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Minimal realizations of input-output behaviors by LPV state-space
representations with affine dependence

Mihály Petreczky, Roland Tóth, and Guillaume Mercère

Abstract— The paper makes the first steps towards a be-
havioral theory of LPV state-space representations with only
affine dependence on the scheduling signal, by characterizing
minimality of such state-space representations. We show that
minimality is equivalent to observability, and that minimal
realizations of the same behavior are isomorphic. Finally, we
establish a formal relationship between minimality of LPV
state-space representations with an affine dependence on the
scheduling signal and minimality of LPV state-space represen-
tations with a dynamic and meromorphic dependence on the
scheduling signal.

I. INTRODUCTION

Linear parameter-varying (LPV) systems represent a sys-
tem class which is more general than linear time-invariant
(LTI) systems and which can capture nonlinear and time-
varying behavior. LPV systems are modeled by linear dif-
ference or differential equations, where the coefficients are
functions of a time-varying scheduling signal. LPV systems
are widely used in control ([3]–[6]) and in system identifi-
cation, ([7]–[13]).

Despite these advances, there are still gaps in the theory
of LPV systems, in particular in their realization theory.
Realization theory aims at characterizing the relationship
between the input-output behavior and certain classes of
state-space representations (linear time-invariant, bilinear,
etc.), see [14], [15]. Since realization theory is used in system
identification, model reduction, and data-driven control [16],
filling this gap is important.

Prior work on realization theory and motivation:
Realization theory of LPV systems was first addressed in
[1], [2], where, through the behavioral theory, concepts
of minimality and equivalence for so general LPV state-
space representation (LPV-SS for short) under meromorphic
and dynamical dependence of the model coefficients on the
scheduling have been established. We will refer to this class
of LPV-SSs as meromorphic LPV-SS. A major drawback
of meromorphic LPV-SSs is that, for practical applications,
it is often preferable to use LPV-SSs with a static and
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affine dependence on the scheduling variable (LPV-SSA for
short), i.e., LPV-SS whose matrices are affine functions of
the instantaneous value of the scheduling variable. How-
ever, whereas LPV-SSAs are a subclass of meromorphic
LPV-SSs, the system-theoretic transformations (passing from
input-output to state-space representation, transforming a
representation to a minimal one, etc.) of [1], [2] result in
meromorphic LPV-SSs, even if applied to LPV-SSAs, see
[17], [18]. In [19], realizability of LPV input-output equa-
tions by LPV-SSs with a general (non affine) dependence
on the scheduling variable was investigated. However, it is
not clear that all behaviors of interest admit the LPV input-
output representations from [19], and [19] does not address
minimality. In [20], a Kalman-style realization theory for
LPV-SSAs was developed. A drawback of [20] lies in the use
of input-output functions, which captures the input-output
behavior only from a certain fixed initial state. In contrast,
for control synthesis, the initial state is not fixed.

That is, [1], [2], [19] do not address behavioral realization
theory for LPV-SSAs as a closed class.

Contributions: In this paper, we make the first step
towards a behavioral approach directly for LPV-SSAs. Sim-
ilarly to [1], we use the concept of manifest behavior from
[21] to formalize the input-output behavior of LPV-SSAs.
We show that the following counterparts of the well-known
results for LTI behaviors [21] hold:
• An LPV-SSA is a minimal realization of a given be-

havior, if and only if it is observable, and all minimal
realization of the same manifest behavior are related by
a linear (constant) isomorphism.

• A behavior is controllable, if and only if its minimal
LPV-SSAs is span-reachable from the zero initial state.

We also formulate a computionally effective minimization
procedure for LPV-SSAs. Furthermore, we show that under
some assumptions, a minimal LPV-SSA realization of a
behavior is also minimal if viewed as a meromorphic LPV-SS
[1]. The latter is interesting, as in contrast to meromorphic
LPV-SSs, there are computationally effective algorithms for
minimization and checking minimality of LPV-SSAs.

Outline: In Section II, we present the necessary back-
ground on LPV-SSA representations and then formalize
several system theoretic concepts. In Section III, the main
results are introduced, while Section IV gathers the proofs.

II. PRELIMINARIES

Let T = R+
0 = [0,+∞) be the time axis in the continuous-

time (CT) case and T = N in the discrete-time (DT) case. Let
ξ be the differentiation operator d

dt (in CT) and the forward



time-shift operator q (in DT), i.e., if z : T → Rn, then
(ξz)(t) = d

dtz(t) for CT and (ξz)(t) = z(t+ 1) for DT.
Define an LPV state-space representations with affine

dependence on the scheduling variable (LPV-SSA) as

Σ

{
ξx(t) = A(p(t))x(t) +B(p(t))u(t),
y(t) = C(p(t))x(t) +D(p(t))u(t),

(1)

where x : T→ Rnx is the state trajectory, y : T→ Rny is the
(measured) output trajectory, u : T → Rnu is the (control)
input signal and p : T→ P ⊆ Rnp is the so called scheduling
signal of the system represented by Σ. Moreover, A,B,C,D
are matrix valued affine functions defined on P, i.e., there
exists matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx

and Di ∈ Rny×nu for all i = 0, 1, . . . , np, such that

A(p) = A0 +

np∑
i=1

Aipi, B(p) = B0 +

np∑
i=1

Bipi,

C(p) = C0 +

np∑
i=1

Cipi, D(p) = D0 +

np∑
i=1

Dipi,

for every1 p = [ p1 . . . pnp ]> ∈ P.
Note that in LPV systems, the input and scheduling signals

play the role of exogenous inputs. Furthermore, it is often
assumed that the scheduling signals are bounded to ensure
desirable properties, e.g., stability, hence in general P 6= Rnp .

In the sequel, we use the shorthand notation

Σ = (P, {Ai, Bi, Ci, Di}
np

i=0)

to denote an LPV-SSA of the form (1) and use dim (Σ) = nx

to denote its state dimension.
To develop our results, we need to formalize the solution

concept for LPV-SSAs. To this end, we define the sets
X ,Y,U ,P of state, output, input, and scheduling trajectories
as follows. For a set X , let XN denote the set of all functions
of the form f : N → X . In DT, let X = (Rnx)N,Y =
(Rny)N,U = (Rnu)N,P = PN. In CT, let us denote by
Cp(R+

0 ,Rn) the set of all functions of the form f : R+
0 → Rn

which are piecewise-continuous. In addition let Ca(R+
0 ,Rn)

be the set of all absolutely continuous functions of the
form f : R+

0 → Rn. Then, in CT, let X = Ca(R+
0 ,Rnx),

Y = Cp(R+
0 ,Rny), U = Cp(R+

0 ,Rnu), P = Cp(R+
0 ,P).

By a solution of Σ, we mean a tuple of trajectories
(x, y, u, p) ∈ (X ,Y,U ,P) satisfying (1) for almost all t ∈ T
in the CT case, and for all t ∈ T in DT.

Note that for any input and scheduling signal (u, p) ∈
U × P and any initial state xo ∈ Rnx , there exists a unique
pair (y, x) ∈ Y × X such that (x, y, u, p) is a solution of
(1) and x(0) = xo, see [1]. Next, inspired by [1], [21], we
define the notion of manifest behaviors for LPV-SSAs.

Definition 1: A manifest behavior is a subset B ⊆ Y ×
U × P . The manifest behavior B(Σ) of an LPV-SSA Σ is
defined as

B(Σ) =
{

(y, u, p) ∈ Y × U × P | ∃x ∈ X
s.t. (x, y, u, p) is a solution of (1)

}
.

1Note that in the sequel we use italic letters to denote scheduling signals
and boldface letters to distinguish elements of P.

The LPV-SSA Σ is a realization of a manifest behavior
B ⊆ Y × U × P , if B = B(Σ). �
That is, the manifest behavior of an LPV-SSA Σ is the set
of all tuples (y, u, p) such that Σ generates the output y for
some initial state, if Σ is fed by the input u and scheduling
p. The corresponding definition of minimality is as follows.

Definition 2: An LPV-SSA Σ is a minimal realization
of a manifest behavior B, if it is a realization of B, and
for any LPV-SSA Σ

′
such that Σ

′
is a realization of B,

dim Σ ≤ dim Σ
′
. We say that Σ is minimal, if Σ is a minimal

realization of its own manifest behavior B(Σ). �
Manifest behaviors are a natural formalization of the intuition
behind input-output behaviors of LPV-SSAs. However, input-
output behaviors can also be formalized using input-output
functions. The latter was used in [20] for proposing a
Kalman-style realization theory for LPV-SSAs. The principal
definitions are as follows:

Definition 3: Let xo ∈ Rnx be an initial state of Σ. Define
the input-output (i/o) function YΣ,xo : U ×P → Y , induced
by the initial state xo as follows: for any (u, p) ∈ U × P ,
y = YΣ,xo

(u, p) holds if and only if there exists a solution
(x, y, u, p) of (1) such that x(0) = xo. �

Definition 4: An LPVS-SSA Σ is a realization of an i/o
function F : U × P → Y from the initial state xo ∈ Rnx ,
if F coincides with the i/o function of Σ induced by xo,
i.e. F = YΣ,xo

. We say Σ is a realization of F, if it is
a realization of F from some initial state. Additionally, the
LPV-SSA Σ is a minimal realization of F if it is a realization
of F, and for every LPV-SSA Σ′ which is a realization of F,
dim (Σ) ≤ dim (Σ′). �

A drawback of using i/o functions instead of manifest
behaviors is that the former capture the input-output behavior
for one choice of initial states. However, we can account for
all initial states by using families of i/o functions.

Definition 5: If Σ is an LPV-SSA with state-space Rnx ,
then the set F(Σ) = {YΣ,xo | xo ∈ Rnx} of all i/o functions
of Σ induced by some initial state of Σ is called the family
of i/o functions of Σ. A family Φ of i/o functions of the form
F : U × P → Y is realized by Σ, if Φ = F(Σ). �
It is natural to ask if using families of i/o functions are
equivalent to using LPV manifest behaviors. Clearly, if
F(Σ) = F(Σ̂), then B(Σ) = B(Σ̂) holds. In fact, the
example below shows that the converse is not true.

Example 1: Consider the LPV-SSAs Σ and Σ
′

Σ

{
x1(t+ 1) = x1(t) + p(t)x2(t), x2(t+ 1) = 0,
y(t) = x1(t) + p(t)x2(t),

Σ
′ {

z(t+ 1) = z(t), y(t) = z(t),

with the scheduling space P = R. A straightforward cal-
culation reveals that B(Σ

′
) = B(Σ), see [17] for details.

However, for xo =
[
1 1

]>
and any x

′

o ∈ R, YΣ,xo
6=

YΣ′ ,x′
o
. To see this, it is enough to evaluate the i/o functions

involved for any two scheduling signals p and p
′

such that
p(0) = 0 and p

′
(0) = 1, see [17] for details. Hence,

F(Σ) 6= F(Σ
′
).

That is, realization theory of manifest behaviors is not equiv-
alent to that of i/o functions. In particular, the minimality



results of [20] do not apply in the behavioral setting. It is
then natural to ask if similarly to [20], observability and
span-reachability characterize minimality in the behavioral
setting. The following definitions are recalled.

Definition 6: Let Σ be an LPV-SSA of the form (1). Σ is
span-reachable from an initial state xo ∈ Rnx , if the linear
span of all states reachable from xo equals the whole state-
space Rnx , i.e., Span{x(t) | (x, y, u, p) ∈ X × Y × U ×
P, (x, y, u, p) is a solution of (1), t ∈ T, x(0) = xo} =
Rnx . The LPV-SSA Σ is observable if any two distinct initial
states induce distinct i/o functions, i.e. ∀x1, x2 ∈ Rnx : x1 6=
x2 =⇒ YΣ,x1

6= YΣ,x2
. �

Observability and span-reachability can be characterized by
rank conditions [20]. Finally, similarly to [20], we would like
to have minimal realizations of the same manifest behavior
to be isomorphic. The latter notion is defined below.

Definition 7: Let Σ be of the form (1) and let Σ′ =
(P, {A′

i, B
′

i , C
′

i , D
′

i}
np

i=0) be an LPV-SSA with dim(Σ) =
dim(Σ′) = nx. A nonsingular matrix T ∈ Rnx×nx is an
isomorphism from Σ to Σ′, if for all i = 0, 1, . . . , np,

A′iT = TAi B′i = TBi C ′iT = Ci D′i = Di

�
Note that the matrix T in the definition above does not
depend on the scheduling signal, and it acts only on the states
of the LPV-SSAs involved. In particular, the LPV-SSAs Σ
and Σ′ have the same inputs and outputs and are defined
over the same set of scheduling signals.

Problem formulation: in this paper we will address the
following questions.

(1) If two LPV-SSAs have the same manifest behavior, do
they have the same set of i/o functions?

(2) Can we characterize minimal LPV-SSAs in terms of
observability and span-reachability?

(3) Are minimal LPV-SSA realizations of the same man-
ifest LPV behavior isomorphic?

(4) Is there an algorithm for transforming an LPV-SSA to
a minimal LPV-SSA realization of its manifest behavior?

(5) Are minimal LPV-SSAs also minimal as meromorphic
LPV-SS from [1], [2]?

III. MAIN RESULTS

In this section, we present the main results of the paper,
which answer the questions formulated above.

A. Input-output functions vs. behaviors

We start by clarifying the relationship between manifest
behaviors and i/o functions of LPV-SSAs. To this end, we
need the following definition.

Definition 8: An LPV-SSA of the form (1) is said to
satisfy the regularity certificate (RC) if (i) P is convex with
a non-empty interior, and, in addition, (ii) in the DT case,
the matrix A(p) is invertible for all p ∈ P. �
In CT, satisfaction of the RC depends only on P, and it is
satisfied if P is a Cartesian product of intervals, e.g., P =
[a, b]np , a < b. In DT, the RC condition is more restrictive.

Theorem 1: Let Σ and Σ̂ be two LPV-SSAs which satisfy
the RC. Then Σ and Σ̂ have the same family of i/o functions,

i.e., F(Σ) = F(Σ̂), if and only if their manifest behavior is
the same, i.e., B(Σ) = B(Σ̂). �
The proof of Theorem 1 is presented in Section IV. The
theorem above says that manifest behaviors and families of
i/o function are equivalent formalizations of input-output be-
haviors of LPV-SSAs satisfying the RC. Note that Theorem
1 is no longer true if we drop the RC, see Example 1.

B. Minimality

Theorem 1 and an extension of the results of [20] to fam-
ilies of i/o functions lead to the following characterization
of minimal realizations of manifest behaviors.

Theorem 2: An LPV-SSA which satisfies the RC is min-
imal, if and only if it is observable. Furthermore, any two
minimal LPV-SSAs, which satisfy the RC and are realiza-
tions of the same manifest behavior, are isomorphic. �
The proof of Theorem 2 is presented in Section IV. Note that
minimality of LPV-SSAs does not require span-reachability.
This is in contrast with minimal LPV-SSA realizations of i/o
functions, but this is consistent with the classical results for
LTI systems [21].

Theorem 2 suggests a minimization procedure which is
based on the observability reduction procedure from [20],
[22]. We recall the latter below. Let Σ be an LPV-SSA of
the form (1) and recall from [20] the definition of extended
n-step observability matrices On of Σ, n ∈ N,

O0 =
[
C>0 · · · C>np

]>
,

On+1 =
[
O>n A>0 O>n · · · A>np

O>n
]>
.

By [20], Σ is observable, if and only if rank (Onx−1) = nx.
Procedure 1 (Observability reduction): Consider the ma-

trix T =
[
b1 b2 . . . bnx

]−1
, where {bi}nx

i=1 ⊂ Rnx is a
basis such that Span{bo+1, . . . , bnx

} = Ker{Onx−1}. Then
it can be shown that

TAiT
−1 =

[
AO
i 0
A′i A′′i

]
, TB =

[
BO
i

B′i

]
, CiT

−1 =
[
CO
i 0

]
,

where AO
i ∈ Ro×o, BO

i ∈ Ro×nu and CO
i ∈ Rny×o. Define

ΣO = (P, {AO
i , B

O
i , C

O
i , Di}

np

i=0). �
Procedure 1 is similar to the well-known observability
reduction for LTI/bilinear systems, and it can readily be
implemented numerically, e.g., see [22, Remark 2].

Remark 1: By [20], ΣO is observable. Let Π ∈ Ro×nx be
such that Πz is formed by the first o elements of Tz. Then
(x, y, u, p) is a solution of Σ, if and only if (Πx, y, u, p) is a
solution of ΣO. Hence, B(Σ) = B(ΣO). Moreover, for any
initial state xo of Σ, YΣ,xo

= YΣO,Π(xo). Furthermore, if Σ
satisfies the RC, then so does ΣO. For CT, there is nothing
to show. For DT, notice that AO(p), p ∈ P, is the upper left
block of the triangular matrix TA(p)T−1, hence if A(p) is
invertible, then so is AO(p).

Corollary 1 (Minimization): If Σ satisfies the RC, then
ΣO returned by Procedure 1 satisfies the RC, it is minimal
and it has the same manifest behavior as Σ. �
As in the LTI case, span-reachability is necessary for min-
imality of LPV-SSA realizations of controllable behaviors.
The latter is defined similarly to [21].



Definition 9: The manifest behavior B is controllable,
if for any two trajectories (y1, u1, p1), (y2, u2, p2) ∈ B
and any time instance t ∈ T, there exists a (y, u, p) ∈
B and a T 3 τ > 0, such that (y|[0,t], u|[0,t], p|[0,t]) =
(y1|[0,t], u1|[0,t], p1|[0,t]), and for all s ∈ T, s ≥ t + τ ,
(y(s), u(s), p(s)) = (y2(s−t−τ), u2(s−t−τ), p2(s−t−τ)).
�

Intuitively, a behavior is controllable, if any i/o trajectory
generated by the system up to some time can be continued
by any other admissible i/o trajectory.

Theorem 3: Let B be a manifest behavior, and let Σ be an
LPV-SSA satisfying the RC. If B is controllable, then Σ is a
minimal realization of B if and only if Σ is span-reachable
from zero and observable. Conversely, if Σ is span-reachable
from zero, then its manifest behavior B(Σ) is controllable.
�
The proof of Theorem 3 is presented in Section IV. Recall
from [20] that an LPV-SSA is a minimal realization of an
i/o function from the zero initial state, if and only if it is
observable and span-reachable from zero. Theorem 3 says
that LPV-SSAs which satisfy the RC are minimal realizations
of an i/o function from zero initial state, if and only if they
are minimal realizations of their own manifest behaviors.

C. Relationship with the prior results

Below we show that Theorems 2-3 are consistent with
the results of [1]. To this end, recall that LPV-SSAs are
special cases of meromorphic LPV-SSs. Recall from [1] the
notions of structural state-observability and structural state-
reachability and state-trimness and minimality.

Theorem 4: If Σ is an LPV-SSA which satisfies the RC,
then it is state-trim and the following holds.
• If Σ is observable, then it is structurally state-

observable.
• If Σ is span-reachable from xo = 0, then it is struc-

turally state-reachable.
• If Σ is a minimal, then it is a minimal dimensional

meromorphic LPV-SS in the sense of [1]. �
The proof is presented in Section IV. Note that Theorem 4
ceases to be true, if Σ does not satisfy the RC, see [18, Exam-
ple 4.1] for a counter-example. In general, there is a tradeoff
between the dimensionality of LPV-SSs and the dependence
on the scheduling variable (meromorphic, affine), [18, page
180]. However, for LPV-SSAs which satisfy the RC, there is
no such tradeoff, i.e., the algorithms of [1], [2] will not result
in smaller state-space representations when applied to such
LPV-SSAs. However, they may still introduce meromorphic
dependencies on the scheduling signal, see [17, Example 2].

IV. PROOFS OF THE RESULT

A. Auxiliary results: observability revealing scheduling

The proofs rely on the observation that for any observable
LPV-SSA which satisfies the RC, there exists a scheduling
signal such that the output response to that scheduling signal,
under zero input, determines the initial state uniquely.

Theorem 5: Let Σ be an observable LPV-SSA which
satisfies the RC. Then there exist a scheduling signal po ∈ P

and a time instant to ∈ T such that for any two initial states
x1,o, x2,o of Σ,

YΣ,x1,o
(0, po)|[0,to] = YΣ,x2,o

(0, po)|[0,to] =⇒ x1,o = x2,o

and, in CT, po is analytic. �
The proof relies on viewing LPV-SSAs with zero input as
bilinear systems whose inputs are the scheduling signals.
Then the existence of po follows from the existence of
a universal input for bilinear systems [23], [24]. The RC
condition is necessary for using [23], [24].

Proof: [Proof of Theorem 5] Let Σ be of the form
(1). It is enough to show that there exists to∈ T, po ∈ P ,
such that if YΣ,x1,o(0, po)|[0,to] =YΣ,x2,o(0, po)|[0,to], then
YΣ,x1,o

(0, p) = YΣ,x2,o
(0, p) for all p ∈ P . Indeed, the latter

equality implies YΣ,x1,o
=YΣ,x2,o

, and hence by observabil-
ity, x1,o = x2,o, as YΣ,xi,o

(u, p)=YΣ,xi,o
(0, p)+YΣ,0(u, p)

for all i = 1, 2, u ∈ U . To this end, consider the bilinear
system

ξ

[
x(t)
z(t)

]
=

[
A(p(t)) 0
C(p(t)) 0

] [
x(t)
z(t)

]
, s(t) = z(t) (2)

with input p ∈ P and output s ∈ Y . For any p ∈ P , denote
by s((xo, zo), p) the output trajectory of (2) generated from
the initial state (x>o , z

>
o )> ∈ Rnx × Rny under input p.

In CT, let us take any to ∈ T, and let po be the analytic
universal input from [24, Theorem 2.11] applied to (2). Note
that if P is a convex set with a non-empty interior, then P
satisfies [24, Condition H4] by [25, Corollary 2.3.9]. For the
DT case, let po and to be such that po|[0,to] is the universal
input ν̄ from [23, page 1120, proof of Theorem 5.3], applied
to (2). The proof of [23, Theorem 5.3] requires observability
of (2) and the following property. For any two distinct initial
states of (2), and any input p ∈ P , and time t ∈ T, if
the outputs generated from these two initial states are equal
on [0, t], then the states of (2) at time t reached from these
initial states are distinct. The latter is assured by invertability
of A(p), p ∈ P. Observability of (2) follows from that of Σ.

Then, for any two initials states of (2), if the outputs from
those initial states are the same on [0, to] for the input po,
then the outputs are the same for any input p ∈ P and any
time interval. Since ξs((xo, zo)), p) = YΣ,xo

(0, p) for any
(x>o , z

>
o )> ∈ Rnx × Rny and p ∈ P , it follows that po and

to satisfy the statement of the theorem.
Corollary 2: Assume that Σ, Σ̂ satisfy the RC. There

exists po ∈ P and to ∈ T such that

YΣ,xo(0, po)|[0,to] = YΣ̂,x̂o
(0, po)|[0,to] =⇒(

∀p ∈ P : YΣ,xo(0, p) = YΣ̂,x̂o
(0, p)

)
for any initial states xo and x̂o of Σ and Σ̂ respectively, �

Proof: [Proof of Corollary 2] Let Σ be as in (1) and
Σ̂ = (P, {Âi, B̂i, Ĉi, D̂i}

np

i=0). Consider the LPV-SSA

Σc = (P, {
[
Ai 0

0 Âi

]
,

[
Bi
B̂i

]
,
[
Ci −Ĉi

]
, Di − D̂i}

np

i=0).

Then Σc satisfies the RC, and the i/o functions of Σc

are the differences between the i/o functions of Σ and



those of Σ̂. That is, for xo,c =
[
x>o x̂>o

]>
, YΣc,xo,c

=
YΣ,xo

−YΣ̂,x̂o
. Let ΣO

c be the result of applying Procedure
1 to Σc. By Remark 1, YΣc,xo,c

= YΣO
c ,Πxo,c

and ΣO
c

satisfies the RC. Let us apply Theorem 5 to ΣO
c . We claim

that po, to satisfy the conclusion of Theorem 2. Indeed,
assume that YΣ,xo

(0, po)|[0,to] = YΣ̂,x̂o
(0, po)|[0,to] holds.

Then the output YΣc,xo,c
(0, po) of Σc is zero on [0, to],

where xo,c =
[
x>o x̂>o

]>
. Hence, YΣO

c ,Πxo,c
(0, po)|[0,to] =

0 = YΣO
c ,0

(0, po)|[0,to]. From Theorem 5, Πxo,c = 0.
Hence, YΣ,xo

(0, p) − YΣ,x̂o
(0, p) = YΣc,xo,c

(0, p) =
YΣO

c ,Πxo,c
(0, p) = YΣO

c ,0
(0, p) = 0 for any p ∈ P .

B. Behaviors vs. i/o functions

Proof: [Proof of Theorem 1] The implication F(Σ) =
F(Σ̂) =⇒ B(Σ̂) = B(Σ) is obvious. We show the
reverse implication. Assume that B(Σ̂) = B(Σ). Consider
the scheduling signal po and to > 0 from Corollary 2.

First, we show that YΣ,0 = YΣ̂,0. Consider any p ∈ P ,
u ∈ U and T 3 τ > 0 and define ũ and p̃ such that for all
s ∈ T, ũ(s + to + τ) = u(s), p̃(s + to + τ) = p(s), and
ũ|[0,to+τ) = 0 and p̃|[0,to] = po. Let ỹ = YΣ,0(ũ, p̃) be the
output of Σ generated by the zero initial state for input ũ and
scheduling signal p̃. Since (ỹ, ũ, p̃) belongs to B(Σ̂) = B(Σ),
there exists an initial state x̂o such that ỹ = YΣ̂,x̂o

(ũ, p̃).
Since ũ equals zero on [0, to] and ỹ is the output of Σ
generated from the zero initial state, ỹ must be zero on [0, to].
Since p̃ equals po on [0, to], YΣ̂,x̂o

(0, po)|[0,to] = ỹ|[0,to] =
0 = YΣ,0(0, po)|[0,to] = 0. From Corollary 2, it follows that
YΣ̂,x̂o

(0, p̄) = YΣ,0(0, p̄) = 0 for all p̄ ∈ P . Hence,
YΣ̂,x̂o

(ū, p̄) = YΣ̂,x̂o
(0, p̄) + YΣ̂,0(ū, p̄) = YΣ̂,0(ū, p̄) for

all ū ∈ U .
In particular, YΣ̂,0(ũ, p̃) = YΣ,0(ũ, p̃) = ỹ. Let xf , x̂f be

the states of Σ and Σ̂ reached from the zero initial state at
time to + τ under input ũ and scheduling signal p̃. Since
ũ(s + τ + to) = u(s), p̃ = (s + τ + to) = p(s), it follows
that YΣ,xf

(u, p)(s) = ỹ(s+to +τ) = YΣ̂,x̂f
(u, p)(s) for all

s ∈ T. However, the restriction of ũ to [0, to+τ) is zero, and
hence xf and x̂f are zero. Hence, YΣ̂,0(u, p) = YΣ,0(u, p),
and as u and p are arbitrary, YΣ̂,0 = YΣ,0 follows.

Next, we show that F(Σ) ⊆ F(Σ̂). To this end, let xo be
an initial state of Σ. If y = YΣ,xo

(0, po), then (y, 0, po) ∈
B(Σ) = B(Σ̂), and thus there exists an initial state x̂o

of Σ̂ such that y = YΣ̂,x̂o
(0, po). From Corollary, 2 it

follows that YΣ,xo(0, p) = YΣ̂,x̂o
(0, p) for all p ∈ P . Since

YΣ,xo(u, p) = YΣ,xo(0, p) + YΣ,0(u, p), YΣ̂,x̂o
(u, p) =

YΣ̂,xo
(0, p) + YΣ̂,0(u, p), and YΣ̂,0 = YΣ,0, this implies

YΣ,xo
= YΣ̂,x̂o

. The inclusion F(Σ̂) ⊆ F(Σ) can be shown
similarly.

C. Minimality results

Proof: [Proof of Theorem 2] First, we show that if Σ
is a minimal realization of B, then it is observable. Assume
that Σ is not observable. Let us apply Procedure 1 to Σ.
Then, the resulting LPV-SSA ΣO has a smaller state-space
dimension than Σ. By remark 1, ΣO is also a realization of
B. This contradicts the minimality of Σ.

We prove that observability implies minimality. Consider
two LPV-SSA realizations Σ and Σ̂ of B which both satisfy
the RC. By Theorem 1, Φ = F(Σ) = F(Σ̂). Let S(Σ) and
S(Σ̂) be the linear switched systems associated with Σ and
Σ̂ respectively as defined in [20, Appendix, Subsection B].
Recall from [20, Definition 2] the definition of the switched
i/o function S(F) associated with an i/o function F ∈ Φ, and
recall that the mapping F 7→ S(F) is injective. Let S(Φ) =
{S(F) | F ∈ Φ}, nx = dim(Σ) and n̂x = dim(Σ̂) and
let µ : S(Φ) → Rnx and µ̂ : S(Φ) → Rn̂x be such that
for any F ∈ Φ, the i/o functions of Σ and Σ̂ induced by the
initial states µ(S(F)) and µ̂(S(F)) respectively equal F, i.e.,
YΣ,µ(S(F)) = YΣ̂,µ̂(S(F)) = F. Then, (S(Σ), µ), (S(Σ̂), µ̂)

are realizations of S(Φ) in the sense2 of [26]. Assume that Σ
is observable. Then by [20, Theorem 4], S(Σ) is observable.
Moreover, µ is surjective. Indeed, for any initial state xo,
the i/o functions generated by µ(S(YΣ,xo

)) and xo are the
same, and hence by observability of Σ, xo = µ(S(YΣ,xo

)).
Then (S(Σ), µ) is span-reachable and by [26], (S(Σ), µ) is a
minimal realization of S(Φ). Hence, dimS(Σ) = dim Σ ≤
dimS(Σ̂) = dim Σ̂.

Assume that Σ and Σ̂ are minimal realizations of B. By
the first part of the theorem, they are observable, and hence
the linear switched systems S(Σ) and S(Σ̂) are observable.
From the argument of the previous paragraph, it follows
that (S(Σ̂), µ̂) and (S(Σ), µ) are minimal realizations of
S(Φ). Hence, by [26], [27], they are isomorphic, and by
[20, Theorem 4], Σ and Σ̂ are isomorphic too.
In order to prove Theorem 3, we need to relate controllability
and observability of LPV-SSAs with that of linear-time
varying state-space (LTV-SS) representations obtained from
the LPV-SSA by fixing a a particular scheduling signal p.
The latter LTV-SS is denoted by Σ(p) and it is defined as

Σ(p)

{
ξx(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)

where A(t) = A(p(t)), B(t) = B(p(t)), C(t) = C(p(t)),
D(t) = D(p(t)). Note that Σ(p) depends on the scheduling
signal p. Recall from [28, Section 8.3 and Section 8d.3] the
notion of observability and controllability of LTV-SSs on a
time interval. Then, Theorem 5 implies the following results:

Corollary 3: With the assumptions and notations of The-
orem 5, the LTV-SS Σ(po) is observable on [0, to].

Corollary 4: If Σ is span-reachable from xo = 0 and Σ
satisfies the RC, then there exists pr ∈ P and tr ∈ T, such
that the LTV-SS Σ(pr) is controllable on [0, tr].
Corollary 4 follows from Corollary 3 by duality, see [17]

Proof: [Proof of Theorem 3] If Σ is observable and
span-reachable from zero, then it is minimal by Theorem
2. Conversely, assume that Σ is a minimal realization of
B. By Theorem 2 is Σ is observable. Let xo be an ini-
tial state of Σ. Let po, to be the scheduling signal and
time instance from Theorem 5. Let y = YΣ,xo(0, po).

2The results of [26] can readily be extended to DT by using the
relationship from [27] between linear switched systems in DT and rational
representations.



Then, (y, 0, po) ∈ B. Note that (0, 0, po) ∈ B, as 0 =
YΣ,0(0, po). From controllability of B it follows that there
exists 0 < τ ∈ T, and an element (ỹ, ũ, p̃) ∈ B, such
that (ỹ|[0,to], ũ(t)|[0,to], p̃|[0,to]) = (0, 0, po|[0,to]), and (ỹ(s+
to + τ), ũ(s + to + τ), p̃(s + to + τ)) = (y(s), 0, po(s)),
s ∈ T. Since Σ is a realization of B, there exists an
initial state x̂o of Σ such that YΣ,x̂o

(ũ, p̃) = ỹ. It then
follows that YΣ,x̂o(0, po)|[0,to] = 0 = YΣ,0(0, po)|[0,to],
and hence x̂o = 0. Consider the state x̂f of Σ reached
from the zero initial state at time to + τ using ũ, p̃. Then
YΣ,x̂f

(0, po)(s) = YΣ,0(ũ, p̃)(s+to+τ) = YΣ,xo
(0, po)(s),

s ∈ T. By Theorem 5 xo = x̂f , i.e., xo is reachable from
zero. Hence, Σ is span-reachable from zero.

Let Σ be a realization of B which is span-reachable from
zero and which satisfies the RC. Consider pr ∈ P , tr ∈ T
from Corollary 4. Consider (u1, p1, y1), (u2, p2, y2) ∈ B and
let t ∈ T. Then, there exist initial states xo,1, xo,2 such that
yi = YΣ,xo,i

(ui, pi), i = 1, 2. Let xo be the state of Σ
reached from xo,1 at time t+ under u1 and p1, where t+ = t
in CT and t+ = t+ 1 in DT. Let uc ∈ U and τ ∈ [0, tr] be
such that xo,2 is the state of Σ reached from xo at time τ
under uc and pr. Since Σ(pr) is controllable on [0, tr], such
uc and τ exist. Define ũ, p̃ such that ũ|[0,t] = u1|[0,t], p̃|[0,t] =
p1|[0,t], ũ(s) = uc(s− t+), p̃(s) = pr(s− t+), s ∈ (t, t+ τ),
and ũ(s+ t+ τ) = u2(s), p̃(s+ t+ τ) = p2(s), s ∈ T. Let
ỹ = YΣ,xo,1(ũ, p̃). Then, (ũ, p̃, ỹ) ∈ B and ỹ|[0,t] = y1|[0,t]
and ỹ(s + t + τ) = YΣ,xo,2(u2, p2)(s) = y2(s), s ∈ T.
Hence, B is controllable.

D. Relationship with prior work

Proof: [Proof of Theorem 4] We prove the statement
for observability, the statement on span-reachability follows
by duality. By Corollary 3, the LTV-SS Σ(po) is observable
on [0, to]. From [28, Section 8d.3, Theorem 12] it follows
that in DT the to-step observability matrix of Σ(po) is full
column. From [29, Theorem 3], it follows that the nx − 1-
step observability matrix of Σ(po) is full column rank for
almost all t on (0, to) in CT. From [1, Definition 3.34], it then
follows that Σ is structurally observable. The last statement
of the theorem follows from [1, Theorem 3.14].

V. CONCLUSIONS

In this paper, a characterization of minimal LPV-SSA
realizations of LPV behaviors in terms of observability has
been presented. It has also been shown that minimal LPV-
SSA realizations of the same behavior are isomorphic. These
results represent the first steps towards a behavioral approach
directly for LPV-SSAs. Future work will be directed towards
developing i/o partitioning and kernel representations for
manifest behaviors of LPV-SSAs.
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[8] B. Bamieh and L. Giarré, “Identification of linear parameter varying
models,” Int. Journal of Robust and Nonlinear Control, vol. 12, pp.
841–853, 2002.

[9] M. Butcher, A. Karimi, and R. Longchamp, “On the consistency of
certain identification methods for linear parameter varying systems,”
in IFAC World Congress, 2008.

[10] K. Hsu, T. L. Vincent, and K. Poolla, “Nonparametric methods for the
identification of linear parameter varying systems,” in Int. Symposium
on Computer-Aided Control System Design, 2008.

[11] J. W. van Wingerden and M. Verhaegen, “Subspace identification of
bilinear and LPV systems for open- and closed-loop data,” Automatica,
vol. 45, no. 2, pp. 372–381, 2009.

[12] M. Sznaier and C. Mazzaro, “An LMI approach to the identification
and (in)validation of LPV systems,” in Perspectives in robust control,
ser. Lecture Notes in Control and Information Sciences, S. Moheimani,
Ed. London: Springer, 2001, vol. 268, pp. 327–346.

[13] V. Verdult and M. Verhaegen, “Subspace identification of multivariable
linear parameter-varying systems,” Automatica, vol. 38, no. 5, pp. 805–
814, 2002.

[14] A. Isidori, Nonlinear Control Systems. Springer Verlag, 1989.
[15] E. Sontag, Mathematical Control Theory. Spinger-Verlag, 1990.
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