and velocity fluctuations (29, 36, 57), but
these are small scale, intermittent or chaotic structures. Coherent
propagative structures, such as jamming fronts, have also been
reported in shear flows, but these are intrinsically inertial fronts
which propagate transversely to the flow with a large velocity
depending strongly on volume fraction (35, 41–44). Stress
and concentration bands traveling either parallel (36, 37) or
perpendicular (30, 31) to the flow direction have also been
observed and modeled, but none of them have been shown to
develop upstream propagative solitary waves. Specific noninertial
surface waves have also been reported and modeled (33, 34, 58),
but the mechanism, involving the free surface, does not apply
to wall-bounded flows. Last, upstream propagative density waves
have been observed for flows in capillaries (52, 53), but these
are not mutually exclusive and develop only in capillaries with
diameter of a few particle sizes. Perhaps the most similar
phenomenology to the frictional soliton has been observed in
a plate-plate Couette flow, with jammed structures propagating
both upstream and downstream at speeds close to the forcing
velocity (36, 38, 39, 59). No mechanism has been proposed so far,
but pore-scale measurements of the relative velocity between the
particles and the suspending liquid suggest that these structures
involve strongly localized dilation of the suspension (39), which
is also consistent with the bubble expansion observed in the
frictional soliton (Fig. 3D).

These latter observations suggest that particle dilation and the
coupling with the suspending liquid are essential ingredients to
explain the propagation and the high dissipation in the frictional
soliton. We propose the following minimal mechanism based
on the observed length of the soliton and its formation at the
pipe outlet. As the soliton passes a slab of suspension, the shear
stress close to the wall builds up above the onset jamming stress,
of order �c(�), beyond which the suspension must dilate to
flow. This Reynolds-like dilation of the particle phase (60, red
arrows in Fig. 7) lowers the particle volume fraction in a thin
layer of suspension close to the wall and eventually the drag
of the suspension slab, until the local shear stress decreases
below the critical stress �c(�) and the suspension slab returns
to a laminar flow. The dilation occurs over a typical strain
0 ∼ O(1) independent of � (61, 62), i.e., over a typical
time scale tD ∼ 0/̇ ∼ 0R/U , since the near-wall shear rate
in the soliton is of order U/R (SI Appendix, SI.4). Given the
formation of the soliton at the pipe outlet and its length ` ∼ 2R,
this explains why the soliton propagates upstream and with a
velocity c ∼ `/tD ∼ 2U/0 of the order of the mean flow
velocity.

Fig. 7. Minimal mechanism for the frictional-soliton propagation. As the
soliton passes a slab of suspension: (i) the shear stress builds up above �c
and the suspension jams over a length scale set by the pipe diameter 2R,
(ii) the steady flow rate forces the jammed suspension, which dilates at the
wall, over a layer of thickness � and a time scale tD ∼ 0/̇ ∼ 0R/U, (iii)
because of the particle-depleted layer, the local shear stress relaxes below
�c , which builds up the shear stress immediately upstream. The soliton thus
propagates upstream at a velocity c ∼ `/tD ∼ 2U/0, of the order of the mean
flow velocity U.

This mechanism also explains how the stress �w in the soliton
accommodates the possibly large excess load imposed at the pipe
scale. The dilation involves a flow of the suspending liquid across
the pores (blue arrows), which results in a large negative pore
pressure, i.e., a large positive particle stress, whose magnitude is
given by a Darcy–Reynolds scaling �w ∼ (�l/�)(Δ�/0)�2U/R
(62, 63), with �l the suspending liquid viscosity, � ∼ 10−3d2

the permeability of the particle phase, d the particle diameter,
Δ� ∼ 10−2 the distance to jamming, and � the thickness of
the dilation layer (Fig. 7). A dilation layer of the order of the
pipe radius (� ∼ R ∼ 300d ) is enough to build a wall stress
�w ∼ 10(�/d)2�lU/R ∼ 104�0U/R, orders of magnitude
larger than the laminar phase shear stress ∼�0U/R, providing
room to accommodate a high external load. This minimal
dilation mechanism captures the main features of the soliton
phenomenology. It also agrees qualitatively with the observation
of a slight, but systematic, increase in the flow rate as the
second generation of frictional soliton propagates in the pipe (the
particle-depleted layer is expected to shift the critical flow rate
toward larger values). However, the nucleation mechanism and
the selection of the soliton length remain to be elucidated. Further
modeling and additional experimental inputs, in particular about
the evolution of the concentration and velocity profiles, are also
required to understand how the flow sets the near-wall shear rate
and the thickness of the dilation layer �.

Last, the singular steepness of the global resistance law and
the frictional soliton are robustly observed with various particle
systems (different natural starch grains, polymer-grafted plastic
beads, calcite powder stabilized with a superplasticizer), which
supports their universality for pipe flows of shear-thickening
suspensions and their potential relevance to improve pumping
in industrial applications. For instance, in civil engineering,
superplasticizers, which are commonly added with fine materials
(fly ash, silica fume) to enhance concrete flowability, make
the concrete shear-thickening (64–68). This concrete is often
pumped through long (L/R ≳ 104) and wide pipes (R/d ≳ 103)
at high mean wall stress (reaching 102

− 103 �c), and further
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study will have to determine whether the frictional-soliton
phenomenology extends to such large forcings.

Materials and Methods
Setup. The pipe is a 2 m-long, transparent, smooth, PMMA tube, with inner
radius R' 3, 5.15 or 17 mm. The scale has a precision of 0.01 g and a response
time of 0.2 s. The four pressure gauges S1 to S4 are located 0.1, 0.3, 0.5, and
0.7 m from the pipe outlet, respectively. Different gauges (with ranges from
3.7 to 100 kPa, precisions from 0.1 to 1 kPa, and a response time of 1 ms) are
used for the different forcings. The near-wall flow is imaged between S2 and
S3, under laser diode illumination (2 W, 532 nm), with a camera (JAI, 4,096 ×
3,072 pixels) at a spatial resolution of 10 μm/pixel and acquisition rate up to
300 Hz. The fluorescent tracing particles are 20 μm, spherical, PMMA particles
doped with rhodamine 6G (69). To prevent image distortion by the curved pipe
wall, the pipe is surrounded with a rectangular chamber (40 × 25 × 25 mm)
filled with a liquid (Triton X-100) of same refractive index as the pipe wall.

Materials. The shear-thickening suspensions consist mainly of commercial
cornstarch grains (Maisita®,�p = 1,550 kg/m3) mixed with microfiltered water
(�w = 997 kg/m3). The particle volume fraction � of the suspensions is
computed from the weight and density of the dry particles and liquid. The
suspension density is given by � = �p� + �w(1 − �). Prior to use,
the starch is systematically desiccated with the same protocol (a few days at
60 °C in an oven) to avoid shifts in dry density due to air moisture variations.
The potato starch grains, cassava starch grains and polystyrene spheres are
commercial (respectively, Roquette® with �p = 1,500 kg/m3, New Land® with
�p = 1,550 kg/m3, and TS by Dynoseeds®, with diameter 10.1 ± 0.3 μm
and �p = 1,050 kg/m3). The calcite particles (Omya®, �p = 2,700 kg/m3)
are sieved with a 30 μm mesh. The industrial superplasticizer (polycarboxylate
ether, kindly supplied by Chryso®) is added to the suspension at 3 wt‰.

Rheological Characterization. The rheograms in Figs. 1B and 6 A–C are
obtained using rough, coaxial cylinders (height of 38.7 mm, inner and outer radii
of 13.55 and 15.63 mm, respectively). The flow curve are obtained as the average
over three logarithmically increasing torque ramps, after a preshear. To limit
migration effects above the shear-thickening onset, the suspension is floated on
a heavier, nonmiscible and low-viscosity oil (perfluorotributylamine, Fluorinert
FC-43). Because calcite (much denser than water and Fluorinert) settles rapidly,
the Newtonian-effective rheogram in Fig. 6D is obtained from the torque on a
homemade helix (diameter of 35 mm, with two levels of tilted blades) rotating
at a low Reynolds number (≤0.3) inside a rough cup (diameter of 39 mm),
which is calibrated against a potato starch shear-thickening suspension.

Experimental Procedure and Additional Tests. Procedure (variations, in
parenthesis, have been tested without change on the phenomenology): i) The
pipe is inclined at � = 7◦, below the shear-thickening threshold, and slowly
filled with the freshly mixed suspension from one end (or the other), while it is
continuously rotated to prevent sedimentation. ii) The pipe outlet is obturated
and tilted to the desired flow inclination �, with the outlet located∼2R above
(or beneath) the surface of a water pool to reduce (cancel) stress in the extruded
suspension jet. iii) The plug is removed to start the flow. Additional tests: i)
The frictional soliton can be incepted after flow start, either by increasing the
inclination above the critical only after flow initiated, or by removing a rod
placed across the pipe to obstruct the flow. ii) Use of a roughened pipe (obtained
by gluing two sand-blasted half-pipes) yields the same saturation flow rate
(Q/Qc ≈ 0.5 to 1), soliton length (`/2R ≈ 0.3 to 1) and soliton velocity
(c/U ≈ 1.6 to 2.5).

Data, Materials, and Software Availability. Experimental data have been
deposited in Zenodo (http://doi.org/10.5281/zenodo.10287701) (70).
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SI.1. Description of the experimental movies

The movies show the near-wall flow for a cornstarch suspension. They correspond to the spatio-temporal diagram provided in Fig. 3 of the
main body of the paper.

Movies 1 & 2 show the flow in the low-forcing regime and in the high-forcing regime, respectively (ϕ = 0.405). Movie 1: low-forcing
regime (Fig 3A, θ = 4.9◦, i.e., ⟨τw⟩ = 2.6 Pa and ⟨τw⟩/τc ≈ 0.7, Q ≈ 1.36 ml/s). Movie 2: high-forcing regime (Fig 3B, θ = 22.0◦, i.e.,
⟨τw⟩ = 11.6 Pa and ⟨τw⟩/τc ≈ 2.9, Q ≈ 1.24 ml/s).

Movie 3 shows the growth of small air bubbles, fortuitously transported by the suspension, as the frictional soliton passes (Fig 3D, ϕ = 0.39,
θ = 42.0◦, i.e., ⟨τw⟩ = 20.5 Pa and ⟨τw⟩/τc ≈ 3.7).

For all three movies, the pipe radius is R = 5.15 mm and spatial resolution is 10 µm/pixel. Lengths are indicated by scale bars. Movie 1 and
2 are displayed in real time. Movie 3 is slowed-down by a factor 10. More information about optical measurements are given in M&M in the
main body of the paper.

SI.2. Preliminary experiments with a reservoir at the pipe inlet

Preliminary experiments have been conducted with a horizontal, smooth PMMA tube (length L = 0.5 m, inner radius R = 1.6 mm) connected
to a large feed reservoir (Fig. SI.1). The flow is driven by setting a pressure difference, ρgH + Pair, between the pipe inlet and outlet, with the
help of a constant air overpressure Pair. In the case where inertial effects are small and the localized entrance dissipation is small relative to the
regular dissipation along the pipe, this corresponds to a mean applied pressure gradient along the pipe ⟨−∇P⟩ ≡ (ρgH + Pair)/L. The pressure
in the pipe is measured with sensors located 0.1, 0.2, 0.3 and 0.4 m from the pipe outlet.

Fig. SI.1. (A) Sketch of the setup of the preliminary experiments with a feed reservoir. (B) Local pressure gradient in the pipe versus mean applied pressure gradient for a
Newtonian liquid (see text) and a shear thickening suspension (10µm polystyrene spheres in water, ϕ = 0.59 > ϕDST ≈ 0.575).
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For experiments with a Newtonian liquid (40%w aqueous solution of PEPG (3.9 kg/mol poly(ethylene glycol-ran-propylene glycol)-
monobutyl-ether by Sigma-Aldrich) with viscosity η ≈ 0.4 Pa s and density ρ ≈ 1066 kg/m3) at low Reynolds number (≲ 0.2), the local pressure
gradient −∇P, as measured in the pipe, is found to be very close to the mean pressure gradient ⟨−∇P⟩ ≡ (ρgH + Pair)/L. This agrees with the
expectation, for the present case of a long pipe (L/R ∼ 300 ≫ 1), that localized entrance losses (∼ ηU/R, with U the mean flow velocity) are
small relative to the regular losses along the pipe (∼ ηUL/R2).

By contrast, experiments with shear-thickening suspensions reveal a mismatch between the local pressure gradient −∇P and the mean
imposed gradient ⟨−∇P⟩, at high applied pressure. For ⟨−∇P⟩ ≳ 20 kPa/m, the gradient in the pipe actually saturates at a value −∇P ∼ 20 kPa/m
(blue disks in Fig. SI.1). This saturation of −∇P is associated with a saturation of the flow rate (data not shown), which agrees with observations
by (1) on a similar configuration. Importantly, our measurements show that for ⟨−∇P⟩ ≳ 20 kPa/m the gradient is identical over each
measurement portion of the pipe (S1S2, S2S3 and S3S4), and fixed in time. This indicates that the converging flow at the entrance of the pipe
causes a large localized dissipation (presumably similar with that reported for the flow of a shear-thickening suspension through an orifice (2)),
which is fixed at the pipe inlet and affects the whole pipe flow.

To prevent these large entrance effects and address the intrinsic flow in a pipe, we have used the drainage setup presented in the main body
of the paper.

SI.3. Laminar base-state flow expected for a Wyart-Cates rheology

Model. For a steady laminar flow, driven by a uniform gravitational component g sin θ, the longitudinal velocity u(r) at radial coordinate r is

u(r) =
∫ R

r
γ̇(r) dr =

∫ R

r

τ(r)
η(r)

dr , [SI.1]

with γ̇(r) = −∂u/∂r = τ(r)/η the local shear rate, τ(r) = ρgr sin θ/2 the local shear stress, ρ and η the density and effective viscosity of
the flowing material, respectively, and R the pipe radius, at which a no-slip condition (u(R) = 0) is assumed (Fig. SI.2A). Making use of
r = 2τ/ρg sin θ, Eq. [SI.1] can be recasted into

u(τ) =
2

ρg sin θ

∫ τw

τ

τ

η(τ)
dτ , [SI.2]

with τw = ⟨τw⟩ = τ(r = R) the uniform wall stress.
The model rheological shear-thickening laws proposed by Wyart-Cates (3), assumes that the effective viscosity of the suspension depends

on the magnitude of the shear stress relative to the inter-particle repulsive stress scale τ∗, according to η = ηS (ϕJ − ϕ)−2, with ηS a prefactor of
order the suspending liquid viscosity, ϕJ = (1 − f )ϕ0 + fϕ1 the jamming volume fraction for a given stress τ, ϕ0 and ϕ1 the frictionless and
frictional jamming volume fractions, respectively, and f = exp(−τ∗/τ) the stress-dependent fraction of frictional contacts between the particles
in the suspension, i.e.,

η(τ) = ηS [ϕ0 − (ϕ0 − ϕ1)e−τ
∗/τ − ϕ]−2 , [SI.3]

of which the four physical parameters (ηS , ϕ0, ϕ1, τ
∗) must be determined from rheological measurements.

Combining Eqs. [SI.2-SI.3], the velocity profile and the flow rate, are obtained, respectively, as

u(τ) =
2

ηS ρg sin θ

∫ τw

τ

τ

[ϕ0 − (ϕ0 − ϕ1)e−τ∗/τ − ϕ]−2 dτ , Q(τ) =
2πR2

τw
2

∫ τw

0
u(τ)τ dτ . [SI.4]

Rheological data fitting procedure. The parameters ηs, ϕ0, ϕ1 and τ∗ for the cornstarch suspensions are obtained by fitting Eq. [SI.3]
to the rheological measurements (see M&M in the main body of the paper for information about the measurements). First, the low stress
(circles) and high stress (squares) viscosity branches, are jointly fitted with η = ηS (ϕ0 − ϕ)−2 and η = ηS (ϕ1 − ϕ)−2, respectively, to determine
ηS = 0.28 mPa.s, ϕ0 = 0.445 and ϕ1 = 0.385 (Fig. SI.2B-left). This also sets the minimal volume fraction for discontinuous shear thickening
ϕDST = ϕ0 − 2e−1/2(ϕ0 − ϕ1) ≈ 0.37. Second, the repulsive stress scale τ∗ is obtained by fitting the whole data set, which gives τ∗ = 8.0 Pa
(Fig. SI.2B-right). Despite their simplicity, the Wyart-Cates rheological laws are found to fit fairly well the global trends of the rheological
measurements (except for the negatively-sloped region, where measurements are not expected to reflect the rheological response of the
suspension because of flow instabilities leading to large deviations from a laminar rheometric flow (4–6)). In particular, they fit fairly well the
evolution of the non-frictional viscosity, η0(ϕ) ≡ ηS (ϕ0 − ϕ)−2, and of the critical shear stress, τc(ϕ), with the particle volume fraction ϕ.

Laminar base-state velocity profile and flow rate. Fig. SI.2C, presents the laminar base-state velocity profile and flow rate (Eq. [SI.4])
using the rheological parameters fitted on the rheograms of cornstarch suspensions (Fig. SI.2B). The velocity profile, normalized by the
maximal velocity umax = u(r = 0), is plotted for a fixed volume fraction ϕ = 0.41 > ϕDST and relative wall stresses τw/τ

∗ ranging from 0.1 to
10. The normalized flow rate, ηS Q/R3τ∗, is plotted as a function of τw/τ

∗ for particle volume fractions between 0.30 and 0.44. For low wall
stresses (τw ≪ τc ≈ 0.4τ∗), the velocity profile is close to parabolic and the flow rate follows Hagen-Poiseuille law Q = πR

3

4η0
⟨τw⟩ ∝ ⟨τw⟩, with

η0 = ηS (ϕ0 − ϕ)−2 the frictionless viscosity. As stress is increased much above τc, an increasingly large portion of the suspension next to the
wall is expected to jam, and the base-state flow rate decreases, asymptotically, as Q ∼ (R3τc/η0) × (τc/τw)3 ∝ τ−3

w .

1To whom correspondence should be addressed: henri.lhuissier@univ-amu.fr
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Fig. SI.2. (A) Force balance within the pipe cross-section. (B-left) Low-stress (circles) and high-stress (squares) viscosity branches. Dashed line: η = ηS (ϕ0 − ϕ)−2. Solid line:
η = ηS (ϕ1 − ϕ)−2. (B-right) Shear stress τ versus shear rate γ̇ for different volume fractions ϕ. Solid lines: fitted Wyart-Cates rheological laws. ηS = 0.28 mPa.s, ϕ0 = 0.445,
ϕ1 = 0.385 and τ∗ = 8.0 Pa. (C-top) Normalized velocity profile, u(r)/umax (Eq. [SI.4], with umax = u(0)), for different wall stress τw/τ

∗ and ϕ = 0.41. (C-bottom) Normalized flow
rate, Q̃ = ηsQ/R3τ∗, versus τw/τ

∗, for various ϕ. The parameters ηS , ϕ0, ϕ1 and τ∗ are those obtained from the rheological measurements.

SI.4. Estimation of the cross-sectional profile of velocity in the frictional soliton

The opacity of the suspension restricts the observation of the flow to within a short distance λ from the wall (set by the laser penetration depth
through the suspension). By calibrating the near-wall flow observations against the Poiseuille flow expected in the low-forcing regime, we
estimate the typical slip velocity and the typical velocity gradient at the wall in the frictional soliton.

Two quantities are extracted from the movies: the mean flow velocity Uw within the near-wall observation depth λ, and variations of the
flow velocity across the same depth (see variations in the slope of the spatio-temporal trajectories of the tracing particles in Fig. 3A-B of the
main body of the paper). They are both obtained by measuring, for each of the two flow phases, the velocity component parallel to the pipe
axis of 30 to 40 tracing particles randomly chosen within the observation depth.

Estimation of the near-wall observation distance. The near-wall observation distance λ is estimated from low-forcing flows, assuming a
Poiseuille velocity profile. For a Poiseuille flow, the longitudinal velocity u(r) follows a parabolic profile u(r) = 2U(1 − r2/R2) relative to the
radial coordinate r, with U the mean flow velocity and R the pipe radius. This means that the wall-distance λ = R − r at which a given velocity
Uw is observed follows

λ

R
= 1 −

√
1 −

Uw

2U
≃

Uw

4U
. [SI.5]

From the velocity Uw ≈ 0.10U observed at low forcings (ϕ = 0.405, ⟨τw⟩ ≈ 0.7τc(ϕ)), one estimates the effective observation distance to
the wall as λ ≈ 0.025R ≈ 120µm, or ≈ 5-10 cornstarch grain diameters of ≈ 15µm, given R = 5.15 mm.

Estimation of the cross-sectional profile of velocity in the frictional soliton. The mean near-wall velocity in the frictional soliton
is UFS

w ≈ 0.6U (for ⟨τw⟩ ≈ 2.9τc(ϕ)), with U of the mean flow velocity in the pipe, as compared to Uw ≈ 0.10U for the laminar phases (all
measurements are performed at ϕ = 0.405). The relative variations in velocity across the observation depth is ∆UFS

w /U ≡
√
⟨u2⟩ − (UFS

w )2/U ≈
0.077 in the soliton, as compared to ∆Uw/U ≡

√
⟨u2⟩ − U2

w/U ≈ 0.027 for the laminar phases (independently of the level of applied
stress, as long as ⟨τw⟩ < τc(ϕ)). Interpreting this variation as a proxi for the near-wall velocity gradient, i.e., −∂u/∂r|r=R ∝ ∆Uw/λ (since
λ/R ≈ 0.025 ≪ 1), yields −∂u/∂r|r=R ≈ 11U/R in the soliton, as compared to −∂u/∂r|r=R = 4U/R for the laminar phases (assuming, again, a
Poiseuille velocity profile u(r) = 2U(1 − r2/R2) in the laminar phases).

Altogether, these measurements suggests that the cross-sectional profile of velocity in the soliton is closer to a plug flow, with a significant
slip velocity (uFS(r = 0) ≈ UFS

w + λ∂u/∂r|r=R ≈ 0.3U) and a velocity gradient at the wall (−∂u/∂r|r=R ≈ 11U/R) of the same order of magnitude,
though a few times larger, than in the laminar phases (−∂u/∂r|r=R = 4U/R), as schematized in Fig. 3B of the main body of the paper.
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SI.5. Contribution of diffusion to the transient growth of microscopic gas bubble in the frictional soliton

Microscopic gas bubbles, which are fortuitously trapped in the suspension, are found to expand, as the soliton passes, and to collapse,
immediately after. This reflects the decrease of the liquid pressure within the soliton. In the main text, the magnitude of the pressure drop is
estimated by assuming that the bubble growth is essentially due to the inflation of the gas that is initially inside the bubble. This demands that
diffusive transport of gas from the solution to the bubble has a negligible contribution to the growth, which is what this appendix shows.

The radius r(t) of a spherical bubble, growing by mass-limited diffusion in a non-moving supersaturated liquid, follows (7)

r2(t) ≈ r2
0 + 2

∆c
ρg

Dt , [SI.6]

in the limit of both long times (t ≪ R2/D) and low supersaturation (∆c/ρg ≪ 1), with r0 the initial bubble radius, ρg the gas density inside the
bubble, ∆c the gas supersaturation of the liquid relative to the bubble condition expressed in kg/m3, D the diffusion coefficient of the gas in the
liquid, and t the time since r = r0. For a sudden and large pressure drop, the supersaturation is (at most) equal to the density of gas dissolved in
the liquid. Therefore, the supersaturation is also (at most) equal to the saturated density csat,1 atm, assuming that the liquid is close to saturation
upstream of the soliton, where the pressure is P ≈ 1 atm, consistently with the observation that bubble size is not varying rapidly, there.

This, together with Eq. [SI.6], implies that the diffusive growth time is approximately:

t ≈
1
2
ρg

csat,1 atm

r2 − r2
0

D
. [SI.7]

The initial bubble radius is r0 ≈ 20µm. The maximal radius r(t) is (at least) twice as large. The gas density in the bubble is ρg ≈ 1.2 kg/m3.
Considering the contribution of nitrogen and oxygen, only, because they dominate the diffusive growth in air-equilibrated water, one has
csat,1 atm ≈ 17 g/m3 and D ≈ 2.2 × 10−9 m2/s.

Evaluating Eq. [SI.7] yields t ≈ 19 s (at least), which is much longer than the actual growth time ∼ l/(u + c) < 0.2 s. This comparison
confirms that diffusive effects can be neglected in the sudden expansion of microscopic bubbles by the frictional soliton.

SI.6. Independence of flow rate saturation on the Reynolds number of the flow

Fig. SI.3 indicates that flow rate saturation (and the bifurcation of the flow from a single-phase low-forcing regime to a two-phase high-forcing
regime) is observed at values of the Reynolds number of the flow (Re ≡ ρQ/πη0R) varying by more than two orders of magnitude (including
values much lower than one), as the particle volume fraction is varied.

The Reynolds number at saturation Rec = ρQc/πη0R is actually selected by the shear-thickening onset condition given by Eq. [4] of the
main body of the paper, i.e., Q = Qc ≡ πR3τc(ϕ)/4η0. This condition (dashed line in Fig. SI.3) is found to capture the saturated flow rate
dependance on both the volume fraction ϕ (main graphics) and the pipe radius R (inset).

Fig. SI.3. (Main) Reynolds number Rec = ρQc/πη0R at the onset of flow rate saturation (hence, of the high-forcing regime) vs particle volume fraction (R = 5.15 mm, same data
as in Fig. 2B of the main body of the paper). (Inset) Saturation flow rate Qc vs pipe radius (ϕ = 0.415). The dashed lines are the value expected from Eq. [4] of the main body of
the paper, i.e., Rec = ρQc/πη0R, with Qc ≡ πR3τc(ϕ)/4η0.
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SI.7. Sampling of the particle volume fraction at the pipe outlet

In order to verify whether the propagation of the frictional soliton is associated, or not, with a significant global redistribution of the particle
volume fraction along the pipe, two additional experiments have been conducted, in the low- and high-forcing regimes, respectively, during
which a few samples of suspension (∼ 10 ml) are collected at the pipe outlet over the drainage duration. The particle volume fraction in each
sample is determined by weighing the sample before and after it has been dried, under controlled conditions, in an oven.

Fig. SI.4 presents the evolution of the volume fraction collected at the pipe outlet ϕout for the low-forcing regime (�, ⟨τw⟩/τc(ϕ) ≈ 0.7)
and the high-forcing regime (□, ⟨τw⟩/τc(ϕ) ≈ 2.8), for the same nominal (prepared) volume fraction of the suspension (ϕ = 0.405). In both
cases the collected volume fraction ϕout is found to remain undistinguishable (given the experimental accuracy of ≈ ±0.5%) from the nominal
volume fraction ϕ.

This observation indicates that no significant global redistribution of the particle volume fraction along the pipe is associated with the
frictional-soliton inception or propagation along the pipe. However, it does not permit to conclude about possibly significant redistribution of
the particle volume fraction within the pipe cross-sections.

Low-forcing regime
High-forcing regime

Fig. SI.4. Evolution of the suspension volume fraction ϕout, as collected at the pipe outlet, vs time. The nominal volume fraction is ϕ = 0.405. tdrainage is the drainage time, at
which the suspension free-surface reaches the pipe outlet and about 90% of the total suspension volume has drained. The symbol shape indicates the low-forcing regime (�,
⟨τw⟩/τc(ϕ) ≈ 0.7) or the high-forcing regime (□, ⟨τw⟩/τc(ϕ) ≈ 2.8). The pipe radius is R = 5.15 mm.

SI.8. Main characteristics of the effective rheology and of the frictional soliton for the different shear-thickening
suspensions

Table SI.1 lists the low stress effective viscosity and the onset stress of discontinuous shear-thickening obtained from the rheological
characterization of the cornstarch suspension and of the four other types of shear-thickening suspensions (A-D) presented in Fig. 6 of the main
body of the paper. It also reports the measurements for the flow rate at saturation and the main characteristics of the frictional-soliton flow
phase, together with the ranges of particle volume fractions and the range of mean wall stress at which they have been obtained.

Cornstarch
(A) Potato

starch
(B) Cassava

starch
(C) Polystyrene

spheres + cellulose
(D) Calcite +

superplasticizer

Particle vol. fraction ϕ ( – ) 0.380-0.425 0.420 0.448 0.595 0.534

param.
Rheological η0 (Pa.s) 0.07-0.7 0.20±0.01 0.13±0.01 0.45±0.03 0.3±0.2

τc (Pa) 2.6-7.6 2.1±0.1 2.8±0.2 23.9±2 0.8±0.3

Mean wall stress ⟨τw⟩/τc ( – ) 1.0-31.5 1.3-7.3 2.7-10.9 3.2-5.8 52±31

Saturation flow rate Qc/
πR3τc

4η0
( – ) 0.8±0.3 1.2±0.1 1.0±0.1 2.6±0.7 4.6±2.1

characteristics
Frictional-soliton

l/2R ( – ) 1.5±0.5 0.9±0.5 1.3±0.3 0.9±0.3 1.1±0.1
c/U ( – ) 1.5±1.0 5.6±1.4 2.5±1.4 0.8±0.2 6.2±0.6

UFS
w /Uw ( – ) 8.2±4.6 5.7±0.4 9.4±1.2 2.0±0.2 8.3±1.0

Table SI.1. Values separated by an hyphen (-) stand for a range of variation. Values separated by a ± symbol indicate the average and the standard deviation over all experiments
performed in the range of variation.
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