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Abstract
In this paper, a newmultivariate counting process model (calledMultivariate Poisson Generalized Gamma Process)
is developed and its main properties are studied. Some basic stochastic properties of the number of events in the new
multivariate counting process are initially derived. It is shown that this new multivariate counting process model
includes the multivariate generalized Pólya process as a special case. The dependence structure of the multivariate
counting process model is discussed. Some results on multivariate stochastic comparisons are also obtained.

1. Introduction

Until now, a variety of univariate counting processes for modeling univariate random recurrent events
have been developed and studied intensively in the literature. However, in practice, stochastically depen-
dent series of events are also frequently observed, leading to multivariate counting processes. For
instance, in queueing models, bivariate point processes arise as the input and output processes (Daley
[11]). In reliability applications, the occurrence of recurrent failures in two or more parts in a system are
frequently positively dependent. In finance area, a bankruptcy of a financial company in one group may
also affect those in other groups (Allen and Gale [2]). In econometrics, multivariate point processes are
frequently used to model multivariate market events (see Bowsher [6]). In insurance, two types of recur-
rent claims can be modeled by a bivariate point process (Partrat [21]). For more plenty of examples,
see Cox and Lewis [10]. Although some multivariate counting process models have been developed in
the literature, practically available models which can meet practical needs are very limited and there
still exists a big gap between the need for proper models in various applications and available useful
models.

The main contribution of this paper is to develop a new general class of multivariate counting pro-
cesses which has mathematical tractability and applicability. Specifically, in the multivariate counting
process model developed in this paper, for example, the distribution for the numbers of events in a
time interval and the stochastic intensity of the process can be obtained explicitly. This is practically
important because it allows explicit expression of the likelihood function in estimation procedure, which
increases the utility of the model considerably. Furthermore, the developed counting process model has
sufficient flexibility because the baseline intensity functions contained in the model have general forms.
In addition, the developed model is very general in the sense that it includes an existing model as a
special case.

The paper is organized as follows. In Section 2, a new class of bivariate counting processes is defined
and its basic properties are derived. Furthermore, the corresponding marginal processes and the future
© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
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process of the developed model are also characterized. In Section 3, the stochastic intensity functions
of the model are derived and it is shown that the model includes the bivariate generalized Pólya process
in Cha and Giorgio [8] as a special case. In Section 4, the bivariate process is generalized to the multi-
variate case, and the results from the previous section are extended. In Section 5, multivariate stochastic
comparisons for the numbers of events and the arrival times of the events are studied. In addition, the
dependence structure of the process is analyzed.

2. Bivariate Poisson generalized gamma process and its basic properties

In this section, the bivariate Poisson generalized gamma process is defined and its basic properties are
derived. To define the new counting process model, we first introduce the generalized gamma distri-
bution proposed in Agarwal and Kalla [1] and Ghitany [15]. A random variable Φ is said to follow
the generalized gamma distribution (GGD) with parameters (a, k,U, l), where a ≥ 0, k,U, l > 0, if its
probability density function (pdf) is given by

f (q) = Uk−a

Γa (k,Ul)
qk−1 exp{−Uq}

(q + l)a , q > 0, (2.1)

where

Γa (k, V) =
∫ ∞

0

yk−1 exp{−y}
(y + V)a dy,

for all V > 0, with

Γa (k,Ul) =
∫ ∞

0

yk−1 exp{−y}
(y + Ul)a dy =

∫ ∞

0

Uk−ayk−1 exp{−Uy}
(y + l)a dy. (2.2)

The function Γa (k, V) is called the generalized gamma function (see Kobayashi [20]) and if a = 0, then

Γ0(k, V) =
∫ ∞

0
yk−1 exp{−y}dy = Γ(k), ∀k > 0.

Thus, when a = 0, it can be seen that the pdf in (2.1) becomes that of a gamma distributionwith parameter
(k,U). Hence, the GGD includes the gamma distribution as a special case.

Coming back to the general case, one can note from Gupta and Ong [17] that

Γa (k, V) =
Γ (k)
Va−k i (k, k − a + 1; V) ,

where

i (a, c; x) = 1
Γ (a)

∫ ∞

0

e−xtta−1

(1 + t)a−c+1 dt,

is the confluent hypergeometric function of the second kind. This allows an easy computation of
Γa (k, V), as i (a, c; x) and Γ (k) are implemented in most statistical or mathematical software. From
Ghitany [15], the moment generating function of Φ is given by
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MΦ(s) = E(esΦ) =
(
1 − s

U

)a−k Γa (k, (U − s)l)
Γa (k,Ul) , s < U, (2.3)

and its r-th moment about the origin is

E(Φr) = U−r Γa (k + r,Ul)
Γa (k,Ul) , r ∈ N∗. (2.4)

Now, we will define the bivariate Poisson generalized gamma process using the GGD. Let {N(t), t ≥
0}, where N(t) = (N1(t),N2(t)), be a bivariate process. Then, the corresponding “pooled” point process
{M (t), t ≥ 0}, where M (t) = N1(t) +N2(t), can be defined. In this paper, we will consider regular (also
known as orderly) multivariate point processes. In a univariate point process {N (t), t ≥ 0}, regularity
is intuitively the nonoccurrence of multiple events in a small interval (see e.g., Cox and Lewis [10],
Finkelstein [13, 14]; see also Cha and Giorgio [8]). Note that there are two types of regularity in multi-
variate point processes: (i) marginal regularity and (ii) regularity. For a multivariate point process, we
say the process is marginally regular if its marginal processes, considered as univariate point processes,
are all regular. The multivariate process is said to be regular if the pooled process is regular. Throughout
this paper, we will assume that the multivariate process {N(t), t ≥ 0} of our interest is a regular process.
In the following, we shall use the notation Φ ∼ GG (a, k,U, l) to represent that the continuous random
variable Φ follows the GGD with parameters (a, k,U, l) and {N (t), t ≥ 0} ∼ NHPP ([(t)) to indicate
that the counting process {N (t), t ≥ 0} follows the nonhomogeneous Poisson process (NHPP) with
intensity function [(t).

Definition 2.1. (Bivariate Poisson Generalized Gamma Process) A bivariate counting process
{N(t), t ≥ 0} is called the bivariate Poisson generalized gamma process (BPGGP) with the set of
parameters (_1(t),_2(t), a, k,U, l), _i (t) > 0, ∀t ≥ 0, i = 1, 2, a ≥ 0, k,U, l > 0, if

(i) {Ni (t), t ≥ 0}|(Φ = q) ∼ NHPP (q_i (t)), i = 1, 2, independent;
(ii) Φ ∼ GG (a, k,U, l).

Throughout this paper, the BPGGP with the set of parameters (_1(t),_2(t), a, k,U, l) will be denoted
by BPGGP(_1(t),_2(t), a, k,U, l).

Based on Definition 2.1, we now derive some basic properties of BPGGP and with that aim, let us
introduce Λi (t) ≡

∫ t
0 _i (s)ds, i = 1, 2, t ≥ 0.

Proposition 2.2.

(i) {M(t) = (M1(t),M2(t)), t ≥ 0} is a BPGGP(1, 1, a, k,U, l) if and only if {N (t) =

(M1(Λ1(t)),M2(Λ2(t))) , t ≥ 0} is a BPGGP(_1(t),_2(t), a, k,U, l).
(ii) For c> 0, let Ũ = Uc, l̃ = l/c and _̃i (t) = _i (t)/c for i = 1, 2. Then, a BPGGP(_̃1(t), _̃2(t), a, k, Ũ, l̃)

is a BPGGP(_1(t),_2(t), a, k,U, l).

The proof is similar to that of Proposition 1 from Cha and Mercier [9] in the univariate case and it
is omitted. As in that paper, the second point of Proposition 2.2 shows that the BPGGP model as given
in Definition 2.1 is not identifiable. An additional constraint should hence be added such as l ≡ 1 for
instance, wherever statistical procedures are studied (which is not the case in the present paper).

We now study the distributions for the numbers of events, which are of major interest for any counting
process model.
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Theorem 2.3. For 0 ≤ ui1 < ui2 < · · · < uim, i = 1, 2,

P(Ni (ui2) − Ni (ui1) = ni, i = 1, 2)

=

[ 2∏
i=1

(Λi (ui2) − Λi (ui1))ni

ni!

]
Uk−a

(U + ∑2
i=1 (Λi (ui2) − Λi (ui1)))k+n1+n2−a

×
Γa (k + n1 + n2, (U + ∑2

i=1(Λi (ui2) − Λi (ui1)))l)
Γa (k,Ul) ,

and

P(Ni (uij) − Ni (uij−1) = nij, i = 1, 2, j = 1, 2, · · · ,m)

=

[ 2∏
i=1

m∏
j=1

(Λi (uij) − Λi (uij−1))nij

nij!

]
Uk−a

(U + ∑2
i=1

∑m
j=1(Λi (uij) − Λi (uij−1)))k+∑2

i=1
∑m

j=1 nij−a

×
Γa (k + ∑2

i=1
∑m

j=1 nij, (U + ∑2
i=1

∑m
j=1(Λi (uij) − Λi (uij−1)))l)

Γa (k,Ul) .

Proof. From the definition of BPGGP(_1 (t),_2(t), a, k,U, l),

P(Ni (ui2) − Ni (ui1) = ni, i = 1, 2)

=

∫ ∞

0

[ 2∏
i=1

(q(Λi (ui2) − Λi (ui1)))ni exp{−q(Λi (ui2) − Λi (ui1))}
ni!

]
Uk−a

Γa (k,Ul)
qk−1 exp{−Uq}

(q + l)a dq

=

[ 2∏
i=1

(Λi (ui2) − Λi (ui1))ni

ni!

]
Uk−a

Γa (k,Ul)

×
∫ ∞

0

qk+n1+n2−1 exp{−q(U + ∑2
i=1(Λi (ui2) − Λi (ui1)))}

(q + l)a dq

=

[ 2∏
i=1

(Λi (ui2) − Λi (ui1))ni

ni!

]
Uk−a

(U + ∑2
i=1(Λi (ui2) − Λi (ui1)))k+n1+n2−a

×
Γa (k + n1 + n2, (U + ∑2

i=1(Λi (ui2) − Λi (ui1)))l)
Γa (k,Ul) .

In a similar way,

P(Ni (uij) − Ni (uij−1) = nij, i = 1, 2, j = 1, 2, · · · ,m)

=

∫ ∞

0

[ 2∏
i=1

m∏
j=1

(q(Λi (uij) − Λi (uij−1)))nij exp{−q(Λi (uij) − Λi (uij−1))}
nij!

]
× Uk−a

Γa (k,Ul)
qk−1 exp{−Uq}

(q + l)a dq

=

[ 2∏
i=1

m∏
j=1

(Λi (uij) − Λi (uij−1))nij

nij!

]
Uk−a

(U + ∑2
i=1

∑m
j=1(Λi (uij) − Λi (uij−1)))k+∑2

i=1
∑m

j=1 nij−a

×
Γa (k + ∑2

i=1
∑m

j=1 nij, (U + ∑2
i=1

∑m
j=1(Λi (uij) − Λi (uij−1)))l)

Γa (k,Ul) .

�
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The joint moments of (N1(t),N2(t)) also are of practical interest for the applications. They are
obtained in the following theorem.

Theorem 2.4. Let {N(t), t ≥ 0} be the BPGGP with the set of parameters (_1(t),_2(t), a, k,U, l). Then
the following properties hold.

(i) The joint moment generating function of (N1 (t),N2(t)) is given by

MN1 (t1 ) ,N2 (t2 ) (s1, s2) =
(
1 − (Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1))

U

)a−k

× Γa [k, (U − (Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1)))l]
Γa (k,Ul)

for all s1 and s2 such that Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1) < U.
(ii) We have

E [N1 (t1)r1 N2 (t2)r2] =
r1∑

i1=0

r2∑
i2=0

(Λ1(t1))i1 (Λ2(t2))i2

Ui1+i2

Γa (k + i1 + i2,Ul)
Γa (k,Ul)

{
r1
i1

}{
r2
i2

}
for all r1, r2 ∈ N, where the {braces} denote Stirling numbers of the second kind.

(iii) The covariance of (N1 (t1),N2(t2)) is given by

Cov(N1(t1),N2(t2)) =
Λ1(t1)Λ2(t2)

U2

[
Γa (k + 2,Ul)
Γa (k,Ul) −

(
Γa (k + 1,Ul)
Γa (k,Ul)

)2]
, (2.5)

and the corresponding Pearson’s correlation coefficient is:

d (N1 (t1 ) ,N2 (t2 ) ) =

(√
1 + C (k,U, l, a)

Λ1(t1)

√
1 + C (k,U, l, a)

Λ2(t2)

)−1
,

where

C (k,U, l, a) = U

(
Γa (k + 2,Ul)
Γa (k + 1,Ul) −

Γa (k + 1,Ul)
Γa (k,Ul)

)−1
.

Proof.

(i) Conditioning on Φ, we can write

MN1 (t1 ) ,N2 (t2 ) (s1, s2) = E
[
E

(
es1N1 (t1 )+s2N2 (t2 ) |Φ

)]
,

where [Ni (t) |Φ = q], i = 1, 2 are independent and Poisson distributed with parameter Λi (ti) q,
respectively. By using the moment generating function of a Poisson distribution (see e.g., Ross
[23]), we have:

https://doi.org/10.1017/S0269964824000111 Published online by Cambridge University Press
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MN1 (t1 ) ,N2 (t2 ) (s1, s2) = E [exp {(Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1))Φ}]
= MΦ [(Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1))]

=

(
1 − (Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1))

U

)a−k

× Γa [k, (U − (Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1)))l]
Γa (k,Ul)

for all s1 and s2 such that Λ1 (t1) (es1 − 1) + Λ2 (t2) (es2 − 1) < U, due to (2.3).
(ii) By a similar procedure, we have:

E [N1 (t1)r1 N2 (t2)r2] = E [E (N1 (t1)r1 N2 (t2)r2 |Φ)]
= E [E (N1 (t1)r1 |Φ) E (N2 (t2)r2 |Φ)] ,

due to the conditional independence between N1 (t1) and N2 (t2) given Φ. Based on Formula (3.4)
in Riordan [22], which provides the moments of Poisson distributions with respect to Stirling
numbers of the second kind, we now get:

E [N1 (t1)r1 N2 (t2)r2] = E

[ r1∑
i1=0

r2∑
i2=0

(Λ1(t1))i1 (Λ2(t2))i2 Φi1+i2
{
r1
i1

}{
r2
i2

}]
.

The result follows, based on (2.4).
(iii) The computation of the covariance now is a direct consequence from point (ii). The variance of

each Ni (ti), i = 1, 2, can be derived in the same way from point (ii) (or using Theorem 2 from Cha
and Mercier [9], based on the fact that {Ni (t), t ≥ 0}, i = 1, 2, are univariate Poisson generalized
gamma processes, see Proposition 2.7 later on). We obtain

Var(Ni (ti)) =
Λi (ti)
U

Γa (k + 1,Ul)
Γa (k,Ul)

+
(
Λi (ti)
U

)2 [
Γa (k + 2,Ul)
Γa (k,Ul) −

(
Γa (k + 1,Ul)
Γa (k,Ul)

)2]
, (2.6)

for i = 1, 2. The result for Pearson’s correlation coefficient then is a routine computation,
remembering that

d (N1 (t1 ) ,N2 (t2 ) ) =
Cov(N1(t1),N2(t2))√

Var (N1 (t1))
√

Var (N2 (t2))
.

�

Remark 2.5. Based on (2.6) and (2.5), it is clear that Cov (N1(t1),N2(t2)) > 0, which shows that N1(t1)
and N2(t2) always are positively correlated, whatever the parameters of the BPGGP are, and whatever
the times t1 and t2 are. Also, d (N1 (t1 ) ,N2 (t2 ) ) is non decreasing with respect to (t1, t2), with

lim
(t1,t2 )→(0,0)+

d (N1 (t1 ) ,N2 (t2 ) ) = 0,

lim
(t1,t2 )→(∞,∞)

d (N1 (t1 ) ,N2 (t2 ) ) = 1.

Now, in the following proposition, some important properties of the BPGGP will be stated. For this,
we employ the same notations as those in Cha and Giorgio [8]. Denote by HPt− ≡ {M (u), 0 ≤ u < t}

https://doi.org/10.1017/S0269964824000111 Published online by Cambridge University Press
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the history of the pooled process in [0, t). Define M (t−) as the total number of events in [0, t) and
Ti as the time from 0 until the arrival of the ith event in [0, t) of the pooled process {M (t), t ≥ 0}.
ThenHPt− can equivalently be defined in terms of M (t−) and the sequential arrival points of the events
0 ≤ T1 ≤ T2 ≤ · · · ≤ TM (t−) < t in [0, t). Similarly, define the marginal histories of the marginal
processes Hit− ≡ {Ni (u), 0 ≤ u < t}, i = 1, 2. Then, Hit− ≡ {Ni (u), 0 ≤ u < t} can also be defined
in terms of Ni (t−) and the sequential arrival points of the events 0 ≤ Ti1 ≤ Ti2 ≤ · · · ≤ TiNi (t−) < t
in [0, t), i = 1, 2, where Ni (t−) is the total number of events of type i point process in [0, t), i = 1, 2.
In the following, we also use the definition of “p(t)-thinning” in Cha and Giorgio [8]. Also, we define
univariate Poisson generalized Gamma process to define the marginal process.

Definition 2.6. (Poisson Generalized Gamma Process) A counting process {N (t), t ≥ 0} is called
the Poisson generalized gamma process (PGGP) with the set of parameters (_(t), a, k,U, l), _(t) >

0, ∀t ≥ 0, a ≥ 0, k,U, l > 0, if

(i) {N (t), t ≥ 0}|(Φ = q) ∼ NHPP (q_(t));
(ii) Φ ∼ GG (a, k,U, l).

See Cha and Mercier [9] for various properties of the PGGP.
For convenience, we now introduce the following notations: Nui (t) ≡ Ni (u + t) − Ni (u), Λi (t) ≡∫ t

0 _i (u)du, i = 1, 2, _(t) ≡ _1(t) + _2(t), Λ(t) =
∫ t
0 _(u)du = Λ1(t) + Λ2(t), and pi (t) ≡ _i (t)/_(t),

i = 1, 2.

Proposition 2.7. Let {N(t), t ≥ 0} be the BPGGP with the set of parameters (_1(t),_2(t), a, k,U, l).
Then

(i) The pooled process {M (t), t ≥ 0} is PGGP(_(t), a, k,U, l).
(ii) The process {N(t), t ≥ 0} is constructed by thinning of {M (t), t ≥ 0} with thinning probabilities

pi (t), i = 1, 2: {(Mp1 ( ·) (t),Mp2 ( ·) (t)), t ≥ 0}.
(iii) Given (H1u− ,H2u−), {Nu(t), t ≥ 0}, where Nu(t) = (Nu1(t),Nu2(t)), is BPGGP(_1(t + u),_2(t +

u), a, k + n1 + n2,U + Λ(u), l), where ni is the realization of Ni (t−), i = 1, 2, respectively.
(iv) For any fixed u ≥ 0, {Nu(t), t ≥ 0} is “unconditionally” BPGGP(_1(t + u),_2(t + u), a, k,U, l).
(v) The marginal process {Ni (t), t ≥ 0} is PGGP(_i (t), a, k,U, l), i = 1, 2.

Proof. Properties (i), (ii), (iv) and (v) obviously hold. Let {N (t), t ≥ 0} be PGGP(_(t), a, k,U, l).
Then, at an arbitrary time u> 0, given {N (u−) = n,T1 = t1,T2 = t2, · · · ,Tn = tn}, the conditional
future process {Nu(t), t ≥ 0}, where Nu(t) ≡ N (u + t) − N (u), is a PGGP with the set of parameters
(_(u + t), a, k + n,U + Λ(u), l) (see Cha and Mercier [9]). Then property (iii) also obviously holds due
to property (ii). �

Properties (iii) and (iv) state about the conditional and unconditional restarting properties of the
BPGGP. For more details on the restarting property, see Cha [7] and Cha and Giorgio [8].

3. Further properties of bivariate Poisson generalized gamma process

An efficient characterization for a multivariate point process can be done through the stochastic intensity
approach (see Cox and Lewis [10], Cha and Giorgio [8]). As mentioned in Cha and Giorgio [8], a
marginally regular bivariate process can be specified by the following complete intensity functions:
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_1t ≡ lim
Δt→0

P (N1(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

_2t ≡ lim
Δt→0

P (N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N2(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

_12t ≡ lim
Δt→0

P (N1(t, t + Δt)N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

, (3.1)

where Ni (t1, t2), t1 < t2, represents the number of events in [t1, t2), i = 1, 2, respectively (see Cox and
Lewis [10]). For a regular process, _12t = 0, and it is sufficient to specify just _1t and _2t in (3.1) in
order to define a regular process.

Theorem 3.1. The complete intensity functions of the BPGGP with the set of parameters
(_1(t),_2(t), a, k,U, l) are given by

_it =
1

(U + Λ1(t) + Λ2(t))
Γa (k + N1(t−) + N2(t−) + 1, (U + Λ1(t) + Λ2(t))l)
Γa (k + N1(t−) + N2(t−), (U + Λ1(t) + Λ2(t))l)

_i (t), i = 1, 2. (3.2)

Proof. Observe that

_1t = lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

= E(Φ |H1t− ;H2t− )

[
lim
Δt→0

P (N1(t, t + Δt) = 1|Φ;H1t−;H2t−)
Δt

]
,

where E(Φ |H1t− ;H2t− ) [ · ] stands for the expectation with respect to the conditional distribution of
(Φ|H1t−;H2t−) and

lim
Δt→0

P (N1(t, t + Δt) = 1|Φ;H1t−;H2t−)
Δt

= Φ_1(t).

Thus, _1t = E(Φ |H1t− ;H2t− ) [Φ_1(t)].
Similar to the procedure described in Cha [7], the conditional distribution of (Φ|Hit− = hit− , i =

1, 2), where hit− ≡ (ti1, ti2, · · · , tini , ni) is the realization of Hit− , i = 1, 2, respectively, is given by(
qn1+n2 exp

{
−q

∫ t

0

2∑
i=1

_i (x)dx

}
f (q)

)
×

( ∫ ∞

0
qn1+n2 exp

{
−q

∫ t

0

2∑
i=1

_i (x)dx

}
f (q)dq

)−1
,

where we recall that f stands for the probability density function of Φ. Then,

_1t = E(Φ |H1t− ;H2t− ) [Φ_1(t)]

=

∫ ∞
0 qn1+n2+1 exp

{
−q

∫ t
0

∑2
i=1 _i (x)dx

}
f (q)dq∫ ∞

0 qn1+n2 exp
{
−q

∫ t
0

∑2
i=1 _i (x)dx

}
f (q)dq

_1(t),
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which extends Proposition 4.1 in Grandell [16] to a bivariate and non homogeneous mixed Poisson
process. Now, one can check that∫ ∞

0
qn exp

{
−q

∫ t

0

2∑
i=1

_i (x)dx

}
f (q)dq

=
Uk−a

(U + Λ1 (t) + Λ2(t))k+n−a
Γa (k + n, (U + Λ1(t) + Λ2(t))l)

Γa (k,Ul) .

Therefore,

_1t =
1

(U + Λ1(t) + Λ2(t))
Γa (k + N1(t−) + N2(t−) + 1, (U + Λ1(t) + Λ2(t))l)
Γa (k + N1(t−) + N2(t−), (U + Λ1(t) + Λ2(t))l)

_1(t).

The intensity function _2t can be obtained symmetrically. �

Proposition 3.2. Let {N(t), t ≥ 0} be a BPGGP with the set of parameters (_1(t),_2 (t), a = 0, k,U, l)
such that _i (t) ≡ qi (t) exp{U(Φ1(t) + Φ2(t))}, i = 1, 2, where Φi (t) ≡

∫ t
0 qi (s)ds, i = 1, 2. Then

{N(t), t ≥ 0} is a BVGPP(q1(t), q2(t), 1/U, k/U) (whatever l is).

Proof. Under the given specific setting, it can be shown that the complete intensity functions in (3.2)
becomes those in BVGPP given in Definition 1 of Cha and Girogio [8]. �

The result of Proposition 3.2 is also clear from the definition of the BPGGP and the characterization
of the BVGPP in Theorem 2 of Cha and Giorgio [8].

It can be shown that

[(k) ≡ Γa (k + 1,Ul)
Γa (k,Ul) ,

is increasing in k > 0 for any a ≥ 0,U, l > 0 (see the proof of Proposition 8 in Cha and Mercier [9]).
Thus, the complete intensity functions in (3.2) are increasing in N1(t−) + N2(t−). This implies that
the proneness to the future event occurrence in each marginal process is increasing with the number of
events, previously occurred in the pooled process.

4. Multivariate Poisson generalized gamma process

In this section, we study the multivariate Poisson generalized gamma process (MPGGP), by extending
the results obtained in the previous sections. As in Cha and Giorgio [8], let {N(t), t ≥ 0}, where
N(t) = (N1(t),N2(t), · · · ,Nm (t)), be a multivariate process and define the corresponding “pooled”
point process {M (t), t ≥ 0}, where M (t) = N1(t) +N2(t) + · · · +Nm (t). Also, define the marginal point
processes {Ni (t), t ≥ 0}, i = 1, 2, · · · ,m, and the corresponding marginal histories of the marginal
processes: Hit− , i = 1, 2, · · · ,m. The MPGGP can be defined by generalizing Definition 2.1.

Definition 4.1. (Multivariate Poisson Generalized Gamma Process) A multivariate counting pro-
cess {N(t), t ≥ 0} is called the multivariate Poisson generalized gamma process (MPGGP) with
the set of parameters (_i (t), i = 1, 2, · · · ,m, a, k,U, l), where _i (t) > 0, ∀t ≥ 0, i = 1, 2, · · · ,m,
a ≥ 0, k,U, l > 0, if

(i) {Ni (t), t ≥ 0}|(Φ = q) ∼ NHPP (q_i (t)), i = 1, 2, · · · ,m, independent;
(ii) Φ ∼ GG (a, k,U, l).
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To state the properties of the MPGPP, we define _(t) =
∑m

i=1 _i (t), Λ(t) =
∫ t
0 _(v)dv, pi (t) =

_i (t)/_(t), and Nui (t) ≡ Ni (u + t) − Ni (u), i = 1, 2, · · · ,m.

Proposition 4.2. Let {N(t), t ≥ 0} be the MPGGP with the set of parameters (_i (t), i =

1, 2, · · · ,m, a, k,U, l). Then

(i) The pooled process {M (t), t ≥ 0} is PGGP(_(t), a, k,U, l).
(ii) The process {N(t), t ≥ 0} is constructed by thinning of {M (t), t ≥ 0} with thinning probabilities

pi (t), i = 1, 2, · · · ,m: {(Mp1 ( ·) (t),Mp2 ( ·) (t), · · · ,Mpm ( ·) (t)), t ≥ 0}.
(iii) Given (Hiu− , i = 1, 2, · · · ,m), {Nu(t), t ≥ 0}, where Nu(t) = (Nu1(t),Nu2(t), · · · ,Num (t)), is

MPGGP(_i (t +u), i = 1, 2, · · · ,m, a, k+∑m
i=1 ni,U+Λ(u), l), where ni is the realization of Ni (t−),

i = 1, 2, · · · ,m, respectively.
(iv) For any fixed u ≥ 0, {Nu(t), t ≥ 0} is “unconditionally” MPGGP(_i (t + u), i =

1, 2, · · · ,m, a, k,U, l).
(v) The marginal process {Ni (t), t ≥ 0} is PGGP(_i (t), a, k,U, l), i = 1, 2, · · · ,m.

In addition to the basic properties stated in Proposition 4.2, it can be shown that the complete intensity
functions are given by:

_it ≡ lim
Δt→0

P (Ni (t, t + Δt) = 1|H1t−;H2t−; · · · ;Hmt−)
Δt

=
1

(U + ∑m
i=1 Λi (t))

Γa (k + ∑m
i=1 Ni (t−) + 1, (U + ∑m

i=1 Λi (t))l)
Γa (k + ∑m

i=1 Ni (t−), (U + ∑m
i=1 Λi (t))l)

_i (t), i = 1, 2, · · · ,m.

Furthermore, it can also be shown that

P(Ni (ui2) − Ni (ui1) = ni, i = 1, 2, · · · ,m)

=

[
m∏

i=1

(Λi (ui2) − Λi (ui1))ni

ni!

]
Uk−a

(U + ∑m
i=1(Λi (ui2) − Λi (ui1)))k+∑m

i=1 ni−a

×
Γa (k + ∑m

i=1 ni, (U + ∑m
i=1(Λi (ui2) − Λi (ui1)))l)

Γa (k,Ul) .

In addition to the above results, other properties obtained in the previous sections could be extended to
the multivariate case in similar ways.

5. Comparison and monotony results with respect to the multivariate likelihood ratio ordering

The results of the previous sections were dependent on the specific properties of the generalized gamma
distribution. We here provide some other results of MPGGPs based on the notion of multivariate like-
lihood ratio ordering, which hold in the more general setting of a multivariate mixed Poisson process
which we now define.

Definition 5.1. Let {N(t), t ≥ 0} be a multivariate counting process, where N(t) =

(N1(t),N2(t), · · · ,Nm (t)), for all t ≥ 0 and let Φ be a non negative random variable, which is assumed
to be absolutely continuous with respect to Lebesgue measure. Then {N(t), t ≥ 0} is called the mul-
tivariate mixed Poisson process (MMPP) with the set of parameters (_i (t), i = 1, 2, · · · ,m,Φ), where
_i (t) > 0, ∀t ≥ 0, i = 1, 2, · · · ,m, if {Ni (t), t ≥ 0}|(Φ = q) ∼ NHPP (q_i (t)), i = 1, 2, · · · ,m and
are independent.
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Remark 5.2. Based on its definition, a MPGGP is a specific MMPP, where Φ has a generalized gamma
distribution.

In order to write down the different properties bellow, we now recall the notion of multivariate
likelihood ratio ordering. We refer to Karlin and Rinott [18] for more details.

Definition 5.3. Let X and Y be two random vectors on Rn with respective density fX and fY with respect
to a common product measure f (dx). (For instance X and Y may be both absolutely continuous or
both discrete). Then, X is said to be smaller than Y in the multivariate likelihood ratio ordering (written
X ≺lr Y) as soon as

fX (x) fY (y) ≤ fX (x ∧ y) fY (x ∨ y) ,

for all x, y ∈ Rn, where the minimum ∧ and the maximum ∨ are taken componentwise.

In the univariate case, the likelihood ratio order is denoted by ≺lr .

Definition 5.4. Let X be a random vector on Rn with density fX with respect to a product measure
f (dx). Then, X is said to be Multivariate Totally Positive property of order 2 (MTP2) as soon as

fX (x) fX (y) ≤ fX (x ∧ y) fX (x ∨ y) ,

for all x, y ∈ Rn, which is just equivalent to X ≺lr X.

We first provide a result that extends Proposition 4 in Cha and Mercier [9] to the multivariate setting.

Proposition 5.5. Let {N(t), t ≥ 0} be a MMPP with set of parameters (_i (t), i = 1, 2, · · · ,m,Φ). Then
N(t) increases with respect to t in the multivariate likelihood ratio ordering.

Proof. Let 0 ≤ t1 < t2. Let us show that N(t1) ≺lr N(t2).
Let

gj (n1, · · · , nm |q) ≡ P
(
Ni (tj) = ni, i = 1, 2, · · · ,m|Φ = q

)
=

m∏
i=1

P
(
Ni (tj) = ni |Φ = q

)
,

for j = 1, 2 and ni ∈ N, i = 1, 2, · · · ,m, where P
(
Ni (tj) = ·|Φ = q

)
is the Poisson distribution with

parameter Λi
(
tj
)
q. As this distribution increases with respect to Λi

(
tj
)
in the likelihood ratio ordering

and as Λi (t1) ≤ Λi (t2), we derive that P (Ni (t1) = ·|Φ = q) ≺lr P (Ni (t2) = ·|Φ = q), and next that
g1 (· · · |q) ≺lr g2 (· · · |q), as the multivariate likelihood ratio ordering is stable through conjunction
(see Shaked and Shanthikumar [24], Theorem 6.E.4(a) page 299).

Using that Φ ≺lr Φ, we derive from Theorem 2.4 in Karlin and Rinott [18] that∫
R+

g1 (· · · |q) fΦ (q) dq ≺lr

∫
R+

g2 (· · · |q) fΦ (q) dq,

which is just equivalent to N(t1) ≺lr N(t2), and allows to conclude. �

We next show that the marginal increments in a MMPP (taken at possibly different times for each
margin) exhibit the MTP2 property.
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Proposition 5.6. Let {N(t), t ≥ 0} be a MMPP with set of parameters (_i (t), i = 1, 2, · · · ,m,Φ) and
let 0 ≤ ui1 ≤ ui2, i = 1, 2, · · · ,m. Then the random vector (Ni (ui2) − Ni (ui1), i = 1, 2, · · · ,m) is MTP2.

Proof. The distribution of (Ni (ui2) − Ni (ui1), i = 1, 2, · · · ,m) can be written as

P (Ni (ui2) − Ni (ui1) = ni, i = 1, 2, · · · ,m) =
∫
R+

(
m∏

i=1
gi (ni |q)

)
fΦ (q) dq,

for all ni ∈ N, i = 1, 2, · · · ,m, where

gi (·|q) = P (Ni (ui2) − Ni (ui1) = ·|Φ = q) ,

stands for the Poisson distribution with parameter (Λi (ui2) − Λi (ui1)) q. As this distribution increases
in the likelihood ordering with q, the result follows from Property 7.2.18 in Denuit et al. [12]. �

We recall that theMTP2 property is a strong positive dependence property, which entails for instance
conditional increasingness in sequence and positive association, see e.g., Belzunce et al. [4]. Hence, such
properties are fulfilled by the marginal increments in a MPGGP.

In a similar way, the concept of positive upper orthant dependent multivariate process (PUODMP)
was defined in Cha and Giorgio [8]. We refer to this paper for more details. The following positive
dependence result now is a direct consequence of Proposition 5.6.

Corollary 5.7. A MMPP is a positive upper orthant dependent multivariate process:

P(Ni (ti2) − Ni (ti1) > ni, i = 1, 2, · · · ,m) ≥ Πm
i=1P(Ni (ti2) − Ni (ti1) > ni),

for all ti2 > ti1 and ni, i = 1, 2, · · · ,m

We now come to the extension of Proposition 5 in Cha and Mercier [9] to the multivariate setting.

Proposition 5.8. Let {N(t), t ≥ 0} and {N̄(t), t ≥ 0} be two MMPPs with respective sets of parameters
(_i (t), i = 1, 2, · · · ,m,Φ) and

(
_̄i (t), i = 1, 2, · · · ,m, Φ̄

)
. Assume that Φ ≺lr Φ̄. Also, let 0 ≤ ui1 ≤ ui2,

i = 1, 2, · · · ,m, such that

Λi (ui2) − Λi (ui1) ≤ Λ̄i (ui2) − Λ̄i (ui1) , (5.1)

for all i = 1, 2, · · · ,m.

Then, we have the following result:

(Ni (ui2) − Ni (ui1), i = 1, 2, · · · ,m) ≺lr
(
N̄i (ui2) − N̄i (ui1), i = 1, 2, · · · ,m

)
, (5.2)

for all 0 ≤ ui1 ≤ ui2, ni ∈ N, i = 1, 2, · · · ,m, where lr refers to the multivariate likelihood ratio ordering.

Proof. We use some arguments from the proof of Theorem 3.8 in Belzunce et al. [5]. See also Theorem
2.7 in Khaledi and Shaked [19] (which is written only for absolutely continuous random variables and
hence cannot be applied here).
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Let us first write

g (n1, · · · , nm |q) ≡ P (Ni (ui2) − Ni (ui1) = ni, i = 1, 2, · · · ,m|Φ = q)

=

m∏
i=1

P (Ni (ui2) − Ni (ui1) = ni |Φ = q) , (5.3)

whereP (Ni (ui2) − Ni (ui1) = ·|Φ = q) is the Poisson distributionwith parameter (Λi (ui2) − Λi (ui1)) q.
Using similar arguments as for the proof of Proposition 5.5, it is clear that

g (· · · |q) ≺lr ḡ (· · · |q) ,

where ḡ is defined in a similar way as (5.3) for the process {N̄(t), t ≥ 0}, because Λi (ui2) −Λi (ui1) ≤
Λ̄i (ui2) − Λ̄i (ui1).

As the Poisson distribution with parameter (Λi (ui2) − Λi (ui1)) q also increases with respect to q in
the likelihood ratio ordering, we derive that g (n1, · · · , nm |q) is MTP2 in (n1, · · · , nm, q).

Then, based on Theorem 2.4 in Karlin and Rinott [18], we get that∫
R+

g (· · · |q) fΦ (q) dq ≺lr

∫
R+

ḡ
(
· · · |q̄

)
fΦ̄

(
q̄
)
dq̄,

which is just equivalent to (5.2) and achieves the proof. �

As a by-product of the previous proposition, considering ui1 = 0 and ui2 = t for all i = 1, 2, · · · ,m,
one can see that, if all parameters are fixed except from one, then N(t) increases in the likelihood
ordering when k increases or Λ (t) increases, and when U or a decreases.

We next explore the conditions given in Proposition 5.8 to derive the comparison result on a simple
example (BPGGP).

Example 5.9. Let {N(t), t ≥ 0} and {N̄(t), t ≥ 0} be two BPGGPs with sets of parameters
(_i (t) = _i, i = 1, 2, a, k,U, l = 1) and

(
_̄i (t) = _̄i, i = 1, 2, ā, k̄, Ū, l̄ = 1

)
, respectively.

For a given t, we know from Theorem 2.3 that the joint pdf of (N1(t),N2(t)) is given by

g12 (x1, x2) = P [(N1(t) = x1,N2(t) = x2)]

=
_

x1
1 _

x2
2 tx1+x2

x1!x2!
Uk−a

[U + t (_1 + _2)]k+x1+x2−a
Γa [k + x1 + x2,U + t (_1 + _2)]

Γa (k,U)
,

for all x1, x2 ∈ N, with a similar expression for the joint pdf of
(
N̄1(t), N̄2(t)

)
(denoted by ḡ12).

We set

G (x1, x2, y1, y2) = g12 (x1 ∧ y1, x2 ∧ y2) ḡ12 (x1 ∨ y1, x2 ∨ y2) − g12 (x1, x2) ḡ12 (y1, y2) ,
Ḡ (x1, x2, y1, y2) = ḡ12 (x1 ∧ y1, x2 ∧ y2) g12 (x1 ∨ y1, x2 ∨ y2) − g12 (x1, x2) ḡ12 (y1, y2) ,

for all x1, x2, y1, y2 ∈ N. Then (N1(t),N2(t)) ≺lr [� lr]
(
N̄1(t), N̄2(t)

)
if and only if G

[
Ḡ
]
remains non

negative on R4
+.
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Figure 1. The quotient f /f̄ of the respective pdfs of Φ and Φ̄.

Figure 2. The functions G(x1, x2, y1, y2) and Ḡ(x1, x2, y1, y2) with respect to (x2, y2) for (x1, y1) =

(3, 10) and (x1, y1) = (8, 2), respectively.

We take t = 5, _1 = 1 < _̄1 = 2, _2 = 1.5 < _̄2 = 3, a = 1, k = 1, U = 1, ā = 1.25, k̄ = 0.5, Ū = 0.75.
Then Condition (5.1) on the Λi’s and Λ̄i’s given in Proposition 5.8 is true. However Φ and Φ̄ are

not comparable with respect to lr ordering. Indeed, the quotient of their respective pdfs (f and f̄ ) is not
monotonic, as can be seen in Figure 1.

The functions G(x1, x2, y1, y2) and Ḡ(x1, x2, y1, y2) are next plotted in Figure 2 with respect to (x2, y2)
for (x1, y1) = (3, 10) and (x1, y1) = (8, 2), respectively. As can be seen, G and Ḡ both change sign on
R4
+ and consequently, (N1(t),N2(t)) and

(
N̄1(t), N̄2(t)

)
are not comparable with respect to the bivariate

likelihood ratio ordering (for t = 5).
Based on the previous example, Condition (5.1) on the Λi’s and Λ̄i’s is not sufficient to derive the

comparison result in Proposition 5.8, and some additional comparison assumption between Φ and Φ̄ is
required.
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We finally come to the comparison between the points of two MMPPs with different parameters. To
begin with, we consider the case where the two processes share the same _i’s, i = 1, . . . ,m.

Proposition 5.10. Let {N(t), t ≥ 0} and {N̄(t), t ≥ 0} be two MMPPs which share the same
(_i (t), i = 1, 2, · · · ,m) with different mixture distributions Φ and Φ̄, respectively. Assume that Φ ≺lr
Φ̄. For i = 1, 2, · · · ,m and n ∈ N∗, let Tin (resp. T̄in) be the n-th point of {Ni (t) , t ≥ 0} (resp.{
N̄i (t) , t ≥ 0

}
).

Then (
T̄ini , i = 1, 2, · · · ,m

)
≺lr

(
Tini , i = 1, 2, · · · ,m

)
,

for all ni ∈ N∗ and all i = 1, 2, · · · ,m.

Proof. Our aim is to use Theorem 3.8 in Belzunce et al. [5]. Let i ∈ {1, 2, · · · ,m} be fixed. Let us first
show that

[
−Tini |Φ = q

]
increases with respect to q in the likelihood ratio ordering.

For that, we will use Theorem 3.7 in Belzunce et al. [3]. Let q1 ≤ q2. Then, the ratio of the respective
density functions of [Ti1 |Φ = q1] and [Ti1 |Φ = q2] (first points in the i-th marginal processes) is

q1_i (t) e−q1Λi (t)

q2_i (t) e−q2Λi (t)
=

q1

q2
e(q2−q1 )Λi (t) ,

and it is increasing. This implies that [Ti1 |Φ = q2] ≺lr [Ti1 |Φ = q1].
Also, the ratio of the corresponding cumulative hazard rate functions is

q1Λi (t)
q2Λi (t)

=
q1

q2
,

which is constant and hence non decreasing. Based on Theorem 3.7 in Belzunce et al. [3], we derive
that

[
Tini |Φ = q2

]
≺lr

[
Tini |Φ = q1

]
, or equivalently that

[
−Tini |Φ = q1

]
≺lr

[
−Tini |Φ = q2

]
.

Hence,
[
−Tini |Φ = q

]
increases with respect to q in the likelihood ratio ordering.

Also, based on our assumptions, we know that Φ ≺lr Φ̄.
The result now is a direct consequence of Theorem 3.8 in Belzunce et al. [5]. �

A natural question now is: Is it possible to compare the points in two MMPPs which share the same
Φ with different _i (t)’s for i = 1, 2, · · · ,m? The answer to this question is explored in next example.

Example 5.11. Let {N(t), t ≥ 0} and {N̄(t), t ≥ 0} be two MPGGPs (which are specific MMPPs),
which share (a, k,U, 1) = (0, 1, 1, 1), so that Φ is exponentially distributed with mean 1. Let _i (t) = _i
and _̄i (t) = _̄i, i = 1, 2, be the corresponding constant baseline intensity functions of the NHPPs,
respectively. Then, it is easy to check that the joint density function of (T11,T21) is

f12 (x1, x2) =
∫
R+

_1q e−_1qx1 _2q e−_2qx2 e−qdq

=
2_1_2

(_1x1 + _2x2 + 1)3
,

with a similar expression for the joint density function f̄12 of
(
T̄11, T̄21

)
. The point is to see whether

(T11,T21) and
(
T̄11, T̄21

)
are comparable with respect to the bivariate likelihood ordering. Let

H (x1, x2, y1, y2) = f12 (x1 ∧ y1, x2 ∧ y2) f̄12 (x1 ∨ y1, x2 ∨ y2) − f12 (x1, x2) f̄12 (y1, y2) ,
H̄ (x1, x2, y1, y2) = f̄12 (x1 ∧ y1, x2 ∧ y2) f12 (x1 ∨ y1, x2 ∨ y2) − f12 (x1, x2) f̄12 (y1, y2) ,
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Figure 3. The functions H (x1, x2, y1, y2) and H̄ (x1, x2, y1, y2) with respect to (x2, y2) for (x1, y1) =

(2, 0.01) and (x1, y1) = (0.01, 1), respectively.

for all (x1, x2, y1, y2) ∈ R4
+.

Then (T11,T21) ≺lr [� lr]
(
T̄11, T̄21

)
if and only if H

[
H̄

]
remains non negative on R4

+. The func-
tions H (x1, x2, y1, y2) and H̄ (x1, x2, y1, y2) are plotted in Figure 3 with respect to (x2, y2) for (x1, y1) =
(2, 0.01) and (x1, y1) = (0.01, 1), respectively, with _1 = _̄1 = _2 = 1 < _̄2 = 6. As can be seen, H and
H̄ both change sign on R4

+ and consequently, (T11,T21) and
(
T̄11, T̄21

)
are not comparable with respect

to the bivariate likelihood ratio ordering.
Based on this simple example (with constant _i’s and _̄i’s such that _1 = _̄1 = _2 < _̄2), it seems that

there is no hope to find conditions under which the points in two MMPPs with different _i (t)’s could
be comparable with respect to the multivariate likelihood ratio ordering.

However, it is possible to get comparison results with respect to the weaker usual stochastic ordering.
We recall that given two random vectors X and Y on Rn, then X is said to be smaller than Y in the usual
stochastic ordering (written X ≺sto Y) as soon as

E [i (X)] ≤ E [i (Y)] ,

for all non-decreasing function i : Rn −→ R such that the expectations exist. In the univariate setting
(written X ≺sto Y), it is equivalent to F̄X (t) ≤ F̄Y (t) , for all t ≥ 0.

The multivariate likelihood ratio ordering is known to imply the usual stochastic ordering. See
Shaked and Shanthikumar [24] for more details.

We now come to the comparison result.

Proposition 5.12. Let {N(t), t ≥ 0} and {N̄(t), t ≥ 0} be two MMPPs with sets of parame-
ters (_i (t), i = 1, 2, · · · ,m,Φ) and

(
_̄i (t), i = 1, 2, · · · ,m, Φ̄

)
, respectively. Assume that Φ ≺lr Φ̄ and

Λi (t) ≤ Λ̄i (t) , for all t ≥ 0 and all i = 1, 2, · · · ,m. Using the notations of Proposition 5.10, we have:(
T̄ini , i = 1, 2, · · · ,m

)
≺sto

(
Tini , i = 1, 2, · · · ,m

)
,

for all ni ∈ N∗ and all i = 1, 2, · · · ,m.
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Proof. Our aim is to use Theorem 3.1 in Belzunce et al. [5]. We already know from the proof of
Proposition 5.10 that

[
−Tini |Φ = q

]
increases with respect to q in the likelihood ratio ordering, and

hence also in the usual stochastic ordering.
Also, based on Λi (t) ≤ Λ̄i (t) , for all t ≥ 0 and all i = 1, 2, · · · ,m, it is easy to check that the

conditional survival functions of T̄i1 given Φ̄ = q and Ti1 given Φ = q fulfill

F̄T̄i1 |Φ̄=q (t) ≡ P
(
T̄i1 > t |Φ̄ = q

)
= e−qΛ̄i (t) ≤ e−qΛi (t) = F̄Ti1 |Φ̄=q (t) ,

for all t ≥ 0, which means that
[
T̄i1 |Φ̄ = q

]
≺sto [Ti1 |Φ = q]. We derive from Theorem 3.1 in

Belzunce et al. [3] that
[ (

T̄i1, T̄i2, . . . , T̄ini

)
|Φ̄ = q

]
≺sto

[ (
Ti1,Ti2, . . . ,Tini

)
|Φ = q

]
and next that[

T̄ini |Φ̄ = q
]
≺sto

[
Tini |Φ = q

]
(as the usual stochastic ordering is stable through marginalization),

or equivalently that
[
−Tini |Φ = q

]
≺sto

[
T̄ini |Φ̄ = q

]
.

Finally, based on Φ ≺lr Φ̄, we can derive that(
−Tini , i = 1, 2, · · · ,m

)
≺sto

(
−T̄ini , i = 1, 2, · · · ,m

)
,

from Theorem 3.1 in Belzunce et al. [5], which allows to conclude. �

Remark 5.13. Note that all the results from Propositions 5.5, 5.6 and Corollary 5.7 hold for MPGGPs,
as they are specific MMPPs. In order to apply Propositions 5.8, 5.10 and 5.12 for MPGGPs, one can
use the following result which provides conditions under which Φ ≺lr Φ̄. The arguments are given in
the proof of Proposit in Cha and Mercier [9].

Lemma 5.14. Let Φ ∼ GG (a, k,U, l = 1) and Φ̄ ∼ GG (ā, k̄, Ū, l̄ = 1). Then Φ ≺lr Φ̄ as soon as one of
the following conditions holds:

• Ū = U, k̄ ≥ k and k̄ − k ≥ ā − a;
• Ū < U and

(
U − Ū + k̄ − k + a − ā

)2 − 4 (U − Ū)
(
k̄ − k

)
≤ 0;

• Ū < U and U − Ū + k̄ − k + a − ā ≥ 0.

As a specific case, we can see that, if all parameters are fixed except from one, Φ increases in the
likelihood ordering when k increases, and when U or a decreases.
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