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ABSTRACT  7 

 8 

Integrating expression quantitative trait loci (eQTL) data with genome-wide association studies 9 

(GWAS) enables the discovery of pleiotropic gene regulatory variants that influence a wide range of 10 

traits and disease susceptibilities. However, a comprehensive understanding of the distribution of 11 

pleiotropic QTLs across the genome and their phenotypic associations remain limited. In this study, 12 

we systematically annotated genetic variants associated with both trait variation and gene expression 13 

changes, focusing specifically on the unique characteristics of pleiotropic eQTLs. By integrating data 14 

from 127 eQTL studies and 417 traits from the IEU Open GWAS Project, we identified 476 15 

pleiotropic eQTL variants affecting two or more distinct traits. Our analysis highlighted 5,345 eQTL 16 

candidates potentially linked to gene expression changes across 293 GWAS traits. Notably, the 476 17 

pleiotropic eQTLs associated with multiple trait categories were localized within a cumulative 2.5 18 

Mbp genomic region. These pleiotropic eQTLs were enriched in enhancer regions and CTCF loops, 19 

influencing a larger number of genes in closer genomic proximity. Our findings reveal that pleiotropic 20 

eQTLs are concentrated within a small fraction of the genome and exhibit distinct molecular features. 21 

Colocalization results are accessible through an interactive web application and UCSC genome 22 

browser tracks at https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl, facilitating the exploration of 23 

pleiotropic eQTLs and their roles in gene regulation and disease susceptibility. 24 

 25 

Keywords: genome-wide associations studies (GWAS), expression quantitative trait loci (eQTL); 26 
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Introduction 28 

The growing number of genome-wide association studies (GWAS) linking genetic variants to 29 

phenotypic or disease traits has led to the constant expansion  of comprehensive databases such as 30 

the NHGRI-EBI GWAS Catalog [1]. As of 2019, the NHGRI-EBI GWAS Catalog included 5,687 31 

studies (GWAS), encompassing 71,673 variant-trait associations from 3,567 publications. The 32 

ENCODE consortium allowed to define candidate cis-regulatory elements (CREs), which,  combined 33 

with evolutionary conservation methods , help in identifying regulatory elements under evolutionary 34 

pressures [2]. Large scale GWAS studies have further revealed that many genetic variants exhibit 35 

pleiotropy, meaning a single gene can influence multiple, seemingly unrelated phenotypes or traits  36 

With the extensive availability of genomic data, it is now possible to investigate pleiotropy at  various 37 

levels,  including the variant level [3–5], the genomic region level [5], the gene level [6] and at the 38 

level of co-regulated gene groups [7].  39 

Previous studies estimate that the human genome contains  between 18,000 and 75,000 pleiotropic 40 

variants, 7,757 pleiotropic genes, and cumulated pleiotropic regions ranging 180-1,707 megabases 41 

(Mb) in the human genome [3–5]. These estimates arise  from different GWAS approaches, which 42 

likely contain both false positives and false negatives [3].  43 

Expression quantitative trait loci (eQTLs) are genetic variants associated with differences in the 44 

expression of one or more genes, thereby shaping gene activity in a cell- and tissue-specific manner 45 

[3]. Gaining knowledge on eQTLs can thus allow us to decipher the molecular mechanism that 46 

associates these variants to GWAS traits [8]. However, due to linkage disequilibrium, these methods 47 

may fail to identify the causal variant. Statistical colocalization of eQTLs and GWAS variants, as 48 

well as eQTLs annotation of GWAS traits has been explored [9]. While ColocDB includes extensive 49 

colocalization of eQTLs and GWAS variants, analysis to identify pleiotropic eQTLs is currently 50 

missing [10]. Because many functional common variants lie outside coding sequences, annotating 51 

GWAS variants with eQTLs is crucial to uncover the genes and tissues underlying GWAS traits, 52 

particularly for identifying the characteristics of pleiotropic eQTLs.  53 
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Previous research has shown that pleiotropic genomic regions and variants exhibit specific 54 

properties at the genomic and cellular levels, regulating a larger number of gene targets and 55 

showing activity in a broader range of tissues [5,11,12]. Pleiotropic variants also appear  more 56 

frequent and exhibit higher effect sizes [3].In this study, we  leveraged two extensive eQTL and 57 

GWAS datasets from the EBI eQTL Catalogue [13] and the IEU OpenGWAS Project [14], 58 

respectively, to conduct a systematic colocalization analysis based on 127 eQTL studies and 417 59 

GWAS across various cell types, tissues, and phenotypes. By categorizing these 417 traits, we 60 

identified pleiotropic variants as those associated with two or more categories. This categorization 61 

enabled us to develop an online application tool for exploring eQTL and GWAS colocalization, 62 

accessible at https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl, allowing users to investigate 63 

colocalization patterns across diverse phenotypes and tissues. 64 

 65 

Materials and methods 66 

Summary statistics of expression quantitative trait Loci (eQTL) studies 67 

We utilized data from 127 eQTL studies available in the EBI eQTL Catalogue, one of the most 68 

comprehensive resources providing uniformly processed eQTLs across diverse tissues and cell 69 

types[13] (Supplementary Table 1). We downloaded the summary statistics for these studies, 70 

representing 127 biological samples, from the EBI eQTL Catalogue To streamline analyses across 71 

heterogeneous cell types and tissues, we categorized these into 35 distinct groups (Supplementary 72 

Table 1). Tissue grouping was based on anatomical proximity, such as grouping various brain regions 73 

or segments of the digestive tract (e.g., colon). Circulating or immortalized cell types were 74 

categorized according to functional roles, resulting in classifications such as blood, immune system, 75 

and lymphoblastoid cells. 76 

 77 

https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl
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Summary Statistics of genome-wide association studies (GWAS) 78 

GWAS summary statistics were sourced from the IEU OpenGWAS Project, which aggregates data 79 

from several databases, including the EBI's comprehensive GWAS database, manually curated 80 

GWAS datasets, and the UK Biobank [14]. We selected GWAS traits from the IEU OpenGWAS 81 

Project based on the following criteria: (1) exclusion of molecular traits (e.g., proteomic or 82 

methylome data) to focus on colocalization of eQTLs with disease-related variants; (2) inclusion of 83 

studies with European ancestry samples, aligning with the population represented in the EBI eQTL 84 

Catalogue; (3) stringent definitions of medical or physiological conditions, with environmental or 85 

self-reported traits excluded due to limited tissue linkage; and (4) studies with sample sizes of at least 86 

10,000 participants, including a minimum of 2,000 cases and 2,000 controls. After applying these 87 

filters, 417 GWAS traits remained (see Supplementary Table 2), covering 10,621 clumped lead 88 

variants with p-values below 5 × 10⁻⁸ from 335 GWAS, which were used to annotate eQTLs. 89 

 90 

Additional genomic datasets, tools 91 

This study incorporated additional datasets and tools. Besides eQTL and GWAS datasets, we used 92 

transcription factor ChIP-seq peaks and cis-regulatory modules from the ReMap database [15], UCSC 93 

annotation data [16], and candidate enhancers ENCODE  project’s SCREEN database 94 

(https://screen.encodeproject.org/) [17]. CTCF ChIA-PET loop data were also downloaded from 95 

ENCODE as bedpe files. Data exploration was conducted using the UCSC Genome Browser and the 96 

OMIM database (https://omim.org). and  Pipelines were executed using Snakemake, which 97 

streamlined and automated the workflows [18]. 98 

  99 

Colocalization analysis  100 

For the colocalization analysis, complete association data were obtained from OpenGWAS and 101 

converted to hg38 coordinates using Picard and Crossmap [19]. Top hit variants from the 102 

corresponding GWAS were selected based on a p-value threshold of 5E-8, using a clumping 103 

https://screen.encodeproject.org/
https://omim.org/


 

 6 

parameter of r2=0.1 within a 1 Mb clumping window. Within a 1 Mb radius of these top hits, 104 

significant eQTL and GWAS variants with a p-value under 5E-8 were extracted. Missing allele 105 

frequencies were filled in using data from the European population in the 1000 Genome Project [20].  106 

Variants meeting various criteria, variant frequency strictly between 0 and 1, non-duplicated, and 107 

without missing data, were retained. Colocalization between eQTL and GWAS variants was assessed 108 

using the "coloc.abf" function from CRAN coloc package. Colocalization between eQTL and GWAS 109 

variants was assessed using the coloc.abf function from the CRAN coloc. This analysis was 110 

conducted for each window, eQTL sample, and GWAS. The coloc software was specifically utilized 111 

to calculate the probabilities that a variant is associated with two distinct traits simultaneously[9]. We 112 

prioritized the coloc software to leverage the R interface between our datasets and the tools provided 113 

by the IEU OpenGWAS Project. Throughout this paper, analyses were performed with a cutoff of 114 

PP.H4.abf≥0.75 and SNP.PP.H4≥0.5, unless explicitly stated otherwise. The parameter PP.H4.abf 115 

represents the posterior probability that there is a shared causal variant affecting both traits (e.g., 116 

GWAS and eQTL) at a given locus. The parameter SNP.PP.H4 is the posterior probability for an 117 

individual variant at that locus to be the shared causal variant. We adopted PP.H4.abf≥0.75 to 118 

facilitate comparison with a previous large colocalization analysis using the same software [8].  119 

 120 

Statistical analysis  121 

For statistical analyses, we used the Fisher's exact test, the Mann-Whitney U test, the odds ratio test 122 

and the Spearman correlation. We set the following significance levels: ns (not significant) ≥ 0.05; * 123 

< 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. Details of the statistical tests are provided in the figure 124 

legends. 125 

Results 126 

 127 
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Colocalization of variants associated with GWAS traits and gene expression changes 128 

We developed a comprehensive pipeline for colocalization of variants from GWAS and eQTL studies 129 

(see Section Methods for details). Variants within the MHC locus (chromosome 6: 25,000,000-130 

35,000,000 bp, hg38) were excluded from this analysis due to their complex linkage disequilibrium 131 

structure. The pipeline resulted in colocalization between traits and expression associations for 132 

138,274 variants derived from 293 GWAS and 127 eQTL studies, applying a cutoff value of 133 

PP.H4.abf ≥ 0.75 (see Data availability for details). Following the selection of individual variants at 134 

the locus with moderate probability (SNP.H4.PP≥ 0.5) of being the shared causal variant, we retained 135 

5,345 variants and 7,040 eQTL genes (Supplementary Table 4). The cutoff values of PP.H4.abf≥0.75 136 

and SNP.H4.PP≥0.5 were selected based on a previous colocalization analysis conducted by Mu et 137 

al. [9]. These 5,345 variants were used for subsequent analyses. 138 

 139 

Differential contribution of eQTLs to GWAS variant interpretation across disease categories 140 

In our analysis, we aimed to characterize disease variants by leveraging the extensive number of co-141 

localized eQTLs and GWAS variants identified earlier. Specifically, we assessed the proportion of 142 

leading GWAS variants that could be elucidated by colocalization with eQTLs within a 1 Mbp 143 

window (Supplementary Table 3). Our findings demonstrated significant variability, with between 144 

25% and 80% of leading GWAS variants being explained by eQTLs. Notably, the top two 145 

categories—sleep disorders and female reproductive system diseases—showed complete explanation 146 

by eQTLs; however, these values were derived from only one GWAS with few loci (Fig. 1a, 147 

Supplementary Table 3). Overall, the extent to which eQTLs explain GWAS variants varies 148 

markedly, ranging from 25% to 100% across different disease categories. 149 

 150 
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Web application for exploring pleiotropic variations associated with traits and gene 151 

expression 152 

To improve accessibility to this valuable resource, we developed a web application for exploring 153 

colocalized eQTLs and GWAS traits (https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl/). This tool 154 

allows users to investigate pleiotropic variants associated with a diverse array of traits, including 155 

autoimmune diseases, breast cancer, cardiovascular diseases, and height. Additionally, we provide a 156 

UCSC track featuring annotated variants (see Data Availability). Supplementary Fig. 1a-c presents 157 

three screenshots of these UCSC tracks for B-cells, monocytes, and frontal cortex biological samples, 158 

all mapped to chromosome 5 around the IL4 gene. 159 

Importantly, the UCSC track illustrates that associated eQTLs and genes vary significantly based on 160 

cell type and tissue distribution. For example, in B-cells, identified eQTLs predominantly target the 161 

SLC22A5 and MIR3936HG genes (see Supplementary Fig. 1a). In monocytes, eQTLs also target 162 

P4HA2 and SLC22A4 genes (see Supplementary Fig. 1b). In contrast, eQTLs in the prefrontal cortex 163 

predominantly affect PDLIM4 and RAD50 (see Supplementary Fig. 1c). This variation underscores 164 

that the gene targets of eQTLs co-localizing with different GWAS traits exhibit significant differences 165 

depending on the specific cell type. 166 

 167 

Coherent clustering of traits based on eQTL effects 168 

In the preceding sections, we annotated variants based on associated traits and gene expression. Here, 169 

we aim to check if different traits cluster coherently based on the eQTL effects of co-localized 170 

eQTL/GWAS variants. To achieve this, we manually categorized 417 GWAS traits into 35 groups, 171 

clustering identical or similar traits (see Supplementary Table 2). For each trait, we extracted the beta 172 

effect values of various co-localized eQTLs (PP.H4.abf ≥ 0.75 and SNP.PP.H4 ≥ 0.5) across different 173 

tissues and computed distances between the vectors of different traits using Spearman correlation. 174 

To refine the number of traits and categories, we retained only those traits that showed a correlation 175 

of at least 0.05 or -0.05 with at least 30 other traits. This analysis revealed coherent clustering among 176 

https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl/
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traits related to autoimmune diseases, circulatory system disorders, cancers, and allergies, indicating 177 

that similar diseases share common eQTLs (see Fig. 1b). Notably, skin cancer exhibited overlapping 178 

signals with autoimmune diseases, such as type 1 diabetes and digestive autoimmune disorders (see 179 

Fig. 1b), suggesting potential comorbidities. 180 

 181 

Identification of eQTLs associated with two or more trait categories. 182 

In the previous section, we categorized traits into distinct groups and postulated that these categories 183 

could be utilized to identify pleiotropic eQTLs associated with multiple trait categories. We annotated 184 

eQTLs according to these trait categories, categorizing them based on the number of categories they 185 

encompass. Using a cutoff of SNP.PP.H4 ≥ 0.5, we identified 476 pleiotropic eQTLs linked to two 186 

or more categories (refer to Supplementary Table 4). Notably, the most pleiotropic eQTLs were 187 

associated with categories covering a range of traits, including autoimmune diseases, circulatory 188 

diseases, and cancer (see Table 1). These eQTLs are located near genes such as ALDH2 (12q24.12), 189 

ENO1 (1p36.23), ORMDL3 (17.q21.1), IL4 (5q31.1), BACH2 (6q15), FUT2 (19q13.33), SLC39A8 190 

(4q24), and CYP1A1 (15q24.1) (see Table 1). Supplementary Figure 1 illustrates the genomic region 191 

around the IL4 gene, highlighting highly pleiotropic eQTLs such as rs2522051 and rs17622656 along 192 

with their target genes. 193 

In a comparative analysis with another study on pleiotropy, where trait categories were aggregated 194 

based on genomic proximity, we found that the eQTLs identified in our study were associated with 195 

significantly more categories (see Supplementary Fig. 2a) [5]. Further examination demonstrated that 196 

for eQTLs associated with one, two, and more categories, 10-15% of our eQTLs overlapped with 197 

those from the previous study (refer to Supplementary Fig. 2b). In conclusion, we identified 476 198 

pleiotropic eQTLs associated with a diverse array of diseases, including autoimmune diseases, 199 

cardiovascular disorders, hypertensive disorders, mental or behavioral conditions, and 200 

musculoskeletal disorders. 201 

 202 
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Specificity of eQTLs across traits, gene targets, and tissues 203 

In our analysis, we classified eQTLs based on the number of trait categories and explored the 204 

relationship between this count and the number of target genes and tissues. We aimed to determine 205 

whether eQTLs exhibit specificity to particular traits, gene targets, and tissues. We computed the 206 

proportion of eQTLs annotated with various counts of trait categories, gene targets, and tissues. 207 

The results indicate that the majority of eQTLs (approximately 90%) are associated with a single trait 208 

category, while about 10% are linked to two trait categories, and less than 1% to three or more (see 209 

Fig. 2a). Repeating this analysis for eQTLs of each trait category revealed that around 80% of eQTLs 210 

related to allergic diseases are involved in one category, compared to only 60% for those in 211 

cardiovascular diseases, which are associated with two or more categories (see Supplementary Fig. 212 

3a and 3b). This suggests that eQTLs in cardiovascular-related diseases tend to be more pleiotropic. 213 

Regarding gene targets, approximately 50% of eQTLs modify the expression of a single gene, 20% 214 

affect two genes, and the remaining eQTLs influence three or more genes (see Fig. 2b). Concerning 215 

tissues, around 40% of eQTLs are found in a single tissue, approximately 20% in two tissues, and the 216 

rest in three or more (see Fig. 2c). 217 

We further explored the correlation between the number of GWAS categories, genes, and tissues. 218 

The counts of eQTL genes and tissues showed a high correlation (r=0.79), while the count of trait 219 

categories exhibited a weaker correlation with both gene and tissue counts (see Fig. 2d). In summary, 220 

most eQTLs are associated with a single trait category, although these eQTLs regulate multiple genes 221 

across various tissues. 222 

 223 

Concentration of pleiotropic eQTLs in 2.5 Mbp cumulated genomic regions 224 

Our investigation into pleiotropic eQTLs revealed that these loci are concentrated in specific regions 225 

of the genome. Notably, cytobands such as 3q23, 5q31.1, 9p21.3, 15q24.1, and 19q13.33 emerge as 226 

key locations for the most pleiotropic eQTLs (see Table 1 and Supplementary Table 4). This 227 
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observation led us to explore whether a small fraction of the genome contains the majority of 228 

pleiotropic eQTLs. 229 

To identify genomic regions associated with pleiotropic eQTLs, we used a sliding window of 100,000 230 

bp, aggregating regions containing pairs of co-localized eQTL variants annotated with two or more 231 

categories, located within a maximal distance of 100,000 bp. Each eQTL was assigned to a single 232 

region. The complete list of regions with annotations is provided in Table 2 and Supplementary Table 233 

5. Our findings indicate that regions with five or more trait categories encompass approximately 0.8 234 

Mbp of the genome, while regions with four trait categories total 1.5 Mbp, and those with three or 235 

more trait categories account for 2.5 Mbp (see Fig. 2e). Additionally, regions containing at least two 236 

trait categories and measuring less than 10,000 bp constitute around 60% of the total pleiotropic 237 

regions, whereas regions up to 100,000 bp comprise 90% of the total pleiotropic regions (see Fig. 2f). 238 

The most pleiotropic region, associated with nine trait categories, is located at 5:131,912,097-239 

132,802,472 in cytoband 5q31.1, encompassing genes such as the interferon response factor 1 (IRF1) 240 

and interleukins IL3, IL4, IL5, and IL13 (refer to Table 2). The largest region, spanning 7:2,712,518-241 

7,254,268 in cytoband 7p22.3, measures 4,541,751 bp and contains variants linked to autoimmune 242 

diseases, respiratory diseases, and height (see Supplementary Table 5). This analysis underscores that 243 

pleiotropic eQTLs are highly concentrated in a small fraction of the genome. 244 

 245 

Pleiotropic eQTLs exhibit lower effects on traits, increased significance, and higher variant 246 

frequencies 247 

Building on previous studies indicating that pleiotropic variants tend to have lower effects and higher 248 

frequencies  [3], our analysis explored how the effects (beta), association significance, and variant 249 

frequencies vary based on the number of trait categories associated with pleiotropic eQTLs. 250 

We analyzed the average absolute eQTL and GWAS effect sizes (beta) in relation to the increasing 251 

number of trait categories. We observed that the effect size on gene expression is significantly 252 

different, although the direction of the changes is inconsistent across varying levels of pleiotropy (see 253 
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Fig. 3a). In contrast, the effect size on the GWAS trait clearly decreases with increasing eQTL 254 

pleiotropy (see Fig. 3b). Further examination of the significance of eQTL and GWAS effects revealed 255 

a notable increase for both gene expression and GWAS traits (see Fig. 3c, d). 256 

Comparing average effect sizes from different studies can be challenging, as these depend on study 257 

size and variant frequencies. To homogenize these variables, we repeated the comparison of eQTL 258 

and GWAS effects using variants with restricted frequencies (0.45-0.55) or sample sizes (75,000-259 

125,000) (see Supplementary Fig. 4). These results confirmed the previous observations that GWAS 260 

effects decrease in pleiotropic eQTLs. 261 

We also explored the relationship between variant frequency and pleiotropy. We partition variant 262 

frequencies of each population by the trait category count. The variant frequencies of pleiotropic 263 

eQTLs were significantly higher in the European population (see Fig. 3e). In other populations, we 264 

did not observe a significantly higher variant frequency, potentially influenced by the fact that 265 

colocalization was computed in the European population (Data not shown). In summary, our analysis 266 

suggests that pleiotropic eQTLs exhibit lower effects on traits, are more significant, and are more 267 

frequent in the European population. 268 

 269 

Pleiotropic eQTLs are more likely missense variants. 270 

To gain insights into the variant effect consequences of pleiotropic eQTLs compared to non-271 

pleiotropic eQTLs, we utilized the EBI variant effect predictor (VEP) for annotation [21]. 272 

Subsequently, we calculated odds ratios and performed Fisher exact tests for pleiotropic eQTLs. The 273 

analysis revealed that pleiotropic eQTLs exhibit significantly higher odds ratios for being missense 274 

variants, with values of two and nine for category counts of two and more, respectively. This finding 275 

strongly suggests that pleiotropic eQTLs are more likely to be associated with missense variants. 276 

 277 
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Pleiotropic eQTLs are closer to gene targets 278 

In our exploration of pleiotropic eQTLs, we delved into understanding their spatial relationship with 279 

gene targets, focusing on the distance to the closest and the most distal gene. The analysis revealed 280 

that the median distance of eQTLs associated with one, two, and more than two trait categories to 281 

their closest gene is 35 kbp, 23 kbp, and 18 kbp, respectively (see Fig. 4a). This suggests a significant 282 

reduction in the distance of pleiotropic eQTLs to their closest gene targets. However, when analyzing 283 

the distance of pleiotropic eQTLs to the furthest gene target, no significant difference was found 284 

(Data not shown). This indicates that the distance of the eQTL to its furthest gene target remains 285 

relatively consistent in pleiotropic eQTLs. In summary, our analysis suggests that pleiotropic eQTLs 286 

exhibit a shorter distance to their closest gene targets, potentially reflecting a more direct influence 287 

on gene regulation. 288 

 289 

Pleiotropic eQTLs have lower gene specificity 290 

In our investigation into the characteristics of pleiotropic eQTLs, we turned our attention to their 291 

relationship with the number of target genes. Our analysis involved computing the cumulative 292 

proportion of eQTLs associated with different numbers of target genes in specific tissues. The 293 

findings revealed that the proportion of eQTLs targeting only one gene was approximately 0.72, 0.65, 294 

and 0.6 for eQTLs associated with one, two, and more than two trait categories, respectively (see Fig. 295 

4b). This trend was similarly observed for eQTLs targeting two genes. This observation could be 296 

related to the higher variant frequency of pleiotropic eQTLs. To homogenize variant frequencies, we 297 

repeated this analysis with variants that show a frequency in the European population between 0.45 298 

and 0.55 (Supplementary Fig. 5b). Both analyses suggest that pleiotropic eQTLs tend to modulate a 299 

larger number of genes, indicating a broader impact on gene regulation compared to non-pleiotropic 300 

eQTLs. 301 

 302 
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Cumulative proportion analysis reveals lower tissue specificity of pleiotropic eQTLs  303 

Continuing our exploration of pleiotropic eQTLs, we turned our focus to their relationship with the 304 

number of tissue categories. Our analysis involved computing the cumulative proportion of eQTLs 305 

targeting genes in each number of tissues. 306 

The observations revealed systematic higher proportions of non-pleiotropic eQTLs in a low number 307 

of tissues (Supplementary Fig. 5a). This observation could be related to the higher variant frequency 308 

of pleiotropic eQTLs. To homogenize variant frequencies, we repeated this analysis with variants that 309 

show a frequency in the European population between 0.45 and 0.55 (Supplementary Fig. 5c). Both 310 

analyses suggest that pleiotropic eQTLs exhibit a tendency to be less tissue-specific, influencing gene 311 

expression across a broader range of tissues compared to their non-pleiotropic counterparts. 312 

 313 

Enhancer Properties of Pleiotropic eQTLs 314 

In our quest to understand the characteristics of pleiotropic eQTLs, we explored their association with 315 

enhancer regions and the binding of transcription factors (TFs). Utilizing the ReMap database [15], 316 

we examined the number of unique transcription factors bound within a radius of 10 bp around each 317 

eQTL, using a window of 20 bp. We show that pleiotropic eQTLs associated to two and three or more 318 

trait categories are significantly enriched in ENCODE enhancer regions with odds ratios 1.5 and 2.5, 319 

respectively (Fig. 4c). We also find that pleiotropic eQTLs associated to two and three or more trait 320 

categories are significantly enriched in peaks of ReMap transcription factors with odds ratios 1.5 and 321 

2.5, respectively (Fig. 4d). These two results suggest that gene regulatory regions show more robust 322 

properties for pleiotropic eQTLs. We show that eQTLs associated with one, two, or more trait 323 

categories exhibit a median binding of 7, 10, and 9 transcription factors, respectively (Fig. 4e). This 324 

suggests that pleiotropic eQTLs tend to be associated with a higher number of TFs. 325 

Enhancers are likely enclosed within CTCF loops [22]. To investigate the relationship of pleiotropic 326 

eQTLs/gene links and CTCF loops, we evaluated the enrichment of the regions linking pleiotropic 327 

eQTLs and target genes withing CTCF ChIA-PET loops in several cell lines from ENCODE. Our 328 
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results shows that the links between pleiotropic eQTLs and target genes are enriched in the CTCF 329 

loops of cell lines A549 (Adenocarcinomic alveolar basal epithelial cells), CD8-T-cells, GM10248 330 

(Lymphoblastoid cell line), HUVEC (Human umbilical vein endothelial cells), K562 331 

(Erythroleukemia) and WTC11 (Human induced pluripotent stem cell) (Fig. 4f and Supplementary 332 

Fig. 6).  333 

We investigated the presence of cis-regulatory modules (CRMs), which are non-coding genomic 334 

regions with a higher density of bound transcription factors [15]. The odds ratio of variants annotated 335 

with CRMs versus non-annotated was 1, 1.5, and 1.9 for eQTLs associated with one, two, or more 336 

trait categories, respectively (see Fig. 4d). This implies that pleiotropic eQTLs are not only bound by 337 

more transcription factors but are also more likely to be in cis-regulatory modules. 338 

Discussion  339 

Genome-wide association studies have uncovered numerous loci linked to various diseases, however 340 

the specific causal contributions of pleiotropic variants within these loci remain largely elusive. This 341 

study leveraged on two extensive databases, the IEU OpenGWAS project and the EBI eQTL 342 

Catalogue, encompassing summary statistics from 417 GWAS and 127 eQTL datasets, to conduct a 343 

comprehensive colocalization pipeline. Our objective was to clarify the characteristics of pleiotropic 344 

eQTLs, contributing to a more precise understanding of these variants. 345 

These findings are accessible via an interactive web platform https://gwas2eqtl.tagc.univ-346 

amu.fr/gwas2eqtl/, enabling users to explore these colocalizations and analyze the dataset, thus 347 

providing a valuable resource.  Recently, COLOCdb, a database of colocalization data across 3,000 348 

GWAS and 13 xQTL types,  has been published but this database was not used to systematically 349 

investigate the properties of human genetic variants  [10].  350 

Our study revealed that approximately 50% of the prominent variants associated with autoimmune 351 

diseases can be elucidated by eQTLs. This percentage surpasses previous studies reporting 25–38% 352 

explanatory power using eQTLs and splicing QTLs (sQTLs) [8,23]. This explanatory capacity may 353 

stem from our broader inclusion of 127 eQTL datasets. In contrast, prior studies , such as Mu et al. 354 

https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl/
https://gwas2eqtl.tagc.univ-amu.fr/gwas2eqtl/
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[8], used a more limited immune cell types fore eQTLs and sQTLs potentially missing contributions 355 

in other tissues. Similarly, Connally et al. focused on breast tissue-sepecific  eQTLs to study breast 356 

cancer, possibly overlooking immune cell interactions involved in cancer biology  [24]. Our study 357 

suggests that colocalization studies may lack the breadth of eQTL  coverage necessary to to fully 358 

account for GWAS findings across diverse traits [25]. 359 

Our colocalization results also demonstrate remarkable consistency across independent datasets. For 360 

instance, related autoimmune diseases affecting the digestive system, such as inflammatory bowel 361 

disease, Crohn’s disease, and ulcerative colitis, showed strong colocalization coherence, despite 362 

originating from distinct GWAS sources [25–27]. Our analysis extended to predict overlaps with 363 

other autoimmune diseases, including type 1 diabetes, and traits associated with digestive 364 

autoimmune and inflammatory diseases, and skin cancer. These findings underscore the potential of 365 

pleiotropic eQTLs in drug repurposing [28]. 366 

Additionally, our data highlights the stability of cell-specific eQTL patterns across different 367 

independent datasets. Although the effects of quantitative trait loci (QTLs) vary widely between cell 368 

types, specific cell types maintain consistent patterns across studies. For example, the colocalization 369 

results for eQTLs targeting the gene SLC22A5 in B-cells exhibited similar results across  three 370 

different studies [29–31]. This consistency is was also observed in monocytes and cortex samples. 371 

Our analysis of pleiotropic eQTLs across varying SNP.PP.H4 cutoff values (0.25, 0.5, and 0.75) 372 

confirmed stable identification of key variants. High-pleiotropy variants, such as rs11065979, 373 

rs11072508, rs13107325, rs301802, rs2522051, rs601338, and rs72928038, were consistently 374 

detected at all three cutoff values. An intermediate cutoff value of 0.5 was chosen to strike a balance 375 

between sensitivity and specificity in identifying colocalized eQTLs. 376 

The functional relevance of identified pleiotropic variants aligns with current literature. For instance, 377 

rs13107325, a pleiotropic eQTL associated with the SLC39A8 gene, has been validated in knock-in 378 

mouse models [32]. Similarly, the physiological impact of rs72928038 on the BACH2 gene was 379 

recently confirmed in b-cell lines and mutant mice [33].  380 
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Among the most pleiotropic regions, such as those around ABO, CDKN2A, CHRNA5, CYP1A1, 381 

EEF1A2, FURIN, IL4, MC1R, and TP53, the selection of regions with pleiotropic eQTLs remained 382 

insensitive to changes in the SNP.PP.H4 cutoff value. Notably, genes like ABO, CDKN2A, and 383 

FURIN, known for their pleiotropic effects on a wide array of phenotypes, were consistently 384 

identified [33–35]. 385 

In alignment with prior reports, we observed that pleiotropic eQTLs tend to be less tissue-specific 386 

[3,5]. Additionally, our findings indicate that pleiotropic eQTLs are less gene-specific, aligning with 387 

previous studies demonstrating that eQTLs affecting multiple neighboring genes exhibit greater 388 

pleiotropy [12]. Mechanistically, this aligns with the notion that eQTLs influencing a higher number 389 

of genes and active in more tissues are associated with a broader range of traits. Pleiotropic variants 390 

were also found to be more frequent, a trend that might be a statistical artifact, where more frequent 391 

variants are seemingly more likely to be associated with specific diseases [3]. Consistent with 392 

previous studies, we noted that pleiotropic eQTLs are enriched in proximity to genes [5]. 393 

The differences between pleiotropic and non-pleiotropic eQTLs become evident at short distances. 394 

For example, the eQTL rs2522051 in the IL4 locus is associated with four trait categories, while 395 

nearby non-pleiotropic eQTLs (rs6894249, rs6894249, and rs80112473) at 31 bp, 656 bp, and 1,795 396 

bp distances are associated with fewer genes and tissues. The contrast is further illustrated by 397 

examples like rs159963 in the ENO1 locus and rs151174 in the SULT1A1 locus, where pleiotropic 398 

eQTLs exhibit more gene targets and tissue activity than their non-pleiotropic counterparts. 399 

Conversely, some pleiotropic eQTLs, such as rs823118 in the RAB29 locus, rs12656497 in the NPR3 400 

locus, rs10051765 in the FRFR14 locus, region chr11:1,865,076-1,877,434 in the TNNT3 locus, 401 

rs2071382 in the FES locus, rs8067378 in the ORMDL3 locus, and rs601338 in the FUT2 locus. 402 

target fewer genes and tissues than non-pleiotropic counterparts, suggesting additional factors 403 

influencing eQTL pleiotropy remain to be identified. 404 

Our study also shows that pleiotropic eQTLs are enriched in enhancer regions and transcription factor 405 

binding sites. This supports previous research indicating that pleiotropic enhancers, active across 406 
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multiple tissues, comprise a small portion of the genome yet are enriched in transcription factor 407 

binding and gene regulatory connections [36].  408 

Recent CRISPRi screens highlight that enhancer-target gene interactions are enriched within 409 

topological associated domains and CTCF ChIA-PET loops [22,37], which could serve to get genes 410 

from GWAS variants within specific contexts [38]. In our findings, pleiotropic eQTLs and their target 411 

genes also exhibited enrichment in CTCF loops. 412 

Our analysis reveals that pleiotropic eQTLs generally show reduced GWAS effect sizes (beta), 413 

greater significance in both eQTL and GWAS associations, and higher allele frequencies. 414 

Furthermore, pleiotropic eQTLs enriched in enhancers and transcription factor binding sites regulate 415 

a broader set of genes within CTCF loops 416 

 417 
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 562 

Figure and table legends  563 

 564 

Figure 1: Proportion of explained GWAS leading loci and trait clustering based on eQTLs.  565 

a) The average proportion of explained loci in GWAS across different trait categories is illustrated. 566 

Detailed proportions can be found in Supplementary Table 3, with error bars representing the 95% 567 

confidence level. 568 

b) The distance between traits is determined based on the Spearman correlation between eQTL 569 

coefficients. Only GWAS traits with a minimal number of eQTLs between them were selected. Labels 570 

include the dataset source (ebi-a: Datasets meeting minimum requirements imported from the EBI 571 

database of complete GWAS summary data; ieu-a: GWAS summary datasets generated by various 572 

consortia, initially developed for MR-Base; ukb-a: Neale lab analysis of UK Biobank phenotypes, 573 

round 1; ukb-b: IEU analysis of UK Biobank phenotypes; ukb-d: Neale lab analysis of UK Biobank 574 

phenotypes, round 2), the PubMed identifier (if available, otherwise 0), and the trait ontology term. 575 

 576 

Figure 2: Distribution of eQTLs and regions based on trait counts, eQTL gene specificity and 577 

biological samples. 578 

a-c) The proportion of eQTLs is examined based on the count of trait categories (a), eQTL genes (b), 579 

and eQTL biological samples (c). The count of eQTLs is shown over the bars in Figure (a). 580 

d) The Spearman correlation between the count of trait categories, eQTL genes, and eQTL biological 581 

samples is explored for colocalized eQTLs and GWAS variants. “cnt” stands for count. 582 
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e, f) To merge colocalized variants to pleiotropic regions, we iteratively merge colocalized variants 583 

located at less than 100,000 bp into regions and annotate the regions with the number of trait 584 

categories. 585 

e) This plot shows the cumulative length of the regions containing colocalized variants starting with 586 

the most pleiotropic categories. The number above the bar shows the number of pleiotropic eQTLs. 587 

f) This plot shows the cumulative proportion of genomic regions containing eQTLs associated to two 588 

or more trait categories with different lengths. Around 60% of these regions show a length of 10,000 589 

bp or less. 590 

 591 

Figure 3: Properties of eQTLs across various pleiotropy levels: insights into variant effects on 592 

gene expression, trait associations, and allele frequencies 593 

a, b) Average of the absolute effect of variants on gene expression (a) and traits (b). 594 

c, d) Average of the negative log10 of the p-value of the association with gene expression (c) and 595 

traits (d). 596 

e) Average variant frequency in the European population from the 1000 Genomes database. This plot 597 

gives the distribution of variant frequencies of colocalized eQTL/GWAS variants partitioned by the 598 

trait category count. 599 

g) Odds ratio of the eQTLs annotated with the given ENSEMBL variant effect predictor compared to 600 

eQTLs with a single trait category count. 601 

Median values are shown in the boxes of figures a-d. Boxes of the boxplots show the quartiles of the 602 

dataset while the whiskers extend to show the rest of the distribution except outliers. In figures a-e, 603 

we carried out the Mann-Whitney U test with a two-sided research hypothesis, and in figure f, the 604 

Fisher exact test with a two-sided research hypothesis (Significance: ns ≥0.05 * <0.05, ** <0.01, *** 605 

<0.001, **** <0.0001). 606 

 607 
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Figure 4: Exploring eQTL gene distance and biological sample counts, transcription tactor 608 

binding, and CRM annotation across diverse pleiotropy levels 609 

a) Closest gene distance for each eQTL in relation to the count of trait categories. 610 

b) Cumulative proportion of eQTL-tissue pairs for increasing counts of eQTL target genes partitioned 611 

by trait category counts. 612 

c) Odds ratio of eQTLs annotated with ENCODE enhancer versus non-annotated regions for different 613 

trait category counts. 614 

d) Odds ratio of eQTLs annotated with ReMap non-redundant transcription factor peaks versus non-615 

annotated regions for different trait category counts. 616 

e) Count of bound transcription factors (TF) in the region surrounding eQTLs with a radius of 10 bp 617 

(Window 20 bp) for different trait category counts. 618 

f) Odds ratio of eQTLs within CTCF ChIA-PET loops in isogenic replicate r1 of CD8 T-cells for 619 

different trait category counts. 620 

Boxes of the boxplots depict the quartiles of the dataset, while the whiskers extend to show the rest 621 

of the distribution except outliers. In figures a and c, we conducted the Mann-Whitney U test, with a 622 

two-sided research hypothesis, and in figure d, the Fisher exact test with a one-sided research 623 

hypothesis (Significance: ns ≥0.05 * <0.05, ** <0.01, *** <0.001, **** <0.0001). 624 

 625 

Table 1: Pleiotropic eQTLs in various cytobands associated with four distinct trait categories. 626 

The term "gene marker" denotes the most frequently cited gene within the eQTL target genes. 627 

 628 

Table 2: Regions exhibiting pleiotropy involving six or more trait categories. 629 

These regions were constructed around pleiotropic eQTLs linked to two or more trait categories using 630 

a sliding window of 100,000 base pairs. The "gene marker" column indicates the most cited eQTL 631 

gene in the region, as per NCBI PubMed. The "eQTLs cnt." column provides the count of eQTLs in 632 

that region. Genomic coordinates are presented for the hg38 assembly. 633 
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 634 

Supplementary figure and table legends 635 

Supplementary Figure 1: UCSC tracks screenshot for eQTLs colocalizing with GWAS variants 636 

in the specified regions.  637 

screenshot for eQTLs colocalizing with GWAS variants in the specified region (chr5:132,137,990-638 

132,728,110, hg38) for B-cells (a), classical monocytes (b), and cortex cells (c): 639 

In panel (a), denoting B-cells, the image illustrates different components. The red color signifies 640 

positive eQTL beta coefficients, while blue represents negative eQTL beta coefficients. Two sections 641 

are provided for each biological sample: "beta equal" corresponds to eQTLs with the same effect sign 642 

as the GWAS, and "beta unequal" corresponds to eQTLs colocalizing with a GWAS but with a 643 

different effect sign. This distinction enables the inference of the beta coefficient of the GWAS variant 644 

based on the color of the eQTL beta. 645 

For example, in B-cells (a), a decrease in the expression of the SLC22A5 gene is correlated with a 646 

decrease in Asthma predisposition and an increase in extreme height and inflammatory bowel 647 

diseases. 648 

 649 

Supplementary Figure 2: Comparison with the analysis by Watanabe et al 2019. 650 

a) Comparative analysis of trait categories counts in our study and that conducted by Watanabe et al. 651 

[5]. 652 

b) The percentage of our eQTLs in the study by Watanabe et al. is depicted for various pleiotropy 653 

levels [5]. The boxplots represent quartiles of the dataset, with whiskers extending to show the 654 

remainder of the distribution except for outliers. 655 

In figure (a), we conducted the Mann-Whitney U test. Significance levels are denoted as follows: ns 656 

(not significant) for ≥0.05, * for <0.05, ** for <0.01, *** for <0.001, and **** for <0.0001. 657 

 658 



 

 26 

Supplementary Figure 3: Pleiotropic eQTL distribution in allergic and blood-related and 659 

cardiovascular diseases. 660 

These bar plots depict the proportions of eQTLs with different levels of pleiotropy that colocalize 661 

with allergic (a) and cardiovascular diseases (b). The values above the bar plots show the count of 662 

eQTLs. 663 

 664 

Supplementary Figure 4: eQTL and GWAS effects for given variant frequencies and sample 665 

sizes. 666 

Average of the absolute effect of variants on gene expression (a, c) and traits (b, d) for variants with 667 

frequencies in the interval between 0.45 and 0.55 (a, b) and samples size of the GWAS studies in the 668 

interval between 75,000 and 125,000 (c, d). 669 

 670 

Supplementary Figure 5: Distribution of tissue and gene count. 671 

(a, c) Cumulative proportion of tissue count per eQTL-gene pair with increasing counts of tissues for 672 

unconstrained variant frequency (a) and variant frequencies between 0.45 and 0.55. (b) Cumulative 673 

proportion of gene count per eQTL-tissue pair with increasing counts of genes for variant frequencies 674 

between 0.45 and 0.55. 675 

 676 

Supplementary Figure 6: Enrichment of pleiotropic eQTLs within CTCF ChIA-PET loops. 677 

These bar plots depict the odds ratio of pleiotropic eQTLs within CTCF ChIA-PET loops in isogenic 678 

replicates r1 (a, c, e, g, j, l), r2 (b, d, f, h, k, m) and r3 (i) of cell lines A549 (a, b), CD8 T-cells (c, d), 679 

GM10248 (e, f), HUVEC (g-i), K562 (j, k) and WTC11 (l-m). 680 

 681 

Supplementary Table 1: List of eQTL studies and annotations. 682 

This tables shows additional annotation regarding tissue category terms to complement the 683 

information derived from eQTL studies in the EBI eQTL Catalogue. 684 
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 685 

Supplementary Table 2: List of GWAS studies and annotations. 686 

The 417 GWAS studies in our analysis have been annotated with both a GWAS trait ontology and 687 

GWAS trait category information. This additional annotation provides a more comprehensive 688 

understanding of the traits associated with the genetic variations studied in the GWAS datasets. 689 

 690 

Supplementary Table 3: Proportion of leading SNPs in GWAS studies explained by colocalized 691 

eQTLs. 692 

This table provides the percentage of leading SNPs in GWAS that colocalize with eQTLs. 693 

 694 

Supplementary Table 4: List of 5,345 GWAS variants that colocalize with eQTLs at 695 

PP.H4.abf≥0.75 and SNP.H4.PP≥ 0.5 with annotations. 696 

This table offers the list of 5,345 GWAS variants that colocalize with eQTLs at PP.H4.abf≥0.75 and 697 

SNP.H4.PP≥ 0.5 with annotations, including details such as the most cited eQTL gene and its number 698 

of Pubmed citations (Columns H, I), trait category and trait counts (Columns J, K), a list of trait 699 

categories, trait ontology, and eQTL gene identifier and symbols (Columns L, M), eQTL gene 700 

identifier and symbols, and the number of eQTL genes (Columns N-P), the biological sample 701 

category list and their numbers (Columns Q, R), the most cited gene identifier (Column S), and the 702 

number of domains (equivalent to trait categories) in [5] (Column T). 703 

 704 

Supplementary Table 5: List of genomic regions containing colocalized eQTLs and GWAS 705 

variants. 706 

This table contains the full list of regions, including information on the number and list of trait 707 

category counts (Columns E, F), the symbol and identifier of eQTL genes (Columns G, I), and the 708 

category of the tissue (Column H). The number of trait categories is determined by the count of 709 

different trait categories in the region[18].  710 
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 711 



Chrom. Pos (hg38) Cytoband rsid Gene marker Trait categories
1 8,437,247 1p36.23 rs301802 ENO1 allergic disease; cardiovascular disease; hyperten-

sive disorder; mental or behavioural disorder
4 102,267,552 4q24 rs13107325 SLC39A8 autoimmune disease; cardiovascular disease; hy-

pertensive disorder; musculoskeletal system
5 132,461,886 5q31.1 rs2522051 IL4 breast cancer; cardiovascular disease; hyperten-

sive disorder; respiratory system disease
6 90,267,049 6q15 rs72928038 BACH2 allergic disease; autoimmune disease; metabolic

disease; skin cancer
12 111,621,753 12q24.12 rs11065979 ALDH2 allergic disease; cardiovascular disease; eye dis-

ease; longevity
15 74,770,056 15q24.1 rs11072508 CYP1A1 cardiovascular disease; hypertensive disorder; im-

mune system disease; joint disease
17 39,895,095 17q21.1 rs8067378 ORMDL3 allergic disease; autoimmune disease; cardiovas-

cular disease; metabolic disease
19 48,703,417 19q13.33 rs601338 FUT2 autoimmune disease; cardiovascular disease; di-

gestive system disease; hypertensive disorder

Table 1

Chr. Start End Cytob. Marker
eQTL
gene

Trait categories Length eQTLs
cnt.

5 132,239,645 132,497,907 5q31.1 IL4 allergic disease; autoimmune disease; body height;
breast cancer; cancer; cardiovascular disease; hyperten-
sive disorder; respiratory system disease; skin disease

258,263 37

9 21,950,524 22,207,038 9p21.3 CDKN2A breast cancer; cancer; cardiovascular disease; eye dis-
ease; genital neoplasm, female; male reproductive organ
cancer; skin cancer

256,515 9

9 133,242,881 133,278,537 9q34.2 ABO abnormality of blood and blood-forming tissues; cardio-
vascular disease; eye disease; genital neoplasm, female;
infectious disease; mental or behavioural disorder

35,657 9

11 65,488,118 65,638,129 11q13.1 NEAT1 cardiovascular disease; eye disease; hypertensive disor-
der; joint disease; metabolic disease; respiratory system
disease

150,012 8

11 65,747,403 65,909,045 11q13.1 RELA allergic disease; autoimmune disease; breast cancer; car-
diovascular disease; hypertensive disorder; skin cancer;
skin disease

161,643 34

15 74,751,897 74,843,920 15q24.1 CYP1A1 breast cancer; cardiovascular disease; hearing disorder;
hypertensive disorder; immune system disease; joint dis-
ease

92,024 15

15 78,428,581 78,762,558 15q25.1 CHRNA5 breast cancer; cardiovascular disease; longevity; lung
cancer; mental or behavioural disorder; respiratory sys-
tem disease

333,978 29

15 90,861,475 91,070,064 15q26.1 FURIN breast cancer; cardiovascular disease; genital neoplasm,
female; hypertensive disorder; mental or behavioural
disorder; metabolic disease

208,590 38

16 89,626,691 89,808,935 16q24.3 MC1R breast cancer; cancer; cardiovascular disease; eye dis-
ease; hypertensive disorder; skin cancer

182,245 24

17 2,006,529 2,311,037 17p13.3 SMG6 allergic disease; cardiovascular disease; eye disease; hy-
pertensive disorder; mental or behavioural disorder; res-
piratory system disease

304,509 22

17 7,452,302 7,718,459 17p13.1 TP53 cancer; cardiovascular disease; hypertensive disorder;
joint disease; respiratory system disease; skin cancer

266,158 27

20 63,588,387 63,857,282 20q13.33 EEF1A2 allergic disease; autoimmune disease; cancer; cardiovas-
cular disease; hypertensive disorder; male reproductive
organ cancer; metabolic disease; skin disease

268,896 30

Table 2
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b c

Supplementary Figure 5

12



a b

c d

e f

g h i

j k

l m

Supplementary Figure 6

13


