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Abstract
Inorganic fertilizers are widely used to provide crops with significant amounts of nitrogen (N) and phosphorus (P), but can 
exacerbate soil carbon (C) limitation and acidification. Crop residues with distinct ecological stoichiometry from inorganic 
fertilizers can help balance soil ecological stoichiometry and thus increase soil organic matter accumulation. The combined 
use of inorganic fertilizers and crop residues is expected to alleviate the metabolic limitations of organisms and enhance 
soil C, N, and P sequestration, hence increasing grain yields. However, the effects of this practice on soil C, N, and P stocks 
and grain yield remain unclear. In this study, we conducted a meta-analysis of 806 paired data to investigate the impact 
of crop residue return combined with inorganic fertilizer on soil and grain yield across different land uses (paddy, upland, 
paddy-upland rotation) and soil profiles (0–60 cm). Our findings indicate that crop residue return significantly enhances soil 
C (8–13%) stocks across all soil layers, particularly in the topsoil (0–20 cm). Soil N (9%) and P (5%) stocks also increase 
significantly in the topsoil. In uplands, crop residue return can mitigate soil acidification and increase grain yield (by 7%). 
Moreover, the soil C and N stocks increase depending on the initial soil pH, C and N levels, and C:N ratio. In contrast, the 
soil P stock increase depends on rainfall, while the grain yield increase is closely linked to the soil texture and fertilizer rate. 
Our study highlights that crop residue return can increase topsoil C, N, and P stocks, which can benefit crop growth and 
environmental mitigation efforts. Furthermore, this practice can increase C stocks in deeper soil horizons (below 20 cm), 
providing a long-term solution to mitigate climate change.

Keywords  Organic fertilizer · Nutrient balance · Soil profile · Food security · Climate change · Land use · Crop residue 
return

1  Introduction

Soil is the largest available reservoir of carbon (C), nitro-
gen (N), and phosphorus (P) on land, not only providing 
fertility for crop growth but also mitigating environmental 
disturbances (Peñuelas et al. 2013). In the face of climate 
change and increasing soil nutrient losses, it is essential to 
sequester more C, N and P in soils (Liu et al. 2020a; Alewell 
et al. 2020; Zhang et al. 2017). Soil C, N, and P seques-
tration in natural ecosystems has become relatively stable 
and even saturated in some areas, but agroecosystems still 
have great potential to stock more C, N, and P through sus-
tainable agronomic management (Yu et al. 2018; Liu et al. 
2023). Whereas the topsoil C, N, and P stocks are relatively 
high and closely related to climate change and agronomic 

management, the deeper soil C, N, and P stocks and driving 
mechanisms are poorly understood (Balesdent et al. 2018; 
Liu et al. 2021; Chen et al. 2022). Furthermore, while top-
soil C, N, and P stocks are generally in the form of organic 
matter with a close linkage of a simultaneous increase or 
decrease, there is little understanding of whether the C, N, 
and P in deeper soil are also closely linked, and the underly-
ing mechanisms are less understood.

Inorganic fertilizer (chemical fertilizer) is an almost irre-
placeable agronomic management practice to supply crops 
with nutrients, having contributed to a 30–50% increase in 
grain yield in the last half century (Yu et al. 2019). However, 
the limited efficiency of crops in utilizing inorganic fertilizer 
has increased the residual N and P in the soil, resulting in an 
imbalance in soil ecological stoichiometry (Abbruzzini et al. 
2019; Liu et al. 2021, 2023). This leads to microbes being 
in C-limited environments, exacerbating soil organic matter 
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mineralization to maintain their ecological stoichiomet-
ric homeostasis (Liu et al. 2023; Zechmeister-Boltenstern 
et al. 2015). Furthermore, these inorganic forms of N and P 
are typically not retained in the topsoil for a long time and 
are eventually lost in biogeochemical processes (Liu et al. 
2020a; Martínez-Mena et al. 2020). Consequently, several 
environmental problems can arise, such as increased green-
house gas emissions and water eutrophication (Shen et al. 
2014; Fischer et al. 2017; Liu et al. 2022). Thus, the applica-
tion of inorganic fertilizer alone depletes soil organic matter, 
threatening the eco-environment with respect to greenhouse 
gas emissions at a global and water quality degradation at 
a local scale.

Crop residue has a distinct ecological stoichiometry com-
pared to inorganic fertilizer and is characterized by a high 
C:N(P) ratio (Liu et al. 2021, 2023; Tempesta et al. 2022). 
Because crop residues contain low N (1.7%) and P (0.4%) 
concentrations and are characterized by lignocellulosic bio-
mass that is difficult to decompose, they are often burned 
in conventional agriculture, emitting large amounts of car-
bon-dioxide into the atmosphere and contributing to global 
warming (Liu et al. 2021; Deligios et al. 2021; Kaur et al. 
2022). Given the high C concentrations of crop residue, it 
can alleviate soil C limitation caused by inorganic fertilizer 
application, thus slowing organic matter mineralization and 
increasing grain yield (Zechmeister-Boltenstern et al. 2015; 
Liu et al. 2021). Moreover, unlike the rapid leaching of 
inorganic N and P (especially nitrate-N), crop residue tends 
to increase stable soil organic matter (humic compounds), 
which can increase the soil exchangeable capacity, contribut-
ing to the better retention and slow release of nutrients, thus 
increasing its potential use efficiency (Liu et al. 2020b; Hud-
dell et al. 2020). Crop residue return is expected to balance 
the soil ecological stoichiometry imbalance caused by inor-
ganic fertilizer alone, thereby increasing soil organic matter 
accumulation. With the increase in soil organic matter accu-
mulation, soil C, N, and P can be increased to mitigate the 
environmental problems caused by conventional agriculture, 
thus achieving a win-win situation for both environmental 
mitigation and food security.

Despite the growing interest in promoting crop residue 
return, uncertainties still exist regarding the sequestration 
of soil C, N, and P and the resulting increase in grain yield, 
especially in different soil layers and agroecosystems. Previ-
ous research has focused mainly on the effects of crop resi-
due return on topsoil (0–20 cm), which is critical for provid-
ing nutrients for crop growth. However, the impact on deeper 
soil horizons (below 20 cm) requires further investigation 
(Chen et al. 2022; Liu et al. 2021). Deep soil horizons not 
only have more stable C storage, but there is also increasing 
evidence that soil N and P enrichment/legacy at deep soil 
horizons is the primary driver of water quality pollution in 
agricultural catchments (Balesdent et al. 2018; Gao et al. 

2021; Liu et al. 2022). Moreover, paddy fields (flooded by 
long-term artificial irrigation) and uplands (water recharge 
mainly by rainfall) have distinct field water management 
practices, and differences in soil moisture affect not only 
the formation and decomposition of organic matter in the 
topsoil but also the potential for the downward leaching of 
C, N, and P under water saturation (Chen et al. 2021; Zheng 
et al. 2021). Thus, understanding the extent and mechanisms 
of soil C, N, and P stock responses across land uses and soil 
layers is crucial for promoting crop residue return strategies.

Currently, there is limited knowledge on the effects of 
crop residue return on soil C, N, and P stocks and grain 
yield under different land uses (paddy, upland, paddy-upland 
rotation) and in different soil horizons (topsoil: 0–20 cm; 
subsoil: 20–40 cm; deep soil: 40–60 cm). This knowledge 
gap leads to uncertainty in evaluating crop residue effects at 
large scales. To address these issues, we conducted a meta-
analysis of 806 paired data from 261 publications (Fig. 1). 
Our study aimed to (1) quantify the effects of combined 
crop residue return and inorganic fertilization (CR) versus 
inorganic fertilizer application (IF) treatments on soil C, N, 
and P stocks; (2) explore the linkages between these effects 
and environmental variables; and (3) elucidate the effects of 
altered soil C, N, and P stocks on grain yield.

2 � Methods

2.1 � Data collection

Peer-reviewed articles published until August 2022 were 
searched from Web of Science (https://​www.​webof​scien​ce.​
com/), Google Scholar (https://​schol​ar.​google.​com/), and 
China National Knowledge Infrastructure (https://​overs​ea.​
cnki.​net/​index/) for related field studies on soil C, N, and P 
concentrations and ratios and grain yields following IF and 
CR treatments (Fig. S1) (References of the meta-analysis). 
All studies included in the final dataset had to meet the fol-
lowing criteria: (1) This study used 100% or > 80% of the 
crop residual return treatments (in some studies, there were 
no 100% return treatments) as CR; (2) the experimental period 
covered at least one complete crop cycle; (3) land use type 
and crop species were described or could be searched from 
related articles; (4) the IF and CR treatments should be spa-
tially neighboring to ensure that there are no significant dif-
ferences in microclimate and soil properties; (5) total N and 
P inputs for the IF and CR treatments were same or similar 
(since crop residues introduce some N and P, and few studies 
have been able to subtract the corresponding additional N 
and P brought in by crop residues from the chemical fertilizer 
inputs at the same time, it would result in the total amount of 
N and P inputs from CR treatments are slightly higher than 
that from IF treatments. In this study, to reduce uncertainty, 
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we selected only studies that had a surplus of N and P of no 
more than 10% for CR treatments compared to IF treatments 
for inclusion in the statistics), where the IF treatment was 
treated as the control; (6) postharvest soil properties were 
recorded for use in statistical analysis. As a result, we found 
806 independent paired observations from 236 peer-reviewed 
studies globally (Fig. 1). The selected observations covered 
the most of climate zones except for tundra and tropical rain-
forests (Fig. 1).

Data extracted from the studies comprised (1) land use type, 
categorized as paddy (long-term flooded cropland used for 
the cultivation of aquatic crops, such as rice), upland (rain-
fed cropland, with no irrigation facilities), and paddy-upland 
rotations; (2) crop type (species); (3) experimental duration; 
(4) latitude and longitude; (5) climatic variables (mean annual 
rainfall/precipitation (MAP); mean annual air temperature 
(MAT); aridity index, (AI)); (6) initial soil physical proper-
ties (sand, silt, clay concentrations; bulk density (BD)); (7) 
initial soil chemical properties (total organic C (TOC), soil 
total N (TSN), and soil total P (TSP) concentrations; soil 
pH); (8) rate of inorganic fertilizer N, P, and potassium (K) 

inputs; (9) number of experimental replicates and soil sample 
depth; 10) crop postharvest soil C, N, and P concentrations (g 
kg−1) and stoichiometric ratio (molar ratio; if only absolute 
masses or mass ratios were reported, we converted the data to 
molar ratios) as well as errors for the IF and CR treatments; 
and (11) grain yields and soil pH as well as errors for the IF 
and CR treatments. We extracted data from tables and text 
directly, while data reported in figures were extracted using 
GetData Graph Digitize software (version 2.25.0.32). If the 
MAT and MAP were not reported, they were obtained from 
the 1970–2000 mean climate data from the World Climate 
Database (https://​world​clim.​org) using ArcGIS 10.2 software. 
Missing soil BD was extracted from the Harmonized World 
Soil Database v 1.2 (https://​iiasa.​ac.​at/​models-​tools-​data/​
hwsd). Soil C, N, and P stocks were calculated based on soil 
C, N, and P concentrations and BD:

where TOC/TSN/TSP is the soil C/N/P concentration (g 
kg−1) and BD is the treatment-specific soil BD (g cm−3). 

(1)TOC(TSN;TSP)stock = TOC(TSN;TSP) × BD ×
20

10

Fig. 1   Sampling location (a) and soil carbon, nitrogen, and phosphorus stocks, pH, and grain yield density (b), at different land uses (c), and at 
different soil depths (d). IF, inorganic fertilizer; CR, combined crop residue return and inorganic fertilization.

https://worldclim.org
https://iiasa.ac.at/models-tools-data/hwsd
https://iiasa.ac.at/models-tools-data/hwsd
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The numbers 20 and 10 are the soil depth (cm) and area 
conversion factor, respectively.

The missing AI was derived from the Global Aridity 
Index and Potential Evapotranspiration Climate Database 
v2 (Zomer et al. 2022) and was calculated as follows:

where i denotes the ith year of study and Ri and PETi are 
the rainfall and potential evapotranspiration in year i, 
respectively.

2.2 � Data analysis

The classical meta-analysis of response ratios (RR) 
(Hedges et al. 1999) was used to evaluate the effects of 
CR vs. IF treatments on soil C, N, and P stocks and grain 
yields. Soil pH is critical to soil organic matter formation 
and nutrient availability and is an essential variable for 
statistical analysis. The natural logarithm of RR, which 
was used to represent the effect sizes of the soil C, N, and 
P properties, soil pH, and grain yields, was calculated as 
follows:

where xC and xT are the respective means of the IF and CR 
treatments (standardized by year). Variance was calculated 
as follows:

where SD2

C
 and SD2

T
 are the standard deviations and NC and 

NT are the sample sizes for the control and crop residue treat-
ments, respectively. When the standard error (SE) was given 
instead of SD in the selected studies, we converted the SE to 
SD using the following formula:

The weighting factor (Wij) for each RR was calculated 
using the following equation:

The weighted response ratio (RR++) and standard error 
of RR++ (S) were calculated from the RR values of the 
same subgroup by weighting as follows:

(2)AI =

∑30

i−1

�

Ri

PETi

�

30

(3)RR = ln

(

xT

xC

)

(4)var(RR) =
SD2

T

NTx
2

T

+
SD2

C

NCx
2

C

(5)SD =
√

n × SE

(6)Wij =
1

var(RR)

where m is the number of studies in the subgroup and k is the 
number of experimental replicates in the study.

The interpretation of RR++ was facilitated by transform-
ing the mean values and the confidence intervals (CIs) to 
percentages:

This study used the standard error (SE) to represent the indi-
cator errors. The weighted effect sizes for the CR compared to 
the IF treatments were calculated using a random effects model, 
along with 95% CIs using the “Metafor” package in R. Values > 
0 and < 0 indicated positive and negative effects, respectively, 
and CIs that overlapped with 0 indicated a nonsignificant effect. 
Subgroup categories were based on land use patterns and soil 
layers. Pearson correlation analysis was used to test for asso-
ciations between environmental variables and soil C, N, and P 
stocks and soil pH and grain yield using the “GGally” package 
in R. The Köppen climate classification was used to group the 
data for climate zone analysis (A, tropical; B, arid; C, temper-
ate; D, cold). No samples were located in polar zones (Beck 
et al. 2018). The Wilcoxon test was used to test for significant 
differences between climate zones. The random forest model 
was performed using the “randomForest” package in R (Brei-
man 2001) to quantify the relative contribution of environmen-
tal variables associated with crop residue impacts, and variables 
that did not contribute significantly to the random forest model 
were removed. Furthermore, a partial least squares pathway 
model was used to establish pathway relationships between 
RR-Yield/RR-TOC and environmental variables (all variables 
with loadings less than 0.7 were removed) (Russolillo 2012). 
In addition, the stepwise multivariate fit model (two-way) was 
conducted using the “MASS” package in R (Venables and Rip-
ley 2002) to identify the most parsimonious predictor variables 
for the random forest model. The above statistical analyses were 
performed using R 4.0.3 (R Development Core Team 2020).

3 � Results

3.1 � The responses of soil C, N, and P stocks, pH, 
and grain yield to crop residue return

Crop residue return increased the soil C, N, and P stocks 
along the soil profile, but the increases in the N and P 

(7)RR++ =

∑m

i=1

∑k

j=1
WijRRij

∑m

i=1

∑k

j=1
Wij

(8)S
�

RR++

�

=

�

1
∑m

i=1
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j=1
Wij

(9)
(

eRR++ − 1
)

× 100%
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stocks in subsoil and deep soil horizons were insignificant 
(Fig. 2). Overall, the average crop residue return increased 
the C stock by 11.8% (CI: 30.9±0.7–34.4±0.7 t ha−1), which 
increased significantly among soil layers (Fig. 1). Taking all 
data together, we observed that the soil C stock increased 
by 12.7% in the topsoil, 8.2% in the subsoil horizon, and 
9.5% in the deep soil horizon. Moreover, crop residue 
return contributed differently to soil C stocks under various 
land use types, with the highest increase in soil C stocks 
in the paddy-upland rotation (12.1%), followed by upland 
(11.9%) and paddy (11.1%) fields. The average increase in 
soil N (8.8%; 3.28±0.23–3.59±0.26 t ha−1) and P (5.2%; 
1.86±0.11–1.95±0.11 t ha−1) stocks were due to crop resi-
due return. The increased soil N and P stocks were observed 
mainly in the topsoil, where the values increased by 10.2% 
and 5.9%, respectively. While the soil N stock (11.7%) 
increased the most in paddy fields, the soil P stock (9.4%) 
increased the most in paddy-upland rotations and did not 
differ significantly among land use types.

Crop residue return also changed the soil ecological stoi-
chiometry due to different rates of C, N, and P increases. The 
soil C:N, C:P, and N:P ratios increased by 2.9%, 8.3%, and 
3.0%, respectively, in the overall data. The increases in the 
C:N (4.3%) and C:P (10.3%) ratios were more evident in the 
upland areas, while the N:P ratio (5.9%) was more evident 
in paddy fields. Although overall crop residue return did not 
significantly affect soil pH, there was increase in the uplands 
(1.7%; 5.86 to 6.07) and topsoil (1.0%; 6.64 to 6.69) (Fig. 2g).

The return of crop residue to the field increased the aver-
age grain yield by 6.9% (CI=5.6–8.1%), with the greatest 
improvement in uplands (7.5%), followed by paddy-upland 
rotations (5.8%) and paddy fields (5.6%).

3.2 � Environmental drivers of crop residue return

The improvement in the soil C, N and P stocks as well as the 
pH and grain yield by crop residue return depended mainly 

Fig. 2   Weighted effect values (RR) of soil carbon (TOC), nitrogen (TSN), and phosphorus (TSP) stocks (a–c) and ratios (d–f), pH (g), yield (h) 
under different land uses and in different soil layers. The value on the right (left) side of the error bar is the sample size.
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on the initial soil properties and rainfall conditions (R2 = 
0.27–0.62; p < 0.05) (Figs. 3 and 4). The potential soil C and 
N stocks were influenced mainly by the initial soil pH and C 
and N concentrations, while rainfall conditions mainly drove 
the soil P stocks. In addition, soil texture contributed more to 
grain yield improvement than did the fertilizer rate, climatic 
conditions, and soil chemical properties. In particular, a sig-
nificant positive correlation was found for the increased soil 
C, N, and P stocks, which implied that crop residue return 
increased the soil organic matter accumulation.

The partial least squares pathway model suggested that 
the increased soil C stock from crop residue return could 
further enhance grain yield (goodness of fit = 0.48; n = 
99) (Figs. 5, S8, and S9). Although the increased soil C 
stock (total effect = 0.14) had a significant increasing effect 
on grain yield, the initial soil texture (total effect = 0.15) 
was more critical for the grain yield potential. Furthermore, 
whereas crop residue return led to increased C stocks across 
all soil layers, only an increase in the topsoil significantly 
enhanced the grain yield (Fig. S10).

Crop residue return had significant spatial-temporal 
heterogeneity with respect to soil C, N, and P sequestra-
tion and grain yield improvement (Fig. S11, S12 and S13). 
The soil C and N stocks reached saturation approximately 
20 years after the successive return of crop residues (p < 
0.01), whereas the P stocks showed no significant tempo-
ral trend. In contrast, soil pH continued to trend upward 
for more than 30 years (p < 0.01). Spatially, crop residue 

return was most effective for C sequestration in the trop-
ics (21.8%) (p < 0.05). Although crop residue return in the 
tropics (17.8%) resulted in higher N sequestration than that 
in the cold regions (p < 0.05), there was no significant dif-
ference compared to other climatic zones.

4 � Discussion

4.1 � Soil C stocks increase across the soil profile, 
but N and P stocks increase only in the topsoil

Our study demonstrates that the return of crop residues to 
the soil can increase the soil C stocks across the soil profile, 
while the increase in the N and P stocks is limited to the 
topsoil (Fig. 2). Our quantitative analysis shows that crop 
residue return increases the topsoil C stock by 11.8%, which 
supports previous evaluations based on increased soil C con-
centrations (10.5–14.9%) (Liu et al. 2023; Xia et al. 2018). 
Crop residues have high amounts of C organic matter that 
can mitigate soil C limitation caused by inorganic fertilizer 
application (Liu et al. 2023; Zechmeister-Boltenstern et al. 
2015). Then, crop residue return both slows microbial min-
eralization of organic matter and acts as an additional C 
input compared to inorganic fertilizer treatments. Moreover, 
we found that crop residue return increased the C stock in 
subsoil and deep soil horizons, and this increase was gener-
ally stable and essential for climate mitigation. Although 

Fig. 3   Correlation analysis 
between weighted effect values 
(RR) of soil carbon (TOC), 
nitrogen (TSN) and phosphorus 
(TSP) stocks, pH, and grain 
yields (Yield) and agronomic 
management, climate, and soil 
properties. Duration, experi-
mental duration; MAP, mean 
annual rainfall/precipitation; 
MAT, mean annual temperature; 
AI, aridity index.
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most of the C in the soil exists in the form of organic mat-
ter, especially in agroecosystems and acidic soils, microbial 
mineralization processes can decompose organic matter into 
inorganic C (Liu et al. 2021; Lal 2004). The microbial C use 
efficiency is only 30–50%, which means that a large pro-
portion of inorganic C will be released into the atmosphere 
or leached into the deeper soil layers (Chen et al. 2020). 
Crop residue return mitigates C limitation in the topsoil, as 
shown by the increased soil C:P and C:N ratios. This can 
further reduce soil biological C use efficiency, increasing 

inorganic C infiltration and C stocks in the subsoil and deep 
soil horizons.

Despite the low N concentration (0.4–0.9%) of the crop 
residues themselves (Christensen 1986; Liu et al. 2021), 
their return was still able to increase the soil N stock by 
10.2%, a percentage similar to the increase in the topsoil 
C stock (12.7%) (Fig. 2a and b). This suggests that crop 
residue return not only immobilizes the organic N input 
but also sequesters inorganic N to form additional organic 
matter and decreases N loss. As a result of the additional 

Fig. 4   Contribution of environ-
mental factors to the weighted 
effect values (RR) of soil carbon 
(TOC), nitrogen (TSN), and 
phosphorus (TSP) stocks, pH, 
and yield. Duration, experimen-
tal duration; MAP, mean annual 
rainfall/precipitation; MAT, 
mean annual temperature; AI, 
aridity index.
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C input, the microbes sequester more inorganic N and P, 
forming organic matter and maintaining their homeostasis 
(Liu et al. 2023; Penuelas et al. 2019). This finding is sup-
ported by our long-term field trials based on consecutive 
6-year experiments with crop residue return, with an aver-
age increase in crop N use of 0.07 t ha−1 year−1, which is 
higher than the crop residue N input of 0.04 t ha−1 year−1, 
and the topsoil N stock increased by 0.18 t ha−1 relative to 
the inorganic fertilizer treatment in paddy fields (Liu et al. 
2021). Unlike the high percentage increase in soil C and N 
stocks, the increased in the soil P stock was relatively low 
in the topsoil (Fig. 2c). This is because most of the soil P 
exists in the form of inorganic P, and the contribution of 
organic matter that is increased by crop residue return is 

relatively weak to the soil P stock, which depends more on 
the initial soil inorganic P (mainly orthophosphate) back-
ground value (Goyne et al. 2008; Liu et al. 2023). Addi-
tionally, our study revealed that crop residue return had a 
limited impact on deeper soil N and P stocks. Although 
crop residue return increased the topsoil N and P, most 
of the N and P was in the form of organic matter, which 
also reduced the potential for the downward leaching of 
inorganic N and P, thus limiting the impact of crop residue 
return on the deeper soil N and P stocks. Given that the 
sequestered C, N and P are contained in the topsoil in the 
form of organic matter, this will not increase the risk of N 
and P leaching into groundwater while providing long-term 
nutrients for crop growth.

Fig. 5   The partial least squares 
pathway model (PLS-PM) dis-
entangles the main pathways of 
the influence of the key climate, 
field management, fertilization, 
soil physics and chemistry on 
the weighted effect values (RR) 
of soil carbon (TOC) and grain 
yield (Yield) (a) and the total 
effects of these variables (b). * 
Denotes p < 0.05, ** denotes p 
< 0.01, *** denotes p < 0.001. 
MAP, mean annual rainfall/pre-
cipitation; TSN, soil nitrogen.
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4.2 � Variability in soil C, N, and P stocks across land 
uses

Crop residue return resulted in a higher increase in the soil 
C stock in uplands and paddy-upland rotations than in paddy 
fields, while the soil N stock increased more than in paddy 
fields  (References of the meta-analysis) (Fig. 2). Generally, 
C and N constitute the largest concentration of soil organic 
matter excluding water, and they are tightly coupled with 
their accumulation and reduction in topsoil (Cleveland and 
Liptzin 2007; Li et al. 2012). However, our study shows that 
agronomic management should strongly mediate the top-
soil C and N coupling relationship, particularly in anaero-
bic environments caused by flooding (Fig. 1a and b). Paddy 
fields are subjected to prolonged flooding, which limits the 
inhibition of aerobic microbial activity and the consequent 
production of critical enzymes such as phenol oxidase and 
hydrolase (Freeman et al. 2001). As a result, the mineraliza-
tion rate of organic matter is lower in paddy fields than in 
uplands due to the thermodynamic limit of microbial decom-
position (Chen et al. 2021). Simultaneously, the formed 
iron-organic associations contribute to soil C preservation 
through the adsorption of organic compounds or coprecipita-
tion with iron oxides during frequent alternations of flooding 
and draining (Wei et al. 2022). These mechanisms result 
in 39-127% higher soil C in paddy fields than in adjacent 
uplands (Chen et al. 2021). Due to the soil C accumula-
tion saturation mechanism, it is relatively difficult to further 
increase soil C in areas with a high soil C background (Liu 
et al. 2023; Craig et al. 2021). Therefore, the percentage 
increase in organic C due to crop residue return was more 
significant in uplands than in paddy fields.

On the other hand, an anaerobic environment can limit 
the activity of aerobic microbes, such as nitrifying bacteria 
(Tranckner et al. 2008), inhibiting the nitrification process, and 
further reduces N gas losses during denitrification in paddy 
fields (Fig. 2b). Moreover, the N:P ratio needed for crops to 
maintain their metabolism is approximately 16:1 (Liu et al. 
2023), and soil N limitation (C:N < 16) is more severe in paddy 
fields (8) than in uplands (14), resulting in a higher crop N 
use efficiency and thus reducing the loss of inorganic N during 
metabolism. Therefore, the increase in the N stock by crop resi-
due return is more significant in paddy fields than in to uplands.

The effect of crop residue return on P stocks was not sig-
nificantly different across land use types and is subject to 
large errors (Fig. 2c). This was due to P cycle not existing 
in the form of gas emission, so flooding management does 
not affect the gas loss of P. Moreover, the organic P imported 
by crop residue is hydrolyzed by phosphatase enzymes to 
release soluble phosphate with poor mobility, which is eas-
ily adsorbed, complexed, and precipitated by soil particles, 
organic matter and minerals, as well as absorbed and immo-
bilized by soil microbes, and so hardly leaches to the deeper 

soil layers (Liu et al. 2020a; Yan et al. 2018). As a result, 
most of the P imported from crop residues is immobilized 
in topsoil, and biogeochemical cycles induced by flooding 
management have a limited effect on P stocks.

Our findings suggest that crop residue return across 
all land uses can enhance soil fertility and environmental 
mitigation by increasing the soil C, N, and P stocks. How-
ever, the potential for mitigating global warming through 
C sequestration is most pronounced in uplands, while the 
possibility of mitigating regional water quality through N 
sequestration is most pronounced in paddy fields.

4.3 � Environmental driving mechanisms of soil C, N, 
and P stocks

The impact of crop residue return on P stocks was affected 
primarily by rainfall, while the effect on soil C and N stocks 
was influenced mainly by the initial soil properties (Figs. 3 
and 4). The soil C stock is mainly driven by soil pH due to 
the greater potential for accumulation with inhibited micro-
bial decomposition of organic matter in alkaline soils (Kem-
mitt et al. 2006; Li et al. 2021). The soil N stock is mainly 
influenced by soil C and N concentrations and their ratio. 
Soils with low soil C and N concentrations have a higher 
potential for organic matter accumulation, while soils with 
low C:N ratios tend to be N-limited, where microbes can use 
N more efficiently to form organic matter and maintain their 
homeostasis (Zechmeister-Boltenstern et al. 2015; Liu et al. 
2023). Thus, crop residue return is more favorable for soil 
C sequestration in areas with a low soil pH, while it is more 
favorable for soil N sequestration in areas with low soil C 
and N concentrations and C:N ratios.

In areas with high rainfall, crop residues return can effec-
tively avoid soil erosion caused by rainfall directly wash-
ing over the soil surface, while the organic P input from 
crop residues is more difficult to move with hydrology than 
inorganic P (Liu et al. 2020a). Thus, promoting crop resi-
due return in areas with higher rainfall has more potential 
for soil P sequestration. Notably, the effect of crop residue 
return on soil C and N stocks is mainly based on biochemi-
cal processes, while soil P stocks depend on physical and 
chemical processes.

4.4 � Enhanced soil properties further improve grain 
yields

Crop residue return not only sequestered more soil C, 
N, and P but also reduced soil acidification, especially 
in upland areas (Fig. 2, 3, and Table S1). We found that 
16.6% of upland soils are acidified, and crop residue return 
could increase soil pH in these areas. Upland soils have 
lower organic matter concentrations and cation exchange 
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capacity than paddy soil, resulting in a lower acid-base 
buffering capacity (Guo et al. 2018). Thus, upland soils 
have a lower buffering effect on soil acidification than 
paddy and paddy-upland ecosystems, but crop residue 
return can mitigate this trend. Our study further revealed 
that the mitigation of soil acidification by crop residue 
return decreased with increasing soil P, which may be due 
to two mechanisms. First, crop residues release organic 
acids during decomposition, which cause P mobilization 
in the soil phosphate minerals and lower the soil pH (Roy 
et al. 2018; Kpomblekou-A and Tabatabai 2003); second, 
organic C input in soils with high P concentrations pro-
motes heterotrophic microbial nitrification, leading to soil 
acidification (O’Neill et al. 2021). Crop residue return alle-
viates upland soil acidification, improving the soil nutrient 
supply, as evidenced by higher grain yield increases rela-
tive to those in paddy and paddy-upland rotations.

Soil physical properties are crucial in driving the effects 
of crop residue return on grain yield and are subject to 
climatic conditions, field management, and fertilizer input 
(Fig. 5). Although our results have showed that crop resi-
due return generally increased grain yield, there is criti-
cal uncertainty. This is because the slow decomposition 
of crop residue can affect the rooting of the current sea-
son’s crop, resulting in stiff seedlings and decaying roots 
(Álvaro-Fuentes et al. 2013; Liu et al. 2021). In addition, 
the lignin in crop residue is difficult to decompose and 
remains in the soil for a long time, hindering soil aera-
tion and the rooting of the next season’s crop (Chen et al. 
2021). Our research showed that crop residue return effec-
tively avoided the adverse effects mentioned above in areas 
with clay soil due to high soil porosity. Furthermore, we 
noted that crop residue return in regions with high inor-
ganic fertilizer input had a limited impact on grain yield 
increases. This was due to the surplus supply of soil nutri-
ents caused by excessive fertilizer application (Liu et al. 
2020a), while the nutrients supplied by organic matter 
accumulation were less significant. Accordingly, we rec-
ommend crop residue return in clay soil areas to reduce 
the uncertainty of grain yield increases. Additionally, crop 
residue return can be an appropriate substitute for inor-
ganic fertilizer input.

4.5 � Implications and uncertainties

Our study found that returning crop residues to soil can 
increase the C, N, and P stocks, particularly in the topsoil 
(Fig. 6). Although the increase in the C stock in subsoil or 
deep soil horizons was less than that in topsoil, it was still 
higher than the 0.4% increase required to achieve climate 
mitigation effects and food security goals (Minasny et al. 
2017). Considering the global cropland area (1.56 billion 
ha, https://​www.​fao.​org/), returning crop residues to soil 

could sequester approximately 6.24 billion t C, 0.48 billion 
t N, and 0.14 billion t P, thereby mitigating climate warm-
ing and water eutrophication. Our study further showed that 
most of the sequestered C, N, and P was stored as organic 
matter in the topsoil, which can mitigate soil acidification 
and improve soil fertility for crops. Therefore, crop residue 
return can have a dual benefit of environmental mitigation 
and food security.

However, given the global heterogeneity of spatial and 
temporal environmental variables, it is essential to target 
and scale up crop residue return strategies. Our results sug-
gest that there is a nonlinear saturation mechanism affecting 
the increase in soil C and N stocks by crop residue return 
with time (Fig. S11). Soil C and N sequestration tended to 
saturate approximately 20 years after crop residue returns, 
while the mitigating effect on soil acidification continued. 
Furthermore, the increasing trends of the soil C, N, and P 
stocks across soil profiles were mostly not statistically sig-
nificant on the temporal scale (Fig. S12). However, both 
soil C and N stocks had a positive slope over time, and the 
slope was greater for subsoil and deep soil horizons than for 
topsoil. Therefore, different soil layers should have differ-
ent time thresholds for soil C and N saturation. In the long 
term, we can expect a greater potential for C sequestration 
in subsoil and deep soil horizons, which are more stable and 
essential for long-term climate change mitigation. Spatially, 
our study highlights that crop residue return in the tropics 

Fig. 6   Effect of crop residue return on soil carbon, nitrogen, and 
phosphorus stocks in different soil layers and the increased grain 
yield.

https://www.fao.org/
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had higher benefits for soil C and N stocks (Fig. S13). Given 
that the tropics have more frequent cropping ecosystems due 
to favorable hydrothermal conditions for crops, crop residue 
return in the tropics should be prioritized to maintain soil 
fertility and improve the ecological-environment.

In the past, crop residue return experiments have 
focused primarily on field-scale grain production and 
nutrient cycling comparative experiments. It is widely 
accepted that topsoil contributes more to grain produc-
tion and greenhouse gas emissions than subsoil or deep 
soil horizons. Thus, the environmental variables of the 
topsoil were more fully reported than those of subsoil or 
deep soil horizons. However, recent studies have shown 
that subsoil and deep soil horizons have distinct environ-
mental conditions from topsoil (Chen et al. 2022, 2023), 
which may lead to different accumulation mechanisms of 
soil C, N, and P in different soil layers. Further research 
on the mechanisms of deep soil C, N, and P stocks could 
help in the understanding of elemental cycling and reduce 
their upward release as greenhouse gases and downward 
leaching into groundwater, thereby reducing environmen-
tal pollution.

5 � Conclusion

In this study, by combining meta-analysis with machine 
learning models and path analysis models, we quantified, 
for the first time, the impacts of crop residue return com-
bined with inorganic fertilizer versus inorganic fertilizer 
application on soil C, N, and P stocks in different land uses 
and soil profiles at the global scale, and we also identified 
the driving mechanisms. The study results showed that crop 
residue return increased C stocks across the soil profile, but 
increased P stocks only in the topsoil. Flooding manage-
ment caused differential soil C and N accumulations in dif-
ferent land uses, while the percentage increase in C stocks 
was higher in uplands and paddy-upland rotations, whereas 
the percentage increase in N was higher in paddy fields. 
Moreover, crop residue return also mitigated soil acidifica-
tion in upland soils, and combined with the increased soil 
C, N, and P, increased the grain yields in cropland. Further-
more, the soil C and N stocks increased depending on the 
initial soil pH, C and N levels, and C:N ratio. In contrast, the 
soil P stock increase depended on rainfall, while the grain 
yield increase was closely linked to the soil texture and fer-
tilizer rate. Our study highlights that crop residue return can 
increase topsoil C, N, and P stocks, which can benefit crop 
growth and environmental mitigation efforts. Furthermore, 
this practice can increase C stocks in deeper soil horizons 
(below 20 cm), providing a long-term solution to mitigate 
climate change.
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