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Empirical versus estimated accuracy 
of imputation: optimising filtering thresholds 
for sequence imputation
Tuan V. Nguyen1*  , Sunduimijid Bolormaa1, Coralie M. Reich1, Amanda J. Chamberlain1,2, 
Christy J. Vander Jagt1, Hans D. Daetwyler1,2 and Iona M. MacLeod1,2 

Abstract 

Background Genotype imputation is a cost-effective method for obtaining sequence genotypes for downstream 
analyses such as genome-wide association studies (GWAS). However, low imputation accuracy can increase the risk 
of false positives, so it is important to pre-filter data or at least assess the potential limitations due to imputation 
accuracy. In this study, we benchmarked three different imputation programs (Beagle 5.2, Minimac4 and IMPUTE5) 
and compared the empirical accuracy of imputation with the software estimated accuracy of imputation  (Rsqsoft). We 
also tested the accuracy of imputation in cattle for autosomal and X chromosomes, SNP and INDEL, when imputing 
from either low-density or high-density genotypes.

Results The accuracy of imputing sequence variants from real high-density genotypes was higher than from low-
density genotypes. In our software benchmark, all programs performed well with only minor differences in accuracy. 
While there was a close relationship between empirical imputation accuracy and the imputation  Rsqsoft, this differed 
considerably for Minimac4 compared to Beagle 5.2 and IMPUTE5. We found that the  Rsqsoft threshold for removing 
poorly imputed variants must be customised according to the software and this should be accounted for when merg-
ing data from multiple studies, such as in meta-GWAS studies. We also found that imposing an  Rsqsoft filter has a posi-
tive impact on genomic regions with poor imputation accuracy due to large segmental duplications that are sus-
ceptible to error-prone alignment. Overall, our results showed that on average the imputation accuracy for INDEL 
was approximately 6% lower than SNP for all software programs. Importantly, the imputation accuracy for the non-
PAR (non-Pseudo-Autosomal Region) of the X chromosome was comparable to autosomal imputation accuracy, 
while for the PAR it was substantially lower, particularly when starting from low-density genotypes.

Conclusions This study provides an empirically derived approach to apply customised software-specific  Rsqsoft 
thresholds for downstream analyses of imputed variants, such as needed for a meta-GWAS. The very poor empirical 
imputation accuracy for variants on the PAR when starting from low density genotypes demonstrates that this region 
should be imputed starting from a higher density of real genotypes.

Background
Imputation is the process of predicting missing genome-
wide genotypes in individuals with lower density geno-
types by utilizing a reference population that has higher 
density genotypes [1, 2]. In recent years, the availability of 
imputed sequence data for downstream analyses such as 
genome-wide association studies (GWAS), has become 
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extremely useful to explore the underlying genetic 
mechanisms of various phenotypes (e.g. [3–5]). Further-
more, candidate causal variants identified in imputed 
sequence GWAS can contribute to improve the accuracy 
of genomic prediction of complex traits in livestock (e.g. 
[6–8]). However, sequence GWAS often have low sta-
tistical power to detect many of the variants that affect 
complex traits because the majority of effects are small 
[9]. Thus, research has now shifted towards large-scale 
coordinated meta-GWAS to improve statistical power 
[10, 11], for example in humans [12, 13], plants [14, 15], 
and livestock [16–18]. A challenge of these meta-analyses 
is quality control to filter out poorly imputed variants, 
particularly when contributors have used different impu-
tation software.

Two popular algorithmic approaches for genotype 
imputation are family- or population-based. In brief, fam-
ily imputation utilizes relationships and shared genetic 
segments whilst population imputation uses large refer-
ence panels and linkage disequilibrium patterns. Some 
imputation programs combine both population- and 
family-based approaches and these are popular for use in 
livestock (for example AlphaImpute [19], FindHap [20], 
FImpute [21]). However, most of these programs do not 
offer an internally calculated imputation quality measure 
 (Rsqsoft) that is available in some other popular imputa-
tion software. At sequence level, an  Rsqsoft estimate of the 
imputation accuracy is an indispensable quality control 
tool for removing poorly imputed variants from down-
stream analysis such as GWAS [1]. In general, several fac-
tors influence the final quality of imputation including: 
the choice of software, initial starting genotype density, 
reference population size and their relatedness to the 
target individuals [22]. Furthermore, the ever-increasing 
number of genotyped individuals and sequence refer-
ence individuals presents computational challenges for 
imputation, resulting in algorithmic modifications to 
improve computational efficiency of software. While sev-
eral studies in cattle over the past decade have reported 
the accuracy of imputing from SNP panels to sequence 
variants [23–25], further studies on sequence imputation 
benchmarking are required for several reasons. First, it 
is critical to benchmark the internal software estimate of 
imputation accuracy versus empirically assessed imputa-
tion accuracy across different software. This provides an 
evaluation of how closely the software estimate mirrors 
the empirical accuracy and determines if this relation-
ship differs between software. Second, to the best of our 
knowledge, no cattle study has reported the effective-
ness of INDEL versus SNP imputation at sequence level 
using the updated reference genome ARS-UCD 1.2 [26], 
even though INDEL account for around 7% to 10% of 
all variants [27]. Third, this is the first study to compare 

sequence imputation accuracy for autosomal accuracy 
versus the pseudo-autosomal region (PAR) and non-PAR 
of the X chromosome from both low and high density 
SNP panels to sequence using the ARS-UCD 1.2 [26].

In this study, we evaluated the relationship between 
the software estimated accuracy of imputation  (Rsqsoft) 
and the empirical accuracy of imputation. We did this for 
both SNP and INDEL using three popular and competi-
tive software packages: Beagle 5.2 [28], Minimac4 [29], 
and IMPUTE5 [30]. Results are compared for imput-
ing either from Low Density (LD, ~ 7000 variants) or 
from High Density SNP array genotypes (HD, ~ 700,000 
variants) to sequence. We also report on the effect of 
pre-filtering the reference sequence variants prior to 
imputation.

Methods
Target animal genotypes
Sequence genotypes
The target animals used for this study included 70 
sequenced bulls: 35 Jersey (JER) and 35 Holstein (HOL). 
We used pedigree records and a genomic relationship 
matrix to confirm that there were no half-siblings pre-
sent. Individuals were sequenced using Illumina HiSeq 
2000 (Illumina Inc., San Diego, CA). Raw sequence reads 
were aligned to the ARS-UCD1.2 reference genome [26]. 
Alignment, variant calling, and quality controls were 
performed following the 1000 Bull Genomes Project 
guidelines as the animals were included in Run8 (See 
Additional 1, Text S1). In this study, we used chromo-
some 1, 5, 10, 15, 20, 25, and X to evaluate the accuracy 
of imputation at sequence level. The X chromosome was 
split into the non-pseudo-autosomal region (non-PAR: 
chromosome “30”), and the PAR (chromosome “32”). 
The boundary between the non-PAR and PAR was set at 
133,300,518 bp [31].

HD and LD SNP genotypes
The same target set of 70 individuals were also genotyped 
using the Illumina® BovineHD 800  K bead chip (HD). 
The marker map positions were lifted over to the ARS-
UCD1.2 reference genome using publicly available data-
sets (https:// www. anima lgeno me. org/ repos itory/ cattle/ 
UMC_ bovine_ coord inates/). The raw HD genotypes for 
these animals were processed together with the HD ref-
erence population described below. This set of HD gen-
otypes were also masked down to a genome-wide Low 
Density (LD) set of 7135 SNP markers that overlap many 
of the commonly used current and historical SNP pan-
els, including the Illumina® BovineSNP50K and HD SNP 
panels.

https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/


Page 3 of 14Nguyen et al. Genetics Selection Evolution           (2024) 56:72  

Reference animal genotypes
50K and HD SNP genotypes
We had previously generated a reference population of 
14,722 animals (representing Holstein, Jersey, and Aus-
tralian Red breeds) with real  lllumina® BovineSNP50K 
panel (50K) genotypes, including a total of 40,397 SNP 
that passed quality filters and overlapped the Bovine 
Illumina HD SNP panel. Additionally, we had a cohort 
of 2814 animals with real HD SNP genotypes that con-
stituted the HD imputation reference (again represent-
ing the same breeds as for the 50K reference population). 
The final set of HD SNP passing the quality control was 
714,452 that overlapped the sequence variants in the 
reference population described below. In processing the 
raw 50K and HD genotypes, the GenCall threshold score 
was set at 0.6, such that SNP with a lower score were set 
to missing and SNP with > 10% missing genotypes were 
removed. All animals had < 10% missing genotypes. For 
both the 50K and HD reference sets, the remaining spo-
radic missing genotypes were imputed using FImpute v.3 
[21].

Sequence genotypes
The imputation reference comprised 4190 taurus cat-
tle sequences in Run8 of the 1000 Bull Genomes Project 
[32]. The reference sequences were processed following 
the 1000 Bull Genomes project pipeline (See Additional 
file 1, Text S1) and within this pipeline the sporadic miss-
ing genotypes were imputed using Beagle 4.1 [28]. Fol-
lowing imputation of the sporadic missing genotypes, 
variants were removed if their Beagle  Rsqsoft was less 
than 0.9. The sequence variants were then further fil-
tered to retain only bi-allelic variants with a minor allele 
count (MAC) of at least 4 and with a GATK [33] Vari-
ant Quality Score Recalibration (VQSR) Tranche of 99.0 
or better. Additionally, we identified regions of excessive 
heterozygosity in sliding windows of 0.5  Mb, defined as 
windows where 2% or more of the variants had hete-
rozygosity > 0.55. Within these windows, we removed all 
variants with heterozygosity > 0.55 because this generally 
indicates regions with known long segmental repeats that 
suffer from poor alignment of short read sequence data 
resulting in false SNP [34].

Phasing and imputation strategies
We used the 70 target animals to evaluate the accuracy of 
imputing to sequence either directly from their real HD 
genotypes or starting from the LD SNP genotypes (7135 
markers generated from their masked HD genotypes). 
The LD SNP genotypes were imputed first to the 50K ref-
erence and then up to the HD reference using FImpute 
v.3 with default settings and no pedigree provided. The 

autosomal chromosomes (Chr 1, 5, 10, 15, 20, and 25) 
were each imputed independently. The X chromosome 
non-PAR and PAR were imputed separately as per soft-
ware recommendations. Finally, both the imputed and 
real HD genotypes of the target animals were converted 
to VCF format ensuring that the SNP array alleles were 
matched to the sequence format before final imputation 
to sequence level.

For sequence imputation, we evaluated the perfor-
mance of three imputation tools: Beagle version 5.2 [28], 
IMPUTE5 version 1.1.4 [30], and Minimac4 version 1.0.2 
[29]. When using IMPUTE5 and Minimac4 imputation 
software, genotypes of the target and reference individu-
als were pre-phased (as required) using Eagle v2.4.1 [35] 
prior to imputation. The target animal genotypes were 
left unphased for the Beagle imputation because this soft-
ware does not require pre-phasing. We ran a preliminary 
investigation of the accuracy of Beagle imputation using 
either the Eagle-phased reference, or a Beagle-phased 
reference. Our analysis found little difference in imputa-
tion accuracy between Eagle- or Beagle-phasing of the 
reference, although Eagle-phased reference resulted in 
slightly higher accuracy (0.4% on average) in both Best-
Guess (GT) and Dosage (DS) genotypes (See Additional 
file 2, Table S1, Sheet 1). We therefore decided to use the 
Eagle-phased reference for all software benchmarking to 
maintain consistency across scenarios.

Additionally, as a pilot investigation, we compared the 
empirical accuracy of sequence imputation for Beagle 
5.2 and Minimac4 using two different settings relating to 
the length of haplotype imputed. As a default setting for 
computational efficiency, both programs implement an 
automated “chunking” of chromosomes into shorter win-
dow lengths. Conversely, the default setting in IMPUTE5 
is to use the full chromosome. The Beagle 5.2 default sets 
the window lengths to 40 centiMorgan (with a 2 cM over-
lap) while the Minimac4 default is 20  Mb with a 3  Mb 
overlap. We therefore tested Beagle 5.2 and Minimac4 
using either the default window size or full chromosome 
lengths under the hypothesis that use of the full chro-
mosome might improve imputation accuracy by taking 
advantage of the long-distance linkage disequilibrium in 
cattle. Figure 1 illustrates the overall experimental design 
of the study.

The settings tested were:

Beagle 5.2

1. D (Default setting): window = 40.0, overlap = 2.0 (dis-
tances are in cM) or

2. F (Full chromosome): window = 200.0, overlap = 80.0 
(ensured that one ‘window’ is larger than the entire 
length of each chromosome)
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For both tests above, a seed setting was used to ensure 
reproducibility (seed value = 5555). The effective popu-
lation size parameter (Ne) was set at 1000 for all Beagle 
imputation.

Minimac4

1. D (Default setting): –ChunkLengthMb 20 –ChunkO-
verlapMb 3 or

2. F (Full chromosome): –ChunkLengthMb 200 –
ChunkOverlapMb 80 (ensured that one ‘window’ was 
larger than the entire length of each chromosome).

No seed or effective population size setting was avail-
able in Minimac4.

IMPUTE5
The default settings of IMPUTE5 were used, except 
that Ne was set at 1000. No seed setting was available in 
IMPUTE5.

The results from the pre-phasing and pilot test 
described above were used to inform the settings used 
in the main benchmarking study of the three software 
programs.

Imputation accuracy statistics
We defined empirical accuracy (r) as Pearson correlation 
coefficient between the real sequence genotypes (coded 
as the number of alternate alleles: 0, 1, or 2) and imputed 
genotypes. The imputed genotypes were available in two 
forms: either allele “dosage” (DS: continuous measures 
between 0 to 2, representing the sum of the two alternate 
allele probabilities) or “best-guess” genotypes (GT: coded 
with 0, 1 or 2 as for real genotypes). The correlation was 

calculated for both DS and GT on a per variant basis 
across all target animals.

A variant had to be segregating in both the real and 
imputed best guess genotypes (GT) of the target set in 
order to calculate r, otherwise the variance for that posi-
tion is zero and r cannot be estimated. For DS genotypes, 
there is always some variance when the variant is segre-
gating in the real genotypes of the target set. Therefore, 
unless stated otherwise, when benchmarking across dif-
ferent software, we compared only the common set of 
overlapping variants that had an estimable r across all 
software for GT genotypes. Additionally, we use the DS 
imputed genotypes to enable comparisons across the 
entire set of variants segregating in the target set. An 
internal software estimate of imputation accuracy per 
variant was available in the output of all three packages 
(we will refer to as:  Rsqsoft) and this was compared to the 
squared empirical accuracy of imputation  (Rsqemp).

For imputed GT genotypes, we measured three addi-
tional, more specific statistics:

1. False positive error rate (FPR): defined as the aver-
age percentage of reference alleles that were wrongly 
imputed as the alternate allele for any given variant 
position.

2. False negative error rate (FNR): defined as the aver-
age percentage of alternate alleles that are wrongly 
imputed as the reference allele for any given variant 
position.

3. Allelic imputation error rate (AER): defined as 
the average percentage of alleles that are wrongly 
imputed (i.e. false positives + false negatives) for any 
given variant position.

A graphical schematic on the calculations of these sta-
tistics can be found in Additional file 3, Figure S1.

Results
Chromosome chunking versus full chromosome 
imputation (Beagle 5.2 and Minimac4)
The default settings in both Minimac4 and Beagle 5.2 
divide chromosomes into smaller overlapping windows 
as a means of speeding up the imputation process while 
the default for IMPUTE5 is to use full length chromo-
somes. Therefore, for Beagle 5.2 and Minimac4 we com-
pared their default window settings (D) with imputing 
the full chromosome (F) as a single window. We tested 
this because cattle have a small recent effective popula-
tion size [36] and often the target and reference animals 
are quite closely related so may share long haplotypes. 
However, our results from the different parameter set-
tings (D versus F) did not show significantly different 
imputation accuracy (See Additional file  2, Table  S1, 

Fig. 1 Flowchart showing overall experimental design for empirical 
testing of imputation accuracy and benchmarking the software 
estimate of imputation accuracy
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Sheet 2). We therefore proceeded with the default win-
dow settings for Minimac4 & Beagle 5.2 for the remain-
der of the study comparisons.

Empirical imputation accuracy
For all three software methods, we first compared the r 
of imputation to sequence starting either direct from real 
HD genotypes, or from LD genotypes (approximately 7K 
SNP) imputed to 50K, then to HD and finally to sequence. 
For all autosomes tested (1, 5, 10, 15, 25) as well as the 
non-PAR of the X chromosome, there was a small (~ 2%) 
but consistent drop in accuracy of best guess genotypes 
(GT) when imputing from LD genotypes compared to 
starting from real HD genotypes (Fig.  2a). However, for 
the PAR region of the X chromosome there was a very 
sharp drop in r from around 0.9 (starting from HD) to 
less than 0.6 when starting from LD genotypes (Fig. 2a). 
Overall, there were only small differences in r across the 
autosomal chromosomes and the non-PAR (Fig. 2a).

There was almost no difference between software in 
the accuracy of imputation measured as the correla-
tion of best guess (GT) genotypes (Fig. 2a). Likewise, the 
concordance rate for best guess genotypes (GT mode) 
was relatively high across all programs tested, rang-
ing from 90.0 to 99.0% (imputing from LD) and 97.8% 
to 99.6% for imputing from real HD (See Additional 
file  2, Table  S2, Sheet 3). However, r in Fig.  2 included 
all variants that the given program imputed as segre-
gating, so when comparing software performance, this 
result can show some bias if a specific software has a 
stronger tendency to impute rare variants as not segre-
gating because the correlation is not estimable for those 
variants. Therefore, we also estimated AER (allelic error 
rate), FNR (alternate alleles falsely imputed as reference 
alleles), and FPR (reference alleles falsely imputed as 
alternate alleles) statistics. Minimac4 tended to produce 
a slightly higher AER and FNR compared to either Bea-
gle 5.2 or IMPUTE5, while the FPR was relatively stable 
across software (Fig.  2b–d). Thus, the overall number 

Fig. 2 Imputation statistics for six autosomes (1, 5, 10, 15, 20 & 25) as well as the X chromosome non-pseudo-autosomal region (non-PAR) 
and pseudo-autosomal region (PAR) for three imputation software (Beagle 5.2, Minimac4 and IMPUTE5). a Average empirical imputation accuracy 
(r) for best guess genotypes (GT) and considering all variants imputed as segregating by the specific software. b Average allelic imputation error 
rate (%). c False Negative Rate (% of alternate alleles wrongly imputed as reference). d False Positive Rate (% of reference alleles wrongly imputed 
as alternate). HD = Impute from real HD genotypes to sequence. LD = Impute from low density to 50K to HD to sequence
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of variants for which the correlation was estimable was 
approximately 3% lower for Minimac4 compared to that 
of Beagle 5.2 and IMPUTE5 (starting from LD: 3,961,994 
versus 4,086,017 and 4,076,376 variants and starting from 
HD: 3,992,240 versus 4,119,862 and 4,109,502, respec-
tively). We also estimated the percentage of segregating 
variants that were imputed as not segregating (Chromo-
some 1, starting from HD) and found that the highest 
error rate was for Minimac4 (3.5%) compared to Beagle 
5.2 and IMPUTE5 (1.5% and 1.8%, respectively). Con-
versely, the percentage error rate for non-segregating 
variants imputed as segregating was low across all soft-
ware (0.3% for Minimac4, 0.7% of Beagle 5.2, and 0.8% of 
IMPUTE5). As expected, the AER, FPR and FNR were 
always higher when imputation started from LD rather 
than from real HD genotypes. Additionally, while there 
were only small differences between the autosomal chro-
mosomes, the AER, FPR and FNR were much higher for 
the PAR of chromosome X (Fig. 2b–d).

Additionally, we re-estimated the average r within only 
the overlapping set of variants (DS and GT) that had 
an estimable r across all three software programs (i.e., 
removing all variants imputed as monomorphic by any 
software). For DS genotypes we show the correlation for 
this overlapping variant set as well as for the full vari-
ant set because with DS most variants show some small 
imputation probability of segregating. We combined all 
the autosomal variants for this comparison and Table  1 
shows the r using either GT or DS genotypes for variants 
from the autosomes, PAR and Non-PAR. All programs 
performed similarly, and as expected, the correlation was 
slightly higher for DS genotypes compared to GT geno-
types. The DS and GT accuracies for the non-PAR were 

similar to the autosomes across all comparisons, while 
the PAR had a very low accuracy of imputation when 
starting from LD genotypes. The accuracy of imputation 
on the PAR starting from real HD genotypes was much 
higher than when starting from LD but was still ~ 2 to 4% 
lower than for the autosomes.

Within the chromosomes tested, there was a total of 
748,461 INDEL representing 7% of all the imputed vari-
ants in our study. We compared the accuracy of imputa-
tion between SNP and INDEL for DS genotypes across 
all tested autosomes as well as the PAR and non-PAR, 
imputing either from real HD or from LD to sequence, 
using the three software tools (Table 2). On average, for 
all software programs the INDEL had approximately 6%, 
14% and 4% lower imputation accuracy compared to SNP 
for autosomes, non-PAR and PAR respectively. However, 
for autosomal variants the Beagle 5.2 INDEL imputation 
accuracy was slightly better than IMPUTE5 and in all 
comparisons, Beagle accuracy was nearly 2% better than 
Minimac4 when imputing from LD.

Software imputation quality metric versus empirical 
accuracy
After establishing the accuracy of imputation from LD 
and HD genotypes to sequence level, this part of the study 
addresses two critical questions. First, is the relationship 
between the software estimated accuracy  (Rsqsoft) and 
empirical imputation accuracy  (Rsqemp) strong enough 
to provide a useful means of filtering poorly imputed 
data? Second, what is an appropriate imputation  Rsqsoft 
threshold for each software? The relationship between 
the software imputation quality measure  (Rsqsoft) and the 
empirical accuracy as the squared correlation  (Rsqemp) is 

Table 1 Average empirical imputation accuracy (r) per variant when imputing from either low (LD) or high density (HD) genotypes 
using three imputation programs (Beagle 5.2, Minimac4 and IMPUTE5)

Accuracy is shown separately for autosomal chromosomes (Autosome: Chr 1, 5, 10, 15, 20, 25), the non-PAR and PAR of the X chromosome
1 Accuracy was calculated as the correlation between imputed and real genotypes, where imputed genotypes were either best guess (GT) or allele dosage (DS). The 
accuracy for GT was calculated only from the union of variants that were imputed as segregating across all three software tools, while DS accuracy is shown for both 
the GT union set as well as for all variants segregating in the real genotype data

Autosome (r ± SD) Non-PAR (r ± SD) PAR (r ± SD)

Mode Programs LD HD LD HD LD HD

GT1 Beagle 5.2 0.943 ± 0.114 0.964 ± 0.101 0.938 ± 0.141 0.969 ± 0.128 0.527 ± 0.196 0.923 ± 0.105

Minimac4 0.945 ± 0.101 0.965 ± 0.088 0.942 ± 0.13 0.974 ± 0.113 0.53 ± 0.2 0.923 ± 0.099

IMPUTE5 0.941 ± 0.116 0.962 ± 0.103 0.934 ± 0.153 0.965 ± 0.14 0.53 ± 0.2 0.92 ± 0.107

DS1 (Same variant 
set as GT)

Beagle 5.2 0.946 ± 0.111 0.966 ± 0.097 0.941 ± 0.134 0.972 ± 0.12 0.53 ± 0.2 0.925 ± 0.101

Minimac4 0.95 ± 0.09 0.969 ± 0.073 0.945 ± 0.122 0.977 ± 0.104 0.53 ± 0.19 0.926 ± 0.089

IMPUTE5 0.945 ± 0.112 0.965 ± 0.098 0.936 ± 0.148 0.968 ± 0.134 0.53 ± 0.2 0.923 ± 0.102

DS1

(All variant set)
Beagle 5.2 0.938 ± 0.133 0.96 ± 0.119 0.907 ± 0.219 0.941 ± 0.209 0.52 ± 0.2 0.92 ± 0.121

Minimac4 0.922 ± 0.169 0.946 ± 0.15 0.893 ± 0.243 0.927 ± 0.232 0.51 ± 0.22 0.914 ± 0.134

IMPUTE5 0.935 ± 0.142 0.956 ± 0.128 0.909 ± 0.215 0.942 ± 0.206 0.52 ± 0.2 0.918 ± 0.123
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shown in Fig.  3, when imputing from either LD or HD, 
and using DS mode for all three imputation programs. 
The results are provided for variants on all chromosomes 
(1, 5, 10, 15, 20, 25, non-PAR and PAR) and the equiva-
lent results with GT mode are also available (See Addi-
tional file  4, Figure S2). There was a strong relationship 
between  Rsqsoft and  Rsqemp although it is not linear and 
is very different for Minimac4 compared to Beagle 5.2 
and IMPUTE5. For all imputation tools,  Rsqsoft at higher 
values shows a closer relationship with  Rsqemp. The box-
plot distributions show considerable variation of  Rsqemp 
within the bins of  Rsqsoft at low to mid-range values, par-
ticularly for Beagle and IMPUTE5. This is partly a func-
tion of there being fewer variants in these  Rsqsoft bins. 
Conversely, at the higher  Rsqsoft values that fall within 
the useful range for filtering, the boxplots become less 
dispersed indicating that the relationship between  Rsqsoft 
and  Rsqemp is more reliable.

The results in Fig. 3 allow an equivalent  Rsqsoft thresh-
old to be identified for each software that could be 
employed to filter imputed data for downstream analy-
sis. For example, an  Rsqsoft threshold of ~ 0.4 in Mini-
mac4 and ~ 0.9 for Beagle 5.2 and IMPUTE5 would 
remove sequence variants with an average  Rsqemp lower 
than ~ 0.8 (r = 0.89) for data imputed from HD genotypes.

It is known that some chromosome regions are diffi-
cult to accurately impute [24, 25], therefore it is also of 
interest to understand if use of an  RsqSoft filter will accu-
rately remove poorly imputed variants and thus improve 
the average  Rsqemp across these regions. Figure 4a shows 
 Rsqemp averaged across all variants within windows of 

1  Mb (Chromosome 10) with no filter on  RsqSoft com-
pared to Fig.  4b where the variants were first filtered 
using an  RsqSoft threshold (0.4 for Minimac4 and 0.9 for 
Beagle 5.2 and IMPUTE5). Filtering improved the aver-
age  Rsqemp across this entire chromosome but had a par-
ticularly large impact across a 4 Mb segment that showed 
very poor average  Rsqemp before filtering, as well as at the 
ends of the chromosome. The filtering evened out any 
differences between software in the distribution of the 
 Rsqemp across the chromosome except at the very poorly 
imputed region where Minimac4 still showed a lower 
 Rsqemp.

Clearly, the  Rsqsoft threshold is a useful indicator of 
 Rsqemp, but it is also important to quantify the resulting 
proportion of false positives (FP: variants that passed the 
 Rsqsoft threshold but did not reach the expected  Rsqemp) 
and false negatives (FN: variants that did not pass the 
 Rsqsoft threshold but did achieve the desired  Rsqemp). The 
FP and FN results are shown in Table 3 after imposing the 
equivalent  Rsqsoft thresholds (specific to Minimac4, Bea-
gle and IMPUTE5) as demonstrated in Fig. 3 to achieve 
an average  Rsqemp ≥ 0.8 (imputing from real HD geno-
types and using DS genotypes). The proportion of vari-
ants passing the equivalent  Rsqsoft thresholds was similar 
for all three imputation programs as was the proportion 
of false negatives and false positives, although Beagle 
5.2 tended to show the lowest level of false negatives/
positives.

We also investigated the effect of  Rsqsoft filter-
ing on empirical imputation accuracy for all variants 
grouped on minor allele frequency (MAF: Fig.  5) in 

Table 2 Comparison of imputation accuracy (correlation between real and imputed allele dosage genotypes) for all imputed SNP and 
INDEL, using Beagle 5.2, Minimac4, or IMPUTE5

Variants were imputed either direct from real HD (high density) or from LD (low density) genotypes. The accuracies are shown separately for autosomes (Chr 1, 5, 10, 
15, 20, 25), the non-PAR and the PAR of the X chromosome

Autosome (Number of 
Variants = 8,890,108)

Non-PAR (Number of Variants = 763,172) PAR (Number of Variants = 143,831)

LD HD LD HD LD HD

INDEL SNP INDEL SNP INDEL SNP INDEL SNP INDEL SNP INDEL SNP

Beagle 5.2 0.892 0.944 0.912 0.965 0.780 0.920 0.813 0.954 0.481 0.525 0.857 0.925

Minimac4 0.867 0.928 0.888 0.952 0.752 0.908 0.784 0.943 0.472 0.517 0.843 0.920

IMPUTE5 0.884 0.941 0.904 0.962 0.785 0.922 0.816 0.955 0.483 0.525 0.855 0.923

(See figure on next page.)
Fig. 3 Boxplots showing the relationship between bins of  Rsqsoft (x-axis) and the distribution of  Rsqemp (y-axis) for imputed dosage (DS) genotypes 
on all chromosomes tested. The blue line represents the average  Rsqemp value at each bin and the grey line within each box represents the median 
value. The box contains the 25th to the 75th percentile of the data points. Whiskers extend to a maximum length of 1.5 times the interquartile 
range (IQR) beyond the box edges. Data points beyond the whiskers are represented by individual dots as outliers. Plots (a), c and e show results 
for imputation starting from Low-density genotypes (LD: Beagle 5.2, Minimac4 and IMPUTE5) while plots (b), d and f show results for imputation 
starting from high-density genotypes (HD: Beagle 5.2, Minimac4 and IMPUTE5)
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Fig. 3 (See legend on previous page.)
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the imputation reference population. As expected, 
with no  Rsqsoft filter, the lower MAF variant bins show 
considerably lower empirical accuracy compared to 
MAF > 0.025 (Fig.  5a). Conversely, after applying an 
 Rsqsoft filter (> 0.4 for Minimac4, and > 0.9 for Bea-
gle & IMPUTE5), the average empirical accuracy for 
the remaining low MAF variants was significantly 

increased and very close to those with higher MAF 
(Fig. 5b).

We then divided all imputed variants into two 
groups: either common (MAF > 0.05) or less common 
(MAF < 0.05) and compared the effect of applying an 
 Rsqsoft threshold on the empirical imputation accuracy 
of INDEL and SNP (Table 4). Generally, the  Rsqsoft filter 
for all software removed a similar proportion of variants 

Fig. 4 Average imputation accuracy  (Rsqemp) for all variants in each adjacent 1 Mb window across chromosome 10. Using either no  Rsqsoft filter (a) 
or after imposing an  Rsqsoft threshold filter (b) for three different imputation programs  (Rsqsoft threshold > 0.4 for Minimac4 and > 0.9 for Beagle 5.2 
and IMPUTE5). Variants imputed from low density for imputed dosage (DS) genotypes

Table 3 Comparison of variant filtering using equivalent  Rsqsoft thresholds from three imputation tools (Beagle 5.2, Minimac4 and 
IMPUTE5) to achieve an empirical accuracy  (Rsqemp) > 0.8

The  Rsqsoft thresholds were 0.4 for Minimac4, 0.9 for Beagle 5.2 and 0.9 for IMPUTE5 and were applied to dosage genotypes imputed from real HD genotypes

Imputation Software Total No. of variants 
passing  Rsqsoft (% of all 
variants imputed)

True positives: No. variants 
passing  Rsqsoft &  Rsqemp 
(expressed as % of variants 
passing  Rsqsoft)

False positives: No. variants 
passing  Rsqsoft & failing 
 Rsqemp (expressed as % of 
variants passing  Rsqsoft)

False negatives: No. variants 
not passing  Rsqsoft but 
passing expected  Rsqemp 
(expressed as % of variants 
not passing the  Rsqsoft)

Beagle 5.2 3,991,626 (40.7%) 3,748,177 (93.9%) 243,449 (6.1%) 66,135 (1.1%)

IMPUTE5 3,954,595 (40.4%) 3,702,798 (93.6%) 251,797 (6.4%) 101,575 (1.7%)

Minimac4 3,949,886 (40.3%) 3,679,117 (93.1%) 270,769 (6.9%) 88,715 (1.5%)
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for either SNP or INDEL. However, the proportion of 
common variants (MAF > 0.05) passing the  Rsqsoft filters 
was very high (> 93%) while only ~ 16% of less common 

variants passed the filters. One interesting phenomenon 
we observed is that the false positive rate of INDEL was 
always higher than that of SNP (for both common and 

Fig. 5 Average imputation accuracy  (Rsqemp) for sequence variants binned by minor allele frequency (MAF) using three different imputation 
programs (Beagle 5.2, Minimac4 and IMPUTE5). (a) shows  Rsqemp without imposing any  Rsqsoft filter, while (b) is  Rsqemp after imposing an  Rsqsoft 
filter  (Rsqsoft > 0.4 for Minimac4, > 0.9 for Beagle 5.2 and IMPUTE5). Imputation started from real HD genotypes and accuracy was assessed for dosage 
genotypes

Table 4 Comparison of variant filtering using equivalent  Rsqsoft thresholds from three imputation tools (Beagle 5.2, Minimac4 and 
IMPUTE5), separated by SNP and INDEL variants with MAF either above or below 0.05

Variants were imputed from real HD genotypes and accuracy was assessed using dosage genotypes. The  Rsqsoft thresholds were chosen for each software to achieve 
an  Rsqemp of ≥ 0.8  (Rsqsoft of 0.4 for Minimac4, 0.9 for Beagle 5.2 and 0.9 for IMPUTE5). The percentage of variants passing the  Rsqsoft filter is shown for each of the 
variant categories, as well as the percentage of false positives and negatives

SNP INDEL

Imputation 
Software

Percent of 
variants 
passing Rsqsoft 
(Number of 
variant)

False positives: 
Percent of 
variants 
passing  Rsqsoft 
but not  Rsqemp 
threshold

False negatives: 
Percent of 
variants 
not passing 
 Rsqsoft but 
passing  Rsqemp 
threshold

Percent of 
variants 
passing  Rsqsoft 
(Number of 
variant)

False positives: 
Percent of 
variants 
passing  Rsqsoft 
but not  Rsqemp 
threshold

False negatives: 
Percent of 
variants not 
passing  Rsqsoft 
but passing 
 Rsqemp threshold

Common vari-
ants (MAF > 0.05 
in Reference 
population)

Beagle 5.2 95.82 (2,671,196) 4.80 0.52 93.54 (230,666) 6.31 0.55

Minimac4 95.08 (2,663,244) 5.20 0.84 93.47 (230,494) 7.06 0.81

IMPUTE5 95.53 (2,650,696) 4.95 0.77 93.33 (230,135) 6.49 0.77

Less com-
mon Variants 
(MAF < 0.05 
in Reference 
population)

Beagle 5.2 16.07 (1,006,321) 1.31 0.73 16.63 (83,443) 2.35 0.87

Minimac4 15.73 (985,045) 1.51 0.93 15.97 (80,127) 2.74 0.96

IMPUTE5 15.64 (979,105) 1.38 1.15 16.10 (80,807) 2.32 1.28
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less common MAF) implying that the INDEL empirical 
imputation accuracy is less well predicted by the  Rsqsoft 
filter than it is for SNP.

Discussion
This study provides a comprehensive evaluation of 
empirical imputation accuracy of sequence variants using 
three popular and computationally efficient imputation 
programs that provide an internal quality statistic of 
imputation accuracy  (Rsqsoft). This is a unique study eval-
uating the empirical accuracy of imputing LD (7K) and 
HD genotypes to sequence: providing direct comparisons 
of accuracy for the PAR, non-PAR and autosomes, as 
well as INDEL and SNP variants. An additional novelty 
of this study was an in-depth evaluation of the relation-
ship between  Rsqsoft and  Rsqemp for the three imputation 
programs, as well as an assessment of the value of in-
house pre-filtering of sequence variants in the reference 
population.

We demonstrated that the  Rsqsoft filtering thresh-
olds were similar for Beagle 5.2 and IMPUTE5 but dif-
fered for Minimac4. While each tool employs a different 
 Rsqsoft algorithm, the Beagle 5.2 and IMPUTE5  Rsqsoft 
have previously been shown to be strongly correlated 
for the same imputation sample [1]. Beagle estimates the 
squared correlation between the imputed genotypes and 
true genotypes, where the (co)variance of the true geno-
types is approximated using the sample mean of imputed 
genotypes [28, 37]. The IMPUTE5 algorithm measures 
the ratio of observed and complete information by con-
sidering the relative statistical information about the 
population allele frequency [1]. Minimac4 algorithm 
computes the average squared deviation of the imputed 
allele dosage at each haplotype in the sample relative to 
the estimated allele frequency, and divides this by the 
product of the alternate and reference allele frequency 
[38]. Despite these differences, our empirical tests dem-
onstrated that if an appropriate  Rsqsoft filter was applied, 
the majority of poorly imputed variants were removed, 
with those remaining having a higher and similar aver-
age empirical imputation accuracy. Importantly, Fig.  3 
provides an empirical determination of the equivalent 
 Rsqsoft thresholds across software that would maintain a 
common baseline  Rsqemp for downstream analyses (such 
as meta-GWAS). Interestingly, the  Rsqsoft of both Bea-
gle 5.2 and IMPUTE5 shows an overprediction of the 
 Rsqemp for the higher  Rsqsoft values while the reverse is 
true of Minimac4. A previous study using Minimac3 to 
impute sequence variants in sheep [39] reported a very 
similar relationship to that found in our study and a 
study in chickens also reported that Beagle  Rsqsoft over-
predicted the  Rsqemp [40]. We also demonstrated that 
in practice, the application of the equivalent thresholds 

from the three imputation tools resulted in similar num-
bers of variants being discarded and reasonably numbers 
of low false positives and negatives. A recent study has 
attempted to address the variability of  Rsqsoft by develop-
ing a machine learning based quality calibration measure 
[41], but a drawback of that approach is that the model 
must first be trained on real, high quality genotypes at a 
range of frequencies.

Typically, for large-scale sequence imputation the 
software can parallelise the workload by splitting chro-
mosomes into smaller segments (‘chunking’) which can 
dramatically speed up the imputation time required but 
may incur a penalty on accuracy. Several studies have 
documented the trade-off between accuracy and com-
putational efficiency of imputation programs previously 
[30, 42–44]. We were concerned that the default chunk-
ing in Minimac4 and Beagle 5.2 might significantly 
reduce imputation accuracy because cattle breeds have 
small effective population sizes that can result in long 
haplotype blocks from extended regions of high linkage 
disequilibrium [45]. Interestingly, we found no advan-
tage in imputation accuracy when the default setting was 
modified to allow entire chromosome imputation with-
out chunking. This may partly relate to the current limi-
tations of accurately defining longer haplotypes within 
short-read sequence [46]. We did not explore reducing 
chunk size settings below the default settings because 
these tools were primarily developed and tested in 
human data where the effective population size is gener-
ally much larger than in cattle.

We did not benchmark the computational efficiency of 
the software because a comprehensive study with human 
data has been published [30] where it was shown that 
the relative efficiencies between software changed with 
the size of the reference population. Using a modest 
sized reference population (N = 2504) and chunk size of 
20 Mb for all software, Minimac4 imputation was found 
to be considerable slower than IMPUTE5 and Beagle 
v5.1, while IMPUTE5 used the least memory [30]. This 
suggests that if imputation time is a concern, it may be 
preferable to use either Beagle 5.2 or IMPUTE5 rather 
than using Minimac4. An additional study with human 
data benchmarked computational efficiency of the same 
software based on their default settings (no chunking 
in IMPUTE5, 20  Mb chunks in Minimac4 and 40  Mb 
in Beagle 5.2) and including phasing time [42]. They 
reported that Beagle 5.4 (with Beagle 5.4 phasing) was 
considerably faster than IMPUTE5 or Minimac4 when 
both the latter were pre-phased with Eagle 2.4.1.

As expected, imputed allele dosage genotypes were 
more highly correlated to the real genotypes than 
imputed best-guess genotypes and previous literature 
has shown that there may be a small benefit in using 
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allele dosage versus best guess genotypes for GWAS 
[6]. However, there is an increased computational bur-
den incurred for analyses that use dosage genotypes 
rather than best guess genotypes.

Our finding of reduced imputation accuracy for low 
MAF variants agrees with several previous studies 
where a larger multibreed reference helped to improve 
the accuracy of low MAF variants compared to a single 
breed [24]. However, only one previous study in cattle 
reported the accuracy of imputing sequence INDEL 
compared to SNP, and as in our study they reported 
that INDEL were less well imputed than SNP [47]. In 
general, given that INDEL can vary in length and com-
plexity, and may overlap SNP sites, it is plausible that 
they are more difficult to accurately detect and impute. 
In addition, it is possible that a higher proportion of 
segregating INDEL tend to be more recent mutations 
than SNP, being more likely to be functionally dis-
ruptive and under stronger purging selection. Recent 
mutations may be harder to impute accurately com-
pared to older mutations because some haplotypes sur-
rounding the mutation may still be segregating in the 
reference population without the mutation [48]

We found no other cattle studies that have specifi-
cally considered the imputation accuracy of sequence 
variants from SNP chip to sequence on the PAR and 
non-PAR of the X chromosome. Two previous stud-
ies reported accuracy of imputation from LD to 50K 
SNP density for autosomes, the non-PAR and PAR 
[49, 50] using the previous cattle reference genome 
(UMD3.1) and reported much lower imputation accu-
racy for the PAR. Both those studies suggested that 
the low accuracy may be partly attributed to the short 
length of the PAR (5.7 Mb). We tested this hypothesis 
in a recent study [51] by comparing the PAR imputa-
tion accuracy with the accuracy of imputing short 
5.7  Mb autosomal segments that were extracted from 
the ends of five different chromosomes (with SNP 
density was adjusted to match). These autosomal seg-
ments were imputed from LD genotypes to 50K and 
HD genotypes and although their imputation accuracy 
was lower than for whole autosomal chromosomes, it 
was still considerably higher than for the PAR [51]. Fur-
thermore, in the current study we demonstrated that 
when imputing from real HD genotypes to sequence, 
the PAR imputation recovered considerable accuracy 
(Table  1). This suggests that the low imputation accu-
racy for LD genotypes on the PAR is likely due to the 
higher recombination rate of the PAR [52, 53] and is 
therefore a generalised result that would be observed 
across cattle populations. Although the PAR represents 
only 4% of the X chromosome, it would be useful to 
increase the density of PAR markers compared to other 

chromosomes when generating custom SNP panels, 
because this could significantly improve the PAR impu-
tation accuracy.

In contrast to the PAR, our study showed that the 
imputation accuracy on the non-PAR was similar to the 
autosomes. This is important because many cattle stud-
ies that use imputed sequence in downstream studies 
such as GWAS, have discarded the entire X chromo-
some before undertaking downstream analyses, suggest-
ing a lost opportunity (e.g. [54]). Our target animals were 
males, and potentially because males are haploid across 
the non-PAR (presented as diploid to the imputation 
software), they may be a little more accurately phased 
than diploid females. If phasing is a little less accurate in 
target females this could lead to a lower imputation accu-
racy than for males, but this has not been tested empiri-
cally because we did not have equivalent female samples.

Conclusions
Our findings offer valuable insights on the application 
of imputation filters across software for downstream 
analyses such as meta-GWAS studies. It is likely that 
these imputation tools will remain popular because they 
showed similarly high imputation accuracy. This study 
demonstrates that  Rsqsoft is a useful filtering tool for 
both SNP and INDEL. We provide a generalised empiri-
cal determination for equivalent  Rsqsoft thresholds across 
the three imputation tools. The extremely low accuracy 
observed for imputation from LD to sequence on the 
PAR of the X chromosome indicates that imputed data 
in this region cannot be confidently used for downstream 
analyses.
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