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Abstract

Adopting a closed-loop supply chain enhances spare part provisioning through repair, remanu-

facturing, and recycling. However, poor maintenance of components can have severe consequences.

Unlike traditional opportunistic maintenance methods that assume regular inspections or precise

degradation monitoring, we propose a model that leverages historical repair data to replace worn

components preventively. It considers the real-world workflow where parts are often restored only

to a functional level. We study maintenance strategies for repeatedly repaired multi-component

systems by applying preventive operations only during corrective repairs. Our model considers

component ages, failure time distributions, and structural and economic dependencies, favoring

collective over individual replacements for cost efficiency. Stochastic dependencies are mapped

using Nataf transformation for component subsets, and a genetic algorithm identifies optimal

maintenance strategies to reduce long-term operational costs by balancing maintenance against

potential failure penalties. We demonstrate the effectiveness of our approach with a case study on

MRI power supply machines, showing that preventive actions can cut early life failures by up to

50% and extend useful life by over a year. Sensitivity analysis reveals that logistic costs, interest

rates, and planning horizons influence decisions. Opportunistic maintenance can reduce logistic

costs and increase the lifetime of spare parts after repair. Integrating stochastic dependency is

computationally efficient for industrial systems and can help predict failures more accurately.

Keywords: multi-component spare parts; opportunistic maintenance; reliability; stochastic

dependence; Nataf transformation.

1. Introduction

Maintenance is a crucial element in asset life cycle management, as it directly affects the

reliability and availability of assets and represents a significant portion of life cycle costs (Zhu

et al., 2021). For instance, operations and maintenance costs for offshore wind farms can account

for up to a quarter of total life cycle costs (Papadopoulos et al., 2021; Irawan et al., 2017). To5

address these challenges, various maintenance strategies have been developed to optimize repair

processes, minimize system downtime, and reduce maintenance expenses. For an overview of

different maintenance strategies, refer to De Jonge and Scarf (2020) and Syan and Ramsoobag

(2019). A critical prerequisite for implementing any maintenance strategy is the availability of spare

parts. The unavailability of necessary spare parts can significantly delay maintenance activities,10
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leading to substantial financial losses (Hu et al., 2018; Zhang et al., 2022, 2021). Therefore,

establishing and operating an effective supply chain of spare parts while minimizing operational

costs is a critical operations management problem for companies.

A common industry solution is the closed-loop supply chain (CLSC) strategy, where failed

spare parts, called Line Replaceable Units (LRUs), are recovered, repaired, and reintegrated into15

the supply chain. This process reduces the need for new parts, cutting operational costs and

enhancing supply chain circularity. CLSCs have garnered substantial attention in recent decades

in both academic and business circles (Diallo et al., 2017). Research in this area has primarily

focused on strategic and tactical decisions such as supply chain network design (Moini et al., 2023;

Govindan et al., 2017), remanufacturing production planning and inventory control policies (Qin20

et al., 2021), coordination mechanisms (Zhao and Zhu, 2017), channel management (Tombido and

Baihaqi, 2022), and so on. However, much of this research assumes that repaired parts are as

reliable as new ones (Zhang et al., 2021). This assumption often fails in practice due to aging

components and potential repair-induced damage. For example, Figure 1 below shows real-world

statistics of the average lifetime of a spare part vs. the number of repairs (data from our industrial25

partner). The lifetime after repair keeps decreasing as the number of repairs increases. Failing to

account for these factors can lead to increased returns, reduced warranty profits, higher logistics

costs, and potential loss of clients.

Figure 1: Average lifetime evolution after repair

As emphasized by Mirzahosseinian and Piplani (2011), improving repair efficiency should take

precedence over simply adjusting basestock levels in CLSC systems. One effective approach to30

enhancing repair efficiency is deploying preventive maintenance techniques, which can anticipate

component failures before they occur. In this context, our paper proposes an opportunistic main-

tenance (OM) model designed to minimize long-term costs while maintaining the reliability of

repaired spare parts. Unlike remanufacturing, which restores products to a like-new state, re-

pairs address specific faults, leading to varying degrees of components’ degradation. Thus, each35

component may require a tailored maintenance strategy.

Traditional OM models rely on either time-based criteria (Zhu et al., 2021; Mena et al., 2021)

or condition-based assessments (Pinciroli et al., 2023; Zhu et al., 2019). However, both meth-

ods suffer from practical limitations. Time-based maintenance assumes the availability of known

preventive maintenance windows. In contrast, condition-based maintenance assumes the capabil-40
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ity to accurately monitor degradation through sensors or regular inspections, allowing for timely

interventions. In the context of spare parts repair, continuous monitoring of every component’s

degradation is economically unfeasible, and the only practical opportunity for preventive main-

tenance typically arises when a part fails and is returned for repair, making timely interventions

challenging.45

Given these constraints, our proposed OM model leverages repair events as opportunities for

preventive maintenance of aging but working components. This model evaluates each opportunity

to determine which components require replacement, considering their varying degrees of wear and

tear. These decisions can range from replacing a few key components to recommending the use

of an entirely new spare part. By carefully balancing maintenance costs with the reliability of50

repaired components, this model aims to reduce long-term operational costs within the CLSC.

Notably, when dealing with multi-component systems, considering component dependencies is

essential for effective maintenance strategies. Olde Keizer et al. (2017) identify four key types

of dependencies: economic, structural, stochastic, and resource. They also distinguish structural

dependencies between technical aspects, where one component’s maintenance necessitates servicing55

others, and performance aspects related to system configuration. Economic and performance-

based structural dependencies are the most studied due to their direct impact on OM performance

(Rebaiaia and Ait-Kadi, 2022; Wang et al., 2019; Salari and Makis, 2020). However, technical

dependencies receive less attention. For instance, Dinh et al. (2022) propose an OM strategy using a

directed acyclic graph (DAG) to model disassembly impacts. Our work builds on this by addressing60

technical structural dependencies to optimize repair times and minimize the negative effects of

disassembly. Furthermore, research that integrates multiple dependencies remains limited. For

example, Xu et al. (2024) develop a condition-based maintenance (CBM) model that addresses

stochastic, economic, and resource dependencies, while Sun et al. (2021) incorporate economic,

stochastic, and disassembly impacts. Our paper advances this research by proposing an OM65

model that jointly considers structural dependencies from technical and performance perspectives,

alongside stochastic and economic dependencies.

Stochastic dependencies, in particular, present significant computational challenges. Existing

methods that utilize time-based data and maintenance records, such as Monte Carlo simulations

(Son et al., 2016; Ahmad et al., 2022) and copula-based approaches (Lin et al., 2021; Navarro and70

Durante, 2017), are often limited to small systems due to their computational intensity. To over-

come these limitations, we propose a dimension reduction method that analytically approximates

the joint distribution of dependent component lifetimes more efficiently. This approach employs a

Nataf transformation to map correlated random variables from non-normal spaces to the standard

normal space, enabling the practical application of stochastic dependencies in larger, more complex75

systems.

Overall, taking a holistic and long-term approach to spare part maintenance can help orga-
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nizations balance cost savings, quality, and environmental sustainability. By carefully consider-

ing factors such as product phase, component dependencies, and component ages, organizations

can design maintenance strategies to optimize system lifespan and performance while minimizing80

waste and environmental impact. This work extends the research of Boujarif et al. (2023) by in-

tegrating stochastic dependencies and offering a comprehensive analysis of their impact on CLSC

efficiency. We propose an opportunistic replacement model that accounts for component ages, re-

maining useful life, and various dependency types, evaluated through case studies using data from

GE HealthCare (GEHC) Magnetic Resonance Imaging (MRI) machines. Our contribution to the85

CLSC models is to develop an opportunistic maintenance model for CLSC, as OM is used more

often in practice but rarely studied in the CLSC literature. More specifically, the contributions of

this paper include:

• Developing an OM model tailored to the closed-loop supply chain for spare parts, leveraging

maintenance records collected during repairs;90

• Integrating multiple dependencies—economic, structural (technical and performance), and

stochastic—within the maintenance model for a comprehensive analysis;

• Improving the existing method to evaluate repairable spare parts reliability under stochas-

tic dependency using clustering techniques to group dependent components based on their

correlation coefficient and a Nataf transformation to build joint distributions.95

Implementing these methods on GE HealthCare data showcases their accuracy in modeling

repairable part reliability under dependency, with significant improvements in failure prediction,

maintenance strategies, and overall system efficiency. This improved accuracy was evident in the

substantial gains in reliability post-implementation, with some parts showing up to an increase

in reliability of 25%. Moreover, the opportunistic maintenance strategy extends the remaining100

useful life of parts, in some cases, by more than a year. Economically, the model demonstrates

remarkable efficacy, achieving cost reductions of more than 5% due to lowered failure risks and

a 42% overall reduction in early life failure total costs. These improvements are coupled with a

notable decrease in CO2 emissions, contributing to environmental sustainability.

An important insight from our study is the role of stochastic dependency in improving the105

prediction accuracy of failures and enhancing the benefits of component changes. However, our

findings indicate that a model without dependency consideration can still yield reasonably good

results, especially for parts with a single critical failure component. Both models effectively pre-

dict early failures, and sometimes, disregarding dependencies may be more advantageous. These

insights emphasize the need to tailor maintenance strategies to the system’s specific characteris-110

tics, including component lifetimes and dependencies. Our approach offers a balanced solution

for improving multi-component systems’ operational efficiency, reliability, cost-effectiveness, and

sustainability.

The rest of the paper is organized as follows. Section 2 presents the state-of-the-art, and the

model formulation is described in Section 3. In Section 4, we describe the approach to modeling115
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stochastic dependency. We provide a study case based on real data with the description of the

genetic algorithm operators and the optimization technique in Section 5. We discuss the results in

Section 6. Section 7 discusses the developed strategy and derives managerial insights, and Section 8

summarizes the potential avenues for enhancing the model’s effectiveness and applicability. Finally,

Section 9 concludes the paper and highlights future research.120

2. Literature review

As shown in Section 1, the three main contributions of this paper lie in CLSC, opportunistic

maintenance and reliability modeling considering dependencies. In what follows, we briefly review

these three streams of research and then position the paper’s contributions within the existing

literature.125

2.1. Closed-loop supply chain

Research on closed-loop supply chains provides the theoretical foundation for discussions on

circular economy, focusing on recovery options like repairing, recycling, and remanufacturing to

reduce material needs, energy use, and waste, thereby enhancing profitability (Agrawal et al., 2019).

Reviews by Liu et al. (2019) and Kerin and Pham (2020) cover advancements in remanufacturing,130

while Selviaridis and Wynstra (2015) explore performance-based contracting and the interaction

between manufacturers and clients concerning repairable spares.

Most CLSC studies concentrate on strategic and tactical decisions such as network design and

inventory policies, aiming to maximize profits and minimize environmental impact (Souza, 2013).

For example, Zhang et al. (2021) analyze the pricing of remanufactured products, assuming they135

match the quality of new ones, while Tahirov et al. (2016) compare different production and re-

manufacturing models in CLSC. Moini et al. (2023) integrate inventory management with network

design decisions, incorporating economic, environmental, and social sustainability dimensions us-

ing Life Cycle Assessment (LCA) techniques. Their model considers repair capacity, expertise,

and demand uncertainty, employing a stochastic approach for more reliable decision-making. Ad-140

ditionally, Kim et al. (2018) propose a mathematical framework that incorporates a budget of

uncertainty to address the variability in recycled materials and processes, ultimately leading to a

more effective CLSC operation plan. This framework also considers the repair and production of

spare parts, along with the strategic location of supplier production and repair centers.

However, most CLSC literature assumes repaired parts are as good as new, with few studies145

addressing the actual quality of repaired spares. Notable exceptions include Kim et al. (2007),

who integrate reliability considerations into after-sales service management, calling for further re-

search on long-term product reliability versus inventory decisions. Jin and Tian (2012) respond

by combining reliability design with inventory optimization. Mirzahosseinian and Piplani (2011)

model a CLSC system that emphasizes improving component reliability and repair efficiency over150

adjusting basestock levels. Despite these efforts, quantitative models investigating the quality and
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reliability of repaired items in CLSC are scarce (Diallo et al., 2017). Qin et al. (2021) optimize

repairable spare parts provisioning in a multiregional market, considering failure rates but neglect-

ing the degradation effect after each repair. In this paper, we intend to fill this gap by developing

a quantitative, opportunistic optimization model to consider the reliability of the repaired spare155

parts and investigate its impact on CLSC.

2.2. Opportunistic maintenance

Opportunistic maintenance policy is a preventive strategy where functional components are

replaced during downtime alongside any failed ones. Ab-Samat and Kamaruddin (2014) review OM

strategies up to 2014, while Olde Keizer et al. (2017) focus on CBM with opportunistic replacement160

before 2017. Diallo et al. (2017) examine maintenance strategies for second-hand products up to

2017, highlighting the lack of opportunistic strategies in this area. We briefly review recent related

works and then position the paper’s contributions within the existing literature.

The literature generally classifies OM works into time-based and condition-based approaches.

Time-based maintenance schedules actions based on fixed thresholds like component age, irre-165

spective of actual condition. For example, Wang et al. (2021) and Sun et al. (2021) propose

an age-based opportunistic maintenance model for a two-unit series system. Zhu et al. (2021)

formulate the problem as a two-stage stochastic linear integer model and develop a progressive-

hedging-based heuristic algorithm to handle and solve large-scale problems. Mena et al. (2021)

develop a mixed-integer linear program to optimize group maintenance within predefined time170

windows. In contrast, CBM relies on real-time data, allowing maintenance to be scheduled based

on the actual condition of components. This approach is becoming more popular due to its effi-

ciency (Pinciroli et al., 2023). For instance, Chateauneuf et al. (2018) and Zhu et al. (2019) adopt

the risk-based measure to compare the risks of replacements or not. In contrast, recent studies

by Nguyen et al. (2019) delve into integrating predictive maintenance techniques with real-time175

monitoring systems, offering a more proactive approach to maintenance scheduling and reducing

the reliance on reactive measures.

Various dependency types are considered in OM literature when grouping maintenance opera-

tions. Olde Keizer et al. (2017) identify four main types: structural (static relationship between

components), stochastic (degradation of one component affecting others), economic (cost bene-180

fits from combined maintenance), and resource (involving shared maintenance resources like spare

parts or workers) (Yan et al., 2020; Wang and Zhu, 2021; Zhang et al., 2021, 2022). Recent stud-

ies introduce geographical dependencies addressing maintenance efficiency in dispersed systems

(Nguyen et al., 2019; Zhu et al., 2024).

Among these dependencies, economic and performance structural dependency are most fre-185

quently studied due to their direct impact on OM performance (Xu et al., 2024). Research by

Ma et al. (2018), Wang et al. (2019), and Salari and Makis (2020) explore CBM models that

account for shared setup costs in grouped operations. Nguyen et al. (2022) develop a value decom-
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position network algorithm to optimize the maintenance of series parallel system considering the

imperfect maintenance quality. Yang et al. (2022) build a deep reinforcement learning model to190

optimize the condition opportunistic maintenance for redundant systems with arbitrary structures.

However, few address technical structural dependencies. For instance, Dinh et al. (2022) propose

an OM strategy using a directed acyclic graph (DAG) to represent disassembling impacts in a

six-component system.

Studies on stochastic dependencies include Wang et al. (2022), who examine OM in a ”2-out195

of-3” structure using Frank Copula, and Xu et al. (2021), who use a Markov decision process with

Monte Carlo simulation to model dependencies in a K-out-of-N. Zhou et al. (2022) use a multi-

agent reinforcement learning model to analyze the impact of economic, performance structural,

and stochastic dependency on a system with 12 components. However, research that considers

interactions among multiple dependencies remains limited. For example, Xu et al. (2024) formulate200

a CBM model addressing stochastic, economic, and resource dependencies, while Sun et al. (2021)

examine economic, stochastic, and disassembly impacts, incorporating fixed costs for disassembly.

As seen from the reviewed literature, maintenance is considered either as scheduled or as

condition-based maintenance in existing OM models. However, such assumptions do not always

hold for CLSC. Scheduled maintenance is difficult to implement because it is hard to access the205

parts once it leaves the repair center. Condition-based maintenance is hard to implement because,

economically, it is often unfeasible to monitor every component’s degradation continuously. In

practice, for a spare part in a CLSC, the only practical opportunity for preventive maintenance in

a repair context is when the spare part fails and is returned to the repair shop. Therefore, in this

paper, we develop an OM model for CLSC that considers spare part failure as an opportunity for210

preventive maintenance.

In the studies of maintenance policies, various dependencies have been considered. However,

existing opportunistic maintenance studies primarily focus on economic and performance-based

structural dependencies, with limited exploration of technical structural aspects. Further, these

dependencies are rarely considered in CLSC maintenance models. In this paper, we develop an215

opportunistic maintenance model for CLSC that integrates economical, structural from technical

and performance aspects and stochastic dependency.

2.3. Multi-component system reliability considering dependencies

Assessing the reliability of complex systems comprising dependencies is one of the critical chal-

lenges to the reliability community. The degradation of individual components significantly affects220

associated components, influencing the overall system transition from higher to lower performance

levels. Researchers often employ stochastic models that utilize a set of probability distributions

to describe failure rates of individual components and their interdependencies. One common ap-

proach is using fault tree analysis (FTA), a graphical method representing the system as a series

of events and their dependencies. The top event in the tree represents the system failure, and the225
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branches represent the different paths that can lead to this event. Wang et al. (2013) use FTA

to structurally represent multi-component systems and describe the probabilistic behavior under

common cause failure. Kabir (2017) notes that FTA suffers from various shortcomings, requiring

much manual effort. Research has focused on simplifying dependability analysis by looking at how

to synthesize dependability information from system models automatically.230

Another approach is the Markov model. These models represent the system as a set of states

and the transitions between them. The states correspond to the different operational and failure

modes, and the transitions represent how the system can change from one state to another. Ahmad

et al. (2022) implement the Markov chain Monte Carlo algorithm to obtain a Bayesian estimation of

the system reliability model. Son et al. (2016) propose a systematic approach to Markov modeling235

for analyzing the dependability of complex fault-tolerant systems. However, Simpson and Kelly

(2002) argue that Markov modeling is not correctly applied to repairable redundant systems, as

the process ceases to be a Markov process. Zhang et al. (2019) use a Markov model to evaluate

the reliability of a modular multilevel converter. They acknowledge that the large number of

sub-modules in the converter causes reliability evaluation to be challenging.240

Other researchers use historical failure data and marginal distribution for components to com-

pute system reliability as a joint distribution of component survival functions. Copula functions

model the joint distribution of random variables by capturing their dependence structure with-

out making assumptions about their marginal distributions. Navarro and Durante (2017) pro-

pose an approach for assessing the reliability of coherent systems with dependent components245

using copula-based representations for residual lifetimes. Lin et al. (2021) develop a copula-based

Bayesian reliability analysis method for parallel systems with dependent components, where the

component failure probability and frequency are modeled separately. Other papers consider a spe-

cific copula-based approach to map the correlated variable with independent ones called the Nataf

transformation. Nataf transformation is a method used in statistical analysis to transform a set of250

correlated variables into equivalent independent variables. It simplifies the analysis by reducing the

correlation between the variables. Xiao (2014) analyze the properties of the correlation coefficient

in the Nataf transformation and propose a new method to evaluate it using a series expansion. Lin

et al. (2020) present a probabilistic power flow (PPF) approach for high-dimensional correlated

uncertainty sources in operation based on the Nataf transformation. The method can model the255

uncertainties of power system parameters with continuous and discrete probability distributions

and consider their correlations.

The literature presents multiple approaches to evaluate the reliability of multi-component sys-

tems under dependency. Some of these approaches require manual effort, while others are com-

putationally expensive. To take advantage of the replacement records during previous repairs, we260

decide in this paper to use the correlation coefficient to map the relationship between components

failures. We developed a simplification methodology to apply Nataf transformation to evaluate
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the reliability of the spare parts under stochastic dependency.

3. Modeling and problem formulation

We consider a CLSC of spare parts where the failed units in the field are directly replaced265

with a spare part from the CLSC inventory. The failed units are then shipped back to the repair

center for refurbishment. Once repaired, these units re-enter the supply chain, ready to replace

future failures in the field. The unit is repaired by replacing the failed components. In this paper,

we assume that a spare part is always available in the CLSC whenever a repair is needed. This

assumption is justified by the presence of a central distribution center that manages inventory270

levels across various regional centers to meet client demands. This central hub is also responsible

for sourcing spare parts from new suppliers and repair centers.

When a failed unit arrives at the repair center, it presents an opportunity to replace functional

but aging components preventively, reducing the likelihood of future failures for spare parts within

the CLSC. In this paper, we develop an opportunistic maintenance optimization model to minimize275

the long-run operational costs of the CLSC while maintaining the reliability of the repaired spare

parts to an acceptable level. For clarity, in this paper, the terms ”spare part,” ”LRU,” and

”system” refer to the entire unit being maintained, while ”component” refers to the individual

elements within these units.

In the opportunistic maintenance optimization model, a maintenance opportunity occurs when-280

ever a unit fails in the field and is returned to the repair center. Two choices exist for each functional

component: replace it preventively when another component fails or use it without preventive re-

placement. Under the second decision, the item will either fail before the other components and

lead to a system failure or survive until another fails. We can see that the optimization problem is

dynamic because each failure occasion creates a decision point. However, as soon as a replacement285

is made, one life cycle for a component is ended, and a new one starts with an identical time-to-

failure distribution. The process continues until we finally dispose of the unit. Thus, unlike in the

literature, where the opportunity for preventive replacement is undefined, we consider a one-time

window to decide whether to replace the non-failed components.

Three types of dependencies are considered in the optimization model:290

• Economic dependence means that the cost of maintaining several components together differs

from the sum of their individual maintenance costs. It can be further classified into posi-

tive and negative economic dependence, depending on the impact on the total maintenance

expense. We consider only the positive effects by assuming that the joint replacement of

several components is cheaper than the maintenance of components separately.295

• Stochastic dependence occurs when one component’s condition affects others’ lifetime dis-

tribution. For instance, the failure of a component may induce a one-time damage effect on

surrounding components, accelerating their degradation or even causing immediate failure.
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This phenomenon is often observed in electronic devices, where a short circuit in one part

can negatively impact others.300

• Structural dependence means that components structurally form a connected set such that

the maintenance of one part requires the disassembly of others. A disassembly sequence

exists between elements in the system, necessitating the dismantling of all preceding compo-

nents in this sequence to reach a particular element for maintenance (Dinh et al., 2020). The

disassembly operation may affect maintenance duration and introduce additional degrada-305

tion to the disassembled components. This impact arises because disassembly often involves

shocks or stresses that can increase the degradation levels of the affected components. For

instance, Dinh et al. (2020) studied the impact of shock-induced disassembly on the degrada-

tion level of components. Although we do not model this effect mathematically in our current

work, minimizing disassembly time by prioritizing components that are already dismantled310

for replacement can reduce this additional degradation.

Given the practical challenges of continuous monitoring within a closed-loop supply chain, our

model relies on maintenance logs as the primary data source, a common practice in sectors where

continuous data collection is restricted due to economic or confidentiality reasons. These logs

typically, as presented in Table 3 in Section 5.1, provide the ID of the repaired unit, the repair315

operation, and a binary state indicating the replacement of each component during the repair.

This data allows us to model an aspect of stochastic dependency by prioritizing replacing com-

ponents that frequently fail together. Although our approach does not assume a unidirectional

dependency, it aims to model stochastic dependencies pragmatically by identifying patterns where

certain failures are commonly linked, thereby supporting maintenance decisions that enhance sys-320

tem reliability and reduce potential downtimes.

The objective of this opportunistic maintenance optimization model is, then, to select a set of

components to be replaced preventively during each maintenance opportunity, so as to minimize

the long-term operational costs over the planning horizon of T years while achieving minimal waste

of residual lifetime. A minimum required reliability level is considered as an additional quality325

constraint.

To formally define the optimization model, let us introduce the following notation:

• ζ = [1, 2, 3, ..n]: set of components in the spare part,

• Costc: price of component c,

• Mulc: the average lifetime of component c,330

• RVc =
costc
Mulc

: residual value per unit time of component c,

• LC: labor cost per unit of time,

10



• Cost0: logistic cost for each repair (shipping cost to replace the LRU with a new one at the

client site),

• τc: disassembling time for component c,335

• ac: age of component c,

• Rc(t): reliability function of component c,

• fc(t): probability density function of failure time for component c,

• Rsys(t; a1, a2, .., an) = h(R1(t; a1), ..., Rn(t; an)): reliability function of the spare part as a

function of reliability of its components,340

• fsys(t; a1, a2, .., an): probability density function of system lifetime,

• T : planning horizon,

• r: interest rate,

• D = (Dij)ζXζ : disassembly matrix for the system,

• sc: state of component c,345

sc =

 1, if component c is in a failed state,

0, otherwise,

• Twarranty: period during which we consider all the failures as early failures,

• Rmin: minimum required reliability after repair.

One of the characteristics of spare parts reparation is that the components may have different

ages with a significant variance; the fragile ones usually would have shorter lifetimes, while the350

robust items would have relatively larger lifetimes. Therefore, estimating the unit reliability is

not straightforward. We propose to express the unit reliability Rsys as a function of component

reliability and age. For example, for multi-independent units in series, the reliability of the part

can be expressed as Rsys(t) =
∏

c∈ζ Rc(t; ac).

355

We then formulate the optimization problem as follows.

Decision variables:. we define the binary decision variable xc for each component c, with

xc =

 1, if component c is replaced preventively,

0, otherwise.

Constraints:. In this model, it is assumed that a failed component can always be detected and

replaced correctively. If sc = 1, then the component c should not be considered for preventive360

maintenance as it has been correctively replaced. As a result, we have

xc + sc ≤ 1,∀c ∈ ζ. (1)
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Furthermore, one of the model objectives is to maximize the reliability of the spare part after

repair. The warranty period plays a crucial role in product support, as it defines the duration

during which the manufacturer is obligated to repair or replace defective parts. This period directly

impacts customer satisfaction, brand reputation, and the financial liability of the manufacturer.365

Ensuring that repaired spare parts function reliably throughout the warranty period is essential

for optimizing costs and maintaining customer trust. Today, most products come with warranty

contracts driven by competition, industry standards, and customer expectations (Luo and Wu,

2018). Manufacturers often view warranty costs as overhead and face pressure to control these

expenses. For instance, Wang et al. (2020) examine the impact of customer delays on preventive370

maintenance policy optimization and associated warranty costs. Additionally, Zheng and Zhou

(2021) compare three preventive maintenance policies for products sold with a free repair warranty,

analyzing the conditions under which each policy proves most cost-effective.

Rsys(Twarranty; a1(1− (x1 + s1)), .., an(1− (xn + sn)))

Rsys(0; a1(1− (x1 + s1)), .., an(1− (xn + sn)))
≥ Rmin. (2)

The chance constraint in Eq.(2) ensures that the reliability of the spare part after repair meets or

exceeds the minimum required reliability Rmin during the warranty period, thus maximizing the375

likelihood that the spare part will not fail within this critical timeframe. The ratio written in the

equation represents the conditional probability of the unit surviving the warranty period, given its

survival probability immediately after repair at (t = 0). This is crucial because not all components

are new after repair. The term ai(1 − (xi + si)) models the age reduction for component i either

due to failure or preventive replacement.380

Objective function:. An optimal solution minimizes the total cost of maintenance, denoted by

TC, which consists of four parts, as shown in Eq. (3).

min TC = Cr + Cw + Cf + CL, (3)

Where Cr represents the total costs due to replacement, including corrective and preventive

replacements, and can be calculated as

Cr =
∑
c∈ζ

(xc + sc) · Costc. (4)

The second term, Cw, is a penalty cost penalizing the unused remaining life of the components385

to be replaced preventively. It is given by

Cw =
∑
c∈ζ

xc ·
RVc

Rsys(0; a1(1− s1), .., an(1− sn))
·
∫ +∞

0

tfc(t; ac) dt. (5)

The residual value per unit time of a component, denoted by RVc, monetizes the useful life of a
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component based on its purchase price and its mean time to failure. Suppose the mean residual

life of a component is MRL. The penalty cost for preventively replace is calculated as RVc ·MRLc.390

Eq. (5) gives the loss value of the selected items since a portion of their life is lost for opportunistic

activity. Note that the mean residual life is calculated given the condition that at t = 0, the failed

components are replaced correctively, and the system is working after the corrective replacement.

This assumption is justified, as post-repair testing is routinely performed to verify the effectiveness

of the repair. Consequently, the mean residual life calculation assumes the system is fully functional395

following any necessary corrective actions, offering a realistic foundation for informed preventive

maintenance decisions.

The third term, Cf , represents the expected cost due to the failure of the repaired spare parts

during the planning horizon. It is assumed that a spare part enters the CLSC and is immediately

installed in the field once repaired. When the repaired spare part fails, a logistic cost Cost0 must400

be counted. This cost includes shipping the LRU to the client site, system downtime, and onsite

maintenance activities for replacing the failed unit. However, since this cost often occurs in the

future, its present value is calculated to evaluate its value at the planning time.

The Present Value Method compares all future payments over a certain time to the present

time. The present value, say PV , is the amount of money that should be deposited into the bank405

now at a certain interest rate r to pay for an outlay C after ∆.T years. It is computed as follows.

PV = C · (1 + r)−∆T . (6)

During the planning horizon t ≤ T , the conditional probability of failure after reparation can

be expressed as,

P (Tsys < t) =
Fsys(t; a1(1− (x1 + s1)), .., an(1− (xn + sn))

Rsys(0; a1(1− (x1 + s1)), .., an(1− (xn + sn))
. (7)

For the replaced components (either correctively or opportunistically, i.e., xc + sc = 1), their age410

would be restored to zero, while the age of the other components remains the same. So for a small

variation of time, this probability can be expressed using an approximated probability density

function (pdf ) of the system fsys, so the present value of the logistic cost is Cost0 · (1+ r)−t. Thus,

the total present value of the expected cost of failure during the planning horizon, Cf , can be

expressed as415

Cf =
Cost0

Rsys(0; a1(1− (x1 + s1)), .., an(1− (xn + sn))
·
∫ T

0

fsys(t; a1(1− (x1 + s1)), .., an(1− (xn + sn))

(1 + r)t
dt.

(8)

We can note that economic dependence is intricately modeled through the interaction between

Cr and Cf as detailed in equation (3). The replacement cost Cr optimizes the cost-effectiveness
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of joint component replacements, in clear contrast to separate maintenance strategies. In sepa-

rate maintenance—where certain components are replaced during a scheduled event and others

are deferred until future failure—overall costs are typically higher due to increased logistics ex-420

penses and prolonged downtime, as quantified in Eq. (8). By prioritizing joint replacements, the

model strategically reduces both the direct costs of replacements and the consequential expenses

associated with future failures. This approach reduces the risk of imminent failures and strongly

supports joint replacement strategies when component failure risk is high, enhancing economic

efficiency and lowering long-term operational costs.425

The last cost term in Eq. (3), CL, represents the labor costs incurred during the maintenance

process of the spare part. In this paper, we assume that the labor costs are proportional to the

total time needed to disassemble the spare parts and replace the needed components. Structural

dependency plays an important role when evaluating CL, as replacing some components might

require disassembling others based on their interrelated structural arrangements. We use an ap-430

proach developed by (Dinh et al., 2020) to calculate the total maintenance time for a component

group. Based on the structure connection between components, the disassembly matrix D is con-

structed. The elements of the matrix are binary coefficients. The parameter Di,j = 1 if component

j must be disassembled to reach component i for maintenance. The cumulative disassembling time

of a component c, denoted by τDc , can be defined as the sum of disassembling times for all the435

components on the path of disassembly. It is given by

τDc =
∑
k∈ζ

τk ·Dc,k. (9)

For a group of components, there may be some intersections between the disassembly path of

different items. As a result, the disassembly duration of the intersection nodes must be counted

only once, even if it appears on several ones. Eq. (10) provides the replaced components’ total

disassembly time, denoted by τgroup.440

τgroup =
∑
c∈ζ

(sc + xc) · τDc −
∑
c∈ζ

τDc ·max(
∑
k∈ζ

(sk + xk) ·Dk,c − 1, 0), (10)

where the first term represents the total disassembly duration of all replaced components when

replaced separately; the second term is the time saving due to intersections among the disassembly

paths. Note that
∑

k∈ζ(sk + xk) ·Dk,c represents the total number of components in the replaced

group that have component c on their disassembly path. If there is no intersection, the second

part in Eq. (10) equals zero. Therefore, the total labor cost is the total reparation time times the445

labor cost per time unit, i.e.,

CL = 2 · LC · τgroup. (11)

Note that to replace a component, the old one must first be removed, and a new one installed.
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That is why it is necessary to increase the maintenance costs in Eq. (11) by a factor of 2.

4. System reliability modeling considering stochastic dependency

Computing the joint distribution of component lifetimes is critical to consider the stochastic450

dependency in optimization models. As reviewed in Section 2, existing system reliability models

that consider stochastic dependencies like Monte Carlo simulation (Son et al., 2016; Ahmad et al.,

2022) and copulas (Lin et al., 2021; Navarro and Durante, 2017) share a common shortcoming:

they are computationally expensive and may not be feasible for high-dimensional problems. Faced

with this challenge, we propose a dimension reduction method to compute the joint distribution455

of dependent component lifetimes in Section 4.1. Then, the joint distribution of the dependent

clusters are calculated by a Nataf transformation (Section 4.2).

4.1. Components clustering

To derive the dependent clusters, we first calculate the covariance coefficients among each pair

of components from their historical repair data. We construct a distance matrixH = (hi,j) between460

components based on the correlation coefficients among them R = (ρi,j); (hi,j = 1− |ρi,j| ∀i, j). It

is easy to verify that by defining distances like this, the stronger the dependencies among a pair of

components, the smaller the distance between them. The components are, then, clustered based on

the distance matrix using Agglomerative Hierarchical Clustering algorithm (Sasirekha and Baby,

2013). This technique is the most common type of hierarchical clustering used to group objects465

in clusters based on their similarity. The algorithm begins by considering each object as its own

individual cluster. It then iteratively merges pairs of clusters until a single cluster encompassing

all objects is formed. The result is a tree-based representation of the objects. To select the best

clustering configuration, the distance δ between groups is varied from 0 to 1 by a step of 0.1 to

extract all distinct grouping possibilities. Then, we construct the reliability distribution for every470

cluster in each configuration.

We assume each cluster functions as an independent super-component, with the failure of any

component within a cluster resulting in the failure of the entire cluster. Component failures within

each cluster are interdependent. Based on these assumptions, we reconstruct the replacement

history for each group and calculate the super-component’s revised time-to-failure. The reliability475

function is then estimated by fitting the best distribution model. The system reliability is then

constructed under the independence assumption as follows for a series system, where Ξ is the set

of formed clusters:

R∗
sys(t) =

∏
g∈Ξ

Rg(t; ag). (12)

We evaluate the likelihood and the number of components by groups to select the best config-

uration. The objective is to choose the threshold δ that minimizes the number of components by480

group and maximizes the likelihood of system time-to-failure distribution. Similar to the Akaike
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information criterion (AIC) metric, we create an index to evaluate the best solution. For a sta-

tistical model of some data with a number k of estimated parameters and a maximized value L of

the likelihood function, the usual AIC value is the following AIC = 2k− 2ln(L). The objective of

AIC is to minimize the number of parameters k while maximizing the likelihood. In our case, we485

consider k as the maximum number of components per group.

4.2. Nataf transformation

After selecting the best grouping configuration using the approach explained in Section 4.1, a

Nataf transformation is used to compute the joint distribution for each formed group of compo-

nents. For a group of component g in a series system, the survival function Rg(t) can be expressed490

as follows.

Rg(t) = P (minc∈g(Xc) ≥ t) (13)

= P (
⋂
c∈g

Xc ≥ t)

= 1− P (
⋃
c∈g

Xc ≤ t)

= 1−
∑
c∈g

Fc(t) +
∑

1≤c1≤c2≤ng

P (Xc1 , Xc2 ≤ t) + ...+ (−1)k
∑

1≤c1≤c2...≤ck≤ng

P (Xc1 , Xc2 , ..., Xck ≤ t)

= 1 +
∑

1≤k≤ng

(−1)k
∑

1≤c1≤c2...≤ck≤ng

P (Xc1 , Xc2 , ..., Xck ≤ t).

Nataf transformation was proposed by Liu and Der Kiureghian (Liu and Der Kiureghian,

1986) to model correlated random variables. Given the marginal probability density functions for

a vector of random variables, Nataf transformations map variables from any non-normal space

to the standard normal space and vice versa. It can be decomposed into three parts as follows495

(Lebrun and Dutfoy, 2009).

u = TN(X) = T3 ◦ T2 ◦ T1(X) (14)

where :

T1 : X → W = [Fx1(x1), ..., Fxn(xn)]
T ,

T2 : W → Z = [Φ−1(w1), ...,Φ
−1(wn)]

T ,

T3 : Z → U = L−1Z,

where Φ−1(.) is the inverse CDF of the standard normal vector Z, Fxi
is the CDF of the component

xi, and L represents the lower triangular matrix obtained from the Cholesky decomposition of

RZ = (ρZi,j) the correlation matrix of the standard normal vector Z. The joint probability of the

random vector X is then formulated as500

P (X ≤ t) = P (X1, X2, ..., Xn ≤ t) = ΦRZ
(Φ−1(Fx1(t)),Φ

−1(Fx2(t)), ...,Φ
−1(Fxn(t))). (15)
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The major obstacle to Nataf transformation is to evaluate the equivalent correlation matrix in

the standard normal space. More specifically, it requires to calculate (ρZi,j)(i ≥ j) for each entry

(ρXi,j) of RX the correlation matrix of the random vector X. According to (Lebrun and Dutfoy,

2009), we can write ρXi,j as a function of ρZi,j as follow

ρXi,j =

∫
∞

∫
∞
(
xi − µi

σi

)(
xj − µj

σj

) · ϕ2(zi, zj, ρ
Z
i,j)dzidzj, (16)

where µi, σi are the mean and the covariance of random variable xi. We use linear search (Xiao,505

2014) to evaluate the new correlation matrix as detailed in Algorithm 1.

Algorithm 1 Linear algorithm search

if ρXi,j ≥ 0 then
a← ρXi,j
b← 1

else
a← −1
b← ρXi,j

end if
Initialize search interval ρZi,j ∈ [a, b]
Fix the error ∆
while b− a ≥ ∆ & ρX

∗
i,j ̸= ρXi,j do

ρZ
∗

i,j ← b−a
2

Evaluate ρX
∗

i,j using Eq.(16)
if ρX

∗
i,j > ρXi,j then
b← ρZ

∗
i,j

else
a← ρZ

∗
i,j

end if
end while
ρZi,j ← ρZ

∗
i,j

5. Industrial case study

We illustrate in this section an application of the developed model based on an actual industrial

case from our industrial partner GE HealthCare. First, we present the historical data and the

approach to extract the reliability functions in Section 5.1. Then, we explain the solution technique510

used to solve the optimization problem (Section 5.2).

5.1. System description and data collection

GEHC is one of the global leaders in sales and services of medical systems, notably those of

medical imaging, with 4 million systems installed in more than 160 countries. Because of the criti-

cality of its products (medical devices) and the technological characteristics of its components, GE515

HealthCare offers a maintenance service to its customers. The service’s main objective is to ensure

its products’ reliability (reducing the failure rate) while reducing unavailability simultaneously. As

the spare parts are expensive and disposal of the failed parts creates circularity problems, a CLSC

is implemented in GEHC.
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In this study, we implement the developed OM optimization model on the power supply of520

MRI machines and investigate its strategic impact on the efficiency of the CLSC. The spare part

under consideration is composed of 11 components connected in series. Figure 2 illustrates the

physical structure and disassembling order of these components provided by our industrial partner,

while Table 1 details the real disassembly times required for each component. In Figure 2, ”(0)”

represents the cover of the spare part. For example, components 4, 5, and 7 must be disassembled525

before component 10 can be replaced. Table 2 also provides the purchase prices for new components

and their mean useful lifetimes (Mul) in unit time (u.t.).

Figure 2: System’s structure

Table 1: Components’ dismantling time

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Disassembling
time (u.t)

3 1 1.5 0.2 2 4.5 9 4.5 1 1 1

Table 2: Costs parameters

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Component
cost (U.C)

22 24 6 43 140 2 34 23 6 9 8

Mul (u.t) 71k 22k 54k 44k 1.5k 16k 68k 183k 37k 58k 24k

GEHC’s spare parts supply chain is so particular because its efficiency mainly depends on the

quality of its repaired parts. The repair center annually provides around one thousand repaired

power supplies to maintain thousands of MRI systems. Besides, depending on forecasted demand530

and stock levels, one part can be reallocated multiple times to different warehouses worldwide

before being installed on a system, which makes gathering parts’ lifetime data challenging. Different

information systems and databases are used to store maintenance and logistic data. We developed

an algorithm to extract repair information and lifetime data for each LRU.

We have collected 13,200 operating time and maintenance records for 7,514 spare parts. 3,490535

LRUs were repaired multiple times. We consider the operating time of the functioning parts to

be censored. We randomly selected 260 LRUs that were repaired multiple times with different

ages and multiple failed components. We apply the optimization model on the selected parts for

a planning horizon of 730 Unit of time (u.t). The remaining records are used to build system

reliability functions. Table 3 represents an example of the data format. Column ID and Repair540
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Number are the part’s serial number and repair record. The functioning parts are marked with

value 1 in column Censored. Column Time to failure represents the observed time to event

before each repair. The remaining columns represent the failed components. A value equal to 1

for a component Ci represents its failure.

Table 3: Example of data format

ID Repair Number Censored Time to failure C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
1 0 0 1260 0 0 0 1 1 0 0 0 0 0 0
1 1 0 1319 0 0 0 0 1 0 0 0 0 0 0
1 2 1 969 0 0 0 0 0 0 0 0 0 0 0
2 0 0 2159 0 0 0 0 1 0 0 0 0 0 0
2 1 1 1410 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1675 0 0 0 0 0 0 1 0 0 0 0
3 1 0 1873 0 0 0 0 1 0 0 0 0 0 0
3 2 1 2628 0 0 0 0 0 0 0 0 0 0 0

5.2. Solution approach545

Our objective is to minimize the overall maintenance costs (3) —including replacement, waste,

labor, and expected failure costs—while ensuring that the system meets a minimum reliability

after the repair. It can be shown that the complexity of this optimization model is equivalent

to a Multi-Dimensional Knapsack Problem (MDKP), a well-recognized NP-hard challenge that

involves selecting items to maximize value without exceeding specific capacity limits (Puchinger550

et al., 2010). Therefore, our optimization is also NP-hard.

To demonstrate its equivalence to an MDKP, we note that the maintenance actions in our

model correspond to items in an MDKP, where minimizing costs aligns with an MDKP’s objective

of maximizing negative costs or minimizing positive costs. The reliability constraint in our problem

mirrors the capacity constraints of the MDKP, ensuring system reliability meets or exceeds a certain555

level after maintenance. Since the opportunistic maintenance optimization model is NP-hard,

we develop heuristic and approximation methods, like genetic algorithms, to find near-optimal

solutions, given the impracticality of exact solutions for large instances.

Furthermore, we incorporate a model that estimates lifetime distributions from data presented

in Table 3 while considering stochastic dependencies as explained in Section 4. The challenge is560

compounded by the need to calculate conditional reliability to evaluate failure costs (8), which

hampers the simplification of the objective function. Considering the binary choices for each com-

ponent and the exponential number of possible solutions, we employ a binary genetic algorithm to

achieve a near-optimal strategy, acknowledging the problem’s NP-hard nature and the complexities

involved.565

Genetic algorithms (GAs) are a metaheuristic optimization technique well-suited for tackling

problems with numerous local optima or non-convex landscapes. They excel at efficiently searching

large solution spaces to identify global optima, without requiring the gradient of the objective

function, and are easily adaptable to parallel computing architectures. The steps for solving the

opportunistic replacement model are detailed in Algorithm 2.570
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We represent the genes as binary variables and consider a GA with 40 generations and a

population of 8 chromosomes. We reduce the search space by fixing the failed components variables

xc to 1 to satisfy Constraint (1) because they should not be replaced opportunistically. We set

the fitness value for solutions that do not meet system reliability constraint after repair (2) to

equal a very large number. The classic genetic algorithm chooses a single fixed mutation rate for575

all solutions, regardless of their fitness values. As a result, mutations can disturb good and bad

chromosomes equally. We use the adaptive technique with two fixed probabilities pmax = 1 for

the low-quality solutions and pmin = 0.4 for the good ones. The bad solutions have a fitness value

less than the population’s average, while the high-quality chromosomes have a higher value. We

terminate the algorithm evolution if the fitness does not change for 10 consecutive generations;580

after that, we reset the population and rerun the GA. After 4 times of execution, we select the

best solution provided. Since the first objective is to decide whether to repair or scrap the parts,

the first genetic algorithm is initialized using the corrective solution and the one that suggests

consuming all the components. For the other GA, we initialize the population with the two best

solutions and the two worst solutions. In our case, the fitness function is computationally expensive585

because of the integral calculations. In order to minimize execution time, we save the evaluated

individuals’ scores so they can easily be extracted if the solution has already been evaluated in

previous iterations.

For the model parameters, We consider logistic cost equal to 750 Unit of Cost (u.c) and an

interest rate of 15%. To evaluate the model, we define two metrics:590

• The net benefit, denoted by NB, is the difference between the cost TC0 of the corrective

solution (xc = 0, forc ∈ ζ) and the best solution found by the GA:

NB = TC0 − TCbest. (17)

• The benefit ratio, denoted by NB%, is the saved ratio of the total corrective cost:

NB% = 100.
NB

TC0

. (18)

6. Numerical Experiments

This section provides the results of our opportunistic strategy on the test subset. As explained595

in Section 5.1, we selected 260 spare parts that were repaired multiple times to test the perfor-

mance of opportunistic maintenance. First, we present the performance of the clustering method

described in Section 4 to model dependency in Section 6.1. Then, we describe the efficiency of

the solution approach in Section 6.2. Finally, we present the opportunistic maintenance effect on

parts reliability in Section 6.3.600
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Algorithm 2 Genetic Algorithm for Maintenance Optimization

Initialize GA with 40 generations, population of 8 chromosomes
Represent genes in each chromosome as binary variables
Define lists: visitedChromosomes, chromosomeFitness
for each component in the system do

if component has failed then
Set variable xc = 1 ▷ Fix failed components, not for opportunistic replacement

end if
end for
Initialize population with chromosomes
iteration← 0
best solution← None
best fitness← −∞
while iteration < 4 do

if iteration == 0 then
Initialize first generation with corrective and scrap solutions

end if
for each generation in 1 to 40 do

for each chromosome in population do
if chromosome in visitedChromosomes then

Retrieve fitness from chromosomeFitness
else

Perform crossover and mutation on chromosome
Calculate fitness of new chromosome
if chromosome satisfies Constraint 1 then

Compute total cost
else

Assign large number as penalty
end if
visitedChromosomes ← chromosome
chromosomeFitness ← fitness

end if
if new fitness > best fitness then

best solution← new chromosome
best fitness← new fitness

end if
end for
for each chromosome in population do

if fitness(chromosome) < average fitness(population) then
Set mutation rate ← pmax

else
Set mutation rate ← pmin

end if
Mutate chromosome based on mutation rate

end for
if fitness unchanged for 10 consecutive generations then

Break from generation loop
end if

end for
iteration← iteration+ 1
if iteration < 4 then

Reinitialize population ▷ Including best and worst solutions
end if

end while
Select best solution after 4 iterations

6.1. Reliability functions under dependency

To build the system reliability model under dependency, we start by selecting replacement

records for the failed parts and compute the correlation matrix between components replacement
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using the Pearson method (Li et al., 2012). Figure 3 shows the obtained correlation matrix. By

visually examining the results, it can be seen that there are different grouping possibilities. We605

can either group C1, C2, with C3 and C7 with C10 or focus on grouping only C1 with C3 and

consider the remaining components independent. The grouping algorithm presented in Section 4.1

is then used to determine the best grouping strategy by maximizing the likelihood and minimizing

the number of components per group. The results of the grouping algorithm are given in Table

4, where thresholds and groups provide the minimum correlation level selected and the formed610

groups, respectively; N super comp and Max comp group are the number of formed groups

and the maximum number of components per group. It can be seen from Table 4 that the best

threshold for grouping components is 0.6 because it maximizes the log-likelihood and minimizes the

number of components per group. It can be verified that by grouping like this, the result’s marginal

distributions can satisfy the positive definite constraint needed for applying Nataf transformation.615

Figure 3: Correlation matrix

Table 4: Grouping components results

Threshold Groups N super comp Max comp group Positive definite AIC Loglikelihood
0.6 (C1,C3) 10 2 1 10571.19 -10567.19
0.1 (C1,C2,C3,C7,C10) 7 5 0 10578.31 -10568.31

[0.4,0.5] (C1,C3); (C7,C10) 9 2 1 10583.59 -10579.59
[0.2,0.3] (C1,C2,C3);(C7,C10) 8 3 0 10591.78 -10585.78
[0.7,0.9] (C1);(C2);(C3);(C4);(C5);(C6);(C7);(C8);(C9);(C10);(C11) 11 1 1 10593.28 -10593.28

0 (C1,C2,C3,C4,C7,C10); (C5,C8,C11); (C6,C9) 3 6 0 26482.69 -26470.69

The system reliability is then calculated based on Eq. (13) considering the stochastic depen-

dencies and the component clusters. Figure 4 presents the result and a comparison to the empirical

estimates directly from data. As we can see, the computed system lifetime distribution from the

proposed model fits the empirical data quite well.620

6.2. Genetic algorithm performance

The solution method presented in Section 5.2 is based on running 4 GAs with a small generation

number, a small population size, and with memory to save the previously visited solutions. We

evaluate the quality of our approach by first comparing it to the exact approach (consisting of an
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Figure 4: Modeling failure distribution under dependency

exhaustive search) and, subsequently, to a conventional single GA configured with a more extensive625

search consisting of 100 generations and 8 chromosomes, incorporating a termination criterion after

40 generations without further improvement. Figure 5 showcases the comparative analyses of our

solution’s efficacy against the exact search method.

Figure 5: Deviation from optimum solution

In the comparative analysis, we examine the deviation of the GA solutions from the optimum

solutions identified by the exact approach. The results show good performance of the heuristic.630

The GA deviation typically does not exceed 3.5%, and in about 70% of the cases, it provides the

optimal solution. This success is partly due to the evaluation of trivial solutions and the strategy

to reset evaluation points to avoid local optima, as explained below.

Usually, setting a relatively high mutation probability and a large number of generations helps

the GA better explore the solution space and converge to good-quality solutions. However, because635

of the quality Constraint (2), we set a huge penalty as a cost for solutions that do not satisfy the

constraint. As a result, the traditional GA may converge to a local optimum despite the high

mutation probability. This may lead to an early saturation of the model and a termination with

poor-quality solutions. Moreover, by initializing the generation with the corrective solution in our

approach, we make sure that we guarantee that the obtained one will always be better than the640

corrective one.

Another drawback of setting a high maximum generation number is the computation time. In

our case, increasing the number of generations is time-consuming since evaluating the objective

function (3) is computationally expensive. As a result, we create a memory to save previously

visited solutions and their fitness so that the GA avoids recomputing their fitness scores. Figure 6645

shows the comparison in terms of computational times. We observe that the computational time
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is reduced by 3 times because we avoid computing the same fitness functions multiple times for

the previously visited solutions. We can explain the variation in the computational time by the

number of possible solutions. Unlike the old spare parts, the young ones have large solution space,

which increases the computation time.650

Figure 6: Computational time distribution

6.3. Impact on the reliability of the repaired spare parts

We next evaluate the change in the probability of surviving the warranty period without failure,

say Twarranty, after repair if we apply opportunistic maintenance. In general, the developed strategy

improves spare parts reliability. Figure 7 compares the estimated conditional reliability before and

after conducting opportunistic replacements. It represents the gain in survival probability of655

Twarranty after the repair operations. Each data point corresponds to a unique spare part with

defined ages for its components. The improvement in survival probability is more significant if

it is evaluated at the end of the planning horizon. In fact, the model suggests opportunistic

replacements for all parts with low reliability. As a consequence, most of the reliability after the

period of the simulated parts becomes higher than 0.5. The model also recommends minimum660

replacements for old units to satisfy the quality constraint. In some cases, parts reliability can be

improved by 0.25 points by changing a few sets of components.

Figure 7: Gain in survival probability.

Consequently, the additional replacements help improve the remaining lifetime of the repaired

parts. Figure 8 represents the gain in residual life after opportunistic maintenance. It is the

difference between the estimated remaining useful life before and after adopting the OM strategy.665

For some parts, changing some components opportunistically can extend their lifetime by more

than one year.

In addition, applying opportunistic maintenance reduces the long-run cost due to the reduction

of failure risk. Figure 9 shows the improvement percentage in the long-run cost after opportunistic
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Figure 8: Estimated gain in parts lifetime

maintenance. It is the difference between the corrective maintenance cost and the opportunistic670

cost. For some parts, changing some additional components reduces the total cost by more than

5%.

Figure 9: Gain in long-run cost

7. Discussion & Insights for a more efficient CLSC

We next study the impacts of the system parameters on optimal decisions. We also discuss

their implications on CLSC performance and the effect of considering stochastic dependency in675

maintenance decisions.

How to select the best planning horizon?. The proposed model selects components to be replaced

preventively based on the evaluated risk using Equation (8). To determine the best planning

horizon, we consider the number of replacements and the benefit of the operation for different

values of planning horizon, as shown in Table 5, where MULsys represents the mean lifetime of680

the new-buy part. The results in Table 5 lead to a two-fold conclusion. First, the total cost

increases over time because of the increased failure risk. Therefore, it is advantageous to replace

more components preventively if the planning horizon is long. Moreover, extending the planning

horizon raises the risk of failure (8), thereby enhancing the advantages of OM decisions. However,

setting a very long horizon would reduce the solution’s efficiency. If the remaining useful life685

of many components is lower than the horizon plan, it would be better to change the planning

duration to minimize the number of replacements and waste costs. In conclusion, we suggest

selecting the planning horizon as the average useful life of the new-buy spare parts. It can be

reduced if more conservative decisions are preferred and in case we need to evaluate the failure

risk in a shorter period.690

How to minimize components consumption due to preventive maintenance?. To examine the factors

most influencing component consumption for preventive replacement, we multiply the penalty term
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Table 5: Impact of planning horizon T

T (U.T ) Twarranty
MULsys

2
MULsys 2 ·MULsys

Average TC (U.C) 4451 5936 8788 11735
Average Total replacement 3 4 2 4

Average NB (U.C ) 665 2709 4248 3125
Average Benefit (%) 12.98 31.34 32.58 21.02

Cw in Eq. (3) by an adjustment factor α and analyze how preventive replacement frequency varies

with changes in α. In the original model, Cw only considered the price of the component itself.

By adding the adjustment factor α, the underlying assumption is that there are indirect storage695

costs or additional costs due to procurement problems. The new total cost in the opportunistic

maintenance optimization model is expressed now as TC = Cr + α · Cw + Cf + CL.

From Figure 10, we notice that the number of preventively replaced components decreases as

α increases. This indicates that the less expensive the preventive maintenance cost, the higher the

number of replacements. This is intuitive, as preventively replacing low-cost items is more prof-700

itable: it significantly enhances the reliability of repaired spare parts and reduces total operational

costs by minimizing potential field failures.

Another insight from Figure 10 is that when the total costs of the components are comparable

to the logistic costs Cost0, the net benefit of the optimal decisions may turn negative. This

implies that for the components that are very expensive or hard to procure, it is better to avoid705

replacing them preventively unless absolutely necessary, e.g., without preventively replacing them,

the constraint on the reliability after repair cannot be satisfied. This fact can be considered in the

model by increasing the value of RV of these components to prevent replacing them preventively.

Figure 10: Impact of waste cost on maintenance decision

Impact of the time value of money. The interest rate r is introduced to account for the effect of

time value of money. We investigate here how the interest rate can impact preventive decisions710

and how it can be used to minimize unnecessary replacements.

As illustrated in Figure 11, the higher the rate r, the lower the number of replacements that

occur for a fixed planning horizon and coefficient α. It can be explained by the fact that a high rate

means we can focus more on the present time and do not care as much about future payments. As

a result, the optimal solution of the model is more conservative than the one under a lower interest715
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rate. Generally, when a spare part is approaching its end-of-life cycle, we can select a higher

interest rate, like 0.5 or 0.6, since we need to focus only on the performance over a short-term

planning horizon.

Figure 11: Impact of interest rate on maintenance decision

Impact on CLSC efficiency. Compared to a traditional CLSC, after applying the developed op-

portunistic maintenance model, two major contradictory effects could occur during the operation720

of the CLSC. The opportunistic maintenance is based on replacing components before failure,

which may increase components consumption. On the other hand, it also reduces system fail-

ures, indirectly impacting components demand. We next investigate the impact of opportunistic

maintenance on the CLSC, considering the consumption of the additional components, the client

machine downtime, and logistic costs. We also consider the impact on the sustainability of the725

CLSC by calculating the overall CO2 production during the operation of the CLSC.

We consider an observation period of 2 years and apply our strategy to the randomly selected

failures that happened during this period. We assume that if the opportunistic maintenance

model suggests preventive maintenance before the actual failure time, the failure can be prevented.

For confidentiality reasons, we do not show the detailed results but only provide the relative730

performance improvement compared to the traditional CLSC that implements only corrective

maintenance, as shown in Table 6. Operator cost represents the needed cost to repair the spare part

at the repair center, while the cost to serve includes the downtime cost of the system at the client

site and logistic costs to replace the defective part at the hospital. We compute the estimated CO2

production by considering the total traveling distance and the weight of the parts. The results show735

that despite the increase in components consumption due to preventive replacement, the developed

opportunistic maintenance model can save 42% of total costs. This is related to reducing the global

number of failures and the associated logistic costs. In addition, the developed opportunistic

maintenance model contributes to the sustainability of the CLSC as it reduces the CO2 emissions

because transportation is one of the most critical components in CLSC CO2 production.740

When to consider dependency ?. We analyze the impact of considering stochastic dependency on

maintenance decision-making. First, we evaluate the two models (under dependency, referred to
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Table 6: Impact of opportunistic maintenance on supply chain performance

Additional material Operator cost Cost to serve Total cost (U.C)
Total distance km

Estimated Co2 Kt
km flight km road

Corrective maintenance 0 20,908 2,048,000 2,068,908 1,764,869 1,074,681 577,816
Opportunistic maintenance 9,031 10,374 1,228,800 1,241,344 875,698 533,238 286,702

Savings -9,031 10,534 819,200 820,703 889,171 541,442 291,113

as Model 2, and without dependency, referred to as Model 1) based on their ability to predict

failures. We compared the two models recommendations with the next maintenance record of the

same selected part. Table 7 indicates how often the model selected the components that caused a745

failure after a repair. As we can see, both models can predict critical component failures. However,

the second model outperforms the first one because it selects the degraded components after the

failure of the first one.

Table 7: Accuracy of predicting failures

Model 1 Model 2
Predicting critical component failures 63% 64%
Predicting other components failures 23% 26%

Predicting all failures 52% 53%

Then, we consider 3 cases with different components average ages to further understand the

difference between the two models. Table 8 summarizes the components ages and the probability750

of surviving after the warranty period. Table 9 shows the decisions taken for each case. In Table

9, 1 means the preventive replacement of the component. Columns TC is the total cost of the best

solutions.

Table 8: Components’ age

Case C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Rsys(Twarranty)
1 727 727 727 727 0 727 727 727 727 727 727 0.91
2 0 0 0 1364 637 1364 1364 1364 1364 1364 1364 0.86
3 0 0 1649 1649 1649 1649 1649 1649 1649 1649 1649 0.75

Table 9: Replaced components preventively and net benefit

Case Model
TC
(u.c)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Benefit
(u.c)

Benefit
(%)

1 1 6964 1 0 1 0 0 1 0 0 0 0 1 283 4
1 2 6964 0 0 0 0 0 1 0 0 0 0 1 283 4
2 1 9123 0 0 0 0 0 1 0 0 1 0 1 203 2.17
2 2 8767 0 0 0 0 1 1 0 0 0 0 1 559 6
3 1 8919 0 0 0 0 1 0 0 0 0 0 1 3,842 30.11
3 2 8486 0 0 1 0 1 1 0 0 0 0 1 4,274 33.5

Based on the positive benefits indicated in Table 9, all the decisions taken outperform the

corrective strategy. The net benefit increases with the risk of failure. The more the part is likely755

to fail, the more significant the benefits of applying the developed opportunistic models. For Case 1

in Table 8, the corrective operations satisfy the defined quality constraint. However, both models

preventively change the cheapest and easiest components to reduce the failure cost. In Case

2, Model 2 outperforms Model 1 because it selects stochastically dependent components, while
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Model 1 selects structurally dependent components. In Case 3, Model 1 recommends changing a760

few components compared to Model 2, which increases the risk of failures.

In summary, considering stochastic dependency helps to more accurately anticipate failures

and increase the benefit of changing components preventively. However, the first model with

no dependency can also produce good results when the studied parts have one critical failure

component. Table 7 shows that both models can predict early failures. Moreover, Table 4 shows765

no notable difference in the estimated likelihood with (threshold = 0.6) and without dependency

(threshold ∈ [0.7, 0.9]). Thus, for systems with one critical component, ignoring the dependency

between components would be preferable.

8. Future Research Directions

As we move forward, there are several areas where further research could enhance the model’s770

effectiveness and applicability. This section outlines potential directions for future work, focusing

on refining cost functions, improving computational efficiency, addressing data quality issues, and

expanding the model’s applicability.

First, our model currently considers four types of costs to reflect three main objectives: eco-

nomic efficiency (minimizing material and labor costs), environmental impact (minimizing waste775

costs), and reliability (minimizing failure costs). However, we formulated the problem as a single-

objective function. This approach often leads to the dominant cost function—typically failure

costs, due to the significant impact of logistic costs—having the most influence on the solution.

Adopting a multi-objective formulation could reveal deeper interactions between these objectives,

offering managers a broader range of solutions that effectively balance multiple priorities.780

A significant challenge encountered during the implementation of this model in real-world repair

lines was the computational time required to arrive at a solution. To address this, future research

could explore creating surrogate models for the objective function using neural networks or other

machine learning algorithms. These models could be trained either as offline solutions, where the

surrogate learns the cost function for specific parameter types (costs and reliability functions) or785

as integrated components within the optimization process, leading to more general and adaptive

solutions. Researchers interested in this area may refer to Bliek (2022) for detailed insights on

surrogate models.

Data quality is another critical element that can impact the precision of the model. The ac-

curacy of the available data and its completeness might not be sufficient to estimate the true790

reliability of components and their ages. Making decisions without accounting for these uncertain-

ties can lead to suboptimal outcomes. To mitigate this, risk-based optimization methods could

be employed to incorporate the risk profiles of managers and the uncertainty levels in the data,

enabling more robust and tailored decision-making. These methods could, for example, suggest

postponing a component replacement to gather more data or prioritizing another component to795

avoid worst-case scenarios.
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Deploying this model across multiple types of spare parts repaired by the same organization

also requires significant effort in understanding each spare part’s configuration and performance

structure. This is particularly challenging when repair centers are separate from the original

manufacturers, often managed by third-party organizations, leading to potential inaccuracies in800

documentation and system understanding. Leveraging neural networks could help approximate

structural functions and estimate the reliability of spare parts based on their components, while

also uncovering interdependencies between components.

Moreover, our model currently approximates stochastic dependencies between components

based on the correlation coefficient of their replacements. While this method is useful, it may805

overlook nonlinear relationships between components. Future research could explore more sophis-

ticated methods to capture these nonlinear dependencies, providing a more accurate reflection of

the complex interactions within systems.

Additionally, while monitoring the degradation level of each component in a spare part is

challenging and often inefficient, incorporating usage patterns and environmental factors such810

as room temperature and humidity could provide valuable insights into component degradation.

This would allow for more precise maintenance planning and potentially extend the lifespan of

components.

Finally, the current model assumes unlimited capacity for component inventory. Although

waste costs are considered in the objective function, setting higher thresholds for quality constraints815

could increase component consumption. Joint optimization of component inventory levels and

maintenance actions could help reduce unnecessary replacements, recommend earlier ordering of

critical components, and prioritize future corrective replacements for hard-to-procure parts.

9. Conclusion

In this paper, we developed an opportunistic maintenance model tailored to the real-world con-820

straints of a closed-loop supply chain for spare parts. The model optimizes efficiency by leveraging

maintenance events to select components for preventive replacement based on their age, residual

lifetime, dependencies, and the present value of future failure costs. When reliability falls short

of quality standards, the model recommends additional preventive operations to minimize failure

costs. Our case study with GE HealthCare demonstrated the model’s effectiveness in predicting825

component failures and reducing the carbon footprint of supply chain operations.

The model’s outcomes are influenced by key parameters such as the interest rate and planning

horizon. Our sensitivity analysis suggests that managers should carefully choose a planning horizon

equal to the mean lifetime of new parts and select an interest rate below 50%. A longer planning

horizon may result in unnecessary replacements, while a higher interest rate can lead to overly830

conservative decisions.

To address computational challenges, we employed the Nataf transformation to map stochastic

dependencies between components, coupled with a simplified clustering technique to reduce the
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computational time of joint failure distribution calculations. The GE HealthCare case study indi-

cated that accounting for all dependency types improves the accuracy of preventive maintenance835

decisions. However, the results also show that neglecting stochastic dependencies can still yield

acceptable outcomes when a dominant component primarily drives failures.

Looking ahead, future research could explore integrating component inventory constraints to

better understand their impact on proactive decision-making. Applying risk-based approaches

could also help manage uncertainties arising from data quality issues. Finally, improving com-840

putational efficiency and employing artificial intelligence to learn spare part reliability based on

component states and external factors present promising avenues for further development.
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References850

Ab-Samat, H., Kamaruddin, S., 2014. Opportunistic maintenance (om) as a new advancement in maintenance

approaches: A review. Journal of Quality in Maintenance Engineering 20, 98–121.

Agrawal, V.V., Atasu, A., Van Wassenhove, L.N., 2019. Om forum—new opportunities for operations management

research in sustainability. Manufacturing & Service Operations Management 21, 1–12.

Ahmad, H.H., Almetwally, E.M., Ramadan, D.A., 2022. A comparative inference on reliability estimation for855

a multi-component stress-strength model under power lomax distribution with applications. AIMS Math 7,

18050–18079.

Bliek, L., 2022. A survey on sustainable surrogate-based optimisation. Sustainability 14, 3867.

Boujarif, A., Coit, D.W., Jouini, O., Zeng, Z., Heidsieck, R., 2023. Opportunistic maintenance of multi-component

systems under structure and economic dependencies: A healthcare system case study, in: In Proceedings of the860

12th International Conference on Operations Research and Enterprise Systems, pp. 158–166.

Chateauneuf, A., Laggoune, R., et al., 2018. Condition based opportunistic preventive maintenance policy for utility

systems with both economic and structural dependencies- application to a gas supply network. International

Journal of Pressure Vessels and Piping 165, 214–223.

De Jonge, B., Scarf, P.A., 2020. A review on maintenance optimization. European journal of operational research865

285, 805–824.

Diallo, C., Venkatadri, U., Khatab, A., Bhakthavatchalam, S., 2017. State of the art review of quality, reliability

and maintenance issues in closed-loop supply chains with remanufacturing. International Journal of Production

Research 55, 1277–1296.

31



Dinh, D.H., Do, P., Iung, B., 2020. Maintenance optimisation for multi-component system with structural depen-870

dence: Application to machine tool sub-system. CIRP Annals 69, 417–420.

Dinh, D.H., Do, P., Iung, B., 2022. Multi-level opportunistic predictive maintenance for multi-component systems

with economic dependence and assembly/disassembly impacts. Reliability Engineering & System Safety 217,

108055.

Govindan, K., Fattahi, M., Keyvanshokooh, E., 2017. Supply chain network design under uncertainty: A com-875

prehensive review and future research directions. European Journal of Operational Research 263, 108–141.

URL: https://www.sciencedirect.com/science/article/pii/S0377221717303429, doi:https://doi.org/

10.1016/j.ejor.2017.04.009.

Hu, Q., Boylan, J.E., Chen, H., Labib, A., 2018. Or in spare parts management: A review. European Journal of

Operational Research 266, 395–414.880

Irawan, C.A., Ouelhadj, D., Jones, D., St̊alhane, M., Sperstad, I.B., 2017. Optimisation of maintenance routing

and scheduling for offshore wind farms. European Journal of Operational Research 256, 76–89.

Jin, T., Tian, Y., 2012. Optimizing reliability and service parts logistics for a time-varying installed base. European

Journal of Operational Research 218, 152–162.

Kabir, S., 2017. An overview of fault tree analysis and its application in model based dependability analysis. Expert885

Systems with Applications 77, 114–135.

Kerin, M., Pham, D.T., 2020. Smart remanufacturing: a review and research framework. Journal of Manufacturing

Technology Management 31, 1205–1235.

Kim, J., Chung, B.D., Kang, Y., Jeong, B., 2018. Robust optimization model for closed-loop supply chain planning

under reverse logistics flow and demand uncertainty. Journal of Cleaner Production 196, 1314–1328. doi:10.890

1016/j.jclepro.2018.06.157.

Kim, S.H., Cohen, M.A., Netessine, S., 2007. Performance contracting in after-sales service supply chains. Man-

agement science 53, 1843–1858.

Lebrun, R., Dutfoy, A., 2009. An innovating analysis of the nataf transformation from the copula viewpoint.

Probabilistic Engineering Mechanics 24, 312–320.895

Li, D.Q., Wu, S.B., Zhou, C.B., Phoon, K., 2012. Performance of translation approach for modeling correlated

non-normal variables. Structural Safety 39, 52–61.

Lin, S.W., Matanhire, T.B., Liu, Y.T., 2021. Copula-based bayesian reliability analysis of a product of a probability

and a frequency model for parallel systems when components are dependent. Applied Sciences 11, 1697.

Lin, X., Jiang, Y., Peng, S., Chen, H., Tang, J., Li, W., 2020. An efficient nataf transformation based probabilistic900

power flow for high-dimensional correlated uncertainty sources in operation. International Journal of Electrical

Power & Energy Systems 116, 105543.

Liu, C., Zhu, Q., Wei, F., Rao, W., Liu, J., Hu, J., Cai, W., 2019. A review on remanufacturing assembly

management and technology. The International Journal of Advanced Manufacturing Technology 105, 4797–4808.

Liu, P.L., Der Kiureghian, A., 1986. Multivariate distribution models with prescribed marginals and covariances.905

Probabilistic Engineering Mechanics 1, 105–112.

32

https://www.sciencedirect.com/science/article/pii/S0377221717303429
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.04.009
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.04.009
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.04.009
http://dx.doi.org/10.1016/j.jclepro.2018.06.157
http://dx.doi.org/10.1016/j.jclepro.2018.06.157
http://dx.doi.org/10.1016/j.jclepro.2018.06.157


Luo, M., Wu, S., 2018. A value-at-risk approach to optimisation of warranty policy. European Journal of Operational

Research 267, 513–522.

Ma, H.G., Wu, J.P., Li, X.Y., Kang, R., 2018. Condition-based maintenance optimization for multicomponent

systems under imperfect repair—based on rfad model. IEEE Transactions on Fuzzy Systems 27, 917–927.910

Mena, R., Viveros, P., Zio, E., Campos, S., 2021. An optimization framework for opportunistic planning of preventive

maintenance activities. Reliability Engineering & System Safety 215, 107801.

Mirzahosseinian, H., Piplani, R., 2011. A study of repairable parts inventory system operating under performance-

based contract. European Journal of Operational Research 214, 256–261. URL: https://www.sciencedirect.

com/science/article/pii/S0377221711003791, doi:https://doi.org/10.1016/j.ejor.2011.04.035.915

Moini, G., Teimoury, E., Seyedhosseini, S.M., Radfar, R., Alborzi, M., 2023. Analyzing the impact of sustainability

on the network design and planning decisions in a spare part supply chain: an empirical investigation. Journal

of Industrial and Systems Engineering 15, 1–25.

Navarro, J., Durante, F., 2017. Copula-based representations for the reliability of the residual lifetimes of coherent

systems with dependent components. Journal of Multivariate Analysis 158, 87–102.920

Nguyen, H.S.H., Do, P., Vu, H.C., Iung, B., 2019. Dynamic maintenance grouping and routing for geographically

dispersed production systems. Reliability Engineering & System Safety 185, 392–404.

Nguyen, V.T., Do, P., Vosin, A., Iung, B., 2022. Artificial-intelligence-based maintenance decision-making and

optimization for multi-state component systems. Reliability Engineering & System Safety 228, 108757.

Olde Keizer, M.C., Flapper, S.D.P., Teunter, R.H., 2017. Condition-based maintenance policies for systems925

with multiple dependent components: A review. European Journal of Operational Research 261, 405–420.

URL: https://www.sciencedirect.com/science/article/pii/S0377221717301881, doi:https://doi.org/

10.1016/j.ejor.2017.02.044.

Papadopoulos, P., Coit, D.W., Ezzat, A.A., 2021. Seizing opportunity: Maintenance optimization in offshore wind

farms considering accessibility, production, and crew dispatch. IEEE Transactions on Sustainable Energy 13,930

111–121.

Pinciroli, L., Baraldi, P., Zio, E., 2023. Maintenance optimization in industry 4.0. Reliability Engineering & System

Safety 234, 109204.

Puchinger, J., Raidl, G.R., Pferschy, U., 2010. The multidimensional knapsack problem: Structure and algorithms.

INFORMS Journal on Computing 22, 250–265.935

Qin, X., Jiang, Z.Z., Sun, M., Tang, L., Liu, X., 2021. Repairable spare parts provisioning for multiregional

expanding fleets of equipment under performance-based contracting. Omega 102, 102328.

Rebaiaia, M.L., Ait-Kadi, D., 2022. A remaining useful life model for optimizing maintenance cost and spare-parts

replacement of production systems in the context of sustainability. IFAC-PapersOnLine 55, 1562–1568.

Salari, N., Makis, V., 2020. Application of markov renewal theory and semi-markov decision processes in mainte-940

nance modeling and optimization of multi-unit systems. Naval Research Logistics (NRL) 67, 548–558.

Sasirekha, K., Baby, P., 2013. Agglomerative hierarchical clustering algorithm-a. International Journal of Scientific

and Research Publications 83, 83.

33

https://www.sciencedirect.com/science/article/pii/S0377221711003791
https://www.sciencedirect.com/science/article/pii/S0377221711003791
https://www.sciencedirect.com/science/article/pii/S0377221711003791
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2011.04.035
https://www.sciencedirect.com/science/article/pii/S0377221717301881
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.02.044
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.02.044
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2017.02.044


Selviaridis, K., Wynstra, F., 2015. Performance-based contracting: a literature review and future research directions.

International Journal of Production Research 53, 3505–3540.945

Simpson, K., Kelly, M., 2002. Reliability assessments of repairable systems—is markov modelling correct?, in:

Safety and Reliability, Taylor & Francis. pp. 19–39.

Son, K.S., Kim, D.H., Kim, C.H., Kang, H.G., 2016. Study on the systematic approach of markov modeling for

dependability analysis of complex fault-tolerant features with voting logics. Reliability Engineering & System

Safety 150, 44–57.950

Souza, G.C., 2013. Closed-loop supply chains: a critical review, and future research. Decision Sciences 44, 7–38.

Sun, J., Sun, Z., Chen, C., Yan, C., Jin, T., Zhong, Y., 2021. Group maintenance strategy of cnc machine tools

considering three kinds of maintenance dependence and its optimization. The International Journal of Advanced

Manufacturing Technology , 1–12.

Syan, C.S., Ramsoobag, G., 2019. Maintenance applications of multi-criteria optimization: A review. Reliability955

Engineering & System Safety 190, 106520.

Tahirov, N., Hasanov, P., Jaber, M.Y., 2016. Optimization of closed-loop supply chain of multi-items with returned

subassemblies. International Journal of Production Economics 174, 1–10.

Tombido, L., Baihaqi, I., 2022. Dual and multi-channel closed-loop supply chains: A state of the art review. Journal

of Remanufacturing 12, 89–123.960

Wang, C., Xing, L., Levitin, G., 2013. Reliability analysis of multi-trigger binary systems subject to competing

failures. Reliability Engineering & System Safety 111, 9–17.

Wang, J., Makis, V., Zhao, X., 2019. Optimal condition-based and age-based opportunistic maintenance policy for

a two-unit series system. Computers & Industrial Engineering 134, 1–10.

Wang, J., Miao, Y., Yi, Y., Huang, D., 2021. An imperfect age-based and condition-based opportunistic maintenance965

model for a two-unit series system. Computers & Industrial Engineering 160, 107583.

Wang, J., Zhu, X., 2021. Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:

F system of multi-state degrading components. European Journal of Operational Research 290, 514–529.

Wang, X., Li, L., Xie, M., 2020. An unpunctual preventive maintenance policy under two-dimensional warranty.

European Journal of Operational Research 282, 304–318.970

Wang, Y., Li, X., Chen, J., Liu, Y., 2022. A condition-based maintenance policy for multi-component systems

subject to stochastic and economic dependencies. Reliability Engineering & System Safety 219, 108174.

Xiao, Q., 2014. Evaluating correlation coefficient for nataf transformation. Probabilistic Engineering Mechanics 37,

1–6.

Xu, J., Liang, Z., Li, Y.F., Wang, K., 2021. Generalized condition-based maintenance optimization for multi-975

component systems considering stochastic dependency and imperfect maintenance. Reliability Engineering &

System Safety 211, 107592.

Xu, J., Liu, B., Zhao, X., Wang, X.L., 2024. Online reinforcement learning for condition-based group main-

tenance using factored markov decision processes. European Journal of Operational Research 315, 176–190.

URL: https://www.sciencedirect.com/science/article/pii/S0377221723008950, doi:https://doi.org/980

10.1016/j.ejor.2023.11.039.

34

https://www.sciencedirect.com/science/article/pii/S0377221723008950
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2023.11.039
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2023.11.039
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2023.11.039


Yan, T., Lei, Y., Wang, B., Han, T., Si, X., Li, N., 2020. Joint maintenance and spare parts inventory optimization

for multi-unit systems considering imperfect maintenance actions. Reliability Engineering & System Safety 202,

106994.

Yang, A., Qiu, Q., Zhu, M., Cui, L., Chen, W., Chen, J., 2022. Condition-based maintenance strategy for redundant985

systems with arbitrary structures using improved reinforcement learning. Reliability Engineering & System Safety

225, 108643.

Zhang, J., Zhao, X., Song, Y., Qiu, Q., 2022. Joint optimization of condition-based maintenance and spares

inventory for a series–parallel system with two failure modes. Computers & Industrial Engineering 168, 108094.

Zhang, L., Zhang, D., Hua, T., Zhu, J., Chen, G., Wei, T., Yang, T., 2019. Reliability evaluation of modular990

multilevel converter based on markov model. Journal of Modern Power Systems and Clean Energy 7, 1355–1363.

Zhang, X.m., Li, Q.w., Liu, Z., Chang, C.T., 2021. Optimal pricing and remanufacturing mode in a closed-loop

supply chain of weee under government fund policy. Computers & Industrial Engineering 151, 106951.

Zhao, S., Zhu, Q., 2017. Remanufacturing supply chain coordination under the stochastic remanufacturability rate

and the random demand. Annals of Operations Research 257, 661–695.995

Zheng, R., Zhou, Y., 2021. Comparison of three preventive maintenance warranty policies for products deteriorating

with age and a time-varying covariate. Reliability Engineering & System Safety 213, 107676.

Zhou, Y., Li, B., Lin, T.R., 2022. Maintenance optimisation of multicomponent systems using hierarchical coordi-

nated reinforcement learning. Reliability Engineering & System Safety 217, 108078.

Zhu, W., Castanier, B., Bettayeb, B., 2019. A dynamic programming-based maintenance model of offshore wind1000

turbine considering logistic delay and weather condition. Reliability Engineering & System Safety 190, 106512.

Zhu, X., Wang, J., Coit, D.W., 2024. Joint optimization of spare part supply and opportunistic condition-based

maintenance for onshore wind farms considering maintenance route. IEEE Transactions on Engineering Man-

agement 71, 1086–1102. doi:10.1109/TEM.2022.3146361.

Zhu, Z., Xiang, Y., Zeng, B., 2021. Multicomponent maintenance optimization: A stochastic programming approach.1005

INFORMS Journal on Computing 33, 898–914.

35

http://dx.doi.org/10.1109/TEM.2022.3146361

	Introduction
	Literature review
	Closed-loop supply chain 
	Opportunistic maintenance
	Multi-component system reliability considering dependencies

	Modeling and problem formulation
	System reliability modeling considering stochastic dependency
	Components clustering 
	Nataf transformation

	Industrial case study
	System description and data collection
	Solution approach

	Numerical Experiments
	Reliability functions under dependency
	Genetic algorithm performance
	Impact on the reliability of the repaired spare parts

	Discussion & Insights for a more efficient CLSC
	Future Research Directions
	Conclusion
	Acknowledgement

