
HAL Id: hal-04787542
https://hal.science/hal-04787542v2

Preprint submitted on 18 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Error Analysis of Sum-Product Algorithms under
Stochastic Rounding

Pablo de Oliveira Castro, El-Mehdi El Arar, Eric Petit, Devan Sohier

To cite this version:
Pablo de Oliveira Castro, El-Mehdi El Arar, Eric Petit, Devan Sohier. Error Analysis of Sum-Product
Algorithms under Stochastic Rounding. 2024. �hal-04787542v2�

https://hal.science/hal-04787542v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ERROR ANALYSIS OF SUM-PRODUCT ALGORITHMS UNDER
STOCHASTIC ROUNDING∗

PABLO DE OLIVEIRA CASTRO∗† , EL-MEHDI EL ARAR†‡ , ERIC PETIT‡§ , AND DEVAN

SOHIER∗

Abstract. The quality of numerical computations can be measured through their forward er-
ror, for which finding good error bounds is challenging in general. For several algorithms and using
stochastic rounding (SR), probabilistic analysis has been shown to be an effective alternative for
obtaining tight error bounds. This analysis considers the distribution of errors and evaluates the
algorithm’s performance on average. Using martingales and the Azuma-Hoeffding inequality, it pro-
vides error bounds that are valid with a certain probability and in O(

√
nu) instead of deterministic

worst-case bounds in O(nu), where n is the number of operations and u is the unit roundoff. In this
paper, we present a general method that automatically constructs a martingale for any computation
scheme with multi-linear errors based on additions, subtractions, and multiplications. We apply this
generalization to algorithms previously studied with SR, such as pairwise summation and the Horner
algorithm, and prove equivalent results. We also analyze a previously unstudied algorithm, Karat-
suba polynomial multiplication, which illustrates that the method can handle reused intermediate
computations.

Key words. Stochastic rounding, Martingales, Rounding error analysis, Floating-point arith-
metic, Computation DAG, Karatsuba multiplication

MSC codes. 65G50, 65F35, 60G44

1. Introduction. Stochastic Rounding (SR) is a rounding mode for floating-
point numbers in which the rounding direction is chosen at random, inversely pro-
portionally to the relative distance to the nearest representable values. SR is an
alternative to the more common deterministic rounding that has drawn attention in
recent years [16], in particular due to its resilience to stagnation [18, 17]; the phenom-
enon in which the accumulator in long summations become so big that the remaining
individual terms to be summed become negligible with respect to the precision in
use, even if their exact sum is not. Indeed, for summations, RN has worst-case error
bounds proportional to the number of floating-point operations n. With high prob-
ability, SR has error bounds [2] proportional to

√
n. SR is more robust than RN

because the randomness removes the bias in the accumulation of errors.
For example, during parameter updates in deep learning, SR avoids stagnation,

particularly when using low-precision formats for computations or storage [11]. In
gradient descent, when computing the minimum of a function using RN-binary16
precision [18, 17], it has been observed that the gradient can approach zero too quickly,
causing the update to be lost due to limited precision. SR mitigates this issue by
maintaining some accuracy on average, preventing stagnation in such scenarios.

Until now, computing SR probabilistic error bounds has been done case-by-case
with algorithm-dependent proofs. Available proofs in the literature fall into two main
schemes. A first proof scheme [1, 13, 8, 12] models the algorithm’s error as a stochastic
process Ψk, shows that it is a martingale, and computes an error bound with Azuma-

∗Version of November 18, 2024.
Funding: This work was funded by the HOLIGRAIL (ANR-23-PEIA-0010), the INTERFLOP

(ANR-20-CE46-0009), and FPT-4 (ANR-24-CE46-7572) projects.
†Université Paris-Saclay, UVSQ, Li-PaRAD, Saint-Quentin en Yvelines, France

(pablo.oliveira@uvsq.fr, devan.sohier@uvsq.fr).
‡Université de Rennes, Inria, IRISA, Rennes, France (el-mehdi.el-arar@inria.fr).
§Intel Corp , Portland, USA (eric.petit@intel.com).

1

mailto:pablo.oliveira@uvsq.fr
mailto:devan.sohier@uvsq.fr
mailto:el-mehdi.el-arar@inria.fr
mailto:eric.petit@intel.com

2 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

Hoeffding concentration inequality. A second scheme [9], bounds the variance of Ψk

and applies Chebyshev concentration inequality.
This paper generalizes the computation of SR error bounds to all algorithms

that can be modeled as a computation DAG comprised of sums, subtractions, and
multiplications, as long as no multiplication node has two children sharing a common
ancestor that is not an input (this is, in particular, true of all computation trees).

Section 3 proves through structural induction that the errors in such computation
DAGs form a martingale. It also gives a systematic recursive formulation to bound the
martingale increments, allowing the use of Azuma-Hoeffding inequality to compute a
probabilistic error bound of the whole computation DAG.

In Section 4, we apply the method to generalize previous results on pairwise
summation [12] and Horner’s polynomial evaluation [9]. Moreover, to the best of our
knowledge, we are the first to investigate Karatsuba polynomial multiplication under
SR. We demonstrate the applicability of the generalization proved in Section 3 to
bound the forward error of this algorithm under SR.

With SR, the algorithmic errors are captured through a stochastic process. We
propose to use an important result from martingale theory, the Doob-Meyer decompo-
sition [5], to decompose the error stochastic process into a martingale and a predictable
drift. We show that the computation trees analyzed in previous sections always have
a zero drift in such decomposition. The paper closes with a discussion of possible
directions to analyze algorithms with a non-zero drift term.

2. Preliminaries. Throughout this paper, x̂ = x(1 + δ) is the approximation
of the real number x under stochastic rounding, with |δ| ≤ u and u is the unit
roundoff. If x is representable, x̂ = x and δ = 0. For a non-representable x ∈ R,
denote p(x) = x−TxU

VxW−TxU , where VxW is the smallest floating-point number upper than

x, and TxU is the greatest floating-point number lower than x. Note that if x is
representable, x = VxW = TxU. We consider the following stochastic rounding mode,
called SR-nearness:

x̂ =

{
VxW with probability p(x),
TxU with probability 1− p(x).

TxU VxWx

1− p(x)
p(x)

Fig. 1: SR-nearness.

The rounding SR-nearness mode is unbiased (which does not mean that a sequence
of operations using SR is necessarily unbiased; for instance, squaring an unbiased error
leads to a bias due to the square term that corresponds to a variance):

E(x̂) = p(x)VxW + (1− p(x))TxU
= p(x)(VxW− TxU) + TxU = x.

The following lemma has been proven in [1, lem 5.2] and shows that rounding
errors under SR-nearness are mean independent.

Lemma 2.1. Let a and b be the result of k − 1 scalar operations and δ1, . . . , δk−1

be the rounding errors obtained using SR-nearness. Consider c ← a op b for op ∈
{+,−,×, /}, and δk the error of the kth operation, that is to say, ĉ = (a op b)(1+ δk).

MARTINGALES IN STOCHASTIC ROUNDING 3

The δk are random variables with mean zero and (δ1, δ2, . . .) is mean independent,
i.e., ∀k ≥ 2,E[δk | δ1, . . . , δk−1] = E(δk).

Definition 1. A sequence of random variables M1, · · · ,Mn is a martingale with
respect to the sequence X1, · · · , Xn if, for all k,

• Mk is a function of X1, · · · , Xk,
• E(|Mk|) <∞, and
• E[Mk/X1, · · · , Xk−1] = Mk−1.

Lemma 2.2. (Azuma-Hoeffding inequality). Let M0, · · · ,Mn be a martingale with
respect to a sequence X1, · · · , Xn. We assume that there exist ak < bk such that
ak ≤Mk −Mk−1 ≤ bk for k = 1 : n. Then, for any A > 0

P(|Mn −M0| ≥ A) ≤ 2 exp

(
− 2A2∑n

k=1(bk − ak)2

)
.

In the particular case ak = −bk and λ = 2 exp
(
− A2

2
∑n

k=1 b2k

)
we have

P

|Mn −M0| ≤

√√√√ n∑
k=1

b2k
√
2 ln(2/λ)

 ≥ 1− λ,

where 0 < λ < 1.

Remark 2.3. In Lemma 2.2, if all bk are constant with value b,√√√√ n∑
k=1

b2k =

√√√√ n∑
k=1

b2 = |b|
√
n.

It has been shown [8, 9, 10, 13, 12, 1] that the mean independence property is
sufficient to improve the error analysis of algorithms with SR-nearness. It leads to
obtaining a martingale (Definition 1), which is a sequence of random variables such
that the expected value of the next value in the sequence, given all the past values,
is equal to the current value. Using Azuma-Hoeffding inequality [15, p 303], allows
to obtain probabilistic bounds on the error in O(

√
nu). For further details, we refer

to [6, chap 4].

3. Errors in sum-product computation graphs. In this section, by induc-
tion, and for any computation, we build a martingale the last term of which is the
rounding error of the computation. This construction gives the length of this martin-
gale, as well as a condition number based on a deterministic bound on the martingale
steps. Together, these quantities allow to apply Azuma-Hoeffding inequality, or to
compute the variance of the error, and thus to probabilistically bound the rounding
error of the computation.

This martingale generalizes the ones found for the recursive summation [1], the
dot product [13], the pairwise summation [12, 10], and the Horner’s polynomial eval-
uation [8]. This construction applies to any numerical scheme based on additions and
products, in which no two variables sharing a rounding error are multiplied. Seeing
the computation as a DAG, the parents of a multiplication node cannot share a com-
mon ancestor (except for inputs, which are not affected by an error). In the case a
common ancestor exists for multiplication nodes, then a bias appears (the expectation
of the squared error is not zero), which this method cannot account for. We propose
in the last section a method to deal with such biases.

4 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

The construction differs according to its last operation. For a sum, the martingale
is basically the weighted sum of the two martingales associated to the summands, with
one additional term for the last error: the length of the resulting martingale is the
length of the longest of the two plus one, and the bound on the step is the weighted
mean of the two bounds with the values of the summands as coefficients.

For a product, the martingale is built by ordering the two martingales of the
multiplied terms, and adding one term accounting for the last error. This ordering
requires that no individual rounding error is shared in both terms, which forbids that
any part of the two terms depend on the same computation, as previously stated. The
length of the resulting martingale is the sum of the lengths of the two plus one, and
the bound on the step is the product of the two bounds associated to the operands.

In Figure 2, we consider an algorithm in which z is the return value, and the last
operation is z← x op y:

z← x op y

x y

Fig. 2: Last operation in the computation of a variable z, op ∈ {+,−,×}.

3.1. Base case: z is an input. The base case is straightforward. Since we
assume that inputs are exact (void computations), the error is 0, and it can be seen
the last term of the trivial martingale consisting of the empty sequence. The length
of this martingale is 0, and the associated condition number is 1.

3.2. Addition. Suppose that the last operation in the computation of the vari-
able z is an addition, i.e, z← x+y. Consider the relative errors Φ, X and Ψ associated
respectively to x, y, and z. Note x, y, and z their respective exact values, and x̂, ŷ
and ẑ their computed values. Therefore:

(3.1)

x̂ = x(1 + Φ),

ŷ = y(1 + X),

ẑ = z(1 + Ψ).

We have z = x+ y, then, there exists δ such that ẑ = (x̂+ ŷ)(1 + δ). Hence,

Ψ =
ẑ − z

z

=
x̂+ ŷ

x+ y
(1 + δ)− 1

=

(
1 +

x

x+ y
Φ+

y

x+ y
X

)
(1 + δ)− 1.

Suppose by induction that there exist constants Kx ≥ 1 (bounding the condition
number in the computation of x) and Ky ≥ 1 (bounding the condition number in the

MARTINGALES IN STOCHASTIC ROUNDING 5

computation of y), and martingales (Φi)
k−1
i=0 and (Xi)

l−1
i=0 with their ith step |Φi − Φi−1|

and |Xi −Xi−1| bounded respectively by Kxu(1+u)i−1 and Kyu(1+u)i−1, such that
Φ0 = 0, X0 = 0, Φ = Φk−1 and X = Xl−1. When one of x̂ or ŷ is exact, as mentioned
in Subsection 3.1, we assume that the length of the martingale is 0 and the condition
number is 1.

Lemma 3.1. Let m = max{k, l} + 1. The stochastic process (Ψi)
m−1
i=0 such that

Ψm−1 = Ψ, and for all 0 ≤ i < m− 1,

Ψi =
x

x+ y
Φmin{i,k} +

y

x+ y
Xmin{i,l},

forms a martingale.

Proof. Without loss of generality, let us assume that k ≤ l. Then, m = l+ 1 and{
Ψi = x

x+yΦi +
y

x+yXi for all 0 ≤ i ≤ k − 2

Ψi = x
x+yΦ+ y

x+yXi for all k − 1 ≤ i ≤ l − 1.

Note that (Φi)
m−2
i=0 with Φi = Φ for all k − 1 ≤ i ≤ m − 2 and (Xi)

m−2
i=0 are martin-

gales by induction hypothesis. Since the martingale set is a vector space, as a linear
combination of them, (Ψi)

m−2
i=0 is a martingale. Moreover, by mean independence

(Lemma 2.1) of δ from Φ and X we have

E[Ψm−1/Ψm−2] = E

[(
1 +

x

x+ y
Φ+

y

x+ y
X

)
(1 + δ)− 1/Ψm−2

]
=

(
1 +

x

x+ y
Φ+

y

x+ y
X

)
E[(1 + δ)/Ψm−2]− 1

= Ψm−2.

Thus, (Ψ)m−1
i=0 is a martingale and Ψm−1 = Ψ.

In this lemma, we have built a martingale by induction when the last operation
is an addition. In order to use Azuma-Hoeffding inequality (Lemma 2.2), we have to
bound martingale increments.

Lemma 3.2. Let Kz = |x|
|x+y|Kx + |y|

|x+y|Ky. The martingale (Ψi)
m−1
i=0 satisfies

|Ψi −Ψi−1| ≤ uCi,

where Ci = Kz(1 + u)i−1 for all 1 ≤ i ≤ m− 1.

Proof. For all 0 ≤ i < m− 1 by definition of Ψi, we have

Ψi−Ψi−1 =
x

x+ y
(Φmin{i,k−1}−Φmin{i−1,k−1})+

y

x+ y
(Xmin{i,l−1}−Xmin{i−1,l−1}).

Then, by induction hypothesis we get

|Ψi −Ψi−1| ≤
∣∣∣∣ x

x+ y

∣∣∣∣ ∣∣Φmin{i,k−1} − Φmin{i−1,k−1}
∣∣

+

∣∣∣∣ y

x+ y

∣∣∣∣ ∣∣Xmin{i,l−1} −Xmin{i−1,l−1}
∣∣

≤ |x|
|x+ y|

Kxu(1 + u)min{i−1,k−1} +
|y|
|x+ y|

Kyu(1 + u)min{i−1,l−1}

≤Kzu(1 + u)i−1.

6 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

Moreover, for i = m− 1

|Ψm−1 −Ψm−2| =
∣∣∣∣(1 + x

x+ y
Φ+

y

x+ y
X

)
δ

∣∣∣∣
≤ u

∣∣∣∣ x

x+ y
(Φ + 1) +

y

x+ y
(X + 1)

∣∣∣∣ .
Since Φ0 = 0,

|Φ+ 1| = |Φk−1 + 1| =

∣∣∣∣∣∣1 +
k−1∑
j=1

(Φj − Φj−1)

∣∣∣∣∣∣
≤ 1 +

k−1∑
j=1

|Φj − Φj−1|

≤ 1 +
k−1∑
j=1

uKx(1 + u)j−1

= 1 + uKx
(1 + u)k−1 − 1

u

= 1 +Kx(1 + u)k−1 −Kx

≤ Kx(1 + u)k−1.

The same method shows that |X + 1| ≤ Ky(1 + u)l−1. It follows that

|Ψm−1 −Ψm−2| ≤ u

(
|x|
|x+ y|

Kx(1 + u)k−1 +
|y|
|x+ y|

Ky(1 + u)l−1

)
≤ Kzu(1 + u)m−2.

Corollary 3.3. For all 0 < λ < 1, the computed ẑ in Equation (3.1) satisfies
under SR-nearness

(3.2)
|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.

Proof. Using Azuma-Hoeffding inequality, we have

|ẑ − z|
|z|

= |Ψm−1| ≤

√√√√m−1∑
i=1

u2C2
i

√
2 ln(2/λ),

with probability at least 1− λ. Moreover,

m−1∑
i=1

u2C2
i = u2K2

z

m−1∑
i=1

(1 + u)2(i−1)

= u2K2
z

(1 + u)2(m−1) − 1

u2 + 2u

≤ uK2
z

γ2(m−1)(u)

2
.

MARTINGALES IN STOCHASTIC ROUNDING 7

Finally, we get

|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.

3.3. Multiplication. Suppose now that the last operation is a multiplication,
i.e, z← x×y. Consider the relative errors Φ, X, and Ψ associated respectively to x, y,
and z. Note x, y, and z their respective exact values, and x̂, ŷ and ẑ their computed
values, with

(3.3)

x̂ = x(1 + Φ),

ŷ = y(1 + X),

ẑ = z(1 + Ψ).

We have z = x× y, then there exists δ such that ẑ = x̂× ŷ(1 + δ). Hence,

Ψ =
ẑ − z

z

=
x̂× ŷ

x× y
(1 + δ)− 1

= (1 + Φ)(1 + X)(1 + δ)− 1.

We know by induction that Φ and X are the last terms of two martingales. How-
ever, the multiplication of two martingales is not necessarily a martingale. Conse-
quently, in contrast to the addition case, we have to decide a scheduling of operations
in the construction of the martingale Ψ. All are equivalent and lead to the same final
result.

As presented in Lemma 3.4, we assume that in figure 2, the left sub-tree is com-
puted before the right sub-tree, which means that in the computation of x, we assume
that we don’t have any operation on y. Consider two martingales (Φi)

k−1
i=0 and (Xi)

l−1
i=0

such that Φ0 = 0, Φ = Φk−1, X0 = 0, X = Xl−1, and random errors in Φ are different
from those of X (thanks to the multi-linearity of errors in the computation of z). The
following lemma shows that Ψ is the last term of a martingale built from (Φi)

k−1
i=0 and

(Xi)
l−1
i=0.

Lemma 3.4. The stochastic process (Ψi)
m−1
i=0 such that

Ψi =

Φi = (1 + Φi)(1 + 0)− 1 for all 0 ≤ i ≤ k − 1

(1 + Φ)(1 + Xi−k)− 1 for all k ≤ i ≤ m− 2

(1 + Φ)(1 + X)(1 + δ)− 1 for i = m− 1,

forms a martingale.

Proof. For all 0 ≤ i ≤ k − 1, by construction of Ψ, we have Ψi = Φi. Since
(Φi)

k−1
i=0 is a martingale, we have

E[Ψi/Ψi−1] = E[Φi/Ψi−1] = Φi−1 = Ψi−1.

8 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

Moreover, for the kth term we have

E[Ψk/Ψk−1] = E[(1 + Φ)(1 + X1)− 1/Ψk−1]

= (1 + Φ)E[(1 + X0)/Ψk−1]− 1

= (1 + Φ)− 1 by Lemma 2.1

= Φ.

Since (Xi−k)
m−2
i=k is a martingale, for all k < i ≤ m− 2,

E[Ψi/Ψi−1] = E[(1 + Φ)(1 + Xi−k)− 1/Ψi−1]

= (1 + Φ)E[(1 + Xi−k)/Ψi−1]− 1

= (1 + Φ)(1 + Xi−k−1)− 1 = Ψi−1.

By mean independence of δ and Ψm−2, we get

E[Ψm−1/Ψm−2] = E[(1 + Φ)(1 + Xl−1)(1 + δ)− 1/Ψm−2]

= (1 + Φ)(1 + Xl−1)E[(1 + δ)/Ψm−2]− 1

= Ψm−2.

In order to use Azuma-Hoeffding inequality (Lemma 2.2), we need to bound the
martingale increments. We can show by induction that there exist constants Kx ≥ 1
(bounding the condition number in the computation of x) and Ky ≥ 1 (bounding the
condition number in the computation of y), such that the ith step |Φi − Φi−1| and
|Xi −Xi−1| are bounded respectively by Kxu(1 + u)i−1 and Kyu(1 + u)i−1 (because
Xj = 0 for all 0 ≤ j ≤ k − 1).

Lemma 3.5. Let Kz = KxKy. The martingale (Ψi)
m−1
i=0 satisfies

|Ψi −Ψi−1| ≤ uCi,

where Ci = Kz(1 + u)i−1 for all 1 ≤ i ≤ m− 1.

Proof. For all 1 ≤ i ≤ k − 1, |Ψi −Ψi−1| = |Φi − Φi−1| ≤ Kxu(1 + u)i−1. More-
over, for all k ≤ i ≤ m− 2,

|Ψi −Ψi−1| = |(1 + Φ)(1 + Xi)− (1 + Φ)(1 + Xi−1)|
= |(1 + Φ)(Xi −Xi−1)|
≤ |1 + Φi|Kyu(1 + u)i−k.

As for the summation case, |1 + Φi| ≤ Kx(1 + u)k−1. Then, for all k ≤ i ≤ m− 2,

|Ψi −Ψi−1| ≤ Kx(1 + u)k−1Kyu(1 + u)i−k = Kzu(1 + u)i−1.

Finally, we obtain

|Ψm−1 −Ψm−2| = |(1 + Φ)(1 + X)δ|
≤ uKx(1 + u)k−1Ky(1 + u)m−k−1

≤ uKz(1 + u)m−2.

MARTINGALES IN STOCHASTIC ROUNDING 9

Corollary 3.6. For all 0 < λ < 1, the computed ẑ in Equation (3.3) satisfies
under SR-nearness

(3.4)
|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.

Proof. Using Azuma-Hoeffding inequality, we have

|ẑ − z|
|z|

= |Ψm−1| ≤

√√√√m−1∑
i=1

u2C2
i

√
2 ln(2/λ),

with probability at least 1− λ. Moreover,

m−1∑
i=1

u2C2
i = u2K2

z

m−1∑
i=1

(1 + u)2(i−1)

= u2K2
z

(1 + u)2(m−1) − 1

u2 + 2u

≤ uK2
z

γ2(m−1)(u)

2
.

Finally, we get

|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.

Corollaries 3.3 and 3.6 show that the error of any algorithm based on elemen-
tary operations {+,−,×} and with multi-linear errors has a probabilistic bound in
O(
√
nu), where n is the number of operations.

4. Error analysis using the proved generalization. In this section, we apply
this generalization to algorithms based on elementary operations {+,−,×} with multi-
linear errors. First, we consider the pairwise summation algorithm that involves only
additions, and we show how this method computes the martingale’s length and the
condition number. We obtain the same result proved in [10, 12] for this algorithm.
Next, we analyze the Horner algorithm that combines additions and multiplications,
which illustrates the effect of multiplication on the martingale length. We obtain
the same result proved in [8] for this algorithm. Finally, we examine the Karatsuba
algorithm, which demonstrates the flexibility of this method in handling DAGs where,
in the case of multiplication, two nodes do not share errors.

4.1. Pairwise summation. We investigate the forward error made by the pair-
wise summation algorithm under SR. Section 3 demonstrates that the error generated
by this algorithm forms a martingale. In the following, we illustrate how the gener-
alization presented in the previous section can be applied to compute the length of
this martingale and bound the condition number. We thus use Azuma-Hoeffding in-
equality to compute a probabilistic bound for the error. For illustrative purposes,
let’s consider z =

∑n
i=1 xi such that (⌈n/2⌉ is the smallest integer more than or equal

to n/2):

10 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

m = h; +;K =
∑n

i=1|xi|
|∑n

i=1 xi|

m = h− 1;+;
∑⌈n/2⌉

i=1 |xi|∣∣∣∑⌈n/2⌉
i=1 xi

∣∣∣

. . .

m = 1;+; |x1|+|x2|
|x1+x2|

x1 x2

. . .

m = h− 1;+;
∑n

i=⌈n/2⌉+1|xi|

|∑n
i=⌈n/2⌉+1 xi|

.

m = 1;+; |xn−1|+|xn|
|xn−1+xn|

xn−1 xn

At each internal node, we have:
• On the left, m represents the length of the martingale. In this case, m =
1, 2, . . . , h, where h is the height of tree.

• In the middle, we have the elementary operation between the two children.
In this case, only additions are considered.

• On the right, we have the current condition number from the leaves up to
this node.

Since there are only additions, m is max{ml,mr} + 1, where ml and mr are the
martingale lengths at the left and right sub-trees, respectively. We assume that the
inputs are exact, so m = 0 at each leaf. Consequently, since we add one at each step,
at the root, m = h, the height of the tree.

Let us compute the condition number of the root. From Lemma 3.2, we have

K = |x|
|x+y|Kx + |y|

|x+y|Ky where x =
∑⌈n/2⌉

i=1 xi, y =
∑n

i=⌈n/2⌉+1 xi, and
Kx =

∑⌈n/2⌉
i=1 |xi|∣∣∣∑⌈n/2⌉
i=1 xi

∣∣∣ =
∑⌈n/2⌉

i=1 |xi|
|x| ,

Ky =
∑n

i=⌈n/2⌉+1|xi|

|∑n
i=⌈n/2⌉+1 xi| =

∑n
i=⌈n/2⌉+1|xi|

|y| .

We thus have x+ y =
∑n

i=1 xi and

K =
|x|
|x+ y|

Kx +
|y|
|x+ y|

Ky

=
1

|
∑n

i=1 xi|
(|x|Kx + |y|Ky)

=
1

|
∑n

i=1 xi|

⌈n/2⌉∑
i=1

|xi|+
n∑

i=⌈n/2⌉+1

|xi|

=

∑n
i=1 |xi|

|
∑n

i=1 xi|
.

Finally, Corollary 3.3 shows that

(4.1)
|ẑ − z|
|z|

≤ K
√
uγ2h(u)

√
ln(2/λ) = O(

√
hu),

MARTINGALES IN STOCHASTIC ROUNDING 11

with probability at least 1 − λ, ∀λ ∈]0; 1[, where h = ⌊log2(n)⌋. Interestingly, the
bound in (4.1) is identical to the bound proved in [10] for the pairwise summation
using the AH method.

This proof can easily be adapted to any summation tree, leading to a bound of√
hu with high probability, with h the height of the tree.

4.2. Horner algorithm. The previous example only had additions. Let now
apply Section 3 to Horner’s polynomial evaluation, with both additions and multipli-
cation. Let P (x) =

∑n
i=0 aix

i, Horner’s algorithm consists in writing this polynomial
as

P (x) = (((anx+ an−1)x+ an−2)x . . .+ a1)x+ a0.

m = 2n; +;
∑n

i=0|aix
i|

|∑n
i=0 aixi|

2n− 1; ×;
∑n

i=1|aix
i|

|∑n
i=1 aixi|

. . .

2; +; |anx|+|an−1|
|anx+an−1|

1; ×; 1

an x

an−1

x

. . .

a0

As in the previous example, internal nodes represent three elements. They show the
martingale length on the left, the operation between child nodes in the middle, and
the condition number from the leaves to the node on the right.

Let recall that m is max{ml,mr}+1 for additions and ml +mr +1 for multipli-
cations, where ml and mr are the martingale lengths at the left and right sub-trees,
respectively. We suppose that m = 0 for leaves. In Horner’s algorithm, mr = 0, so
that both in additions and multiplications, m = ml + 1. Since there are n additions
and n multiplications, we have m = 2n.

Let us compute the condition number bound. The first operation is a multipli-
cation between an and x. According to Lemma 3.5, the condition number is 1. The
second operation is an addition between anx and an−1. According to Lemma 3.2, the

condition number is |anx|+|an−1|
|anx+an−1| . For the root, we have:

K =

∣∣∑n
i=1 aix

i
∣∣

|
∑n

i=1 aix
i + a0|

∑n
i=1

∣∣aixi
∣∣

|
∑n

i=1 aix
i|

+
|a0|

|
∑n

i=1 aix
i + a0|

=

∑n
i=0

∣∣aixi
∣∣

|
∑n

i=0 aix
i|
.

12 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

Note that the condition number remains the same in the case of multiplication by an
input. Finally, Corollary 3.3 and Corollary 3.6 show

(4.2)

∣∣∣P̂ (x)− P (x)
∣∣∣

|P (x)|
≤ K

√
uγ4n(u)

√
ln(2/λ) = O(

√
nu),

with probability at least 1 − λ. Interestingly, the bound in (4.2) is identical to the
bound proved in [8, thm IV.2] for the Horner algorithm.

4.3. Karatsuba polynomial multiplication. Karatsuba multiplication [14]
is a divide-and-conquer algorithm that reduces the number of multiplications in the
product of two polynomials1. There are different variants; here, we consider the
substractive variant.

Let us consider two polynomials A and B of degree 2n − 1.
• If n = 0, the Karatsuba product of A and B reduces to a scalar multiplication,
K(A,B) = a0.b0.

• If n ≥ 1, we write A = Ah.X
2n−1

+Al and B = Bh.X
2n−1

+Bl where Ah and
Bh capture the high order coefficients and Al and Bl capture the low order
coefficients of A and B respectively. Then the product of A and B is

K(A,B) = P2.X
2n + (P0 + P1 + P2).X

2n−1

+ P0

where P0 = K(Al, Bl), P2 = K(Ah, Bh) and P1 = K(Ah −Al, Bl −Bh).
We can note that this recursive step uses only three polynomial multiplications

instead of four in a recursive formulation of the classical multiplication algorithm,
leading to a complexity of O(nlog2(3)) instead of O(n2).

The following result allows to apply the results proven in the previous section.
Figure 3 illustrates on a product of polynomials of degree 3 how one term of all the
multiplications in the algorithm results from computations on A, and the other from
computations on B, which is key to the proof of the theorem.

Theorem 4.1. If A and B result of independent computations, K(A,B) has a
martingale-inducing computation DAG.

Proof. By induction on n.
For n = 0 then K(A,B) = a0.b0. The computation DAG is a single multiplication

node and a0 and b0 are independent.
For n ≥ 1, we consider K(A,B) where A and B of degree 2n − 1. First, we will

show that the partial products P0, P1 and P2 are computed with martingale-inducing
DAGs.

Because A and B are independent, so are Al and Bl. Therefore, P0 = K(Al, Bl),
where Al and Bl are of degree 2

n−1−1 has by induction a martingale-inducing DAG.
By the same reasoning, we show that P2 = K(Ah, Bh) has a martingale-inducing
DAG.

For P1 = K(Ah − Al, Bl − Bh), Ah and Al are not necessarily independent, but
they are combined using a subtraction operation. Same for Bh and Bl. Moreover,
the resulting polynomials Ah − Al and Bl − Bh are independent of degree 2n−1 − 1.
Therefore, by the induction hypothesis, P1 is computed with a martingale-inducing
DAG.

1We target polynomials with a number of coefficients that is a power-of-2.

MARTINGALES IN STOCHASTIC ROUNDING 13

a0 a1 a2 a3 b0 b1 b2 b3

− − − −
− − − −

− −

×
r0

× × × × × × × ×
r6

+

+
r1

+
r2

+

+
r5

+
r4

+

+
r3

Fig. 3: Computation DAG for the Karatsuba multiplication R = A × B of two
polynomials of degree three — first three levels are the subtractions in the recursive
calls, each concerning only one of A or B; then all products are performed, with one
operand coming from A (blue) and the other from B (red); finally, zero to two levels
of additions yield the result — different hues of blue and red for legibility purpose
only.

Finally, K(A,B) = P2.X
2n + (P0 + P1 + P2).X

2n−1

+ P0. We can ignore the

multiplications by X2n and X2n−1

, which only shift the position of the coefficients
and do not introduce numerical errors.

The coefficients of K(A,B) result of sums of coefficients in P0, P1, and P2. The
operands are not always independent because some coefficients are shared, for in-
stance, between P0 and P0.X

2n−1

. Nevertheless, all the operations in the result-
ing DAG are sums. Therefore, we conclude that the computation of K(A,B) is
martingale-inducing.

Length of the error martingale. Let us now compute the length of the martingale
for each coefficient of the Karatsuba product. For A,B of degree 2n − 1, let R =
K(A,B) with degree d = 2n+1 − 2.

R = r2n+1−2.X
2n+1−2 + . . .+ r1.X + r0

The coefficients of A and B can either be constant inputs or result of previous
martingale-inducing computations. We note mA (respectively mB) the maximum
martingale length of the coefficients of A (respectively B). When coefficients are
constant, mA = mB = 0.

Theorem 4.2. For i ∈ J0, dK, the length of the error martingale in the computa-
tion of coefficient ri is

m(i, d) = 1 + 3⌊log2 min{i+ 1, d− i+ 1}⌋+mA +mB

Before proving this theorem, let us first give some properties of function m(i, d).
Table 1 shows the values of m(i, d) for n ≤ 3. We note that:

• (Property 1) m(i, d) is symmetric with respect to d/2, m(i, d) = m(d− i, d).
• (Property 2) m(i, d) reaches its maximum for i = d/2, m(d/2, d) = 1 + 3n+
mA +mB .

14 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

n d m(d, d) . . .m(1, d) m(0, d)

0 0 1
1 2 1 4 1
2 6 1 4 4 7 4 4 1
3 14 1 4 4 7 7 7 7 10 7 7 7 7 4 4 1

Table 1: Values of m(i, d) for n ≤ 3 and mA = mB = 0.

• (Property 3) The 2n−1 coefficients to the left and to the right of the central
coefficient d/2 have the second largest martingale length:
∀i ∈K2n−1−2, d/2J ∪ Kd/2, d− (2n−1−2)J, m(i, d) = 1+3(n−1)+mA+mB .

It is natural that the error martingale length is smallest for the extreme degrees
r0 and rd since they result from a single product. On the contrary, the coefficients
around d/2 are the most sensitive to errors because they result from the sum of many
different partial products.

Let us now prove the theorem.

Proof. By induction on n.
For n = 0, d = 0 and R = r0 = a0.b0. Because the DAG is composed of a single

multiplication, the length of the error martingale is 1+mA+mB . We verify that this
is the value of m(0, 0).

For n ≥ 1, d = 2n+1 − 2, we consider R where A and B are of degree 2n − 1. Let
us first compute the martingale lengths for the partial products P0, P1 and P2:

• P0 = K(Al, Bl), where Al and Bl are of degree 2n−1 − 1. By induction
hypothesis, the length of the error martingale is mP0

(i) = m(i, 2n − 2).
• P2 = K(Ah, Bh), similarly the length of the error martingale is mP2

(i) =
m(i, 2n − 2).

• P1 = K(Ah −Al, Bl −Bh). Each coefficient in Ah −Al is computed by sub-
tracting two coefficients from Ah and Al, therefore its maximum martingale
length is 1+max{mA,mA} = 1+mA. The same reasoning applies to Bh−Bl,
which has a maximum martingale length 1 +mB . By induction hypothesis,
the length of the error martingale of P1 is mP1

(i) = m(i, 2n − 2) + 2. As
shown, the additional 2 comes from the inner subtractions.

Let us now consider R = P2.X
2n +(P0+P1+P2).X

2n−1

+P0. Figure 4 represents
the shifted partial products in the computation of R : P0 is not shifted, P2 is shifted
2n positions left. P1, P2 and P0 are shifted 2n−1 positions left.

Let us treat separately cases (a), (b), and (c).
Case (a):. For i ∈ J0, 2n−1 − 1K, ri corresponds to the i-th coefficient in P0.

Therefore the martingale length for ri is given by mP0(i) and

mP0
(i) = m(i, 2n − 2) = 1 + 3⌊log2(i+ 1)⌋+mA +mB = m(i, d)

Case (c):. For i ∈ Jd− 2n−1 +1, dK, ri corresponds to the i− 2n coefficient in P2.
Therefore the martingale length for ri is given by mP2(i− 2n) and

mP2
(i− 2n) = m(i− 2n, 2n − 2) = 1 + 3⌊log2 ((2n − 2)− (i− 2n) + 1)⌋+mA +mB

= 1 + 3⌊log2
(
(2n+1 − 2)− i+ 1

)
⌋+mA +mB

= m(i, d)

MARTINGALES IN STOCHASTIC ROUNDING 15

d · · · d− 2n−1 · · · d/2 · · · 2n−1 · · · 0

P2 P0

P0

P1

P2

Case (c) Case (a)Case (b)

Fig. 4: Shifted partial products in R = K(A,B) with d = 2n+1 − 2. The dashed cells
represent the central coefficient in each polynomial.

+

P1.X
2n−1 +

+

P2.X
2n P2.X

2n−1

+

P0.X
2n−1

P0

Fig. 5: Summing DAG for case (b) .

Case (b):. This case is the most interesting one, because each coefficient ri results

of the sum of at most four coefficients from P0, P2, P0.X
2n−1

, P1.X
2n−1

, and P2.X
2n−1

.
To minimize the martingale length, we will use the summing order from the DAG

in Figure 5. Note that even if the figure depicts a tree, it corresponds to a DAG
since some leaves share coefficients (e.g. P2 and P2.X

2n−1

). Let us note mb(i) the
martingale length of the DAG.

For each node z ← x + y in the tree, mz = 1 + max{mx,my}. Therefore, the

16 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

martingale length for ri is given by

mb(i) = 1 +max
{
mP1

(i− 2n−1), 1 + max{

1 + max{mP2
(i− 2n),mP2

(i− 2n−1)},

1 + max{mP0(i− 2n−1),mP0(i)}}
}

= 1 +max
{
2 +m(i− 2n−1, 2n − 2), 1 + max{

1 + max{m(i− 2n, 2n − 2),m(i− 2n−1, 2n − 2)},

1 + max{m(i− 2n−1, 2n − 2),m(i, 2n − 2)}}
}

= 1 +max
{
2 +m(i− 2n−1, 2n − 2),

2 + max{m(i− 2n, 2n − 2),m(i− 2n−1, 2n − 2),m(i, 2n − 2)}
}

= 3 +max
{
m(i− 2n, 2n − 2),m(i− 2n−1, 2n − 2),m(i, 2n − 2)

}
We note that to achieve a minimal martingale length, it is important to have P1,
which has an additional martingale length of 2, as a direct child of the root node.

Now let us compute mb(i):
• For i = d/2 = 2n − 1, the maximum is reached for P0, P1, and P2 due to
Property 2,

mb(i) = 3 +m(2n − 1− 2n−1, 2n − 2) = 3 +m(2n−1 − 1, 2n − 2)

= 3 + 3(n− 1) + 1 +mA +mB = 1 + 3n+mA +mB = m(i, d)

• For i ∈ J2n−1, d/2J, we subdivide the interval in two.
– For i ∈ J2n−1, 2n−1 + 2n−2J, we are close to the central element of P0,

therefore due to Property 3

mb(i) = 3 + 3(n− 2) + 1 +mA +mB = 3(n− 1) + 1 +mA +mb

= m(i, d)

– For i ∈ J2n−1 + 2n−2, d/2J, we are close to the central element of P1 (or
−P2,−P0), therefore due to Property 3 we conclude as before.

• For i ∈Kd/2, d − 2n−1K, we apply a similar proof scheme by subdividing the
interval and applying Property 3.

Finally, for all i ∈ J0, dK, Corollaries 3.3 and 3.6 show that

(4.3)
|r̂i − ri|
|ri|

≤ K
√
uγ2(3⌊log2(i+1)⌋)(u)

√
ln(2/λ)

with probability at least 1 − λ. The bound is maximal for the central coefficient
i = d/2 (due to Property 1) with d = 2n+1 − 2,

(4.4)

∣∣r̂d/2 − rd/2
∣∣∣∣rd/2∣∣ ≤ K

√
uγ6n(u)

√
ln(2/λ).

We perform numerical experiments for d varying from 3 to 216 − 1. The com-
putation is performed in IEEE-754 RN-binary32 and SR-nearness-binary32. Errors

MARTINGALES IN STOCHASTIC ROUNDING 17

23 25 27 29 211 213 215

d + 2

2 26

2 21

2 16

2 11

2 6

2 1

24

29

Er
ro

r

K u 6n(u) ln(2/)
SR-nearness
RN-binary32

coefficients sampled uniformly in [0,1]

23 25 27 29 211 213 215

d + 2

2 26

2 21

2 16

2 11

2 6

2 1

24

29

Er
ro

r

K u 6n(u) ln(2/)
SR-nearness
RN-binary32

coefficients sampled uniformly in [-0.5,0.5]

Fig. 6: Relative error for the subtractive Karatsuba algorithm. In the left plot, coef-
ficients were uniformly sampled in [0, 1]. In the right plot, coefficients were uniformly
sampled in [−0.5, 0.5]. (1− λ = 0.9 and d = 2n+1 − 2).

are computed for the central coefficient d/2 against a IEEE-754 binary64 reference.
For each degree, three SR samples are computed with Verificarlo [4]. The condition
number bound, K, is computed following the lemmas 3.2 and 3.5.

First, we consider polynomials with positive coefficients uniformly sampled in
[0, 1] in Figure 6. The bound growth is dominated by K, which grows linearly with
d. Despite this, the actual error grows slowly for these inputs and stays under 2−20.

Then, we consider polynomials with coefficients uniformly sampled in [−0.5, 0.5].
The condition number still dominates the bound. When we have both positive and
negative coefficients, catastrophic cancellations between terms trigger often, account-
ing for the faster growth of K. We observe that the SR and RN samples also show
this effect, with a higher error than before: for d = 216−1, the relative error is around
2−11.

Unlike the previous examples in this section, for which the condition number
was 1 for positive inputs, Karatsuba multiplication has a K that grows linearly with
the input size which explains the loose bound. This growth happens because of the
crossed-product terms in P1 that are later cancelled in the final sum with P0, P1, P2.

Karatsuba multiplication experiments indicate that the condition number can
significantly influence the error and the bound. Current approaches tend to focus
primarily on minimizing the error while relying on worst-case bounds for inputs.
This observation prompts further investigations into the rounding error analysis of
algorithms with SR.

5. Doob-Meyer decomposition and non-linear errors. To establish a com-
prehensive framework, we propose using the Doob-Meyer decomposition, a central
result in the study of stochastic processes [5, p 296]. This decomposition separates a
stochastic process into two distinct components: a martingale part and a predictable
process. Let us first recall the definition of a predictable stochastic process [3, p 65].

Definition 2. Given a filtration (Fn)n≥0, a stochastic process Xn is predictable

18 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

if X0 is F0-measurable, and Xn is Fn−1-measurable for all n ≥ 1.

This means that the value of Xn is known at the previous time step. Now, let us state
the Doob–Meyer decomposition.

Theorem 5.1 (Doob–Meyer decomposition). Let (Fk)0≤k≤n and X0, . . . , Xn an
adapted stochastic process locally integrable, meaning that E(|Xk|) < ∞ for all 0 ≤
k ≤ n. There exists a martingale M0, . . . ,Mn and a predictable integrable sequence
A0, . . . , An starting with A0 = 0 for which we have:

Xn = Mn +An,

An =
∑n

k=1 E[Xk −Xk−1/Fk−1],

E(Mn) = 0.

This decomposition is almost surely unique.

The martingale Mn reflects the information available up to time n. It does not
exhibit any drift and captures the unbiased random component of the stochastic
process Xn. While the sequence An represents the cumulative effect of the predictable
part of the stochastic process Xn. It can be interpreted as the drift of Xn. Its
predictability means that, at each step, one knows the value of the drift at the next
step. For instance, at a step when the algorithm squares a value with error, a term
square of the current error will be added to the drift, while the martingale remains
centered on 0.

We propose to use Doob-Meyer decomposition to analyze the error under SR-
nearness. We consider an algorithm executed under SR-nearness. Its error is a sto-
chastic process X = ŷ − y. Because each random error δi is bounded |δi| ≤ u, the
resulting stochastic process X must also be bounded and is locally integrable. There-
fore we can apply Doob-Meyer decomposition and write the error as the sum of a
martingale and a drift:

(5.1) ŷ − y = M +A,

The martingale component in Equation (5.1) captures the unbiased stochastic
behavior; in other words, the errors that can be compensated with SR, while the bias
is the expected last term of the drift.

Multi-linear error, A = 0. In this paper, we study algorithms whose computa-
tion graphs are martingale-inducing DAGs. For these algorithms, the error terms are
always of degree one, which is why we described them as having multi-linear errors.
In fact, in a martingale-inducing DAG, the product of two nodes is allowed only if
they have different errors, preventing any increase in the degree of the errors. Fur-
thermore, the addition operation does not increase the degree of errors, even if the
two operands share some errors.

In the case of multi-linear errors algorithms, as shown in Section 3, the forward
error is always captured by a martingale, therefore for multi-linear error the drift
component A is zero.

Non-linear error. For non-linear error algorithms, we cannot apply the method
from Section 3. Nevertheless, Doob-Meyer decomposition still applies and provides
a simplifying framework for analyzing the error. Indeed, the martingale term can
be studied with Azuma-Hoeffding and has a probabilistic bound in O(

√
nu). The

problem is, therefore, reduced to the study of the drift term A.
In [10], we have studied variance computation algorithms. By deterministically

bounding the drift term A, we showed that it was negligible at the first order over

MARTINGALES IN STOCHASTIC ROUNDING 19

u and proved an error bound in O(
√
nu). El Arar et al. [7, thm 3] have implicitly

used this decomposition to study the effect of the number of random bits required to
implement SR effectively. We conjecture that the drift is negligible when nu2 = o(1).
However, for low precision computations, the drift may have a dominant effect on the
precision of the result.

Doob-Meyer provides an interesting decomposition for analyzing non-linear al-
gorithms. Nevertheless, in general, it is not easy to build the decomposition, and
bounding the error of general non-linear algorithms under SR-nearness remains an
open problem.

6. Conclusion. The worst-case error bound for a computation involving n el-
ementary operations is O(nu). This bound, while useful, can be overly pessimistic
as it assumes a deterministic accumulation of errors and does not account for error
compensation phenomena. With SR, the use of probabilistic tools, including martin-
gales, variance analysis, and concentration inequalities, allows us to better investigate
rounding errors behavior, establish probabilistic error bounds in O(

√
nu).

In this paper, we propose a general methodology to build a martingale for any
computation DAG with multi-linear errors arising from addition, subtraction, and
multiplication operations. We applied this methodology to pairwise summation and
Horner algorithms, confirming results consistent with earlier works on these algo-
rithms under SR. Moreover, to the best of our knowledge, we are the first to analyze
Karatsuba polynomial multiplication under SR. Using our approach, we established
a probabilistic error bound in O(

√
nu) for Karatsuba’s algorithm as well. We have

also discussed how to analyze the error of a general algorithm using the Doob-Meyer
decomposition that separates the martingale term and the drift part. We believe that
this probabilistic framework can serve as an effective tool to improve the rounding
error analysis under SR in numerical algorithms.

The scripts to reproduce the numerical experiments of Section 4.3 are made avail-
able at https://github.com/verificarlo/sr-karatsuba.

REFERENCES

[1] M. P. Connolly, N. J. Higham, and T. Mary, Stochastic rounding and its probabilistic
backward error analysis, SIAM Journal on Scientific Computing, (2021).

[2] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, Stochastic rounding: im-
plementation, error analysis and applications, Royal Society Open Science, 9 (2022),
p. 211631.

[3] D. Dacunha-Castelle, D. McHale, and M. Duflo, Probability and Statistics: Volume II,
no. v. 2, Springer New York, 2012.

[4] C. Denis, P. de Oliveira Castro, and E. Petit, Verificarlo: Checking floating point accu-
racy through Monte Carlo arithmetic, in 23nd IEEE Symposium on Computer Arithmetic,
ARITH 2016, Silicon Valley, CA, USA, July 10-13, 2016, 2016, pp. 55–62.

[5] J. Doob, Stochastic Processes, Probability and Statistics Series, Wiley, 1953.
[6] E.-M. El Arar, Stochastic models for the evaluation of numerical errors, PhD thesis, Univer-

sité Paris-Saclay, 2023.
[7] E.-M. El Arar, M. Fasi, S.-I. Filip, and M. Mikaitis, Probabilistic error analysis of limited-

precision stochastic rounding, 2024, https://arxiv.org/abs/2408.03069.
[8] E.-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit, The positive effects of

stochastic rounding in numerical algorithms, in 2022 IEEE 29th Symposium on Computer
Arithmetic (ARITH), 2022, pp. 58–65.

[9] E.-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit, Stochastic rounding
variance and probabilistic bounds: A new approach, SIAM Journal on Scientific Computing,
45 (2023), pp. C255–C275.

[10] E.-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit, Bounds on nonlin-
ear errors for variance computation with stochastic rounding, SIAM Journal on Scientific

https://github.com/verificarlo/sr-karatsuba
https://arxiv.org/abs/2408.03069

20 P. DE OLIVEIRA CASTRO, E.-M. EL ARAR, E. PETIT AND D. SOHIER

Computing, 46 (2024), pp. B579–B599.
[11] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning with lim-

ited numerical precision, in International conference on machine learning, PMLR, 2015,
pp. 1737–1746.

[12] E. Hallman and I. C. F. Ipsen, Precision-aware deterministic and probabilistic error bounds
for floating point summation, Numerische Mathematik, 155 (2023), pp. 83–119.

[13] I. C. F. Ipsen and H. Zhou, Probabilistic error analysis for inner products, SIAM Journal on
Matrix Analysis and Applications, 41 (2020), pp. 1726–1741.

[14] A. A. Karatsuba, The complexity of computations, Proceedings of the Steklov Institute of
Mathematics-Interperiodica Translation, 211 (1995), pp. 169–183.

[15] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and
Probabilistic Analysis, Cambridge University Press, 2005.

[16] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefevre,
G. Melquiond, N. Revol, D. Stehlé, S. Torres, et al., Handbook of floating-point
arithmetic, vol. 1, Birkhäuser Basel, 2nd ed., 2018.

[17] L. Xia, M. E. Hochstenbach, and S. Massei, On the convergence of the gradient descent
method with stochastic fixed-point rounding errors under the polyak-lojasiewicz inequality,
arXiv preprint arXiv:2301.09511, (2023).

[18] L. Xia, S. Massei, M. E. Hochstenbach, and B. Koren, On the influence of stochastic
roundoff errors and their bias on the convergence of the gradient descent method with
low-precision floating-point computation, 2023, https://arxiv.org/abs/2202.12276.

https://arxiv.org/abs/2202.12276

	Introduction
	Preliminaries
	Errors in sum-product computation graphs
	Base case: is an input
	Addition
	Multiplication

	Error analysis using the proved generalization
	Pairwise summation
	Horner algorithm
	Karatsuba polynomial multiplication

	Doob-Meyer decomposition and non-linear errors
	Conclusion
	References

