
HAL Id: hal-04787783
https://hal.science/hal-04787783v1

Submitted on 18 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comprehensive translational profiling and STE AI
uncover rapid control of protein biosynthesis during cell

stress
Attila Horvath, Yoshika Janapala, Katrina Woodward, Shafi Mahmud, Alice

Cleynen, Elizabeth E Gardiner, Ross D Hannan, Eduardo Eyras, Thomas
Preiss, Nikolay E Shirokikh

To cite this version:
Attila Horvath, Yoshika Janapala, Katrina Woodward, Shafi Mahmud, Alice Cleynen, et al.. Com-
prehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell
stress. Nucleic Acids Research, 2024, 52 (13), pp.7925-7946. �10.1093/nar/gkae365�. �hal-04787783�

https://hal.science/hal-04787783v1
https://hal.archives-ouvertes.fr


Nucleic Acids Research , 2024, 52 , 7925–7946 
https://doi.org/10.1093/nar/gkae365 
Advance access publication date: 9 May 2024 
RNA and RNA-protein complexes 

Comprehensiv e tr anslational profiling and S TE AI unco v er 

rapid control of protein biosynthesis during cell stress 

Attila Horvath 

1 ,† , Yoshika Janapala 

1 ,† , Katrina Woodw ar d 

1 , Shafi Mahmud 

1 , Alice Cleynen 

1 , 2 , 

Elizabeth E. Gardiner 3 , Ross D. Hannan 

1 , 4 , 5 , 6 , 7 , Eduar do Eyr as 

1 , 8 , 9 , Thomas Preiss 

1 , 10 , * and 

Nikolay E. Shirokikh 

1 , * 

1 Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, 
The Australian National University, Canberra, ACT 2601, Australia 
2 Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France 
3 Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral 
Centre, The Australian National University, Canberra, ACT 2601, Australia 
4 Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia 
5 Peter MacCallum Cancer Centre, Melbourne 3000, Australia 
6 Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia 
7 School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia 
8 Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical 
Sciences, The Australian National University, Canberra, ACT 2601, Australia 
9 EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia 
10 Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia 
* To whom correspondence should be addressed. Tel: +61 432847526; Fax: +61 432847526; Email: nikolay.shirokikh@anu.edu.au 
* Correspondence may also be addressed to Thomas Preiss. Tel: +61 478493849; Fax: +61 478493849; Email: thomas.preiss@anu.edu.au 
† The first two authors should be regarded as Joint First Authors. 

Abstract 

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA 

into proteins, they at tac h to the mRNA in series, forming poly(ribo)somes, and can co-localiz e. Here, w e computationally model new types 
of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based 
on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to 
translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) 
analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply 
S TE to in v estigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging 
elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE 

AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the 
de v elopment of next-generation synthetic biology designs and mRNA-based therapeutics. 
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Introduction 

Translation of mRNA into proteins is an actively regulated
stage of gene expression ( 1–3 ). Many rapid responses of eu-
karyotic cells are largely based on, or are invoked by, transla-
tional control, including archetypal processes such as nutrient-
induced control, endoplasmic reticulum stress, dynamic cell
reprogramming before and during embryonic development,
and synaptic plasticity ( 4–8 ). Regulation of translation is of
heightened importance with the advent of mRNA-based vac-
cines and therapeutics ( 9–11 ). Novel approaches utilize struc-
tured regions and code optimality of mRNA to inform next-
generation, AI-based tools for design of more efficient mRNA
( 12–21 ). The performance of these tools depends on the depth
and accuracy of the underlying data and concepts. Yet, it re-
mains a substantial challenge to accurately determine mRNA
translation rates transcriptome-wide, which is an obstacle in
our ability to understand and employ translational control
( 22 ,23 ). 

In yeast, including Saccharomyces cerevisiae , translational
control is one of the major components of the cell stress re-
sponse, such as stress caused by nutrient starvation ( 3 , 6 , 8 , 24 ).
Indeed, the classic example of GCN4 regulation demonstrates
the importance of rapid and specific translational change as
the initial nutrient stress response, which then converts into
longer-term transcriptional reprogramming ( 6 , 25 , 26 ). Many
studies have highlighted the complexity of glucose starva-
tion responses in yeast ( 6 , 7 , 27 , 28 ). Beyond the reduction in
polysomes explained by decreased translational engagement
of mRNAs, many mRNAs move to granules, phase separate
or decay rapidly ( 29–32 ); some are newly synthesized ( 33 ,34 ),
and on some mRNAs, loss of translation initiation factors
such as eIF4A results in translational stalling at the early
stages of mRNA engagement ( 35–38 ). Ribosomal stalling on
mRNA in stressed cells can lead to stacked ribosomes and the
induction of ribosome quality control mechanisms ( 27 , 39 , 40 ).
Overall, stress-induced translational control is a highly dy-
namic process intertwined with gene expression regulation
and tightly integrated with transcriptional reprogramming
downstream ( 6 , 25 , 38 , 41 , 42 ). 

Mechanistic insights into translation are often gained
by polysome or ribosome profiling approaches, because of
their convenience and transcriptome-wide reach ( 4 ,43–47 ).
In polysome profiling, the extent of mRNA association with
polysomes is assessed, and comparisons between the order
of polysomes are made. In ribosome profiling (ribo-seq), fre-
quencies of footprints from singular ribosomes (monosomes),
generated by limited RNase treatment, are measured relative
to mRNA abundance. These techniques use high-throughput
sequencing to provide deep transcript-wise information, but
have several limitations ( 48 , 23 , 49–51 ). One is the assumption
that a higher density of ribosomes present on mRNA is indica-
tive of more intense translation ( 4 ). This is not always correct
as there are code ( 52–54 ), codon ( 50 , 52 , 55–57 ), peptide (ri-
bosomal interaction and conformation) ( 58 ,59 ), localization
(signal peptide) ( 60–62 ), co-translational folding ( 63–65 ) and
quality control-induced mechanisms of ribosomal stalling on
mRNA ( 66–68 ), including some cases of well-characterized
artifacts of translational stabilization with antibiotics and cell
stress ( 4 , 50 , 69 , 70 ). Thus, the presence of more ribosomes on
mRNA can also be a sign of a reduced translational output.
Another limitation is that polysome and ribosome profiling
experiments employ normalization of the polysomal mRNA
or ribosome footprints sequenced by the ‘total mRNA’ se- 
quencing signal ( 48 ,71 ). This assumes that (a) all mRNA is 
accessible to translation at the time of measurement, (b) there 
are no rapid alterations of mRNA abundance that can bias the 
measurements, and (c) mRNA is represented or degraded uni- 
formly relative to the locations of ribosomes over it. However,
nuclear export can be controlled in an mRNA-specific man- 
ner ( 72 ), mRNAs can undergo phase separation into granules 
( 73–75 ), and there are mechanisms of mRNA degradation tar- 
geting specific regions ( 27 ), including translationally-induced 

decay ( 57 ,70 ). These processes create a biological disparity 
in mRNA coverage in the context of ribosomal association 

with mRNA. Furthermore, methods for RNA purification as 
well as sequencing library preparation and the attendant bi- 
ases and normalization requirements differ between the to- 
tal mRNA reference and the polysome or ribosome footprint 
samples. These methodological limitations mean that the re- 
sultant data are disconnected from the absolute mRNA abun- 
dances, thus only enabling per-mRNA comparisons between 

conditions. Therefore, a more accurate assessment of protein 

biosynthesis enabling the calculation of absolute translational 
rates would be of critical value. 

Here, we employed an enhanced variant of our Translation 

Complex Profiling sequencing, eTCP-seq, to reveal ribosomal 
scanning and other phases of translation outside the elonga- 
tion cycle, in addition to the elongating ribosomes ( 4 , 5 , 76–
78 ). In the eTCP-seq, data is expanded to include a ‘disome’ 
fraction resistant to nuclease attack ( 5 ). Importantly, eTCP- 
seq uses rapid in vivo formaldehyde fixation to stabilize trans- 
lational complexes, which is indiscriminate to complex type 
and results in the most comprehensive available ‘snapshot’ of 
translation ( 4 ). We find that the ‘disomes’, or co-localized ri- 
bosomes, revealed by eTCP-seq could be of multiple types,
in similarity to the elongation, initiation, termination and re- 
cycling complexes captured by the method ( 4 , 76 , 78 , 79 ). We
thus further propose a more complete classification of ribo- 
somal co-localization types, which in addition to the known 

stalling-induced ‘disomes’ (or other multisomes) includes co- 
localization resulting from spatial proximity of the ribosomes 
other than linear neighboring over the mRNA, and diffusion- 
mediated stochastic variance of the underlying processes (initi- 
ation, elongation) ( 4 , 5 , 76–78 ). These ‘stochastic disomes’ are 
not a result of catching up due to differences in average elon- 
gation rate between leading and trailing ribosomes and repre- 
sent a principally new type of signal. 

We then develop an unbiased and comprehensive, unsuper- 
vised machine learning pipeline to define the Stochastic Trans- 
lation Efficiency (STE) measure. Our approach incorporates 
rich sets of translation complex positional information across 
the entire translation cycle as measured by eTCP-seq. We com- 
pare STE with an RNA-seq-normalized footprint measure (as 
used in Translation Efficiency; TE) to demonstrate a much 

higher concordance of STE with absolute protein biosynthe- 
sis rates. We use STE to characterize acute translational reg- 
ulation in yeast cells subjected to 10-minute glucose starva- 
tion, revealing translational up-regulation of oxidative stress 
and sugar metabolism genes. We propose STE as a robust AI- 
based measure of translational output with the advantages of: 
(i) inherent single-molecule-event nature of the main measure 
component (the stochastic co-localization footprint signal); 
(ii) similar types of data used in all calculations; (iii) indepen- 
dence from the abundance and availability changes of mRNA 
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nd (iv) an insensitivity to the differences in library prepara-
ion techniques. 

aterials and methods 

ell material, fixation regimen and cytosol 
ollection 

ell fixation and harvesting was performed as described be-
ore ( 76 ,77 ) with modifications ( 5 ). Wild-type (WT) yeast of
ell line BY4741 (MATa his3 �1 leu2 �0 met15 �0 ura3 �0)
as grown in 1 liter of YPDA [1% w / v yeast extract

Merck / Sigma-Aldrich cat. no. 70161), 2% w / v peptone
Merck / Sigma-Aldrich cat. no. 70178), 2% w / v dextrose
Merck / Sigma-Aldrich cat. no. 49139), 40 mg / l adenine sul-
ate (Amresco 0607-100G)] media until an optical density
f 0.7–0.8 AU at 600 nm (OD 600 ) was reached. The cells
ere immediately snap-chilled by mixing with 25% w / v of

rushed ice, and 37% w / v formaldehyde solution (methanol-
tabilized solution; ‘formalin’; Merck / Sigma-Aldrich cat. no.
11635-500ML) was added immediately under constant mix-

ng to a final concentration of 2.2% (w / v). Cells were incu-
ated for 10 min on ice for fixation and then pelleted by cen-
rifugation at 4 

◦C, 5000 × g for 5 min. The fixed cell pel-
et was resuspended and washed with 40 ml of buffer A (20
M HEPES–KOH pH 7.4 at 25 

◦C, 100 mM KCl, 2 mM
gCl 2 and 250 mM glycine), followed by centrifugation at

 

◦C, 5000 × g for 5 min. The supernatant was discarded and
he cell pellet was then resuspended in 40 ml of buffer A1
20 mM HEPES–KOH pH 7.4 at 25 

◦C, 100 mM KCl and 2
M MgCl 2 ). This quenching step is critical for avoiding irre-
roducible crosslinking; and it must occur within 20 min of
ell harvest. The cells were pelleted again by centrifugation at
 

◦C, 5000 × g for 5 min, and the buffer A1 wash was repeated
wo more times. The washed cell pellet was aspirated ( ∼1 g
et cell mass) and resuspended in 550 μl of buffer A2 (buffer
1 supplemented with 5 mM DTT, 1 U / μl RNaseOUT RNase

nhibitor (Thermo Fisher Scientific) and 1 × Complete EDTA-
ree Mini Protease Inhibitor (Merck). The cell suspension was
hen flash-frozen by dripping into liquid nitrogen and the pel-
ets stored at −80 

◦C. 
To disrupt the cell wall and membrane, a 10 ml stainless

teel grinding jar (Retsch) was pre-cooled by partial submerg-
ng in liquid nitrogen and then filled with ∼2 g of the frozen
ell suspension pellets and two 12 mm stainless steel grind-
ng balls (Retsch). The sealed grinding jars were shaken at
7 Hz for 1 min in MM400 mixer mill (Retsch), re-cooled
y partial submerging in liquid nitrogen followed by contin-
ed shaking for 1 min more. The resultant powdered grindate
as stored in 1.5 ml low protein binding tubes (Eppendorf)

t −80 

◦C in ∼100 mg aliquots and used as necessary . Usually ,
00 mg of the grindate was used per one experiment compris-
ng polysome sedimentation profile analysis, separation of the
ytosol into translated and non-translated fractions, and fur-
her separation of the translated fraction into the ribosomal
mall subunit (SSU), ribosome (RS) and disome (DS) fractions
pon RNase digestion. 

eparation of fixed (poly)ribosomal complexes 

way from the non-translated fractions of cytosolic 

NA 

e followed the procedure established by us ( 76 ,77 ) to enrich
or ‘total translated’ RNA ( tt ) based on its co-sedimentation
with (polysomes, with some refinements ( 5 ). A modification
was made to allow for a direct separation monitoring us-
ing absorbance profile readout upon ultracentrifugation and
avoid the re-solubilization step that resulted in higher mate-
rial losses and excessive denaturation and aggregation previ-
ously. ∼100 mg of the frozen cell grindate were thawed, sup-
plemented with 150 μl buffer A2 and clarified by centrifu-
gation at 4 

◦C, 13 000 × g for 5 min. The resultant clarified
mixture ( ∼150 μl) was then loaded onto a 10–20% (w / v) 2.5
ml linear sucrose gradient additionally containing 0.5 ml of
50% sucrose cushion at the bottom, made with buffer 1 (25
mM HEPES–KOH pH 7.6, 100 mM KCl, 5 mM MgCl 2 , 0.1
mM EDTA, 5 mM DTT). The gradients were prepared us-
ing the freeze-thaw method ( 80 ) in thinwall Ultra-Clear ul-
tracentrifuge tubes (5 ml, 13 × 51 mm; Beckman-Coulter).
To create the 50% sucrose cushion, upon the gradients melt-
ing and stabilizing overnight at 4 

◦C, 0.5 ml of 50% sucrose
in buffer 1 were layered into the bottom of the tubes with
a syringe-attached glass capillary. Tubes were then ultracen-
trifuged in an SW 55 Ti rotor at 4 

◦C, at 55 000 rpm, aver-
age g -force 287 980 × g ( k -factor 49), for 1 h 30 min. These
conditions were pre-optimized (using post-ultracentrifugation
gradient absorbance trace analysis) to retain the ‘free’ (non-
polysomal) SSUs and LSUs in the top (10–20% sucrose) por-
tion of the gradient, while concentrating the polysomal frac-
tion in the bottom (50%) sucrose cushion without pelleting
the material. 

The polysomal fraction collected at the bottom of the tubes
was concentrated to 100 μl using a Ultracel-10 regenerated
cellulose membrane with 10 kDa molecular weight cut-off, in
Amicon Ultra-0.5 ultrafiltration devices (Merck). To achieve
partial removal of the sucrose, the initial concentrate was fur-
ther diluted 4 times using buffer 1 and concentrated again to
200 μl. Polysomal presence in the resultant mixture was con-
firmed by absorbance readout of an analytical sucrose gradi-
ent ultracentrifugation run. The mixtures were stored frozen
at −80 

◦C and used as input material for the ‘total translated’
( tt ) RNA-seq library construction, or the RNase digestion step
of the eTCP-seq library construction. 

RNase digestion of the fixed (poly)ribosomal 
complexes and separation of digested material into
small ribosomal subunit (SSU), mono(ribo)somal 
(ribosomes, RS) and di(ribo)somal (disomes, DS) 
fractions 

The procedure followed our approach as described be-
fore ( 76 ,77 ) with adjusted ultracentrifugation parameters to
achieve higher resolution across all collected fractions ( 5 ). The
tt fraction from the previous step was digested using 4.5 U of
E. coli RNase I (Ambion) per 1 OD 260 unit of the fraction for
30 min at 23 

◦C. SUPERaseIn RNase inhibitor (Thermo Fisher
Scientific) was then added to the mixture to 0.25 U / μl, to in-
activate RNase I, and the samples were transferred to ice. The
reaction mixtures were loaded onto 12.5 ml linear 10–40%
w / v sucrose gradients formed in 13 ml thinwall polypropy-
lene tubes, 14 × 89 mm (Beckman-Coulter) using the freeze-
thaw method ( 80 ). Due to the different concentration of the
SSU, RS and DS fractions and the resolving power of the gra-
dients for each fraction, different loads of the material were
used to achieve optimal separation. For the SSU and RS 13–
14 AU, and for DS 10–11 AU per gradient were usually taken.
Minimally two gradients were used per each DS purification.
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The tubes with the loaded gradients were centrifuged in an
SW 41 Ti rotor at 4 

◦C, average g-force 178 305 × g ( k -factor
143.9), for 3 h 30 min. Absorbance profiles of the resultant
sucrose gradients were read at 254 nm, 1.5 ml / min, using the
Gradient Fractionator instrument (Brandel). Fractions corre-
sponding to the position and mobility of the SSU, RS and DS
complexes were identified in real time and isolated, their aver-
age absorbance at 254 nm recorded, and the fraction material
further stored at −80 

◦C or processed immediately. 

Construction of the eTCP-seq SSU, RS and DS 

footprint RNA-sequencing libraries 

We used our approach as described before ( 76 ,77 ). The
approach is based on RNA 3 

′ polyadenylation, oligo(dT)-
dependent reverse transcription, cDNA circularization and
PDD-based depletion of ribosomal RNA ( 81 ,82 ), with sev-
eral streamlining modifications and an expanded ribosomal
(r)RNA depletion probe set ( Supplementary Table S1 ). ∼3.0
AU at 254 nm of the gradient-separated SSU, RS and DS ma-
terial were used per each library. 

To de-block the crosslinks and isolate the RNA, su-
crose gradient fractions (350 μl) were supplemented with
40 μl of 100% stop solution (10% SDS w / v and 100 mM
EDTA), Tris–HCl (pH 2 at 25 

◦C) to 10 mM (4 μl 1 M),
glycine to 10 mM (1.6 μl 2.5 M) and deionized nuclease-
free water to obtain 400 μl as the final volume. Acidic
phenol:chloroform:isoamyl alcohol 125:24:1 (pH 4.0–5.0)
(Merck / Sigma-Aldrich) was added followed by vigorously
shaking the mixtures using a vortex mixer set to the maxi-
mum speed for 2 min, and continuing shaking at 65 

◦C, 1400
rpm for 30 min in a thermomixer (Eppendorf). Phase separa-
tion was facilitated by centrifuging the mixture at 12 000 × g
for 10 min at room temperature. The aqueous phases were
then collected and transferred to fresh 1.5 ml Eppendorf tubes.
RNA was precipitated by adding 0.1 volumes of 3 M sodium
acetate (Invitrogen / Thermo Fisher Scientific), 20 μg of glyco-
gen (Invitrogen / Thermo Fisher Scientific) and 2.5 volumes of
absolute ethanol (Merck / Sigma-Aldrich). The tubes were vor-
texed for 1 min and incubated at −20 

◦C for at least 2 h. RNA
was pelleted by centrifugation at 12 000 × g for 30 min at
room temperature. The supernatant was discarded, and the
pellet was washed twice with 80% v / v ethanol by centrifu-
gation at 12 000 × g for 30 min at room temperature. The
RNA pellets were dried at 45 

◦C for 10 min, and then dis-
solved in 20 μl of 1 × HE buffer (final concentration 10 mM
HEPES–KOH, pH 7.6 at 25 

◦C and 0.25 mM EDTA, pH 8.0 at
25 

◦C). RNA concentration was estimated using a Nanodrop
spectrophotometer (Thermo Fisher Scientific) and RNA qual-
ity was further assessed using the RNA 6000 Pico Kit and
Bioanalyzer 2100 (Agilent). 

To reverse transcribe the RNA and introduce strand-specific
identifiers, ∼8 pmol (calculated using the average length of
∼300 nt and amount of ∼1 μg) of the RNA per each library
was taken in 20 μl of 1 × HE buffer solution. The RNA so-
lution was transferred into a low DNA binding 1.5 ml tube
(Eppendorf), heated at 70 

◦C for 2 min and immediately trans-
ferred to ice for 5 min. The RNA was then end-repaired with
20 U of 3 

′ -phosphatase-positive bacteriophage T4 polynu-
cleotide kinase (T4 PNK; New England Biolabs), using con-
ditions recommended by the supplier (1 × PNK buffer with-
out ATP, 2 U / μl RNaseOUT Recombinant Ribonuclease In-
hibitor (Thermo Fisher Scientific), incubation at 37 

◦C for 2
h). The reaction was stopped and PNK inactivated by the ad- 
dition of 17 μl of deionized water and heating of the reac- 
tion mixture for 20 min at 65 

◦C. The end-repaired RNA was 
next 3 

′ polyadenylated using 0.4 U / μl of E. coli poly(A) poly- 
merase (EPAP; New England Biolabs), generally according to 

the suppliers’ recommendations (1 × EPAP buffer, 1 mM ATP,
1 mM DTT and 0.8 U / μl RNaseOUT Recombinant Ribonu- 
clease Inhibitor (Thermo Fisher Scientific), incubation at 37 

◦C 

for 1 h). The reaction was stopped by the addition of 15 μl of 
100% stop solution and the resulting polyadenylated RNA 

was ethanol-precipitated, washed, dried as described before,
and dissolved in 25 μl of 1 × HE. The RNA was next re- 
verse transcribed using the oligo(dT) primer (5 

′ -phosphate- 
GA TCG TCG GAC TGT AGA ACT CTG AAC G / 9-carbon 

spacer / G TGA CTG GA G TTC CTT GGC A CC CGA GAA 

TTC CAT TTT TTT TTT TTT TTT TTT TVN-3 

′ ) with Su- 
perScript IV reverse transcriptase (Invitrogen / Thermo Fisher 
Scientific), generally as recommended by the supplier. The tem- 
plate RNA (up to 4 pmol) was first mixed with 20 pmol of the 
split adapter primer, 0.5 mM (each) dNTPs mixture, 1 × Su- 
perScript IV buffer and annealed by heating to 75 

◦C for 3 min,
then cooling to 65 

◦C, and slow ramping (3 

◦C / s) to 55 

◦C. The 
reaction mixture was then supplemented with 5 mM DTT,
2 U / μl RNasin Plus (Promega) and 10 U / μl SuperScript IV 

Reverse Transcriptase enzyme while heated, slow-ramped to 

50 

◦C and incubated at 50 

◦C for further 30 min. 
To purify the resultant cDNA away from the excess of 

the RNA and the split adapter primer, and create a strand- 
specific amplifiable template, the reaction mixture was snap- 
cooled to 37 

◦C, supplemented with 20 U of E. coli exonucle- 
ase I (New England Biolabs) and incubated at 37 

◦C for 20 

min. The reaction was then stopped by the addition of 15 

μl of 100% stop solution. Samples were then subjected to 

extraction with phenol:chloroform:isoamyl alcohol 25:24:1,
pH 7.7–8.8 (Merck / Sigma-Aldrich). Aqueous phase separa- 
tion and nucleic acid ethanol precipitation were performed as 
described earlier. The resultant purified cDNA was dissolved 

in 9 μl of 1 × HE and liberated from RNA contaminants by 
heating at 85 

◦C for 3 min, snap-chilling on ice for 5 min, sup- 
plementing with 1 μl of RNase A / T mix (2 mg / ml of RNase
A and 5000 U / ml of RNase T1, Thermo Fisher Scientific), and 

incubating the resulting mixtures for 20 min at 37 

◦C. 
80 pmol of empty split adapter circularization blocker (5 

′ - 
TTN BAA AAA AAA AAA AAA AAA AAA / iSuper-dT / GG 

AAT TCT CGG GTG CGT GTG T / 3BioTEG / -3 

′ ) and 2 μl 
of 10 × Annealing Buffer (250 mM HEPES–KOH pH 7.6 at 
25 

◦C, 1 M NaCl and 50 mM MgCl 2 ) were then added to a 
final volume of 20 μl and annealing performed by heating the 
mixtures at 80 

◦C for 2 min, ramping up to 95 

◦C for 1 min,
cooling down to 50 

◦C for 1 min and slow-ramping (3 

◦C / min) 
to 40 

◦C. The RNA-depleted cDNA was then circularized at 
40 

◦C according to the manufacturer’s instructions, by adding 
4 μl of 1 × CircLigase II Buffer (Epicentre / Illumina), 2 μl 
of 50 mM MnCl 2 , 8 μl of 500 mM betaine, and 1 μl of 2.5
U of CircLigase II ssDNA Ligase (Lucigen), and incubating 
the resultant mixtures at 40 

◦C for 3 h. The reaction was 
stopped by addition of 10 μl of 100% stop solution. 1 vol- 
ume of neutral phenol:chloroform:isoamyl alcohol (pH 7.7–
8.8) (Sigma-Aldrich / Merck) was then added and the mixtures 
intensively vortexed for 2 min. Separation of the aqueous 
and phenol phases was facilitated by centrifugation at room 

temperature, 12 000 × g, for 10 min. Extracted circularized 

cDNA in the water phase ( ∼50 μl) was further gel-filtered 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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sing 1 × HE-equilibrated Illustra MicroSpin G-25 Columns
Sigma-Aldrich / Merck) according to the manufacturer’s rec-
mmendations. To remove the empty split adapter circular-
zation blocker, 23 μl (out of ∼50 μl) of the gel-filtered mate-
ial were mixed with 40 pmol of the block removal oligonu-
leotide (5 

′ -AC A C AC GC A CCC GAG AA T TCC A TT TTT
TT TTT TTT TTT T / iSuper-dT / T VNA A / 3BioTEG / -3 

′ ),
nd supplemented with 3 μl of 10 × Annealing Buffer. The
ixtures were heated at 80 

◦C for 2 min, 95 

◦C for 1 min, 80 

◦C
or 10 s, followed by slow-ramping to 50 

◦C, further incubated
t 50 

◦C for 1 min and cooled to 40 

◦C. The reaction mixtures
ere transferred into new 1.5 ml low DNA binding tubes (Ep-
endorf) containing hydrophilic streptavidin magnetic beads
equaling to 260 μl of the original bead suspension; New Eng-
and Biolabs), pre-equilibrated with 1 × Annealing Buffer. The
ubes with reaction mixtures and beads were incubated at
oom temperature for 10 min with gentle tube flicking to keep
he beads suspended, followed by an incubation at 35 

◦C for
 min, immediate separation of the beads on a magnetic rack
nd collection of the supernatant containing the unbound cir-
ularized cDNA. 

To specifically deplete cDNA representing fragments with
RNA sequences, the circularized cDNA was supplemented
ith 1.9 μM of each of the depletion DNA probes

 Supplementary Table S1 ) and heated at 95 

◦C for 3 min,
ooled to 75 

◦C (3 

◦C / min), supplemented with 1 × Duplex-
pecific Nuclease (DSN) buffer (Evrogen), slow-ramped
3 

◦C / min) to 60 

◦C and further supplemented with 0.5 U DSN
nzyme while at 60 

◦C. The reaction mixtures were then slow-
amped (3 

◦C / min) to the hybridization temperature of 48 

◦C
nd further incubated at 48 

◦C for 20 min. The reactions
ere stopped by the addition of 20 mM EDTA and 55 μl of
 × HE buffer, the mixture extracted with an equal volume of
eutral phenol:chloroform:isoamyl alcohol 25:24:1 ( ∼75 μl;
H 7.7–8.8; Merck / Sigma-Aldrich), as described earlier, and
el-purified using HE-equilibrated MicroSpin G-25 Columns
Merck / Sigma-Aldrich) according to the manufacturer’s rec-
mmendations. 
To amplify the rRNA-depleted cDNA and perform li-

rary size-selection, the resultant purified PDD-treated cDNA
as thermocycled with Platinum SuperFi DNA polymerase

Thermo Fisher Scientific), generally according to the man-
facturer’s instructions and using custom primer pairs com-
atible with TrueSeq Small RNA Sample Preparation Kit (Il-
umina), bearing a unique tag for each library. The forward
rimers were 5 

′ -C AA GC A GAA GAC GGC A T A CGA GA T
XX XXX GTG ACT GGA GTT CCT TGG CAC CCG AGA
TT CCA-3 

′ (in which XXX XXX represents Illumina’s in-
exing hexanucleotide sequences), and the reverse primer was
 

′ -AA T GA T A CG GCG A CC A CC GA G A TC T A C A CG
TC AGA GTT CTA CAG TCC GA-3 

′ . The amplification re-
ction included the 25 μl of purified PDD-treated cDNA, 0.2
M each of dNTPs, 5 × SuperFi DNA polymerase buffer, 0.5
M each of primers, 4.2 ng / μl extreme thermostable single-
tranded DNA binding protein (New England Biolabs) and
.02 U / μl SuperFi DNA polymerase (Thermo Fisher Scien-
ific). Typically, 21 cycles were used, with a thermal profile
8 

◦C for 5 min followed by 98 

◦C for 30 s melting, annealing
t 62 

◦C for 30 s and extension was performed at 72 

◦C for
5 s, this was followed for the first two cycles. For the third
nd subsequent cycles, melting was performed at 98 

◦C for 30
, annealing temperature was increased to 76 

◦C for 30 s fol-
owed by extension at 72 

◦C for 45 s; this was repeated for
∼18 cycles. The final extension was performed at 72 

◦C for 1
min. The amount of the amplified DNA samples was equalized
per barcode using band intensity measurements obtained by
imaging a respective native agarose gel test run with the sam-
ples loaded separately for each barcode and pre-stained with
6 × GRGreen loading buffer (Excellgen). Libraries were then
pooled together (typically by 4 per barcode), electrophoret-
ically separated in a native agarose gel using 6 × GRGreen
loading buffer (Excellgen), and selected for the insert size of
10–250 nt by cutting out the respective region of the gel. The
libraries were eluted from the gel by freezing the gel pieces
at −20 

◦C for 30 min in Freeze ’N Squeeze DNA gel extrac-
tion spin columns (Bio-Rad) and recovering the solution by
immediate centrifugation of the columns at room tempera-
ture, 13 000 × g, for 3 min. The recovered DNA solution
was subjected to neutral phenol:chloroform:isoamyl alcohol
25:24:1 (pH 7.7–8.8, Merck / Sigma-Aldrich) extraction and
ethanol precipitation, as described earlier. Dried pellets were
dissolved in ∼20 μl 1 × HE buffer, quality-controlled with
capillary electrophoresis (using High Sensitivity DNA chips
run in Agilent Bioanalyzer 2100), and directed to the high-
throughput sequencing input. 

Construction of the long-read nanopore direct RNA 

sequencing (DRS) libraries 

Approximately 200 mg of fixed, frozen cell grindate derived
exactly as described in ‘Cell material, fixation regimen and cy-
tosol collection’ was thawed and clarified by centrifugation at
4 

◦C, 13 000 × g for 5 min to remove cell debris. The result-
ing supernatant ( ∼300 μl, ∼6.0 AU) was spiked with in vitro
transcripts i1 and i2 (108 ng each; Supplementary Table S1 ), to
control the representation of non-translated RNA, and loaded
onto 12.5 ml linear 15–45% w / v sucrose gradients formed in
thinwall polypropylene tubes (13 ml, 14 × 89 mm, Beckman-
Coulter). The tubes were then centrifuged in an SW 41 Ti rotor
at 4 

◦C, average g-force 178 305 × g ( k -factor 143.9) for 2 h.
Absorbance profiles of the sucrose gradients were read at 254
nm (1.5 ml / min) using the Gradient Fractionator instrument
(Brandel). Fractions corresponding to the RS, DS, Trisomes
(‘TS’) and polysomes (tetrasomes and above, ‘PS’) complexes
were identified and isolated in real time based on their posi-
tion and mobility. The average absorbance at 254 nm of each
fraction was recorded, and the fraction material was either
stored at −80 

◦C or processed immediately. 
For the DR S, R S, DS and TS were combined proportion-

ally to their volume (yielding ‘ribosome-disome-trisome’ frac-
tion or ‘RDT’), along with the PS ( Supplementary Figure 
S11 A). The RDT and PS fractions were subjected to reverse-
crosslinking at 65 

◦C for 30 min, followed by RNA extraction
using Solid-Phase Reversible Immobilization (SPRI) beads.
The volume of SPRI beads was used at an 1:1 ratio with the
fractions. The mixture of RNA and SPRI beads was incu-
bated at room temperature for 5 min on a tube rotator (min-
imum speed) for 8 min. The tubes were transferred to a mag-
netic rack and incubated for 2 min, and the supernatant was
collected for troubleshooting purposes. The beads containing
bound RNA were washed with freshly made 80% ethanol
and then air-dried for 8 min at room temperature. The RNA
was eluted by adding 32 μl of 1 × HE buffer and incubating
for 5 min with the intermittent gentle flicking of the tube at
room temperature. The tubes were then transferred to a mag-
netic rack for 2 min to collect the supernatant containing the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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extracted RNA in a new low-bind DNA tube. The RNA was
quantified using Nanodrop spectrophotometer, and ∼2 μg of
RNA was used to prepare DRS libraries. 

Quantitati ve rever se transcription and amplification

Equal volumes of TS and PS were taken and spiked with
in vitro transcripts i3 and i4 (10 ng each; Supplementary 
Table S1 ), providing an internal reference for RNA extrac-
tion, reverse transcription and amplification. The RNA extrac-
tion process was carried out as described in the ‘Construction
of the long-read nanopore direct RNA sequencing (DRS) li-
braries’. Upon extraction, a 50 μl reverse transcription reac-
tion was set up, using ∼1 μg of the input RNA, 1 × TURBO
DNase buffer (Thermo Fisher Scientific), 0.8 U / μl RNasin
Plus (Promega) and 0.04 U / μl TURBO DNase (Thermo Fisher
Scientific). The reaction mixture was incubated at 37 

◦C for 25
min, reaction was stopped with 5.5 μl of DNase inactivation
resin and the remaining volume recovered into a new tube as
recommended by the manufacturer (Thermo Fisher Scientific).

For the reverse transcription, a protocol recommended by
the reverse transcriptase manufacturer (Thermo Fisher Scien-
tific) was followed. Briefly, the DNase-treated RNA, 1 μl of 2
μM primer mix ( Supplementary Table S1 ) and 1 μl of 10 mM
dNTPs were mixed in a PCR tube; the mixture was briefly
spun down and incubated at 65 

◦C for 5 min, followed by
rapid cooling through sticking in ice for at least 1 min, to
denature the RNA. A master mix was prepared containing
4 μl 5 × SSIV reaction buffer, 1 μl 100 mM DTT, 1 μl 40
U / μl RNasin Plus (Promega) and 1 μl 10 U / μl SuperScript IV
Reverse Transcriptase (RT; Thermo Fisher Scientific). A sepa-
rate mix with the reverse transcriptase enzyme replaced with
deionised water was prepared for the ‘RT minus’ control. The
annealed RNA sample from was divided in halves, with one
portion used for the reaction and the other for the RT minus
mix. The reaction mixtures were then incubated at 50 

◦C for
10 min, followed by incubation at 80 

◦C for 10 min to inac-
tivate the RT. The resulting cDNA can be utilized for qPCR
immediately or stored at –20 

◦C. 
For the qPCR, the cDNA was diluted 5 × with

1 × HE buffer. A master mix for qPCR was pre-
pared, consisting of 5 μl 2 × SYBR Green PCR Mas-
ter Mix (Thermo Fisher Scientific), 0.375 μl of each
20 μM forward and reverse primers and 0.250 μl of
deionized water for each reaction (yeast targets SSC1
(YJR045C), RPS20 (YHL015W), ATG40 (YOR152C), GUS1
(YGL245W ), GCN2 (YDR283C), RPL26A (YLR344W),
SSE1 (YPL106C) and the spike-in IVTs i1 , i3 ). qPCR reactions
were set using technical triplicates where 6 μl of the master
mix were combined with 4 μl of the diluted cDNA or RT- con-
trol reactions in 384-well plates. The plates were then sealed,
contents mixed and spun down, and thermocycling run on
QuantStudio 12K Flex (Thermo Fisher Scientific) with stan-
dard protocol for SYBR-based detection, whereby the initial
denaturation was carried out at 95 

◦C for 60 seconds, cyclic
denaturation at 95 

◦C for 15 s, and cyclic annealing / extension
at 60 

◦C for 30 s. 
The 2 

−��Ct method was employed for assessing relative
abundance changes. In this method, i3 was utilized as the ref-
erence control. Here, �C t refers to the difference between the
C t value of the target gene and the C t value of the reference.
Furthermore, ��C t represents the difference between the �C t

value of a specific sample of interest (starved for 10 min) and
the �C t value of the corresponding reference sample (non- 
starved). A sample size of n = 3 was employed. 

Construction of the total ( T ) and total translated ( tt ) 
RNA-sequencing libraries 

RNA-seq libraries were made using the T and tt fractions.
For T , ∼200 mg of the frozen cell grindate was subjected 

to reverse crosslinking followed by RNA extraction gener- 
ally as described above. The frozen cell grindate was thawed 

and clarified by centrifugation to remove cell debris at 4 

◦C,
13 000 × g for 5 min. The resultant supernatant ( ∼150 μl,
∼3.0 AU) was then subjected to reverse crosslinking followed 

by RNA extraction as described above in the ‘Construction 

of the eTCP-seq SSU, RS and DS footprint RNA-sequencing 
libraries’ section. For tt , 200 μl ( ∼5.0 AU) of the filtered and 

sucrose-depleted (poly)ribosomal fraction from the ‘Separa- 
tion of the fixed (poly)ribosomal complexes away from the 
non-translated fractions of cytosolic RNA’ section was used,
and the reverse crosslinking performed as for T . ∼1 μg of 
the RNA obtained from each, T and tt , was directed into 

making the rRNA-depleted RNA-seq libraries employing GE- 
NEWIZ services. Generally, the rRNA was depleted in the 
RNA fractions and VAHTS Total RNA-seq (HMR) Library 
Prep Kit for Illumina-compatible sequencing were used for 
library preparation, during which the rRNA-depleted RNA 

was fragmented and reverse-transcribed. First strand cDNA 

was synthesized using ProtoScript II Reverse Transcriptase 
with random primers and actinomycin D. The cDNA second 

strand was synthesized using Second Strand Synthesis Enzyme 
Mix, which included dACG-TP / dUTP. The double-stranded 

cDNA was SPRI bead-purified and then treated with End 

Prep Enzyme Mix to repair both ends and add 3 

′ oligo(dA) 
in one reaction, followed by a T-A ligation to add amplifica- 
tion adapters to both ends. Size selection of the adapter-ligated 

DNA was then performed using SPRI beads, and fragments up 

to ∼400 bp (with the approximate insert size of 100–300 bp) 
were recovered. The dUTP-labeled second strand was digested 

with Uracil-Specific Excision Reagent enzyme. Each sample 
was then amplified by PCR using Illumina’s P5 and P7 index- 
containing primers. The PCR products were cleaned up using 
SPRI beads and quantified by Nano quality control (Nano 

QC), to estimate library concentration. Next-generation se- 
quencing libraries were then multiplexed and paired-end se- 
quenced to 150 nt read length, to obtain at least 100 M reads 
per each barcode. 

High-throughput sequencing and mapping of the 

reads 

Sequencing was performed on a HiSeq 2500 (Illumina by GE- 
NEWIZ) using settings compatible with TrueSeq Small RNA 

Sample Preparation Kit (Illumina) and paired-end reads of 
150 nt. Barcoded libraries were mixed in equimolar or oth- 
erwise desired proportion, and sequenced with 400 M reads 
per lane mode; additional lanes were invoked when necessary.

The 150 nt Illumina paired reads were subjected to 

quality control using Trimmomatic (SLIDINGWINDOW: 7 

nt; phred quality cut-off: 24) followed by adapter trim- 
ming including the (A)20 tract from the reverse transcrip- 
tion primer. The reads containing no 3 

′ poly(A) or shorter 
than 17 nt were discarded. To assign reads to the genome 
a stepwise alignment strategy was performed as follows.
Reads were first filtered to keep only those not mapping 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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o any rRNA species (inferred from the locus: chromo-
ome XII:450 000–491 000). The remaining reads were then
apped to a custom tRNA sequence set based on GtR-
Adb (PMC4702915). Unmapped reads from this align-
ent were then aligned with spliced RNA sequences con-

aining ‘misc_RNA ’, ‘ncRNA ’, ‘tRNA ’ or ‘snoRNA ’ primary
ags in SacCer3. Finally, the remaining unmapped sequences
ere aligned to a genomic mRNA reference consisting of
ll protein-coding gene regions with an up- and downstream
000 bp flanking genomic sequences, allowing multiple
appings. 

anopore direct RNA sequencing and mapping of 
he reads 

RS libraries were prepared and run as described previ-
usly ( 83 ), using SQK-RNA002 kit and MinION Mk1B
ONT) equipped with R9.4.1 flowcells under control of

inKNOW v5.7.2. Raw FAST5 were collected and then
asecalled into FASTQ using Guppy v5.0.11. The se-
uencing reads were aligned against the reference genome
Saccharomyces_cerevisiae.R64-1-1.108) from ENSEMBL
sing minimap2 with ‘-ax map-ont -k14’ parameters. The
apped reads were converted into bam files with sam-

ools. Featurecounts tool was used to count the reads based
n the annotation provided by the ENSEMBL GTF file
or‘Saccharomyces_cerevisiae.R64-1-1.108’. The full R code,
ommands, parameters and software packages used in the
ubsequent processing to normalize and interpret the data are
vailable upon request. Briefly, the sequencing passes were
ombined into biological replicates and variance stabilizing
ransformations (vst) were used for PCA plot generation.
aw read counts were normalized by the total read count
nd the scaling factor calculated as part of the DESeq2
ackage. Differentially abundant mRNAs across the fractions
RDT v er sus PS) and conditions (non-starved vs. 10-minute
lucose starved) were determined based on alignment with a
egative binomial distribution ( P -value < 0.05, FC > 2) and
umulative read count > 20 calculated using two biological
eplicates. 

ootprint end definition and mapping 

fter quality filtering and adapter removal, the 3 

′ ends of the
eads were used as reference points for the ribosome-protected
ootprints. In cases where the 3 

′ end position of the trimmed
ead sequences was aligned immediately upstream of adenine
ucleotides, it was impossible to resolve the exact location of
he 3 

′ end of the corresponding original RNA fragment be-
ore polyadenylation. With these reads, the 3 

′ end position was
andomly assigned with equal probability between all possi-
le locations. Assignment of start codon and ORF regions was
erformed as described earlier ( 76 ). 

ength-based footprint classification and 

uantification 

ootprints were defined by dissection of the footprint length
istribution of the RS and DS eTCP-seq libraries with the
ange of 27–38 nt (‘short’) and 56–82 nt (‘long’). Reads Per
ilobase per Million Mapped reads (RPKM) values were cal-

ulated for both paired RNA-seq fragments and ribosome-
rotected footprints. 
Detection of non-random footprint peaks and 

calculation of the peak-free (stochastic ‘base’) 
footprint density 

Putative stalling sites were detected by an in-house hidden
Markov model-based algorithm using the R package dep-
mixS4 ( 84 ). Both the original and the peak-segregated ( BASE
and PEAKS ) signals of the eTCP-seq RS and DS were then
used for downstream analyses. Please refer to the supplied
source code for more details. 

Calculation of the translation efficiency (TE) 

‘Translation efficiency’ measures were calculated as the ra-
tio of the normalized occupancy (RPKM) of eTCP-seq RS
fraction and the RNA-seq from the poly(ribo)some co-
sedimenting ( T ; TE 

T ) and the total cell lysate ( tt ; TE 

tt ) pools
along the ORF regions using a 500-bp window both up- and
downstream. 

Definition and quantification of the features used 

for stochastic Translation Efficiency (STE) AI 

STE measures were determined using the eTCP-seq SSU, RS
and DS profiles. ‘DS / RS’ refers to the unfiltered, unprocessed
and otherwise unmodified ratio of the normalized occupan-
cies of RS (using only short footprint; 27–38 nt) and DS (us-
ing only long footprint; 56–82 nt). RS BASE or DS BASE denotes
the average signal after peak removal from the ribosome or
disome profile while RS PEAKS or DS PEAKS refers to the aver-
age signal of the predicted stalling sites. After peak removal,
gaps were substituted by the average signal of the remaining
codons. 5 

′ UTR scanning obstruction ratio was calculated as
the number of SSU footprints within the 5 

′ UTR divided by
the number of footprints within the 5 

′ UTR and over the an-
notated start codon. Initiation efficiency was derived from the
ratio of the normalized SSU footprints divided by the normal-
ized RS signal over the ORF region. Finally, elongation com-
mencement efficiency was calculated as the ratio of the nor-
malized RS signal around the start codon (the 5 

′ end of the
footprint falls into the ± 7 codon window relative to the an-
notated start codon) divided by the average RS signal over the
ORF region. 

Ensemble machine learning and STE AI 

An ensemble predictor for the real protein synthesis rate per
mRNA per second, taken from Riba et al . ( 85 ), was built in
two tiers. In the first tier, a Support Vector Machine and a Con-
ditional Forest model were trained on two non-overlapping
segments of the input data. The following features were de-
rived and used: normalized SSU signal over the annotated
5 

′ UTR, normalized RS signal (only short, monosomal foot-
prints), normalized DS signal (only long, disomal footprints),
DS / RS ratio with and without footprint length filtering on
the DS signal, and with or without removing the predicted
stalling sites from the RS and DS fractions, 5 

′ UTR scanning
obstruction ratio calculated as library normalized SSU signal
within the 5 

′ UTR divided by SSU signal within the 5 

′ UTR
and start codon-associated footprints, initiation efficiency ra-
tio calculated as normalized RS quantified on the ORF re-
gion divided by the normalized SSU signal measured on the
start codon (RS ORF / SSU START ), elongation commencement ra-
tio calculated as normalized RS quantified on the ORF region
divided by normalized RS signal measured on the annotated
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start codon (R S ORF / R S START ), and the annotated ORF length.
In the second tier, another Conditional Forest ‘governor’ was
trained using the above-mentioned features and the predic-
tions from the tier 1 models. All models were 10-fold cross-
validated and tested with different train-test ratio (0.5, 0.6,
0.7 and 0.8) and with different 5 

′ UTR length cutoffs (10, 20
and 50 nt). Contribution plots with the ‘mean decrease in ac-
curacy’ were generated from the Conditional Forest models
from tier 1 and tier 2 (governor model) using the varimp from
the partykit R package ( 86 ). 

Calculation of the differential δSTE, STE clustering 

and gene ontology (GO) term analysis 

Differential δSTE (changes in log 2 (STE) values across con-
ditions for the same gene or transcript) were calcu-
lated as δ

1 STE = STE A 

/ (STE A 

+ STE B ), δ
2 STE = 2 ×

((STE A 

/ (STE A 

+ STE B )) – 0.5) and 

δ
3 STE = (STE A 

–
STE B ) / STE B . Heatmaps and k -means clustering were gener-
ated using the R packages ggplots2 and pheatmap ( 87 ). Gene
Ontology and were performed using the R package Cluster-
Profiler ( 88 ). To construct sliding window Gene Ontology
analysis, an in-house algorithm was used (please refer to the
respective source code). 

Calculation of the mRNA polysome abundance, 
polysome sedimentation factor and its difference 

Library normalization was performed by excluding genes with
less than 20 read counts cumulatively across the conditions
and fractions, normalizing all non-zero counts by the library
size followed by inputting all zero counts with 0.1 (gene
polysome abundance; PA). The pairwise Pearson’s correla-
tions of the normalized library within replicates were calcu-
lated in R with Benjamini-Hochberg methodmethod for p-
value adjustment and alpha set to 0.05. Polysome sedimen-
tation factor was calculated as PSF = P A PS / (P A PS + P A RDT ),
where PA PS and PA RDT were relative gene polysome abun-
dances calculated as indicated above. The differential δPSF is
defined as δPSF S10 = PSF S10 / (PSF S10 + PSF NS ). The correla-
tions between the PSF across the conditions and 

δPSF to 

δSTE
(model 1 and model 2) were calculated by Pearson. 

Mathematical modeling 

The developed mathematical model of stochastic disome for-
mation was verified by generating positions of ribosomes over
10 million iterations. Then the position of individual ribo-
somes was modeled using Gaussian distributions with identi-
cal standard deviations ( σ = 1) and their relation was assessed
in R using the stats package. The resulting probabilities and
distributions were also verified in Mathematica ( 89 ). Line and
boxplots were plotted using the ggplot2 R package. 

Construction of in silico translatome and 

simulation of translation supported by in 

vi vo -deri ved parameter s 

To generate the distribution of elongation rates over codons,
the ribosome profiling-derived data ( 90 ) was fitted by log-
normal distribution. A log-normal distribution modeling was
also employed for initiation rate reconstruction using avail-
able experimental data ( 91 ). Maximum values for the initia-
tion rate (number of initiating ribosomes per unit time) were
restricted to 60 initiation events per min for each individual
model mRNA. The in silico translatomes were modeled with 

a prototypical ORF consisting of 333 codons, using the fit- 
ted elongation speed profile. Simulations were run for 36000 

model seconds (10 model hours) with a range of fitted ini- 
tiation ( μ = 1, 10, 20, 30, 40, 50, 60) and elongation rate 
distributions. ‘Slow’ and ‘fast’ segments were taken from the 
lower and upper quartiles of the elongation rate distribution,
respectively, while the trimodal patterns of fast-slow-fast and 

slow-fast-slow were constructed with a middle segment of 7 

codons (21 nt) surrounded by either a fast or a slow segment.
Line, trace and box plots were generated using the R package 
ggplot2. 

Published data used in the study 

To generate a spectrum of elongation rates over codons, ri- 
bosome profiling-derived data were used ( 90 ). Initiation rate 
distribution was reconstructed using a maximum frequency- 
limited log-normal distribution fitted to available experimen- 
tal data ( 91 ). To train and benchmark the developed ensemble 
models, protein synthesis rates were taken from a study that 
employed metabolic labeling and mass-spectrometry ( 85 ). 

Results 

Co-localization of ribosomes on mRNA as a result 
of diffusion-defined molecular motion 

‘Collided ribosomes’ were described early on ( 57 ,62 ) and 

further characterized since, yet such nuclease-resistant co- 
localized ribosome occurrence (mostly in the form of dis- 
omes) is commonly only attributed to discontinuous elonga- 
tion rates, as in ribosomal stalls or slowdowns on mRNA 

( 39 , 60 , 63 , 92–97 ). Attempting to generalize this problem,
we asked what a minimal prerequisite of ribosomal co- 
localization on mRNA might be (Figure 1 A). Using a theo- 
retical mRNA with infinite ORF length and featuring only 
two ribosomes, in our model a co-localization takes place 
when the trailing ribosome would attempt to elongate fur- 
ther on the message than the leading ribosome. Instead of 
predicating that ribosomal positions are deterministically de- 
fined, we used a more realistic assumption that diffusional 
heterogeneities of the elongation rate create a probabilistic 
function of ribosome localization, if two or more ‘indepen- 
dent’ ribosomes are considered ( 98–102 ). Simplifying this dis- 
tribution to normal and identical in standard deviation for 
all ribosomes (with μ representing distance between ribo- 
somes over mRNA defined as the inverse initiation frequency),
this model results in a normal-like stochastic disome occur- 
rence (see more in Supplementary Materials; Figure 1 B and 

Supplementary Figure S1 B, top lane). The model was further 
verified by averaging 10 million randomly-generated pairs of 
ribosome positions and identifying the frequency of corre- 
sponding disome positions ( Supplementary Figure S1 B, bot- 
tom lane). Intuitively, stochastic disome probability maximum 

does not exceed 0.5 for two ribosomes. The disome probabil- 
ity also increases monotonously albeit non-linearly with ri- 
bosome density ( i.e. initiation frequency), and is dependent 
on the localization variance ( σ), which cumulatively embod- 
ies diffusional variances of all contributing processes (Figure 
1 C, Supplementary Figure S1 A). Interestingly, increasing the 
number of ribosomes does not principally change these char- 
acteristics, although it results in higher maximal stochastic di- 
some frequency ( Supplementary Figure S1 C). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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Figure 1 . Stoc hastic co-localized ribosomes (stoc hastic disomes, DS) result from diffusional initiation and elongation rate variances. ( A ) Comparison of the 
common ‘deterministic’ view ( left ) of ribosomal (RS) progression on mRNA with a diffusion-a w are stochastic model ( right ). Note that in the deterministic 
model, co-localized ribosomes can only occur at certain sites with slow elongation rate or arrested translation. μ represents the distance between 
ribosomes along mRNA, σ represents the localization variance and Erf c is the complementary Gaussian error function (see text for more explanations). 
V ORF and V slow indicate the elongation rate (velocity) for the whole or a designated part of the ORF, respectively. ( B ) Generalized mathematical model of 
stochastic disome occurrence (stochastic disome frequency, F SD ) for an infinitely long model mRNA containing two RS (see more under ‘Mathematical 
modeling’ in Materials and Methods). ( C ) F SD for case as in (B) monotonously depends on initiation frequency across all variance values. 
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The model can be extended to accommodate multiple ri-
osomes in two ways. First, we can examine the proba-
ility of disome occurrence when multiple ribosomes elon-
ate on the same mRNA ( Supplementary Figure S1 C). This
nalysis reveals that when more than two ribosomes are
resent, the probability of disome appearance is substan-
ially higher, consequential to the high translation initiation
nd elongation rates. The apparent disome frequency depen-
ence on the initiation frequency does become more com-
lex ( Supplementary Figure S1 D; compare graphs with just
wo ribosomes, green, and all five ribosomes, magenta), but
emains monotonous. Second, we can examine the appear-
nce of multisomes such as trisomes, tetrasomes and penta-
omes ( Supplementary Figure S1 D), when e.g. up to five ribo-
omes are simultaneously present on the mRNA. As revealed
y this analysis, although multisomes do occur when multi-
le ribosomes elongate on the same mRNA, the probability
f their occurrence is relatively low compared to the disomes,
ven under favorable rate and variance combinations. In con-
rast, stochastic disomes are quite frequent and, normalized
y the average number of monosomes, can provide a proxy
f translation rate, primarily driven by the translation initia-
ion frequency. An interesting additional feature revealed by
his analysis is the ‘unimodal’ disome occurrence in the case of
ightly packed (rapidly initiated) ribosomes and high localiza-
ion variance-to-initiation frequency ratio, which transitions
nto a broader disome occurrence distribution, as the pack-
ing becomes more loose ( Supplementary Figure S1 D) and the
variances shrink, and further transforms into a multi-modal
disome frequency, where modes are attached to the nearby ri-
bosomal frequency peaks. Thus, we can conclude that stochas-
tic disome formation may take place even under the least fa-
vorable combinations of initiation rate and cumulative diffu-
sional variance. In this latter case, ribosomes that happened
to initiate in a more rapid succession would keep traveling on
mRNA as a group and stochastically co-localize, still provid-
ing a time-averaged ‘base’ disome signal. 

While we modeled the stochastic-aware ribosomal behav-
ior along an mRNA ORF using a continuous probability dis-
tribution function (for simplicity; which nonetheless can be
numerically binned into a Poisson-like distribution), it can
be useful to apply some constraints to this model. For ex-
ample, μi can be limited as more or equal to the μi(min) of,
e.g. 2 σ i , to reflect a steric inability of the SSUs to occupy
the same space on mRNA and not to be loaded until after
the previous SSU sufficiently clears the mRNA 5 

′ end. To
further incorporate the effects of translation initiation, the
model can be expanded by unfolding the probability of the
SSU start codon occurrence through a more complex func-
tion defined by the SSU 5 

′ cap attachment rate and its vari-
ance, SSU 5 

′ UTR scanning speed and its variance, start codon
recognition speed and efficiency and their variances, and in-
corporating an effect of the possible 5 

′ UTR length difference.
These changes to the model are outside the scope of the work,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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and while theoretically intriguing, will not principally affect
our conclusions, similar to the effect of a possible crosslink-
ing delay-induced ‘leakage’ of the complexes into the later
stages. Another limitation stems from the steric clash phe-
nomenon and a finite length of mRNA, which is generally
within a few orders of magnitude of the ribosome-occupied
fragment lengths. For example, ORFs, excluding uORFs, have
a median length of 1000 nt, based on the current yeast
genome annotation (SacCer3; https://www.ncbi.nlm.nih.gov/
assembly/ GCF _ 000146045.2/ ). Arguably, with the commonly
accepted highest possible ribosomal density of ∼0.1 codon 

−1

(indirectly confirmed by footprinting assays performed by us
and others ( 62 , 76 , 103–105 ), as well as by translation rate es-
timates and modeling ( 85 , 106 , 107 ) and electron microscopy
( 108 )), these ORFs could maximally simultaneously contain
up to thirty-three ribosomes. An intriguing conclusion is that
with the finite density of ribosomes over a given mRNA, the
DS probability function has a distinctive shape reflecting both
the density and the absolute number of the ribosomes over
that mRNA. Therefore, theoretically, the distribution of DS
probability of occurrence can be used to infer variations in
the absolute load of an mRNA with ribosomes at steady-state,
identifying how many ribosomes are present on that mRNA
at a given moment in time, and further, deconvoluting frac-
tions of the given mRNA by their absolute occupancy with
the ribosomes. Undoubtedly, including these finer effects into
the modeling would make it more realistic, but the model
would also lose its generality and more complex distributions
would have been introduced. To overcome these limitations,
we further employed a simulation-based modeling framework
using experimentally available initiation and elongation rate
distributions. 

Stochastic-aware simulation of ribosomal 
dynamics predicts an elongation rate-independent 
disome population and links disome occurrence 

with translation initiation rate 

To attest to the potential of stochastic co-occurrence of ribo-
somes in a more lifelike scenario, we constructed a parame-
terized model of protein synthesis, somewhat inspired by the
classical solutions to road traffic, Monte Carlo simulations
of translation, M / M / 1-queues and totally asymmetric sim-
ple exclusion process (TASEP; and its derivatives) (Figure 2 A)
( 57 , 85 , 101 , 102 , 107 , 109–112 ). We wished to test if our model
can result in ribosome co-occurrence within the parameters of
key steps relatable to the actual biological processes of trans-
lation. Recent single-molecule studies provided quantification
of both, the initiation event frequency and elongation speed,
and gave an estimate of their variance ( 85 , 90 , 113–119 ). Pre-
cise measurement of single-molecule events during, e.g. cer-
tain steps of translation initiation and elongation, using FRET
approaches, provide a direct visualization of the stochastic-
ity of these events, including the direct estimation of transla-
tion initiation variance ( 114 ,117 ). Recently, it has been shown
that stochasticity during translation initiation can alter subse-
quent elongation rate and result in cell fate switching ( 120 ).
Other types of experiments are well-suited for en masse ob-
servations, such as in multi-tagged fluorescent systems com-
bined with super-resolution microscopy ( 91 , 113 , 121 ), or the
analysis of deeply sequenced ribosome footprint libraries ( 90 ).
From these data, it is possible to obtain a probability density
function reflective of the cumulative in vivo translation initi-
ation and elongation rate variances, which also comprises the 
diversity of the tRNAs ( 122–124 ) and their kinetics as well as 
diffusional variances. 

Average translation initiation rates have been shown to vary 
greatly, with observations of as low as < 0.1 ribosomes per 
minute up to ∼15 ribosomes per minute (thus maximally al- 
lowing each ribosome to attach every 4 seconds), with the me- 
dian of about 1 ribosome per minute and the bulk between 

0.5 and 2 ribosomes per minute at 37 

◦C ( 91 ). Similarly, elon- 
gation rate variance expressed as the variance of the calcu- 
lated ribosomal dwell time over each codon based on ribo- 
some profiling data ( 90 ) demonstrates a skewed normal-like 
distribution with a modal value around 200 ms per codon ( ∼5 

codons / second) at 30 

◦C. As each ribosome covers a space on 

mRNA of ∼10 codons, it would take ∼2 s for it to clear the 
occupied space at the modal speed. These constrains would 

be difficult to precisely incorporate within a generalized rep- 
resentation of translation but are sufficient to construct a 
reasonably-performing numerical model. 

To generate the distribution of elongation rates over cod- 
ing triplets per second, ribosome profiling-derived data was 
used ( 90 ) and modeled by log-normal distribution (Figure 2 A,
Supplementary Figure S2 A). A maximum frequency-limited 

log-normal distribution modeling was further employed for 
initiation rate reconstruction using available experimental 
data ( 91 ) ( Supplementary Figure S2 B), for the range of ex- 
pected values ( μi = 1, 10, 20, 30, 40, 50, 60; Supplementary 
Figure S2 B), allowing a maximum of 60 initiating ribosome 
attachments per minute per each mRNA and including non- 
deterministic diffusional variance component for each of the 
set average frequencies. 

We next created a translation model roughly based on 

M / M / 1 queue principles ( 125 ), using a prototypical ORF 

consisting of 333 codons and initially with a homogeneous 
elongation speed profile taken from the reconstructed distri- 
bution of elongation rates ( Supplementary Figure S2 A). We 
used a feedback-independent model with equal and unre- 
stricted availability of initiating ribosomes, no specific delay in 

conversion of the initiating to elongating ribosome and elon- 
gating to terminating or recycled ribosome, and employed a 
second-based codon-wise iteration starting from the ‘empty’ 
mRNA. The system was allowed to cycle over 36 000 model 
seconds (10 model ‘hours’). We then varied the modal SSU at- 
tachment (initiation) and its distribution function respectively,
by scaling the entire distribution towards faster or slower ini- 
tiation, and investigated the initiation rate effects using spatio- 
temporal ribosome positioning diagrams termed trace plots. 

We first created scenarios with an unbiased uniform (Fig- 
ure 2 B, μi = 1, 10, 60; more in Supplementary Figure S2 C) 
elongation speed (codon) pattern, and next with more com- 
plex codon patterns including ‘fast’, ‘slow’, ‘fast-slow’, ‘slow- 
fast’, ‘fast-slow-fast’ and ‘slow-fast-slow’ code stretch transi- 
tions across the ORF (Figure 2 C, ‘fast-slow-fast’, ‘slow-fast- 
slow’; more in Supplementary Figure S3 A, top lane). The 
‘slow’ and ‘fast’ segments were sampled from the lower and 

upper quartiles of the elongation rate distribution, respectively 
( Supplementary Figure S2 A). The bimodal ORFs had their 
‘slow’ and ‘fast’ segments split at the ORF midpoint, while the 
trimodal ORFs had their middle segment spanning 7 codons 
(21 nt) positioned centrally. This analysis revealed that the di- 
some (DS) to ribosome (RS) ratio strongly correlates with the 
number of initiating ribosomes, independent of the elongation 

rate structure over the ORF (Figure 2 B, bottom lane). 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000146045.2/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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Figure 2. Stochastic co-localized ribosomes (stochastic disomes, DS) are monotonously linked to translation initiation rate. ( A ) Computational 
diffusion-a w are model of mRNA translation accounting for the experimentally-determined distributions of initiation and elongation rates and variances 
(frequency of initiation F I and frequency of elongation F E , respectively, see more under ‘Construction of in silico translatome and simulation of translation 
supported by in vivo -derived parameters’ in Materials and Methods). ( B ) Model from (A) realized across different median initiation rates and using a 
homogeneous F E log-normal distribution of codon dwell times (elongation dynamics) for the entire simulated Open Reading Frame (ORF) of 333 codons. 
Temporal (Y-axis) traces of individual ribosome positions on mRNA (‘trace plots’) for slow, medium and fast initiation rate cases are shown across the 
consecutive mRNA codons (X-axis) ( top ). Note that even a slow initiation rate with sparsely situated RS results in stochastic co-localizations. Steady-state 
number of RS over the model 333-codon ORF is dependent on the initiation rate, until saturation is reached ( bottom left ). Disome to monosome (DS to 
MS; whereby MS is a singular ribosome) ratio at steady state unambiguously depends on the initiation frequency ( bottom right ). ( C ) Model realizations 
as in (B), but for mRNAs with heterogeneous F E , resulting in various patterns of average codon dwell times, one with a first ‘fast’ segment (sampled 
from the higher quartile of the elongation rate distribution), a ‘slow’ segment (sampled from the higher quartile of the elongation rate distribution) in the 
middle representing a ‘stalling’ or slo w do wn site, and a third ‘fast’ segment ( left ), and one with the inverse pattern ( right ). ( D ) Translation rate (protein 
yield as determined by the terminated peptide frequency F T ) retains monotonous dependency on DS to RS ratio ( top ), as opposed to the mean 
monosome (MS) density on mRNA (equivalent of the normalization of RS to RNA signals in experimental ribosomal profiling data) ( bottom ). 
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Finally, we systematically investigated how the average
umber of singular ribosomes (ribosomes that are not part
f a di- or multisome), which we refer to as monosomes
MS), as well as DS, and the DS to MS ratio (Figure 2 D,
fast-slow-fast’; more in Supplementary Figure S3 A and B) de-
end on the overall translation rate (the number of terminated
ibosomes / second, F T ). This analysis revealed that mean
onosomal frequency (MS frequency; a modeling equivalent
f the ribosomal footprint signal widely used in calculations
f the Translation Efficiency or TE) shows ambiguous map-
ing for the multiple cases of elongation modalities, promi-
ently exemplified by the fast-slow, fast-slow-fast transitions
nd the generally slow ORFs, where a given TE value could
e mapped to more than one protein biosynthesis rate F T

 Supplementary Figure S3 A and B). The DS to MS ratio, in
ontrast, demonstrated a strong correlation with the protein
iosynthesis rate, provided near-linear response across sub-
tantial range of biosynthesis rates for all tested variations of
he elongation modalities, and was generally comparable in
erformance (although somewhat different) to the ideal case
of theoretical ribosomal frequency over ORFs measured as
mean RS ( Supplementary Figure S3 A and B). 

In summary, our simulation and its evaluation suggest that
the DS to MS ratio can be used as an important contributor in
the measurement of translation rates, and that the stochastic
DS s to MS ratio is unambiguously correlated with the trans-
lation initiation frequency . Critically , unlike in other currently
employed techniques, the disome to monosome ratio is based
on values of a similar nature, which avoids biases deriving
from methodological and instrumentational differences and,
importantly, provides a capability to directly quantify abso-
lute protein biosynthesis rates. 

Mechanisms of ribosome co-localization on mRNA 

Having confirmed the theoretical plausibility of stochastic
ribosome co-localization on mRNA, we further considered
other possible reasons for ribosome co-localization on mRNA
in actual biological systems. Multiple datasets now exist that
describe the occurrence of co-localized ribosomes (most com-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae365#supplementary-data
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monly, in the form of disomes, sometimes multiple ‘stacked’
ribosomes) on mRNA ( 39 , 40 , 60 , 63 , 92 , 126–128 ). Many of
these datasets are resulting from some form of limited di-
gestion of the ribosomal fraction and the occurrence of
the longer-than-monosomal nuclease-protected fragments of
mRNA, although electron microscopy observations are also
available ( 129 ). The most frequently quoted and intuitive
mechanism of disome occurrence is the one associated with
a localized unevenness of the translation elongation rate, a
phenomenon of multiple possible origins. For example, codon
usage and aminoacyl-tRNA availability, specifics of the kinet-
ics of each of the codon:tRNA interactions on the ribosome,
local nucleotide structure, nascent polypeptide properties and
the nascent protein domain structure have been implicated as
factors leading to non-uniform elongation rates ( 39 ,63 ). Thus,
these factors explain the possibility of a non-random DS nr oc-
currence at specific positions of elongation rate slow-down. It
can be speculated that within non-stabilized polysomes, and
polysomes stabilized with specific translation elongation in-
hibitors, detectable disomes (and any other co-localized ribo-
somes) are indeed, to a large extent, resulting from such elon-
gation slow-downs ( 4 ). 

Based on our theoretical considerations as outlined ear-
lier, and the possibilities of additional complex ribosome-
to-ribosome contact stabilization by in vivo rapid unbiased
crosslinking ( 4 , 5 , 78 ), we propose the existence of at least three
other classes of co-localized ribosomes (mostly, disomes DS;
Figure 3 B), in addition to the DS nr . One class of stochastic
disomes (DS s ) might derive from the variances of the under-
lying chemical reactions, based on the diffusion-derived vari-
ances and the probabilistic nature of the chemical reactions
themselves. Further, disomes can exist that, despite relating
to non-contiguous regions of the mRNA, become crosslinked
due to their spatial proximity. These spatial proximity disomes
could either reflect specific non-random spatial arrangements
within the polysome (DS sp ), or derive from stochastic events in
the polysome as a result of random (diffusional) coincidences
(DS rsp ) (Figure 3 B). For example, flexing of the polyribosomes
resulting in random contacts between distant individual ri-
bosomes or random trans -polysomal contacts between ribo-
somes in crowded environments could lead to the DS rsp for-
mation. Each of these classes of co-localized ribosomes carry
useful information about the translation rate, spatial orga-
nization and locality of the polysomes. While the DS sp and
DS rsp classes of co-localized disomes remain outside the scope
of this work, it is important to note that both are composed
of ribosomes separated by substantial gaps along the mRNA,
and thus can be identified and filtered out by their monosomal
footprint length (Figure 3 B). 

Footprint signatures of stochastic co-localization in 

translation complex profiling data 

To experimentally address the possible occurrence of diverse
types of ‘disomes’ in vivo , we employed an enhanced ver-
sion of translation complex profile sequencing (eTCP-seq)
( 5 ,76–78 ). We used rapidly-crosslinked translational com-
plexes separated into total RNA ( T ), total translated RNA ( tt ),
polysome-engaged ribosomal small subunit (SSU), ribosome
(RS) and disome (DS) fractions (Figure 3 A), based on their
distinct sedimentation profiles ( Supplementary Figure S4 B). 

In the polysomal material stabilized in vivo by rapid
crosslinking, we can detect a fraction of polysomes that are
highly resistant to nuclease treatment, similar to prior obser- 
vations ( 5 , 39 , 60 , 62 ) ( Supplementary Figure S4 A and B). This
fraction yields mostly disomes, but also contains some higher- 
order polysomes such as trisomes ( Supplementary Figure 
S4 A). Bioinformatic analysis ( Supplementary Figure S4 C) re- 
vealed that the DS fraction prominently featured longer foot- 
prints ( Supplementary Figure S4 D), whereas SSU and ribo- 
some fractions mapped in accordance with the previously- 
published results ( Supplementary Figure S4 E) ( 76 ,78 ). 

In-line with the principles outlined above for the possible 
different ‘disome’ classes, our bioinformatics analysis revealed 

a complex footprint length spectrum in the nuclease-resistant 
disome data ( Supplementary Figure S4 D and E). Disome foot- 
print data contained a considerable fraction of monosomal- 
length footprints, both short (A-site accessible / ’rotated’, ∼21 

nt) and normal ( ∼32 nt) monosomal footprint versions ( 4 ) 
that are reflective of the different sub-steps of the transla- 
tion elongation cycle ( 130 ). These footprints can belong to the 
DS sp , DS rsp classes, as well as to the disome classes that pro- 
tect a longer footprint, which has been subsequently cleaved 

while preserving the disome arrangement through other chem- 
ical crosslinks between the ribosomes. Disome data also con- 
tains long footprint ( ∼64 nt) versions that can only be a re- 
sult of protection from consecutively and compactly localized 

(also often referred to as ‘stacked’, sometimes ‘collided’) pairs 
of ribosomes on mRNA. The long footprints can result from 

the non-random DS nr and the stochastic DS s classes, in which 

the possible configurations of the ribosomes can be also di- 
verse, resulting in all possible combinations, short-short ( ∼42 

nt), short-long / long-short ( ∼52 nt) and long-long ( ∼64 nt) 
of the footprints ( Supplementary Figure S4 D). To ensure un- 
ambiguous attribution for the downstream analyses, we kept 
only monosomal footprints ( ∼32 nt) for ribosomes and long 
footprints ( ∼64 nt) for disomes ( Supplementary Figure S4 D 

and Supplementary Figure S5 A and B). It is noteworthy that 
upon such filtering, the DS to RS correlation decreased, point- 
ing towards a complex relationship between the DS and RS 
footprint versions reflecting a narrower and more precisely de- 
fined translation complex spectrum (compare Supplementary 
Figure S5 A and B). 

A characteristic and visually prominent feature of the well- 
covered ORFs upon filtering short footprints away is a combi- 
nation of peaks of long footprint coverage with some ‘back- 
ground’ coverage that is relatively evenly distributed across 
the ORF body (Figure 3 C, Supplementary Figure S6 ). We in- 
terpret the local peaks DS PEAKS of the coverage profiles as 
representing the DS nr population, as it has been suggested 

before ( 60 ,92 ). To systematically identify these peaks in a 
background-considerate fashion, we used a hidden Markov 
model splitter algorithm to detect and remove putative stalling 
sites from both RS and DS profile (see Materials and Meth- 
ods for more details; Figure 3 B and C, Supplementary Figure 
S5 C and D for the representative results of such transfor- 
mation). We then posited that the peak-excluded, long di- 
some footprint-length ‘background’ coverage DS BASE repre- 
sents the DS s population ( Supplementary Figure S4 B–D). The 
DS s coverage is variable across different mRNAs, likely re- 
flective of their differential translation activity (Figure 3 B,
Supplementary Figure S6 ). Furthermore, the peak-excluded 

DS BASE / (short RS) ratio is also variable across different mR- 
NAs, bolstering our modeling conclusion about the non- 
linear dependence of DS s on the translation initiation rate 
( Supplementary Figure S5 E and F). Further, comparison of the 
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Figure 3. Enhanced translation complex profile sequencing (eTCP-seq) identifies a comprehensive range of translational intermediates, including 
stochastic and non-random ribosomal co-localizations on mRNA. ( A ) Outline of the enhanced eTCP-seq approach underpinning STE calculations. 
Schematic illustrating the sedimentation-based separation of total translated RNA (RNA 

tt ), and its RNase I clea v age and fractionation to generate small 
ribosomal subunit (SSU), ribosome (RS) and disome (DS) footprints ( left ). Footprint mapping from different fractions and the respective fragment length 
distributions are shown ( right ). Note the presence of an additional peak with ∼67 nt mode in the DS fraction. ( B ) Features and theorized origins of the 
DS footprints. Schematic showing plausible polysome arrangements and different potential types of contacts between RS, either distal or proximal to 
each other along the mRNA. The former generate localized ‘short’ footprints associated with the DS fraction, while the latter yield ‘long’ DS footprints 
resulting from either stochastic or non-random proximal co-localization, as well as ‘short’ footprints due to their partial cleavage in halves ( top ). Many 
transcripts ha v e R S (blue) and DS (red) fractions with substantial frequency of f ootprints in the characteristic 27–38 nt (‘short’) and 56–82 nt (‘long’) 
length ranges, respectively ( bottom left ). DS footprints filtered into ‘short’ (purple, top) and ‘long’ (red, bottom) groups for a well-covered RLP1A mRNA 

ORF demonstrate partially concordant co v erage, with some peaks appearing as unique to either group ( bottom right ). ( C ) Use of a hidden Mark o v 
model-based (HMM) splitter to detect (and isolate) peak (non-random) and base (stochastic) signal components ( top right ). Many transcripts 
demonstrate the presence of a large stochastic component in the long DS footprint signal ( bottom right ). Note that the length-normalized peak signal (as 
shown) is inherently higher than the base signal due to ribosome ‘concentration’ at the specific stall or slowdown sites over a short region of mRNA. 
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ootprint-filtered DS BASE to short RS ratio using metabolic la-
eling and mass-spectrometry ( 85 ), revealed strong positive
orrelation to the protein output for mRNAs where there is
 detectable disome signal, directly confirming our theoretical
ssumptions ( Supplementary Figure S5 G; upper group). 

alidation of the stochastic co-localization signal 
omponent in in vivo footprinting data 

e next identified the stochastic component of the disome
ootprints, to use it for protein output modeling as theo-
ized above. We first isolated ‘long’ (56–81 nt) footprints for
he disomal and ‘short’ (27–38 nt) footprints for the ribo-
omal fractions ( Supplementary Figure S5 A and B). Next, a
idden Markov model (HMM) splitter was used to identify
nd remove disome and ribosome ‘spikes’ (RS PEAKS , DS PEAKS ),
hich likely descend from localized stalls or slow-downs and

hus could be a compounding factor for stochastic disome
ignal fitment due to their non-randomness ( Supplementary 
igure S5 C and D). Of note, ribosomes and disomes found
outside peak regions (RS BASE , DS BASE ) constitute a consid-
erable proportion of all signals (83% for the RS fraction
and 23% for the DS fraction), and the correlation between
RS and DS signal gradually decreases with every next fil-
tering step demonstrating that DS BASE signal contains a dif-
ferent type of information ( Supplementary Figure S5 A–D).
As the long disome footprints are virtually absent in the RS
data (Figure 3 A), the remaining signal directly supports the
stochastic appearance of ribosomal co-incidence and initia-
tion rate-accidental tight packing (Figure 3 C; see more in the
Supplementary Materials ). 

Upon all filtering, we inferred the disome to ribosome
(DS / RS) signal ( Supplementary Figure S5 E and F) and com-
pared it against known accurate measurements of protein syn-
thesis rates performed in S. cerevisiae using metabolic label-
ing and mass-spectrometry ( 85 ). Importantly, length-filtered
DS BASE / RS values returned strong positive correlation to the
protein output for the mRNAs with a robust stochastic di-
some signal, directly confirming our theoretical conclusions
( Supplementary Figure S5 G and H). 
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Ensemble machine learning featuring stochastic 

disome signals accurately predicts translation rates 

in vivo 

We then employed an ensemble learning, featuring a
cross-validated Support-Vector Machine (SVM) and Condi-
tional Forest models, which used inputs from ORF length-
normalized footprint densities of different fractions, and var-
ious measures of translation including DS / RS ratios, initia-
tion and elongation efficiencies (see more in Supplementary 
Materials ), and the ORF length. These two ‘first tier’ mod-
els were trained on non-overlapping segments of the data
set. We next trained another (second tier) Conditional For-
est model termed ‘governor’, using the predictions of the
first-tier models. The governor returned ∼0.6–0.7 correla-
tion with the mass-spectrometry-based measurements bench-
marked with an independent data subset not used in the
training process (30% of the whole data set). Surprisingly,
we could not achieve a meaningfully-positive correlation
when using ribosomal footprint counts normalized to either
total or total translated RNA-seq signals (TE 

T , TE 

tt ; Fig-
ure 4 A). Remarkably, of all components used, the length-
filtered DS BASE / RS ratio, and the normalized ribosome signal,
showed the highest contribution to the predictive power of
the model ( Supplementary Figure S7 C), while the inclusion of
ORF length demonstrated only moderate improvements (not
shown). 

To confirm the generalization capability of our approach,
we tested models with different training:test ratios (0.6 or 0.7)
and minimum 5 

′ UTR length parameters (5 

′ UTR > 10 or
5 

′ UTR > 20 nt) ( Supplementary Figure S8 E). Both governor
models resulted in similar accuracy in predicting protein syn-
thesis rates and defined mRNA (gene) clusters with similar
biological / molecular functions. Because the DS BASE / RS diffu-
sion variance-derived component is unique to our modeling,
we deemed our measure as ‘Stochastic Translation Efficiency’,
or STE. Importantly, STE provides a direct estimate of the ab-
solute protein output per mRNA per unit of time, and thus can
be used to rank mRNAs and respective UTRs by their power
to compete for initiating ribosomes in any given condition. 

Stochastic translation efficiency (STE) reveals 

details of rapid re-prioritizing of cellular translation 

in stress 

Applying STE to a protoptypical scenario of nutrient
starvation (10-minute glucose depletion) in S. cerevisiae
( Supplementary Data S1 and S2 ), we observed gene clustering
by response type and magnitude with finer details of gene ex-
pression control revealed. In the non-starved cells, 72 genes
appeared in the top 25% and 4446 genes – in the bottom
25% of STE values, with maximal F T values approaching
0.055 p / s, (model #1; Figure 4 B and Supplementary Data S1 ).
mRNAs of ribosome biosynthesis (RiBi), sugar and amino
acid metabolism and biosynthesis of secondary metabolites
genes were enriched in high STE, whereas those of endo-
cytosis appeared translationally suppressed (Figure 4 C and
Supplementary Data S1 and S2 ). In the starved cells, RiBi
transcripts were translated less efficiently (variably), amino
acid and secondary metabolism transport and stress granule-
related transcripts were substantially inhibited, while endo-
plasmic reticulum (ER) membrane-related mRNAs acceler-
ated their translation (Figure 4 C and Supplementary Figure 
S9 A and B, also Supplementary Figure S10 A and B). 
Genes involved in oxidative metabolism balance, such 

as re-oxidation of intracellular NADH under anaerobic 
conditions, glycolytic breakdown of carbohydrates into pyru- 
vate, glycolysis and gluconeogenesis ( OSM1 / YJR051W,
TPI1 / YDR050C, PGK1 / YCR012W), as well as ER- 
associated protein degradation (ERAD) and SSU pro- 
duction ( DFM / YDR411C, RPS21A / YKR057W), were 
highly translationally up-regulated, underpinning the im- 
portance of cytoplasmic gene control in nutrient response.
A signature of accelerated transcriptome restructuring 
was observed, where RNA metabolism genes (rRNA 

maturation, transcription and gene expression) were up- 
regulated, whereas general translation, nucleotide and ribose 
phosphate / carboxylic acid metabolism were down-regulated 

(Figure 4 C and Supplementary Figure S9 A and B, also 

Supplementary Figure S10 A and B). 
To enhance the robustness of our conclusions and en- 

able comparisons with alternative interrogation methods like 
polysome profiling, we incorporated nanopore direct long 
read sequencing (DRS) and qPCR analyses. This allowed us 
to evaluate the identical conditions of exponential growth and 

a 10-minute glucose starvation ( Supplementary Figure S11 A).
For the qPCR, we selected targets with various 1 STE NS that 
are not implicated in ribosomal pausing / stalling and demon- 
strate a simple, unobstructed scanning pattern ( 76 ,79 ). DRS 
offers exact matching of read counts to the mRNA molecule 
counts and is devoid of RNA coverage artifacts or amplifi- 
cation biases, while spike-in-normalized qPCR allows com- 
parisons of absolute transcript levels. We included total clar- 
ified cell lysate (CCL) fraction for the qPCR analysis and 

further employed one of the traditional comparisons be- 
tween frequencies of mRNA (polysome abundance, ‘PA’) in 

the heavier polysomal fraction (tetra-, pentasomes and fur- 
ther polysomes, ‘PS’ fraction) and light fractions (mono-, di- 
and trisomes, and their combined ‘RDT’ fraction), which re- 
moves a concern for the accessibility of mRNA to translation 

( Supplementary Figure S11 A). 
qPCR results confirmed our expectations towards a gener- 

ally reduced abundance of mRNA for most of the genes tested,
signifying transcript destabilization in the glucose-starved 

condition ( Supplementary Figure S11 B). Importantly, these 
results also confirm expectations of differential destabiliza- 
tion: while mRNAs such as SSC1 showed only a minor abun- 
dance reduction, GUS1 and GCN2 were > 50-fold depleted 

( Supplementary Figure S11 B). Interestingly, ATG40 mRNA 

exhibited robustly higher PS to TS change in the starved con- 
dition, confirming translational acceleration in glucose star- 
vation as measured by STE (and DRS; see Supplementary 
Data S1 –S6 ). 

DRS data exhibited excellent correlation ( Supplementary 
Figure S11 D) and highly similar gene count saturation his- 
tograms across biological replicates ( Supplementary Figure 
S11 E), replicate grouping and condition / fraction separa- 
tion in the PCA ( Supplementary Figure S11 F). Nonethe- 
less, upon calculation of the Polysome Sedimentation Fac- 
tor (PSF) expressed through the PA PS and PA RDT ratio 

(PSF = P A PS / (P A PS + P A RDT )) as a proxy of translational
engagement (similar to previous studies ( 35 )), PSF exhib- 
ited high dispersion ( Supplementary Figure S11 G) and thus 
confirms our conclusions that frequency normalization-based 

techniques lead to less robust observations. While the overall 
reduction of the heavy polysome occupancy was apparent in 

the starved cells’ PSF S10 against the non-starved counterparts 
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Figure 4. Stochastic translation efficiency (STE) measure maps to e xperimentally -determined absolute protein biosynthesis rates and dissects classes of 
mRNAs with different po w er in translation. ( A ) Schematic of ensemble learning approach featuring a Support Vector Machine (SVM) and a Conditional 
Forest (CF) model (first tier), separately trained and cross-validated on two, non-overlapping subsets of the training data. These two models are then 
used by another Conditional Forest model termed ‘governor’ (second tier), which provides conditional scoring and votes for the results of the first tier 
(see ‘Ensemble machine learning and modeling of STE’ in Materials and Methods for further details). All features used to quantify STE are like-to-like 
normaliz ed v alues, as opposed to the translation efficiency -lik e TE T and TE tt calculated b y normalizing R S ORF signal to tot al ( T ) or tot al translated ( tt ) 
RNA-seq signals, respectively. Note, all models include ORF length as an input. ( B ) STE demonstrates high correlation with experimentally-defined 
protein synthesis rates (metabolic labeling-based quantitative mass spectrometry data ( 85 )). ( C ) Classes of translationally up- or down-regulated mRNAs 
during yeast response to a 10-minute glucose depletion as determined by STE. The classes were inferred using k -means clustering of mRNAs with STE 
fold-change of at least 1.5 between the non-starved and starved states. ( D ) Schematic illustrating robustness of the STE measure of translational power 
in a background of rapid transcription-, degradation- or masking- and phase separation-induced alterations of mRNA abundance and availability to 
translation, allowing to isolate mRNA-specific, UTR-driven translational control in vivo . 
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PSF NS ; Supplementary Figure S11 H), PSF, unlike STE, did
ot correlate well with the isotope-measured protein biosyn-
hesis rates, and exhibited a substantial open reading frame
ORF) length bias, as can be expected ( Supplementary Figure 
11 I). To reduce the ORF length bias, PSF can be compared
ranscript-wise across conditions by introducing the relative
ontribution 

δPSF S10 = PSF S10 / (PSF S10 + PSF NS ). δPSF S10 ex-
ibited strong correlation between replicates (Pearson correla-
ion coefficient 0.76; Supplementary Figure S11 J) and indeed
howed a positive correlation with similarly defined 

δSTE, al-
eit with groups of genes separating away from the regression
ine (see Supplementary Figure S12 and Discussion for further
issection of these groups). Altogether, these results provide a
alidation and highlight the advantages of the STE approach.
Discussion 

In this study, we identified new types of co-localized ribosomes
on mRNA, stochastic and spatial disomes, in addition to
the commonly-appreciated, ‘collided’ disomes resulting from
stalling or local elongation slow-downs ( 92 ). The stochas-
tic disome signal, together with the other measurements de-
rived from eTCP-seq, link the absolute translation initiation
and protein biosynthesis rates, which we project as an AI-
based measure. STE AI is based on a comprehensive snapshot
of positional information for all in vivo translational com-
plexes, presented to ensemble machine learning using biophys-
ical and bioinformatic segregation of the types of complexes
and phases of translation cycle of mRNA, whilst retaining
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diversity of the profiling data. This robust measure can be used
to define translation initiation-controlled protein biosynthesis
rates for each mRNA comparatively across conditions as well
as absolutely in a single condition, independent of RNA abun-
dance and variations. Only like-for-like footprint signals are
used in STE AI, canceling internal biases associated with nor-
malization to different signal types. With STE, we demonstrate
that yeast translational control invoked by glucose depletion
is more complex than previously thought and includes trans-
lational acceleration as well as RNA metabolism adjustments
to accommodate new protein biosynthesis demands. 

Importantly, STE is based on fundamental principles of
translation complex distribution and does not need to account
for specific sequences and structures of mRNA, enabling uni-
versal application. STE AI, and the underlying eTCP-seq data
also revealing mechanistic features of translation of individual
mRNAs, can be used to inform synthetic biology and mRNA
therapeutic platforms with accurate translational rate predic-
tions to facilitate new mRNA designs. 

STE as a new robust measure of protein 

biosynthesis rates based on ‘randomly’ formed 

disomes 

We propose STE as a new measure of translation efficiency,
which is largely devoid of biases regularly encountered in clas-
sical translation efficiency (TE) measures and can provide ac-
curate transcript-wise information about the protein biosyn-
thesis rates within the translated fraction of mRNA. STE ranks
different mRNAs by their ‘translational power’ within a single
experiment, as it can predict the absolute specific protein out-
put. Further, STE can determine changes in the translation of
mRNAs across multiple conditions comparatively, such as in
its δSTE format. δSTE highlights gene expression alterations
enacted purely through translational control. For example,
δSTE identifies clusters of translationally-controlled mRNAs
upon a 10-minute glucose starvation response (Figure 4 C and
D, Supplementary Figures S8 C, S10 and Supplementary Data 
S1 , S2 ). Importantly, STE includes weighting components re-
lated to the initiation efficiency, such as those derived from
the 5 

′ UTR- and / or start codon-localized eTCP-seq SSU foot-
printing data, thus encompassing the differential input of ini-
tiation, and specifically scanning, into the translational power
of a given mRNA. 

An intriguing speculation is that those mRNAs in which
the high DS s / RS is not supported by evidence of efficient
ongoing initiation, while they had formed relatively dense
polysomes through once active initiation, have since been
translationally suppressed without their disassembly. The sup-
pression could be specific, such as in the cases of ribo-
somal quality control or nonsense-mediated control mech-
anisms ( 56 , 66 , 96 , 131–134 ), or unspecific, such as through
too tight ribosomal packing ( 135 ). These transiently inactive
or less active polysomes are less evident using other mea-
sures ( Supplementary Figure S7 C and D). Indeed, the scan-
ning control, and the start codon recognition dynamics (ex-
pressed as the inverse R S ORF / R S START ) components derived
from the eTCP-seq data provided a substantial contribu-
tion to the STE accuracy in both model implementations
( Supplementary Figure S7 C and S8 E), and thus appear in-
dispensable to realistic footprint-based protein synthesis rate
measurements. 
Stochastic and non-random disome signal 
components of STE 

Highlighting the importance of the DS s signal, among all 
other eTCP-seq-derived parameters it alone allowed for 
a clear discrimination between the types of translational 
behavior of mRNAs transcriptome-wide. When analyzed 

against experimentally-defined protein biosynthesis rates, the 
DS BASE / RS (a close approximation of DS s / RS) clearly iden- 
tified three types of translational behavior ( Supplementary 
Figure S5 G). In the first type, the DS BASE / RS value retained its 
high frequency (compared to the initial, unfiltered DS value) 
and was positively correlated with the protein biosynthesis 
rate. Notably, the positive correlation cannot be fully ex- 
plained by ORF length differences between respective mR- 
NAs. These mRNAs mostly contained those ranked high 

by STE and included highly translated transcripts with GO 

terms ‘cytosolic part’ and ‘ribosomes / ribosomal subunits’ 
( Supplementary Figure S5 H). The second group of transcripts 
demonstrated a partially decreased DS BASE / RS value while 
retaining moderate to high protein biosynthesis rate, thus 
being relatively well-occupied by the RS. This situation is 
only possible if the polysomal organization itself actively pre- 
vents the formation of stochastic DS s . Such effects can oc- 
cur in the polysomes that remain constitutively attached to 

cellular structures, such as the endoplasmic reticulum (ER) 
( 136 ). GO analysis of this group indeed demonstrates enrich- 
ment for the ER and Golgi-associated and exported proteins 
( Supplementary Figure S5 H). Strikingly, these results are reca- 
pitulated by the δPSF S10 measure, which shows a negative cor- 
relation of change with 

δSTE S10 for the ER genes, but retains 
a positive correlation with all other genes ( Supplementary 
Figure S12 A,B). 

The third group of mRNAs demonstrates the lowest 
DS BASE / RS value, likely representing transcripts of low abun- 
dance and insufficient signal, low protein output as con- 
firmed by the low STE and reduced protein biosynthesis 
rates, or potentially functional pausing of the elongating ri- 
bosomes over mRNA ( 137 ). Indeed, certain elongation rate 
transitions (such as ‘fast-slow-fast’; Supplementary Figure 
S3 , top row) generate disproportionally low incidents of 
DS s , compared to other scenarios. Thus, among the third 

group we can expect transcripts with non-random RS slow- 
down or stalling. Remarkably, GO analysis of this group 

shows enrichment of the components of proteasome assembly 
( Supplementary Figure S5 H), which have been demonstrated 

before to exhibit specific folding-dependent ribosomal paus- 
ing that is relieved upon co-translational assembly of the re- 
spective complexes ( 60 , 66 , 95 , 138 ). Confirming these observa- 
tions, further dissecting δPSF S10 to 

δSTE S10 by deviation from 

the regression line into genes where glucose-starved transla- 
tional involvement is under-estimated and over-estimated by 
δPSF S10 reveals a complex mix of ORF length and ribosome 
stalling / slowdown biases. The extent of ribosome stalling or 
slowdown can be directly estimated by an eTCP-seq ‘spik- 
iness’ (TCP-S), expressed as per-transcript fraction of long 
peak disome footprints (TCP-S long) or maximum peak foot- 
prints (TCP-S max) of all ribosome and disome footprint 
types, and is distinctively different in the deviating δPSF S10 

genes ( Supplementary Figure S12 E). 
It remains uncertain what are the biological roles of 

stochastically co-localized ribosomes, and what are the func- 
tional implications of this process on translation and related 
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olecular activities. It would be of interest to evaluate func-
ional, transient ribosomal co-localization and the impact
n accessibility and configuration of the inter-ribosomal sur-
aces, which in turn can favor certain elongation cycle con-
gurations. For example in cryoelectron microscopy data,
ransiently-formed, actively-translating disomes in a bacte-
ial system have bL9 protein of the leading ribosome in a
tretched-out conformation, preventing too tight contact with
he leading ribosome and possibly blocking access of some of
he translation factors to the trailing ribosome ( 130 ). These
isome interactions were shown to favor certain ribosomal ro-
ational configurations and possibly help prevent frameshift-
ng and aberrant translocation in transient collisions ( 130 ).
inetically, stochastic co-localization non-linearly affects the
erformance of the trailing ribosome, stopping it more fre-
uently as it approaches the leading ribosome. As such, this
gentle throttling’ can help to keep some distance between
he translating ribosomes and prevent longer pauses, even if
ne of the ribosomes is consistently performing less well in
longation. 

Overall, the above examples demonstrate that the inclusion
f DS s in calculations of translation rates provides a deep con-
ection with the underlying biophysical processes and justifies
hy using the distinct stochastic and non-random eTCP-seq

ignals can create a solid foundation for the footprint-based
efinition of protein biosynthesis rates. 

TE provides a refined measurement of static 

ranslational control 

ritically, STE reveals both static and dynamic control of cel-
ular translation. In naïve cells, STE exposed translation rates
arying up to ∼100-fold between mRNAs, generally consis-
ent with previous observations ( 85 ,139–142 ). As determined
y STE, mRNAs encoding alcohol dehydrogenase, fatty acid
ransferase, heat shock proteins and other metabolic enzymes
ere efficiently translated, whereas ribosome assembly, RNA
iogenesis, and RNA polymerase-related genes were less so.
t is interesting to speculate why the cells would evolve this
ype of control in steady conditions, when a finely-tuned tran-
criptional program should not require any additional correc-
ions. A parsimonious explanation is that the perfect condi-
ions of exponential growth in high glucose are not what Sac-
haromyces cerevisiae was exposed to during much of its evo-
ution. Thus, we observe yeast in an evolutionarily atypical
nvironment whereby additional adjustments to gene expres-
ion are required. In this case, we indeed can expect to observe
he effects of translational buffering and perhaps dosage com-
ensation ( 140 ,143–147 ), which would otherwise be difficult
o explain for a fast-evolving species. Another explanation
ould be that we detect an effect characteristic to only a sub-
raction of the cells, as our experiments were performed in a
on-synchronized culture. Indeed, the stochasticity of GCN4
nitiation rates results in different yeast re-programming path-
ays ( 120 ). The more complex behavior of higher eukaryotic

ells will warrant detailed investigations of translational con-
rol at peak and off-duty cell cycle times ( 148–151 ). 

ccurate capture of translational control during 

lucose starvation in yeast by STE 

ur major findings for the glucose stress-induced gene expres-
ion dynamics revealed by STE align with published work,
ut provide highly resolved clusters of mRNAs with discrete
gene ontology. Confirming prior observations, the most trans-
lated mRNAs and those arguably contributing the most to
polysome formation are indeed suppressed in the starved cells’
STE, as can be judged by the riddance of the non-starved
STE top quarter values from the starved cells’ STE distribu-
tion (377 genes in the non-starved versus 103 genes in the
starved against non-starved STE distribution of model #1;
Supplementary Figures S7 B, S8 C; Supplementary Data S1 ).
These observations are confirmed by the PSF measure, where
clipping of the higher rates of translational engagement is also
exhibited by the starved cells ( Supplementary Figure S11 H). 

After 10 min, yeast substantially accelerate translation of
mRNAs encoding antioxidant activity and oxidative stress
response functions (observed with both models; Figure 4 C,
Supplementary Figures S9 A and S10 A). This is a true ‘emer-
gency’ measure to cope with the elevated reactive oxygen
species emanating from the highly active respiratory chain
in the absence of glucose ( 28 ,152–154 ). The slightly less
acute STE up-regulation is related to the mannosylation,
sugar transferase activity and cell wall metabolism (Figure 4 C,
Supplementary Figures S9 A and S10 A), which may result from
translation-based compensation for the RNA abundance-level
shutdown of these processes, in order to maintain a required
multiplication rate, although links between certain manno-
sylation reactions to overcoming oxidative stress and acute
translational repression are also known ( 155 ). The upregula-
tion of exopeptidases in this group could be a direct adap-
tive response to the low availability of nutrients (Figure 4 C,
Supplementary Figures S9 A and S10 A). The mRNA groups
with prominent STE down-regulation associate particularly
with RNA polymerase I, translation initiation suppression,
rRNA and ribosomogenesis genes, similar to yeast responses
to other acute nutrient stresses ( 156 ). The urgency of the re-
sponse in these cases is dictated by the high energy consump-
tion of the respective processes, which is vitally threatening in
the background of glucose absence. Why a translation-level
response is required in this case is unclear but may relate to
an inability to quickly remove the respective RNAs, or a ne-
cessity to preserve them for future use and shut down the cor-
responding pathways non-destructively . Interestingly , there is
a mild translational de-repression in the starved cells for the
group of transcripts that have low specific protein output in
the non-starved cells ( Supplementary Figures S7 A and S8 B).
We speculate that this can be a consequence of different com-
petitive pressures in translation of mRNA in starved cells, with
less mRNA types and initiation factors but more ribosomes
and SSUs available as observed in response to viral infections
( 148–151 ). Thus, STE allows us to uncover novel peculiarities
of protein biosynthesis regulation. 

Specific highlights of the STE-identified cases of acute
translational regulation include increased translation of the
YGL256W / ADH4 (alcohol dehydrogenase; which in the ab-
sence of glucose converts ethanol to acetaldehyde produc-
ing nicotinamide adenine dinucleotide (NAD) + hydrogen
(H)), YCL040W / GLK1 (glucokinase; which is a glucose sen-
sor), YFL014W / HSP12 (plasma membrane protein involved
in membrane organization during stress conditions includ-
ing starvation), YAL038W / CDC19 (pyruvate kinase func-
tions important for tricarboxylic acid (TCA) cycle and glu-
cose fermentation), YDL010W / GRX6 (involved in oxida-
tive stress response), YER067W / RGl1 (involved in energy
metabolism under respiration), YDR459C / PFA5 (protein
fatty acyltransferase) and others hinting towards metabolic
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rearrangements set in motion 10 min into starvation, along-
side the synthesis of heat shock proteins as a general stress
response mechanism found in yeast ( Supplementary Data S1 ,
S2 ). Conversely, YOR224C / RPB8 (RNA polymerase sub-
unit common to Pol I, II and III), YJL148W / RPA34 (RNA
Pol I essential for nucleolar assembly), YJL177W / RPL17B ,
YPL079W / RPL21B (ribosomal proteins important for LSU
assembly), YLR221C / RSA3 (protein crucial for ribosome
maturation), YCR047C / BUD23 (ribosome biogenesis fac-
tor required for rRNA processing and nuclear export) and
other mRNAs were acutely down-regulated, confirming se-
vere down-regulation of processes with high energy expense
( Supplementary Data S1 , S2 ). 

Outlook 

Footprints from co-localized ribosomes detected by eTPC-
seq carry information about single-molecule events such as
diffusion- and spatial configuration-driven transient contacts
between ribosomes, as they form polysomes with translated
mRNA in vivo, and will be useful in interpreting polyso-
mal configurations per-mRNA type ( 130 , 157 , 158 ). We sug-
gest that similar high-throughput data containing informa-
tion about random individual molecular co-incidence can be
utilized across a variety of biological molecular processes to
provide robust measurements in dynamic situations. 

STE AI can aid investigations of translational dynamics be-
yond technical reproducibility. For example, mRNAs may be
unequally distributed and selectively translated over different
sub-cellular locations. Under such circumstances, any selective
translational stalling and degradation of mRNAs can cause
disproportionate and functionally irrelevant ribosomal den-
sity on mRNA, if it is calculated based on the relative ribosome
footprint to the relative RNA-seq signal ratio (Figure 4 D). A
scenario even more detrimental to the regular approaches is
that of a rapid influx of newly-produced mRNA ( e.g. intense
nuclear export, rapid release from condensates) or, inversely,
its rapid masking into some form of structurally-segregated
foci, such as processing bodies or condensates (Figure 4 D).
In these cases, common under many stress responses of eu-
karyotic cells, reliance on the mRNA concentration or relative
abundance can be misleading. By avoiding the use of mRNA
abundance measurements, STE alleviates these limitations. 

We see utility for STE in scenarios involving rapid re-
organization of RNA functional states. STE AI can be used
when comparison of the absolute ‘translational power’ be-
tween mRNAs is important, such as in cross-species measure-
ments of adaptive responses, mRNA therapeutic vaccine de-
sign or synthetic biology applications in search of universal
mRNA building blocks that provide well-defined, cell-type-
specific translational output ( 13 , 159 , 160 ). 

Data availability 

All short-read sequencing data from this study have been
uploaded to NCBI Gene Expression Omnibus (GEO; http:
// www.ncbi.nlm.nih.gov/ geo/ ) with GSE200091 accession. All
direct nanopore long-read sequencing data from this study
have been uploaded to the NCBI Sequence Read Archive
(SRA) as BioProject PRJNA1022817. Code used in the work
is available on Figshare: https:// doi.org/ 10.6084/ m9.figshare.

24996602 . 
Supplementary data 

Supplementary Data are available at NAR Online. 
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