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Abstract
Many state-of-the-art models trained on long-range sequences, for example S4, S5 or LRU,
are made of sequential blocks combining State-Space Models (SSMs) with neural networks.
In this paper we provide a PAC bound that holds for these kind of architectures with stable
SSM blocks and the bound does not depend on the length of the input sequence. Imposing
stability of the SSM blocks is a standard practice in the literature, and it is known to help
performance. Our results provide a theoretical justification for the use of stable SSM blocks
as the proposed PAC bound decreases as the degree of stability of the SSM blocks increases.

1. Introduction

The problem of modeling long-range sequences, i.e. sequences with large number of time-steps,
is an especially challenging task of the field. Recently, several novel architectures (etc. S4
Gu et al. (2021), S4D Gu et al. (2022), S5 Smith et al. (2022), LRU Orvieto et al. (2023))
have been published that are outperforming previous models by a significant margin. The
common basis of these models are, combined with some nonlinearity, the so-called Structured
State-Space Models (SSMs), which are basically dynamical systems of either continuous or
discrete time. One key point of these models is that they are equipped with some form of
stability constraints. This motivates the question:What is the role of stability in the success
of deep SSM architectures for long-range sequences?
Contribution. In this paper, we focus on this question and provide a theoretical framework
to analyze the model’s generalization behavior in a rigorous manner by showing, to our
knowledge, the first generalization bound for deep SSMs. We show that stability of deep SSM
architectures has an influence on their Rademacher complexity, resulting in a generalization
bound that does not depend on the length of the input sequence.
Related work. Bounds for general RNNs are related to SSMs as Linear Time-Invariant
(LTI) dynamical systems are essential elements for almost all SSMs and they are a special
class of RNNs. There are several PAC bounds for either discrete or continuous-time RNNs
in Koiran and Sontag (1998); Sontag (1998); Hanson et al. (2021) by using VC dimension
usually through covering numbers. PAC bounds for RNNs based on Rademacher complexity
were presented in Wei and Ma (2019); Akpinar et al. (2020); Joukovsky et al. (2021); Chen
et al. (2020), while in Zhang et al. (2018) the authors developed PAC-Bayesian bounds. As
all of these results tend to infinity with the integration time (number of time steps) they
are not meaningful in case of long-range sequences. In (Hanson and Raginsky, 2024) the
authors propose a PAC bound based on Rademacher complexity for input-affine non-linear
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systems, however their bound is still exponential in the length of the integration interval.
The generalization bound for single vanilla RNNs in (Chen et al., 2020, Theorem 2) is an
upper bound of the H1 norm proposed in this paper, see e.g. Chellaboina et al. (1999), thus
our results based on the H2 norm is even tighter. In Golowich et al. (2018) the authors
derived a depth independent bound under the condition of bounded Schatten p-norm and a
bound with polynomial dependence on depth for Rademacher complexity for DNNs with
ReLU activations by applying contraction. In a recent paper Truong (2022b) the author
extends this bound for non ReLU activations and show that the new, non-vacuous bound
is depth independent. Lastly, we mention that in Trauger and Tewari (2024) the authors
propose a sequence length independent Rademacher complexity bound for a single layer
transformer architecture. For multi layer transformers they improve slightly the result in
Edelman et al. (2022) however the bound grows logarithmically with the sequence length.

2. Preliminaries

Σ denotes a dynamical system specified in the context. The constant nin refers to the
dimension of the input sequence, T refers to its length in time, while nout is the dimension
of the output (not necessarily a sequence). Denote by ℓ2,2T (Rn) and ℓ∞,∞

T (Rn) the Banach
spaces generated by the all finite sequences over Rn of length T with the norm ∥u∥2

ℓ2,2T (Rn)
=∑T−1

k=0 ∥u[k]∥22 and ∥u∥ℓ∞,∞
T (Rn) = sup

k=0,...,T−1
∥u[k]∥∞ respectively. For a Banach space X ,

BX (r) = {x ∈ X | ∥x∥X ≤ r} denotes the ball of radius r > 0 centered in zero.
Generalization gap. We consider the usual supervised learning framework for sequential
input data. The considered models, parametrized by θ, are of the form fθ : ℓ2,2T (Rnin) → Rnout .
In this paper, we are agnostic regarding the origin of θ. A dataset is an i.i.d sample of the form
S = {(ui,yi)}Ni=1 from some distribution D over ℓ2,2T (Rnin)×R. An elementwise loss function
is of the form ℓ : Y × Y → R. Let LS

emp(f) =
1
N

∑N
i=1 ℓ(f(ui), yi) denote the empirical loss

of a model f w.r.t a dataset S. We denote the true error by L(f) = E(u,y)∼D[ℓ(f(u), y)].
The generalization error or gap of a model f is defined as |LS

emp(f)− L(f)|.
SSMs. A State-Space Model (SSM) is a discrete-time linear dynamical system of the form

Σ

{
x[k] = Ax[k − 1] +Bu[k], x[0] = 0

y[k] = Cx[k] +Du[k]
(1)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are matrices, u[k],x[k] and
y[k] are the input, the state and the output signals respectively for k = 1, 2, . . . , T , where T
is the number of time steps. We consider the value of T to be fixed to handle pooling. We
emphasize that the generalization bound in Theorem 3 is independent of T .
Stability. We call the SSM (1) stable, if the matrix A is Schur, i.e., the moduli of all its
eigenvalues are smaller than 1. Intuitively, stable SSMs are robust to perturbations, i.e., their
state and outputs are continuous in the initial state and input, see for instance Antoulas
(2005) for a more detailed discussion. In particular, a sufficient (but not necessary) condition
for stability is that A is a contraction, i.e. ∥A∥2 < 1. For more details, see Appendix A.
Input-output maps of SSMs as operators on ℓp,pT ,p = ∞, 2. An SSM (1) induces an
input-output map, which maps every input sequence u[0], . . . ,u[T − 1] to output sequences
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Generalization bounds for deep SSMs

y[0], . . . ,y[T − 1], which can be interpreted as a linear operator SΣ,T from ℓp,pT (Rnu) →
ℓr,rT (Rny), for any choice p, r ∈ {∞, 2}. In particular, SΣ,T has a well-defined induced norm as

a linear operator, defined in the usual way, ∥SΣ,T ∥p,r = supu∈ℓp,pT (Rnu )

∥SΣ,T (u)∥
ℓ
r,r
T

(Rny )

∥u)∥
ℓ
r,r
T

(Rny )
. If Σ

is internally stable, then it is a standard result in control theory that the norms {∥SΣ,T ∥}∞T=1

are bounded, i.e., ∥Σ∥p,r = supT>0 ∥SΣ,T ∥p,r exists and it is finite, see Antoulas (2005).
Moreover, ∥Σ∥p,r can be viewed as the norm of the extension of the input-output operators
SΣ,T to the Banach space generated by {ℓp,pT (Rnu}∞T=1 Antoulas (2005). In this paper, we
will use the norms ∥Σ∥2,∞ and ∥Σ∥∞,∞ to upper bound the Rademacher complexity. For
more details about the norms see Appendix A.
Relationship with continuous-time models. SSMs are often derived by discretizing a
continuous-time linear differential equation in time (e.g. Gu and Dao (2023) and references
therein). If the discretization step ∆ is a fixed constant, then we obtain time-invariant linear
system of the form (1). Now let us define a single discrete-time SSM block.
Definition DT-SSM. A DT-SSM block (or simply SSM block) is a function fDTB :
ℓp,qT (Rnu) → ℓr,sT (Rnu) that is composed of a stable SSM followed by a nonlinear trans-
formation that is constant in time. That is, fDTB(u)[k] = g(SΣ,T (u)[k]) + αu[k] for some
α ∈ [0, 1] and g : Rnu → Rnu for all k ∈ [T ].
We incorporate α so that the definition covers residual connections. A deep SSM model
consists of SSM blocks along with an encoder, and a decoder transformation preceded by
a time-pooling layer. We present an overview of the various architectures found in the
literature in Table 1, Appendix B. Now we may define deep SSMs. For precise details about
the particular elements see Appendix B.
Definition DT deep SSM. A discrete time deep SSM model for classification is a function
f : ℓp,qT (Rnin) → Rnout of the form f = fDec ◦ fPool ◦ fBL ◦ . . . ◦ fB1 ◦ fEnc, where ◦ denotes
composition of functions. The functions fEnc and fDec are linear transformations which are
constant in time, while fBi is a DT-SSM block for all i. By pooling we mean the operation
fPool(u) = 1

T

∑T
k=1 u[k], an average pooling over the time axis.

3. Rademacher contraction of deep SSMs

Before we state our main theorem we introduce a property of functions, referred to as
Rademacher Contraction, that is universal enough to include functions represented by both
deep SSMs and neural networks.

Definition 1 ((µ, c)-Rademacher Contraction) Let X1 and X2 be subsets of Banach
spaces X1,X2, with norms ∥ · ∥X1 and ∥ · ∥X2, and let µ ≥ 0 and c ≥ 0. A set of functions
Φ = {φ : X1 → X2} is said to be (µ, c)-Rademacher Contraction, or (µ, c)-RC in short., if
for all n ∈ N+ and Z ⊆ Xn

1 we have

Eσ

sup
φ∈Φ

sup
{ui}ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiφ(ui)

∥∥∥∥∥
X2

 ≤ µEσ

 sup
{ui}ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
X1

+
c√
N

, (2)

where σi are i.i.d. Rademacher random variables, i ∈ [N ], i.e. P(σi = 1) = P(σi = −1) = 1/2.
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The RC property can be used to upper bound the Rademacher complexity of the hypothesis
class. In fact, special cases of Definition 1 were used in the literature to this effect Golowich
et al. (2018); Truong (2022a); Trauger and Tewari (2024) for deep neural networks and
transformers respectively.

All blocks of deep SSMs have the RC property, for the proofs see Appendix D.1. In
particular, SSM components of SSM blocks are (µ, 0)-RC, and the constants µ depends on
the control-theoretic system norm of the SSM component. Moreover, the RC property is
preserved under composition of layers.

Lemma 2 (Composition lemma) Let Φ1 = {φ1 : X1 → X2} be (µ1, c1)-RC and Φ2 =
{φ2 : X2 → X3} be a (µ2, c2)-RC. Then the set of compositions Φ2 ◦ Φ1 := {φ2 ◦ φ1 : X1 →
X3 | φ1 ∈ Φ1, φ2 ∈ Φ2} is a (µ1µ2, µ2c1 + c2)-RC.

The proof is in Appendix D.2. Lemma (2) allows us to establish the RC property for any
deep structure, in particular, for deep SSMs. Next we describe our assumptions for deep
SSMs.

Let F be a set of deep SSM models, namely let f ∈ F has the form f = fDec ◦ fPool ◦
fBL ◦ . . . ◦ fB1 ◦ fEnc. Let us assume that (1) there exist constants Ku and Ky such that
with probability one w.r.t. the data distribution D, for any input-label pair (u, y), the ℓ2,2T

norm of u and the absolute value of y are bounded from above Ku and Ky respectively,
(2) the elementwise loss is Ll-Lipschitz continuous, (3) the SSM component of Σi of each
SSM block in the parametrization is stable and its norm ∥Σi∥p,q is bounded by a constant
Kp,q, p, q = 2,∞, (4) the norms of the weights of the encoder fEnc and decoder fDec are
bounded by KEnc,KDec respectively, (5) the non-linear component gi of the ith SSM block
gi is (µgi , cgi)-RC. Internal stability of the SSM components is a standard assumption in the
literature, and it is shown in Appendix D that the commonly used non-linear components are
RC. We present the assumptions formally in Appendix C. Now we state our main theorem.

Theorem 3 (Informal theorem) The following PAC inequality holds

PS∼DN

[
∀f ∈ F L(f)− LS

emp(f) ≤
µKuLl + cLl√

N
+Kl

√
2 log(4/δ)

N

]
> 1− δ,

where the constants µ and c depend on the hypothesis class F and they satisfy

µ ≤ KEncKDec

L∏
i=1

(µgiK + αi) , c ≤ KDec

L∑
j=1

 L∏
i=j+1

(µgiK + αi)

 cgj

and the constant Kl > 0 such that |l(·, ·)| ≤ Kl, while K = max{K2,∞,K∞,∞}.
The formal counterpart of Theorem 3 and its proof can be found in Appendix E. Notice that
the bound does not depend on T . While the bound grows with the depth of the deep SSM,
its growth can be controlled by choosing the state-space blocks with a small system norm.
In turn, the system norm of the state-space models depends not only on the number and
magnitude of its parameters, but on the degree of stability, i.e., systems with large number of
weights with possibly large parameter norms can still have a small system norm. In practice,
for popular deep SSM architectures, e.g. S4, S4D, S5 or LRU, the stability conditions are
naturally met due their constrained parametrizations. This indicates that stability induced
norms are crucial for deep SSMs.
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Generalization bounds for deep SSMs

Appendix A. Stability of SSMs

We recite the definition of internally stable dynamical systems of the form eq. 1.

Definition 4 (Antoulas (2005)) SSM of the form (1) is internally stable, if the matrix A
is Schur, meaning all the eigenvalues of A are inside the complex unit disk.

In particular, a sufficient (but not necessary) condition for stability is that A is a
contraction, i.e. ∥A∥2 < 1. A stable SSM Σ is not only robust to perturbations, but
its input-output map can be extended to act on the Banach spaces of infinite sequences,
generated by ℓp,qT (Rnin), T ≥ 0.

More precisely, denote by ℓ2,2(Rn) and ℓ∞,∞(Rn) the Banach spaces generated by the
all inifinite sequences over Rn such that the quantities ∥u∥2ℓ2,2(Rn) =

∑∞
k=0 ∥u[k]∥

2
2 and

∥u∥ℓ∞,∞(Rn) = sup
k

∥u[k]∥∞ are well defined and finite. If u = u[0] . . . ,u[T − 1] is a finite

sequence of length T , then we can interpret it as an infinite sequence u = u[0] . . . ,u[T −
1], 0, 0, . . .; elements of which are zero after the T th element. With this identification, ℓp,qT (Rn)
is a close subspace of ⊆ ℓp,q(Rn), and ℓp,q(Rn) contains no proper closed subspace containing⋃

T≥0 ℓ
p,q
T (Rn), i.e.,

⋃
T≥0 ℓ

p,q
T (Rn) generates ℓp,q(Rn).

A stable SSM Σ is not only robust to perturbations, but its input-output map can
be extended to a linear operator SΣ : ℓp,p(Rnu) → ℓr,r(Rny), for any choice p, r ∈ {∞, 2}.
More precisely, define SΣ(u)[T − 1] = SΣ,T (u[0] · · ·u[T − 1])[T − 1] for all T > 0. It then
follows that for any u ∈ ℓp,p(Rnu), SΣ(u) ∈ ℓr,r(Rny), p, r = 2,∞, see Antoulas (2005). In
particular, SΣ has a well-defined induced norm as a linear operator, defined in the usual way,
∥SΣ∥p,r = supu∈ℓp,p(Rnu )

∥SΣ(u)∥ℓr,r(Rny )

∥u)∥ℓr,r(Rny )
. In the sequel, by a slight abuse of notation, we will

denote by ∥Σ∥p,r the induced norm ∥S∥p,r.
As it was mentioned above

∥Σ∥p,r = sup
T≥0

∥SΣ,T ∥p,r

Indeed, for any u ∈ ℓp,p(Rnu), ∥SΣ(u)∥ℓr,r(Rny ) = limT→∞ ∥SΣ,T (u[0] · · ·u[T − 1])∥ℓr,rT (Rn
y )

,
and ∥u∥ℓp,p(Rnu ) = limT→∞ ∥u∥ℓp,pT (Rnu ) and hence supT>0 ∥SΣ,T ∥p,r ≥ ∥Σ∥p,r. Moreover,
for any u ∈ ℓp,pT (Rnu), ∥SΣ(u)∥ℓr,r(Rny ) ≥ ∥SΣ,T (u[0] · · ·u[T − 1])∥ℓr,rT (Rn

y )
and ∥u∥ℓp,p(Rnu ) =

∥u∥ℓp,pT (Rnu ), hence ∥Σ∥p,r ≥ ∥SΣ,T ∥p,r.
In this paper, we will use the induced norms ∥Σ∥2,∞ and ∥Σ∥∞,∞ to upper bound the

Rademacher complexity. In turn, these norms can be upper bounded by the following two
standard control-theoretical norms defined on SSMs.

Definition 5 (Chellaboina et al. (1999)) For a SSM Σ of the form (1) define the ℓ1 and
H2 norm of Σ, denoted by ∥Σ∥1 and ∥Σ∥2 respectively,

∥Σ∥1 := max
1≤i≤ny

∥Di∥1 +
∞∑
k=0

∥∥∥CiA
kB
∥∥∥
1
, ∥Σ∥2 :=

√√√√∥D∥2F +

∞∑
k=0

∥CAkB∥2F

Lemma 6 (Chellaboina et al. (1999)) For a system of form (1) ∥Σ∥∞,∞ ≤ ∥Σ∥1 and
∥Σ∥2,∞ ≤ ∥Σ∥2.
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The norms defined above will play a cruicial role in in the main result of the paper, as
they will allow us to bound the Rademacher complexity of the deep SSM model.

Remark 7 (Computing ∥Σ∥i,i = 1, 2) The norm ∥Σ∥2 can be computed by solving Sylvester
equations, for which standard numerical algorithms exist Antoulas (2005). The computation
of ∥Σ∥1 is more involved, it can be computed by taking a sufficiently large finite sum instead
of the infinite sum used in its definition. If ∥A∥2 < β < 1, then an easy calculation reveals

that ∥Σ∥1 ≤ ∥D∥2 + ∥B∥2∥C∥2
1−β and ∥Σ∥2 ≤

√
∥D∥2F +

ny∥B∥22∥C∥22
1−β2 .

Appendix B. Elements of deep SSM models

As it was mentioned above, the principal components of deep SSM models are SSM blocks.
Various SSM models used in the literature differ from each other in the way the SSM
components are parametrized and in the choice of the non-linear component of SSM blocks,
see Table 1 for a summary. Note that in some papers, the matrices of the SSM component

Model SSM Block

S4 Gu et al. (2021) A = Λ− PQ∗ block-diagonal SSM +
nonlinear activation

S4D Gu et al. (2022) A = −exp(ARe) + i ·AIm block-diagonal SSM +
nonlinear activation

S5 Smith et al. (2022) diagonal A SSM +
nonlinear activation

LRU Orvieto et al. (2023) diagonal A
exponential parametrization

SSM +
MLP skip connection

Table 1: Summary of some popular deep SSM models.

are allowed to be complex valued, but such linear dynamical systems can be replaced by
linear dynamical systems defined using real matrices, by doubling the dimension of the
state-space and that of the input and the output space.

Remark 8 (Stability assumptions in the SSM literature) In some of the cited pa-
pers, the discrete-time SSM components were obtained by discretizing internally stable
continuous-time linear time-invariant dynamical model in time, using a fixed discretiza-
tion time step. It is well-known in control theory that the thus obtained discrete-time linear
systems of the form (1) are also internally stable. In this way, the majority of literature
considers deep SSM models for which the SSM components are internally stable, at least as
far as the parametrization used for learning is concerned, as they are internally stable in
continuous-time.
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Generalization bounds for deep SSMs

The Encoder and Decoder layers are given by the weight matrices WEnc and WDec.
Therefore fEnc(u)[k] = WEncu[k] and fDec(u)[k] = WDecu[k] for all k ∈ [T ]. We use the
slightly abused notations fEnc ≡ ⟨WEnc, ·⟩ and fDec ≡ ⟨WDec·⟩.

As for the Neural Network components of an SSM block, we consider the following two
variants.

Definition 9 (MLP layer) An MLP layer is a function from ℓ∞,∞(Rnu) to ℓ∞,∞(Rnu)
that is induced by applying a deep neural network f : Rnu → Rnu for each timestep. A neural
network of L layer is a function of the form f = fW1,b1 ◦ . . . ◦ fWL,bL

◦ gWL+1,bL+1
, where

fW,b(x) = ρ(gW,b(x)) is called a hidden layer, gW,b(x) = Wx+ b is called preactivation and
ρ is the activation function, which is identical for all layers of the network and is either
sigmoid or ReLU. The matrices are of the size Wi ∈ Rni+1×ni and b ∈ Rni such that n1 = nu

and nL+1 = nu. By slight abuse of notation, for u ∈ ℓ∞,∞(Rnu) let f(u) ∈ ℓ∞,∞(Rnv) such
that f(u)[k] = f(u[k]) for all 1 ≤ k ≤ T .

Definition 10 (GLU layer Smith et al. (2022)) A GLU layer is a function of the
form GLU : ℓ∞,∞(Rnu) → ℓ∞,∞(Rnv) parametrized by a linear operaetor W such that
GLU(u)[k] = GELU(u[k]) ⊙ σ(W (GELU(u[k]))), where σ is the sigmoid function and
GELU is the Gaussian Error Linear Unit Hendrycks and Gimpel (2016).

Note, that this definition of GLU layer differs from the original definition in Dauphin
et al. (2017), because in deep SSM models GLU is usually applied individually for each time
step, without any time-mixing operations. See Appendix G.1 in Smith et al. (2022). The
linear operation W is usually represented by a convolution operation.

Appendix C. Assumptions

Hereinafter we denote by F a set of deep SSM models represented by its direct product of
its layerwise parameters. Furthermore, let E denote the set of all SSM models Σ for which
there is a model f ∈ F such that Σ is an SSM layer of f . First, we restate our assumptions:

Assumption 11 We assume the following properties hold.

1. Scalar output. Let nout = 1.

2. Lipschitz loss function. Let the elementwise loss l be Ll-Lipschitz continuous.

3. Bounded input. There exist Ku > 0 and Ky > 0 such that for any input trajectory
u and label y sampled from D, with probability 1 we have that ∥u∥

ℓ2,2T (Rnin )
≤ Ku and

|y| ≤ Ky.

4. Stability. All Σ ∈ E are internally stable, implying ∥Σ∥p < +∞ for p = 1, 2. Therefore
we assume there exist Kp > 0 such that sup

Σ∈E
∥Σ∥p < Kp for p = 1, 2.

5. Bounded Encoder and Decoder. We assume the Encoder and Decoder have bounded
operator norms, i.e. sup

W∈WEnc

∥W∥2,2 < KEnc and sup
W∈WDec

∥W∥∞,β < KDec for β ∈

N ∪ {∞}.
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6. Bounded MLPs and GLUs. We assume that any considered MLP or GLU layer
has a bounded parameters, i.e. for an L-layer model defined in Definition 9 we have
max

1≤i≤L+1
sup

W∈Wi

∥W∥∞,∞ < KW and max
1≤i≤L+1

sup
b∈Bi

∥b∥∞ < Kb. Moreover, for any GLU

layer defined in Definition 10 we have sup
W

∈ WGLU ∥W∥∞,∞ < KGLU.

Assumption 1: is not restrictive as we consider classification.
Assumption 2: The Lipschitzness holds for most of the loss functions used in practice. We
mention that even the square-loss is Lipschitz on a bounded domain. From the practical
aspect, the upped boundedness is also mild, as parameters along the learning algorithm’s
trajectory usually make l bounded. In the worst case, l is bounded on a bounded domain
due to being Lipschitz.
Assumption 3: is yet again standard in the literature. Even in practical applications the
input is usually normalized or standardized as a preprocessing step before learning.
Assumption 4: is the most important one as it plays a central role in our work. The
motivation behind this assumption is twofold. First, in practical implementation of SSM
based architectures, it is very common to apply some structured parametrization of the
matrices of the systems, which leads to learning stable matrices. In many cases, the underlying
intention is numerical stability of the learning algorithm, however we argue that the major
advantage of such parametrizations is to ensure a stable behavior of the system. Second,
similar stability assumptions are standard in control theory.
Assumption 5. and 6: are again fairly standard, as they require the weights of the encoder,
decoder and network layers’ to be bounded.

Appendix D. Technical results on Rademacher contractions

In this section we need to prove (µ, c)-RC property for linear (or affine) transformations
which are constant in time, in many cases. For better readibility, we only do the calculations
once and use it as a lemma.

Lemma 12 Let u ∈ ℓp,pT (Rnu) =: X1 and let fW,b(u) = W (u)+b ∈ ℓq,qT (Rnv) =: X2, where
W ∈ L(X1, X2) is a linear operator and b ∈ X2. We consider the cases

a) p = q = 2,

b) p = 2, q = ∞,

c) p = q = ∞.

Let us assume that W ∈ W such that sup
W∈W

∥W∥op < KW and b ∈ B such that sup
b∈B

∥b∥q,q <

Kb for all the considered cases. Then the set of transformation F = {fW,b | W ∈ W,b ∈ B}
is (KW ,Kb)-RC in all three cases. Furthermore, the image of the ball BX1(r) under f ∈ F
is contained in BX2(KW r +Kb).

Remark 13 For the special case of affine transformations that are constant in time, i.e.
f(u)[k] = Wu[k] +b for a weight matrix W ∈ Rnv×nu and bias term b ∈ Rnv for all k ∈ [T ],
the operator norm equals to the corresponding matrix norm, i.e ∥W∥op = ∥W∥p,q. In this
case, b is the sequence for which b[k] = b for all k ∈ [T ], thus ∥b∥ℓq,qT (Rnv ) = ∥b∥q.
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Generalization bounds for deep SSMs

Proof First let us prove a simple fact about Rademacher random variables that we will
need, namely if σ = {σi}Ni=1 is a sequence of i.i.d. Rademacher variables, then

Eσ

[∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
]
≤

√
N. (3)

This is true, because

Eσ

[∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
]
=

√√√√(Eσ

[∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
])2

≤

√√√√√Eσ

∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
2


=

√√√√√Eσ

 N∑
i=1

σ2
i + 2

N∑
i,j=1

σiσj

 =

√√√√ N∑
i=1

Eσ

[
σ2
i

]
+ 2

N∑
i,j=1

Eσ [σiσj ] =
√
N,

where the first inequality follows from Jensen’s inequality and the last equality follows from
the linearity of the expectation, and the facts that σi are Rademacher variables and form
and i.i.d sample.

The proof is the same for all the considered cases of p and q. For Z ∈ ℓp,pT (Rnu) we have

Eσ

 sup
(W,b)∈W×B

sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σi(W (ui) + b)

∥∥∥∥∥
ℓq,qT (Rnv )


≤ Eσ

 sup
W∈W

sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiW (ui)

∥∥∥∥∥
ℓq,qT (Rnv )

+ Eσ

sup
b∈B

∥∥∥∥∥ 1

N

N∑
i=1

σib

∥∥∥∥∥
ℓq,qT (Rnv )


= Eσ

 sup
W∈W

sup
{ui}Ni=1∈Z

∥∥∥∥∥W
(

1

N

N∑
i=1

σiui

)∥∥∥∥∥
ℓq,qT (Rnv )

+ Eσ

sup
b∈B

∥∥∥∥∥ 1

N

N∑
i=1

σib

∥∥∥∥∥
ℓq,qT (Rnv )


≤ Eσ

 sup
W∈W

∥W∥op sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓp,pT (Rnu )

+ Eσ

[
1

N

∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣ supb∈B
∥b∥ℓq,qT (Rnv )

]

≤ sup
W∈W

∥W∥op Eσ

 sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓp,pT (Rnu )

+ sup
b∈B

∥b∥ℓq,qT (Rnv ) Eσ

[
1

N

∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
]

≤ sup
W∈W

∥W∥op Eσ

 sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓp,pT (Rnu )

+
1√
N

sup
b∈B

∥b∥ℓq,qT (Rnv )

where the first inequality follows from the triangle inequality, the first equality is the linearity
of W , the second inequality follows from the definition of the operator norm, while the third
and fourth inequalities refer only to the bias term and follow from the absolute homogenity
of the norm and equation (3).

The values of (p, q) influence the terms ∥W∥op and ∥b∥ℓq,qT (Rnv ) . As a result, for the
separate cases of a), b) and c) it is enough to separately bound these norms with constants
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similar to KW . In the statement of the Lemma we assumed universal constants KW and Kb

that do not depend on the values of (p, q).
We can see that the calculations hold if the transformations are restricted to the ball

BX1(r) for any choice of X1 we consider. The radius can grow as

∥W (u) + b∥ℓq,qT (Rnv ) ≤ ∥W (u)∥ℓq,qT (Rnv ) + ∥b∥ℓq,qT (Rnv ) ≤ ∥W∥op ∥u∥ℓp,pT (Rnu ) + ∥b∥ℓq,qT (Rnv ) .

Remark 13 is straightforward from the definitions of the considered norms.

D.1. Proofs for elements of deep SSMs

What we have left are the following. First, in light of the previous corollary, we need to show
that each component of a deep SSM model is (µ, c)-RC for some µ and c w.r.t. compatible
normed spaces. Second, we need to show that the Rademacher complexity of a (µ, c)-RC
model set are bounded in terms of µ and c. We start with the first one.

Lemma 14 Let WEnc, WDec, and E denote some sets of parameters of some fixed Encoder,
Decoder and SSM layers, respectively. Moreover, let {Wi × Bi}L+1

i=1 the parameter set of an
MLP layer defined in Definition 9, and let WGLU be the parameter set of a GLU layer defined
in Definition 10. The corresponding function sets (in line with Assumption 11) are

• FEnc = {fEnc = ⟨W, ·⟩ | W ∈ WEnc, sup
W∈WEnc

∥W∥2,2 < KEnc},

• FDec = {fDec = ⟨W, ·⟩ | W ∈ WDec, sup
W∈WDec

∥W∥∞,∞ < KDec},

• FSSM = {SΣ | Σ ∈ E , sup
Σ∈E

∥Σ∥p < Kp, p = 1, 2},

• Fρ
MLP =


fdeep = fW1,b1 ◦ . . . ◦ fWL,bL

◦ gWL+1,bL+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Wi,bi) ∈ Wi × Bi,

sup
W∈Wi

∥W∥∞,∞ < KW ,

sup
b∈Bi

∥b∥∞ < Kb,

1 ≤ i ≤ L+ 1


,

• FGLU =

fGLU = GELU(·)⊙ σ ◦ ⟨W,GELU(·)⟩

∣∣∣∣∣∣∣
WGLU ∈ WGLU,

sup
W∈WGLU

∥W∥∞,∞ < KGLU

,

where SΣ denotes the input-output map of the dynamical system Σ, ρ is either the sigmoid or
ReLU activations, and σ denotes the sigmoid functions in the definition of GLU. Then all of
these function sets are (µ, c)-RC according to the following table, where for any Banach space
X , BX (t) = {x ∈ X | ∥x∥X ≤ r} denotes the ball of radius r centered in zero for arbitrary r.
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Generalization bounds for deep SSMs

µ c X1 X2

FEnc KEnc 0 B
ℓ2,2T (Rnin )

(r) B
ℓ2,2T (Rnu )

(KEncr)

FDec KDec 0 Bℓ∞,∞
T (Rnu )(r) Bℓ∞,∞

T (Rnout )(KDecr)

KDec 0 B(Rnu ,∥·∥∞)(r) B(Rnout ,∥·∥β)(KDecr)

FSSM K2 0 B
ℓ2,2T (Rnu )

(r) Bℓ∞,∞
T (Rny )(K2r)

K1 0 Bℓ∞,∞
T (Rnu )(r) Bℓ∞,∞

T (Rny )(K1r)

FReLU
MLP 4KW (L+ 1) 4Kb

L∑
q=1

(4KW )q Bℓ∞,∞
T (Rnu )(r) Bℓ∞,∞

T (Rnu )

(
KL+1

W r +Kb

L−1∑
q=1

Kq
W

)
Fsigmoid

MLP KW (L+ 1) (Kb + 0.5)
L∑

q=1
(KW )q Bℓ∞,∞

T (Rnu )(r) Bℓ∞,∞
T (Rnu )(KW r +Kb)

FGLU
16(r(KGLU + 1)2

+KGLU + 1)
0 Bℓ∞,∞

T (Rnu )(r) Bℓ∞,∞
T (Rnu )(r)

Furthermore, the operation of fPool, according the definition of deep SSMs, is (1, 0)-RC
between X1 = Bℓ∞,∞

T (Rnu )(r) and X2 = B(Rnu ,∥·∥∞)(r).

Proof
Encoder and Decoder. The Encoder is case a), while the Decoder is case b) in Lemma

12 along with Remark 13.
SSM. As discussed in Appendix B, an SSM is equivalent to a linear transformation called

its input-output map. Therefore, by Lemma 12, the SSM is (µ, 0)-RC in both cases, where µ
is the operator norm of the input-output map. Combining this with Lemma 6 yields the
result.

Remark 15 As the value of T is fixed, the input-output map can be described by the so-called
Toeplitz matrix of the system. In this case, the operator norm equals to the appropriate induced
matrix norm of the Toeplitz matrix. For the case of T = ∞, the input-output map still exists
and is a linear operator. The proof of Lemma 12 holds in this case as well for operator norms.

Pooling. For any Z ⊆ ℓ∞,∞
T (Rnu) we have

Eσ

[
sup

{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σif
Pool(zi)

∥∥∥∥∥
∞

]

= Eσ

[
sup

{zi}Ni=1∈Z
sup

1≤j≤nu

∣∣∣∣∣ 1N
N∑
i=1

σi

(
1

T

T∑
k=1

z
(j)
i [k]

)∣∣∣∣∣
]

= Eσ

[
sup

{zi}Ni=1∈Z
sup

1≤j≤nu

∣∣∣∣∣ 1T
T∑

k=1

(
1

N

N∑
i=1

σiz
(j)
i [k]

)∣∣∣∣∣
]

≤ Eσ

[
sup

{zi}Ni=1∈Z

1

T

T∑
k=1

sup
1≤j≤nu

∣∣∣∣∣ 1N
N∑
i=1

σiz
(j)
i [k]

∣∣∣∣∣
]
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= Eσ

[
sup

{zi}Ni=1∈Z

1

T

T∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

σizi[k]

∥∥∥∥∥
∞

]

≤ Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )



MLP with sigmoid activations. Consider a single hidden layer f(x) = ρ(g(x)), where
g(x) = Wx+ b is the preactivation and let G = {g(x) = Wx+ b | W ∈ W,b ∈ B} denote
the set of possible preactivation functions. As compared to Definition 9, we omit the subscript
from the notation of g. For an input sequence z ∈ ℓ∞,∞

T (Rnu) let g(z) ∈ ℓ∞,∞
T (Rnv) mean

that we apply g for each timestep independently, i.e. g(z)[k] = g(z[k]). We have

Eσ

sup
g∈G

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiρ(g(zi))

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


= Eσ

[
sup

(W,b)∈W×B
sup

{zi}Ni=1∈Z
sup

1≤k≤T

∥∥∥∥∥ 1

N

N∑
i=1

σiρ(Wzi[k] + b)

∥∥∥∥∥
∞

]

Let xi = i, i = 1, . . . , N and let H = {hW,b,z,k | (W,b, z, k) ∈ W×B×(Z∪{0})×[T ]} such
that hW,b,z,k(xi) = g(zi[k]). Under the assumption that H is symmetric to the origin, meaning
that h ∈ H implies −h ∈ H (equivalently (W,b) ∈ W × B implies (−W,−b) ∈ W × B), we
can apply (Truong, 2022b, Theorem 9) for the sigmoid activation and hence ρ− ρ(0) being
odd, as follows.

Eσ

[
sup

(W,b)∈W×B
sup

{zi}Ni=1∈Z
sup

1≤k≤T

∥∥∥∥∥ 1

N

N∑
i=1

σiρ(Wzi[k] + b)

∥∥∥∥∥
∞

]

= Eσ

[
sup
h∈H

∥∥∥∥∥ 1

N

N∑
i=1

σiρ(h(xi))

∥∥∥∥∥
∞

]

≤ Eσ

[
sup
h∈H

∥∥∥∥∥ 1

N

N∑
i=1

σih(xi)

∥∥∥∥∥
∞

]
+

1

2
√
N

= Eσ

[
sup

(W,b)∈W×B
sup

{zi}Ni=1∈Z
sup

1≤k≤T

∥∥∥∥∥ 1

N

N∑
i=1

σi(Wzi[k] + b)

∥∥∥∥∥
∞

]
+

1

2
√
N

= Eσ

 sup
(W,b)∈W×B

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σi(Wzi + b)

∥∥∥∥∥
ℓ∞,∞
T (Rnv )

+
1

2
√
N

,
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Generalization bounds for deep SSMs

because the sigmoid is 1-Lipschitz and ρ(0) = 0.5. Now we can apply Lemma 12 (see Remark
13) to get that

Eσ

 sup
(W,b)∈W×B

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σi(Wzi + b)

∥∥∥∥∥
ℓ∞,∞
T (Rnv )

+
1

2
√
N

≤ sup
W∈W

∥W∥∞,∞ Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

+
1√
N

sup
b∈B

∥b∥∞ +
1

2
√
N

Therefore, the sigmoid MLP layer is (KW ,Kb + 0.5)-RC. The restriction of an MLP to
the ball Bℓ∞,∞

T (Rnu )(r) maps to the ball Bℓ∞,∞
T (Rnv )(1), because of the elementwise sigmoid

activation. For the deep model the result is starightforward from Lemma 2 along with Lemma
12, Remark 13 and Remark 19.

MLP with ReLU activations. Similarly to the sigmoid case, we assume the upper
bounds KW and Kb exist, but we don’t assume the symmetry of the parameter set. The
proof is the same as in the sigmoid case up to the first inequality. Here we can apply (Ledoux
and Talagrand, 1991, Equation 4.20) (this is the same idea as in the proof of (Golowich et al.,
2018, Lemma 2)) to get

Eσ

[
sup
h∈H

∥∥∥∥∥ 1

N

N∑
i=1

σiρ(h(xi))

∥∥∥∥∥
∞

]
≤ 4Eσ

[
sup
h∈H

∥∥∥∥∥ 1

N

N∑
i=1

σih(xi)

∥∥∥∥∥
∞

]
,

where we used that ρ(x) = ReLU(x) is 1-Lipschitz and the same logic for the alternative
definition of the Rademacher complexity as in the proof of Lemma 14, which results in a
constant factor of 2. The constant 4 is then obtained by the additional constant factor 2
from Talagrand’s lemma. The rest of proof is identical to the sigmoid case.

The restriction of an MLP to the ball Bℓ∞,∞
T (Rnu )(r) maps to the ball Bℓ∞,∞

T (Rnv )(KW r+

Kb), because the elementwise ReLU does not increase the infinity norm, hence we can apply
Lemma 12 and Remark 13. Again, for the deep model the result is straightforward from
Lemma 2 along with Lemma 12, Remark 13 and Remark 19.

GLU. First of all, we show that the function h : (R2, ∥·∥2) → (R, | · |) defined as
h(x) = x1 ·σ(x2) is

√
2(K+1)-Lipschitz on a bounded domain, where |xi| ≤ K for all x ∈ R2

we consider. We will later specify the value of K in relation to Assumption 11. By the
sigmoid being 1-Lipschitz, we have

|h(x)− h(y)| = |x1σ(x2)− y1σ(x2) + y1σ(x2)− y1σ(y2)| ≤
|(x1 − y1)σ(x2)|+ |y1(σ(x2)− σ(y2))| ≤ |x1 − y1|+ |y1||x2 − y2|
≤

√
2(K + 1) ∥x− y∥2

Second, we recall Corollary 4 in Maurer (2016).

Theorem 16 (Maurer (2016)) Let X be any set, (x1, . . . ,xN ) ∈ XN , let F be a set of
functions f : X → ℓ2T (Rm) and let h : ℓ2T (Rm) → R be an L-Lipschitz function. Under

13



fk denoting the k-th component function of f and σik being a doubly indexed Rademacher
variable, we have

Eσ

[
sup
f∈F

N∑
i=1

σih(f(xi)) ≤
√
2LEσ

[
sup
f∈F

N∑
i=1

m∑
k=1

σikfk(xi)

]]
.

We wish to apply Theorem 16 to GLU layers. For any Z ⊆ ℓ∞,∞
T (Rnu), by letting

GLUW (z) = fGLU (z) we have

Eσ

 sup
W∈W

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiGLUW (zi)

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


= Eσ

[
sup
W∈W

sup
{zi}Ni=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1N
N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]

Now this is an alternative version of the Rademacher complexity, where we take the absolute
value of the Rademacher average. In order to apply Theorem 16, we reduce the problem to
the usual Rademacher complexity. In turn, we can apply the last chain of inequalities in the
proof of Proposition 6.2 in Hajek and Raginsky (2019). Concretely, by denoting O = {0}Ni=1

and noticing that GLUW (0) = 0, we have

Eσ

[
sup
W∈W

sup
{zi}Ni=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1N
N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]

≤ 2Eσ

[
sup
W∈W

sup
{zi}Ni=1∈Z∪{O}

sup
1≤k≤T

sup
1≤j≤nu

1

N

N∑
i=1

σiGLU
(j)
W (zi)[k]

]

Let xi = i, i = 1, . . . , N and let F = {fW,z,k,j | (W, z, k, j) ∈ W× (Z∪{0})× [T ]× [nu]} such

that fW,z,k,j(xi) =
[
GELU(zi[k])

(j) (W (GELU(zi[k])))
(j)
]T

for z = {zi}Ni=1 ∈ Z. Since

Z ⊆ (Bℓ∞,∞
T (Rnu )(Ku))

N , it follows for all {zi}Ni=1 ∈ Z and for all k ∈ N that ∥zi[k]∥∞ ≤ Ku,
and hence |GELU(zi[k])

(j)| < Ku, leading to |W (GELU(zi[k]))
(j)| < sup

W∈W
∥W∥∞,∞ ·Ku.

In particular, GLU
(j)
W (zi)[k] = h(fW,z,k,j(xi)) = h|B(fW,z,k,j(xi)), where h|B is the restriction

of h to B = {x ∈ R2 | ∥x∥∞ < K}, and hence h|B is
√
2(K + 1)-Lipschitz. Therefore we can

set K = max{Ku, sup
W∈W

∥W∥∞,∞ ·Ku}.

We are ready to apply Theorem 16, together with the GLU definition and its
√
2(K + 1)-

Lipschitzness, we have

2Eσ

[
sup
W∈W

sup
{zi}Ni=1∈Z∪{O}

sup
1≤k≤T

sup
1≤j≤nu

1

N

N∑
i=1

σiGLU
(j)
W (zi)[k]

]
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Generalization bounds for deep SSMs

= 2Eσ

[
sup
f∈F

1

N

N∑
i=1

σih(f(xi))

]
≤ 4(K + 1)Eσ

[
sup
f∈F

1

N

N∑
i=1

σiGELU(zi[k])
(j)

]
︸ ︷︷ ︸

A

+ 4(K + 1)Eσ

[
sup
f∈F

1

N

N∑
i=1

σiW (GELU(zi))
(j)[k]

]
︸ ︷︷ ︸

B

Due to the definition of GELU, its 2-Lipschitzness Qi et al. (2023) and (Ledoux and Talagrand,
1991, Theorem 4.12) we have

A = Eσ

 sup
{zi}Ni=1∈Z∪{O}

∥∥∥∥∥ 1

N

N∑
i=1

σiGELU(zi)

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

 =

≤ 4Eσ

 sup
{zi}Ni=1∈Z∪{O}

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

 = 4Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


and

B = Eσ

 sup
W∈W

sup
{zi}Ni=1∈{O}

∥∥∥∥∥ 1

N

N∑
i=1

σiW (GELU(zi))

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


≤ sup

W∈W
∥W∥∞,∞ Eσ

 sup
{zi}Ni=1∈Z{O}

∥∥∥∥∥ 1

N

N∑
i=1

σiGELU(zi)

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


≤ 4 sup

W∈W
∥W∥∞,∞ Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


Here we used the linearity of W and the exact same calculation as in the proof of Lemma 12.

By combining the inequalities above, it follows that

Eσ

[
sup
W∈W

sup
{zi}Ni=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1N
N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]
≤

16(K + 1)

(
sup
W∈W

∥W∥∞,∞ + 1

)
Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


Substituting the value of K gives the result.

D.2. Proof of compostion Lemma 2

Proof [Proof of Lemma 2] Let Z ⊆ XN
1 and Z̃ = {{φ1(ui)}Ni=1 | φ1 ∈ Φ1}. We have

Eσ

 sup
φ2∈Φ2

sup
φ1∈Φ1

sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiφ2(φ1(ui))

∥∥∥∥∥
X3
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= Eσ

 sup
φ2∈Φ2

sup
{vi}Ni=1∈Z̃

∥∥∥∥∥ 1

N

N∑
i=1

σiφ2(vi)

∥∥∥∥∥
X3


≤ µ2Eσ

 sup
φ1∈Φ1

sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiφ1(ui)

∥∥∥∥∥
X2

+
c2√
N

≤ µ2µ1Eσ

 sup
{ui}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ µ2
c1√
N

+
c2√
N

The upcoming corollary is straightforward by induction along with the fact that the
pooling layer fPool is (1, 0)-RC (see Lemma 14).

Corollary 17 Let F be a set of deep SSM models, i.e. according to Definition of deep SSM,
for f ∈ F we have f = fDec ◦ fPool ◦ fBL ◦ . . . ◦ fB1 ◦ fEnc, such that fEnc, fDec and each
fBi are from (µ0, c0)-RC, (µL+1, cL+1)-RC and (µi, ci)-RC sets respectively for all i. Then

F is

(
L+1∏
i=0

µi,
L∑

j=1

[
L+1∏
i=j+1

µi

]
cj

)
-RC.

We can see that the SSM layer can only increase the input’s complexity by the factor
∥Σ∥p, p = 1, 2, a quantity that gets smaller as the system gets more stable. This gets even
more crucial when dealing with long range sequences, because the Neural Network layers are
constant in time.

Remark 18 The results of of Lemma 14 hold for unbounded input spaces as well. The
reason for restricting the input space to a ball of radius r is the composition with MLPs or
GLU layers, as discussed in the interpretation of Definition 1.

Appendix E. Statement and proof of the main theorem

So far we showed in D that each component of a deep SSM model satisfies Definition 1. We
also proved that the composition of such components also satisfies the definition. The main
theorem summarizes these results and exploits the fact that the Rademacher complexity of a
(µ, c)-RC set of models is upper bounded by terms containing µ and c.

Before we state the formal theorem let us discuss balls in Banach spaces regarding the
contraction lemma.

Remark 19 The results of of Lemma 14 hold for unbounded input spaces as well. The
reason for restricting the input space to a ball of radius r is the composition with GLU layers,
as discussed in the interpretation of Definition 1. As a result of Lemma 14, the restriction of
a deep SSM model to a ball of an arbitrary radius r has its image contain in a ball with a
radius r̂ depending on r and the possible parameter set of each layer in the composite model.
The exact value of r̂ can be calculated using Lemma 14. Namely, consider a residual SSM
block, defined as fB(z)[k] = g(SΣi(z)[k]) + αz[k] for all k ∈ [T ]. Let Rg(r) and RΣ(r) be

16
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the radius of the ball that is an image of the ball of radius r in the domain, which can be
obtained from Lemma 14. Then the radius r̂ = Rf (r) = (Rg(r)RΣ(r) + α)r. We can apply
this formula recursively to get the radius belonging to a deep SSM model containing several
blocks.

Theorem 20 Let F be a set of deep SSM models, namely let f ∈ F has the form f =
fDec ◦ fPool ◦ fBL ◦ . . . ◦ fB1 ◦ fEnc with layer parameter sets WDec, WBL

, . . . ,WB1 and WEnc
respectively, where fBi is an SSM block for all i, i.e. fBi(z)[k] = gi(SΣi(z)[k]) + αiz[k] for
all k ∈ [T ], and WBi = Ei ×Wgi . Let Assumption 11 hold and let us assume that each f ∈ F
maps from B(Rnu ,∥·∥2)(Ku), and each set of nonlinearities gi is (µgi , cgi)-RC.

Under these assumptions, there exists r̂ < ∞ such that the image of each f ∈ F is
contained in the ball B(R,|·|)(r̂) and the following holds with probability at least 1− δ.

PS∼DN

[
∀f ∈ F L(f)− LS

emp(f) ≤
µKuLl + cLl√

N
+Kl

√
2 log(4/δ)

N

]
, (4)

µ ≤ KEncKDec (µg1K2 + α1)
L∏
i=2

(µgiK1 + αi), c ≤ KDec
L∑

j=1

[
L∏

i=j+1
(µgiK1 + αi)

]
cgj and

Kl > 0 such that |l(·, ·)| ≤ Kl. In particular, we obtain Kl ≤ 2Ll max{KDecr̂, Ky}.

Proof [Proof of Theorem 20]
First, let us recite the definition of Rademacher complexity.

Definition 21 (Shalev-Shwartz and Ben-David, 2014, Def. 26.1) The Rademacher complex-
ity of a bounded set A ⊂ Rm is defined as

R(A) = Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
,

where the random variables σi are i.i.d such that P[σi = 1] = P[σ = −1] = 0.5. The
Rademacher complexity of a set of functions F over a set of samples S = {s1 . . . sm} is
defined as RS(F) = R({(f(s1), . . . , f(sm)) | f ∈ F}).

The following is a standard theorem we use in the proof.

Theorem 22 (Shalev-Shwartz and Ben-David, 2014, Thm. 26.5) Let L0 denote the set of
functions of the form (u, y) 7→ l(f(u), y) for f ∈ F . Let Kl be such that the functions from
L0 all take values from the interval [0,Kl]. Then for any δ ∈ (0, 1) we have

PS∼DN

(
∀f ∈ F : L(f)− LS

emp(f) ≤ 2RS(L0) +Kl

√
2 log(4/δ)

N

)
≥ 1− δ.

We wish to apply the Theorem 22 to the set of deep SSM models F . Let us fix a random

sample S = {u1, . . . ,uN} ⊂
(
ℓ2,2T (Rnin)

)N
. As the loss function is Lipschitz according to

Assumption 11, we have that for any f ∈ F

|l(f(u), y)| ≤ 2Ll max{f(u), y} ≤ 2Ll max{KDecr̂, Ky},
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thus Kl ≤ 2Ll max{KDecr̂ Ky}. The constant r̂ exists as a corollary of Lemma 14, see
Remark 19.

Again by the Lipschitzness of the loss and the Contraction lemma (Shalev-Shwartz and
Ben-David, 2014, Lemma 26.9) we have

RS(L0) ≤ Ll ·RS(F).

It is enough to bound the Rademacher complexity of F to conclude the proof. Let us
consider the deep SSM models as a composite of mappings as

B
ℓ2,2T (Rnin )

(Ku)
Encoder−−−−−→ B

ℓ2,2T (Rnu )
(KuKEnc)

B1−→ Bℓ∞,∞
T (Rnu )(r1)

B2−→ . . .
BL−−→

Bℓ∞,∞
T (Rnu )(rL+1)

Pooling−−−−→ (Rnu , ∥·∥∞)
Decoder−−−−−→ (R, | · |),

where the constants ri exist as a corollary of Lemma 14, see Remark 19. Therefore, the SSM
layer in the first SSM block is considered as a map B

ℓ2,2T (Rnu )
(KEncKu) → Bℓ∞,∞

T (Rnu )(r1),
while the rest of the SSM layers in the SSM blocks are considered as a map Bℓ∞,∞

T (Rnu )(ri) →
Bℓ∞,∞

T (Rnu )(ri+1). This is needed, because the Encoder is constant in time, therefore the
Composition Lemma wouldn’t be able to carry the ℓ2,2T norm of the input through the chain
of estimation along the entire model. This is one of the key technical points which makes it
possible to establish a time independent bound.

By the conditions of the Theorem and the stability assumption in Assumption 11 we
have that the Encoder, Decoder, Pooling, SSM and MLP layers are each (µ, c)-RC for some
µ and c from Lemma 14. By Lemma 2 we have that the composition of an SSM layer and an
MLP is (µ, c)-RC. A residual SSM block is then (µ+ α, c)-RC, because

Eσ

 sup
g◦SΣ

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σi(g(SΣ(zi)) + αzi)

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

 ≤

Eσ

 sup
g◦SΣ

sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σig(SΣ(zi))

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

+ αEσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )


≤ (µ+ α)Eσ

 sup
{zi}Ni=1∈Z

∥∥∥∥∥ 1

N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞,∞
T (Rnu )

+
c√
N

Hence, by Corollary 17, the whole deep SSM model is (µ, c)-RC as a map between
X1 = B

ℓ2,2T (Rnin )
(Ku) and X2 = (R, | · |). The Theorem is then a direct corollary of the

following Lemma.

Lemma 23 Let F be a set of functions between X1 = B
ℓ2,2T (Rnin )

(Ku) and X2 = (R, | · |) that
is (µ, c)-RC. The Rademacher complexity of F w.r.t. some dataset S for which Assumption
11 holds, admits the following inequality.

RS(F) ≤ µKu + c√
N

.
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Proof

RS(F) = R(
{
(f(u1), . . . , f(uN ))T | f ∈ F

}
) = Eσ

[
sup
f∈F

1

N

N∑
i=1

σif(ui)

]

≤ Eσ

[
sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

σif(ui)

∣∣∣∣∣
]
≤ µEσ

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2,2T (Rnin )

+
c√
N

By definition ∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2,2T (Rnin )

=

√√√√ T∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

σiui[k]

∥∥∥∥∥
2

2

=

√√√√ T∑
k=1

〈
1

N

N∑
i=1

σiui[k],
1

N

N∑
j=1

σjuj [k]

〉
Rnin

=

√√√√ T∑
k=1

1

N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k],uj [k]⟩Rnin

Therefore

Eσ

∥∥∥∥∥ 1

N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2,2T (Rnin )

 = Eσ

√√√√ T∑
k=1

1

N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k],uj [k]⟩Rnin


≤

√√√√√Eσ

 T∑
k=1

1

N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k],uj [k]⟩Rnin


=

√√√√ T∑
k=1

1

N2

N∑
i=1

N∑
j=1

Eσ [σiσj ] ⟨ui[k],uj [k]⟩Rnin

=

√√√√ T∑
k=1

1

N2

N∑
i=1

Eσ

[
σ2
i

]
⟨ui[k],ui[k]⟩Rnin

=

√√√√ 1

N2

N∑
i=1

T∑
k=1

∥ui[k]∥22 =

√√√√ 1

N2

N∑
i=1

∥ui∥2ℓ2,2T (Rnin )
≤
√

1

N2
NK2

u ≤ Ku√
N

Hence we have

RS(F) ≤ µKu + c√
N
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The constants µ and c are obtained by substituting the results of Lemma 14 into the
Corollary 17.

References

Nil-Jana Akpinar, Bernhard Kratzwald, and Stefan Feuerriegel. Sample complexity bounds for
rnns with application to combinatorial graph problems (student abstract). Proceedings of
the AAAI Conference on Artificial Intelligence, 34(10):13745–13746, 4 2020. doi: 10.1609/
aaai.v34i10.7144. URL https://ojs.aaai.org/index.php/AAAI/article/view/7144.

Athanasios C Antoulas. Approximation of large-scale dynamical systems. SIAM, 2005.

VS Chellaboina, WM Haddad, DS Bernstein, and DA Wilson. Induced convolution operator
norms for discrete-time linear systems. In Proceedings of the 38th IEEE Conference on
Decision and Control (Cat. No. 99CH36304), volume 1, pages 487–492. IEEE, 1999.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent
neural networks. In Proceedings of AISTATS 2020, volume 108 of PMLR, pages 1233–1243,
8 2020.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages
933–941. PMLR, 2017.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine
Learning, pages 5793–5831. PMLR, 2022.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity
of neural networks. In Conference On Learning Theory, pages 297–299. PMLR, 2018.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. Advances in Neural Information Processing
Systems, 35:35971–35983, 2022.

Bruce Hajek and Maxim Raginsky. Ece 543: Statistical learning theory. University of Illinois
lecture notes, 2019.

Joshua Hanson and Maxim Raginsky. Rademacher complexity of neural odes via chen-fliess
series. arXiv preprint arXiv:2401.16655, 2024.

20

https://ojs.aaai.org/index.php/AAAI/article/view/7144


Generalization bounds for deep SSMs

Joshua Hanson, Maxim Raginsky, and Eduardo Sontag. Learning recurrent neural net models
of nonlinear systems. In Proceedings of the 3rd Conference on Learning for Dynamics and
Control, volume 144 of PMLR, pages 425–435. PMLR, 6 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Boris Joukovsky, Tanmoy Mukherjee, Huynh Van Luong, and Nikos Deligiannis. Generaliza-
tion error bounds for deep unfolding rnns. In Proceedings of the Thirty-Seventh Conference
on Uncertainty in Artificial Intelligence, volume 161 of PMLR, pages 1515–1524. PMLR, 7
2021.

Pascal Koiran and Eduardo D. Sontag. Vapnik-chervonenkis dimension of recurrent neural
networks. Discrete Applied Mathematics, 86(1):63–79, 1998.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and
Processes, volume 23. Springer Science & Business Media, 1991.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Algorithmic
Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21,
2016, Proceedings 27, pages 3–17. Springer, 2016.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv
preprint arXiv:2303.06349, 2023.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing
lipschitz continuity to vision transformers. arXiv preprint arXiv:2304.09856, 2023.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space
layers for sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Eduardo D Sontag. A learning result for continuous-time recurrent neural networks. Systems
& control letters, 34(3):151–158, 1998.

Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization
bounds for transformers. In International Conference on Artificial Intelligence and Statistics,
pages 1405–1413. PMLR, 2024.

Lan V Truong. Generalization error bounds on deep learning with markov datasets. Advances
in Neural Information Processing Systems, 35:23452–23462, 2022a.

Lan V Truong. On rademacher complexity-based generalization bounds for deep learning.
arXiv preprint arXiv:2208.04284, 2022b.

Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via
lipschitz augmentation. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

21



Jiong Zhang, Qi Lei, and Inderjit Dhillon. Stabilizing gradients for deep neural networks
via efficient SVD parameterization. In 35th ICML, volume 80 of PMLR, pages 5806–5814.
PMLR, 7 2018.

22


	Introduction
	Preliminaries
	Rademacher contraction of deep SSMs
	Stability of SSMs
	Elements of deep SSM models
	Assumptions
	Technical results on Rademacher contractions
	Proofs for elements of deep SSMs
	Proof of compostion Lemma 2

	Statement and proof of the main theorem

