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Abstract

Seasonal rainfall forecasts from the West African Regional Climate Outlook

Forum (RCOF) are essential for adapting to climate variability. However, their

temporal aggregated nature is a strong limitation, especially when used with

impact models requiring daily resolution, such as hydrological or crop models.

To address this issue, this study proposes a temporal disaggregation method for

these forecasts using in situ data from two districts (Kandi and Parakou) in

northern Benin, spanning from 1971 to 2020. A resampling technique was used

to construct a daily historical record that aligns with seasonal rainfall forecasts.

Three stochastic disaggregation models for rainfall (SRGs) were developed,

including two parametric models (SRG1 and SRG2) and one semiparametric

(SRG3). Their parameters were estimated from the resampled record to generate

daily synthetic data replicating the forecasts. Evaluation of the SRGs revealed

that SRG2, which combined a first-order Markov chain with a mixed exponen-

tial distribution, performs well in simulating various characteristics of the rainy

season, including dry spells, wet spells and daily precipitations. Furthermore,

SRG2 maintained the trends of the initial forecasts and outperformed SRG1 and

SRG3, as confirmed by the chi-square test. Indeed, a good agreement was

observed between the probabilities of the initial prediction and those calculated

from the temporal disaggregation with the SRG2 method. Also, for the forecasts

expressed by probabilities 15–35–50 and 20–50–30, the cumulative distribution

function curves (CDF) of the SRGs exhibited appropriate shifts compared to

climatology. These forecasts were specific to the Kandi area in 2008 and 2003,

respectively, during the West African RCOFs. Although this study focused

specifically on the Kandi and Parakou districts, the temporal disaggregation

methodology used can be applied to other locations within West Africa or

other RCOFs worldwide. This study offers valuable guidance for generating

sector-specific seasonal forecasts for the West African region.
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1 | INTRODUCTION

Seasonal rainfall forecasts are important for adapting to
climate variability, especially in regions with high inter-
annual rainfall variability (Hansen et al., 2011; Sultan
et al., 2010). In recent decades, forecasting capabilities
have improved due to research showing that seasonal
rainfall variability is strongly related to large-scale inter-
actions between the oceans and the atmosphere
(Fontaine et al., 2011; Parhi et al., 2016). Seasonal fore-
casts are produced routinely at several operational
weather centres around the world. World meteorological
centres such as the European Center for Medium-Range
Weather Forecasts (ECMWF) and the National Oceanic
and Atmospheric Administration (NOAA) run coupled
ocean-atmospheric circulation models (AOGCMs) with
resolutions ranging from 0.25� to 2� to produce seasonal
climate forecasts. Some of these models provide probabi-
listic outputs, along with daily weather parameters for
the upcoming season (Baigorria et al., 2008; Challinor
et al., 2003). However, the daily series derived from these
AOGCMs exhibit certain limitations (Ali et al., 2006).
They use to overestimate the number of rainy events,
resulting in an unrealistic distribution of dry and wet
spells, and they underestimate rainfall amounts. Also,
the coarse resolution of AOGCMs' grid cells often fails to
accurately depict climate zone boundaries or areas of spe-
cific interest.

In West Africa, the African Center for Meteorological
Applications for Development (ACMAD) and the Regional
Center AGRHYMET (CRA) act as regional coordinators
for seasonal climate forecasts. They provide support to
national meteorological and hydrological services (NMHS)
in the region through the organization of regional climate
outlook forums (RCOFs). Previously known as seasonal
forecasts in West Africa (PRESAO), these forums have
been subdivided into two categories: seasonal forecasts for
the Sudano-Sahelian region of West Africa (PRESASS)
and seasonal forecasts for countries along the Gulf of
Guinea (PRESAGG). This subdivision takes into account
the distinct rainfall regimes between the Gulf of
Guinea and the Sudano-Sahelian regions of West Africa.
The PRESAGG RCOF typically takes place in the second
half of February and provides seasonal rainfall forecasts
(ACMAD, 2022a) for the early monsoon phase (March–
May, April–June). On the other hand, PRESASS RCOF is
held late in April and provides seasonal rainfall forecasts

(ACMAD, 2022b) for the peak of the monsoon (June–
August, July–September). The forecasting procedure is a
mixture of objective and subjective approaches (for more
details, see Bliefernicht et al., 2019). First, NMHS per-
forms country-scale seasonal rainfall forecasts using statis-
tical techniques (objectives or automated approaches),
such as canonical correlation analysis, principal compo-
nent regression, or multiple linear regression, implemen-
ted in the climate predictability tool (Mason et al., 2022).
These techniques establish statistical relationships
between the forecast variables (explained variables) and
the predictors, such as the sea surface temperatures out-
put by AOGCMs (Chidzambwa & Mason, 2008; Kumar
et al., 2020). Second, subjective or manual techniques,
based on the expertise of climatologists from NHMS,
CRA, ACMAD and other experts (from world meteorolog-
ical centres), are used alongside statistical methods to
carry out the regional harmonization (Bliefernicht
et al., 2019). These techniques involve analysing the main
climate driver fields of West Africa as predicted by
AOGCMs or other data sources. Based on consensus, the
regions where precipitation anomalies are expected are
delineated, and the probabilities of the forecast are
assigned to the categories (terciles) above-average, average
and below-average (see the example in Figure 1). These
terciles are defined based on the most recent 30-year
record, updated every 10 years. Thus, the seasonal fore-
cast for the year 2022 considered the terciles computed
for the period 1991–2020. Finally, they communicated
and disseminated precipitation forecasts to end-users dur-
ing a broadcast press conference directly after the RCOF
meteorological experts' meeting. These forecasts are essen-
tial for various sectors, especially agriculture. Sultan et al.
(2013) and Roudier et al. (2011) showed that despite the
uncertainties associated with these forecasts, farmers
could benefit from them in terms of increased income
and reduced risks by implementing the related advice and
recommendations. Besides, some studies have evaluated
the West African RCOFs seasonal rainfall forecasts and
shown that the forecasts have improved over time
(Bliefernicht et al., 2019; Chidzambwa & Mason, 2008).
These studies concluded that the forecasts are reliable for
the above-average and below-average categories. How-
ever, some systematic errors have been reported, the most
common being the tendency of experts to assign high
probabilities to the average category due to risk aversion
(Bliefernicht et al., 2019).
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Unlike global climate centres, seasonal rainfall fore-
casts in West Africa do not provide a daily precipitation
series for the upcoming season. The importance of daily
meteorological series for the upcoming season lies in
their use as input for models, including crop and hydro-
logical models, to assess the impacts of the expected sea-
son on water resources and crops (Baigorria et al., 2008;
Wilks, 2002). This enables the formulation of appropriate
adaptation options for end-users, such as optimal sowing
dates, efficient water management, fertilizer usage and
enhanced water and soil conservation techniques. Crop
models, for example, are used as decision-support tools,
predicting phenology, growth, yield and, in some cases,
crop quality based on different crop management prac-
tices and climate (Equation (1)). These models primarily
simulate plant development and growth, relying predom-
inantly on daily data as input variables. Most down-
stream applications of the seasonal rainfall forecasts from
the West African RCOFs require temporal disaggrega-
tion. However, no studies have been conducted to disag-
gregate these forecasts into finer temporal scales since
the establishment of the West African RCOFs.

This study is part of this framework and uses a sto-
chastic approach. It aims to disaggregate the seasonal
rainfall products of the West African RCOF on a daily
time scale. It can be used to develop specific seasonal
forecasts, such as seasonal forecasts of crop yield, sea-
sonal forecasts of the phenological stage and seasonal
forecasts of stream flow, by integrating disaggregated
series in these impact models.

This paper is divided into four sections. The section 1
focuses on the methodology employed and the areas
selected for applying the methods. The results are pre-
sented in section 2, while in section 3, we discuss the
results and highlight some limitations. Finally, in conclu-
sion, we summarize the key findings of this study and
present some perspectives.

2 | METHODOLOGY

Temporal disaggregation of seasonal forecasts consists
in reproducing seasonal forecasts on a finer temporal
scale. This process does not enhance the initial fore-
casts, which are already deemed reliable enough to
meet end-users needs. Some authors have used stochas-
tic weather generators (SWGs) to perform this temporal
disaggregation. The parameters of these SWGs are
based on historical data that align with the seasonal
forecasts (Apipattanavis et al., 2007; Ghosh et al., 2014;
Han et al., 2017; Han & Ines, 2017; Kim et al., 2015;
Wilks, 2002). SWGs are stochastic methods specifically
designed to simulate synthetic time series of meteoro-
logical variables, theoretically of infinite length, for
a specific location. These simulations are based on the
statistical properties of observed weather patterns at
that particular location (Peleg et al., 2017; Wilks &
Wilby, 1999). These methods aim to generate time
series that accurately replicate the observations by con-
sidering essential characteristics such as means,

FIGURE 1 Seasonal

rainfall forecast map for July–
August–September 2022, issued

in April 2022 (adapted map

from CRA)
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variances, frequencies and extremes. The literature pro-
vides various types of stochastic weather generators
(SWGs), which can be classified into two main
approaches: statistical and a combination of statistical
and process-based methods (Peleg et al., 2017). Our
study focuses on the statistical SWGs, which can be
parametric, nonparametric or semiparametric. Paramet-
ric SWGs assume a specific distribution for the
observed historical rainfall series, while nonparametric
SWGs do not make such assumptions. Semiparametric
models combine elements of both parametric and non-
parametric approaches.

Wilks (2002) presented a method for conditioning
parametric SWGs using probabilistic seasonal climate
forecasts. This method was applied using the New York
State rainfall and temperature station network to esti-
mate SWG parameters by resampling the historical series
to align with the seasonal forecasts for the area (see
Briggs & Wilks, 1996). Kim et al. (2015) employed a simi-
lar approach with an SWG based on a generalized linear
model. The weighted resampling technique of Briggs and
Wilks (1996) and Ines (2013) was applied to nonparamet-
ric and semiparametric SWG to condition synthetic
weather series by seasonal climate forecasts. For exam-
ple, Apipattanavis et al. (2007, 2010) modified their semi-
parametric SWG based on the k-nearest neighbour
approach to select neighbours randomly not from the
raw historical series but from a resampling of historical
climate data consistent with the outputs of seasonal fore-
casts. Similarly, to disaggregate the seasonal rainfall fore-
casts of the West African RCOF, we developed three
models called stochastic disaggregation models for rain-
fall (SRG), which differ from SWGs as they concern only
the rainfall. The three developed SRGs include two para-
metric and one semiparametric in order to choose the
best-performing one. Using the Briggs and Wilks (1996)
methodology, we resampled our historical rainfall time
series and estimated the parameters of the three models
from these series.

2.1 | Construction of historical records
consistent with seasonal rainfall forecasts

The methodology for a forecast expressed in terms of
probabilities pB−pN −pA corresponding to below-average
(pB), average (pN ) and above-average (pA), respectively
(Figure 1) is summarized in four steps according to Wilks
(2002) and Briggs and Wilks (1996).

Step 1: The first step involves calculating the cumula-
tive seasonal rainfall (RSP) for the target season, such as
July–August–September, from the historical rainfall time
series for all years.

Step 2: Next, the terciles of the cumulative seasonal
rainfall are computed. These terciles, denoted as Q1=3 and
Q2=3, divide the sorted statistical series into three equal
groups, each containing 33% of the data. These statistics
were calculated using the type 5 definition from Hynd-
man and Fan (1996), which is widely accepted among
hydrologists and builds upon the research conducted by
Hazen (1914).

Step 3: Each year in the historical series is then
classified into one of three categories: below-average
(RSP<Q1=3), average (Q1=3<RSP<Q2=3), or above-average
(RSP>Q2=3), based on the total rainfall for the considered
season. Thus, the historical rainfall series consists of N
years, where N=NA+NB+NN , with NB years catego-
rized as below-average rainfall, NN years as average rain-
fall and NA years as above-average rainfall.

Step 4: The resampled dataset (or the built rainfall
times series) is generated by drawing a sample of size L
(where L=1000) with replacement from the historical
rainfall time series, considering the probabilities (pA, pN ,
pB) associated with each category. The resulting climate
series comprises subsets of sizes pBL, pNL and pAL,
obtained by drawing with replacement from the NB years
with below-average rainfall, NN years with average rain-
fall and NA years with above-average rainfall,
respectively.

Wilks (2002) demonstrated that some SRG parame-
ters could be estimated from the built rainfall times
series. The author explained that these parameters can be
considered as simple seasonal statistics and that their
expected values can be estimated from the built rainfall
times series. Specifically, considering seasonal statistics
denoted as X and x Bð Þ

i , x Nð Þ
i and x Að Þ

i representing the sta-
tistics of interest in the ith below-average, average and
above-average years, respectively. The expected value of
X can be calculated using Equation (1),

E Xð Þ= lim
L!∞

1
L

XNB

i=1

PBL
NB

xi Bð Þ+
XNN

i=1

PNL
NN

xi Nð Þ+
XNA

i=1

PAL
NA

xi Að Þ
" #

:

ð1Þ

Thus, the forecast-conditional value of X is a
weighted sum of its mean in the below-average, average
and above-average years, with the weights equal to the
forecast probabilities for each of the three categories.

2.2 | Stochastic disaggregation models
for rainfall

Three SRGs were developed, including two parametric
models and one semiparametric model (Table 1). The
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parameters of these three SRGs were estimated from the
built rainfall times series. This could enable the genera-
tion of synthetic daily data consistent with seasonal rain-
fall forecasts.

Parametric SRGs use the same model (first-order two-
state Markov chain) to generate rainfall occurrences but
differ in the model simulating precipitation amounts. Let
Jd : d=1,2,3,…f g be a sequence of the daily occurrence of
precipitation with Jd=1 or Jd=0, indicating that the day
d was rainy (rainfall amount >0:1) or dry, respectively. It
is accepted (Gabriel & Neumann, 1962; Katz, 1977) that
this process is a first-order (the probabilities depend only
on the state of the previous day) two states (rainy or dry)
Markov chain. Jimoh and Webster (1996) found no
significant difference between the performance of
the first- and second-order Markov chains in their
study in Nigeria. However, the first-order Markov
chain outperformed the zero-order Markov chain.
The first-order two-state Markov chain model is
completely characterized by the transition probabili-
ties: Pij=Pr Jd= j j Jd−1= if g, i, j� 0,1f g. Considering the
theory of complementary probabilities, the two transition
probabilities P00=1−P01 and P10=1−P11 are sufficient to
define the process. We also define the unconditional
probability of a rainy day π1 and a dry day π0
(Wilks, 2011) by Equation (2),

π1=
P01

1+P01−P11
,

π0=1−π1:
ð2Þ

For the first parametric SRG (SRG1), a two-parameter
Gamma distribution was used to estimate the pre-
cipitation amount on wet days. The density function
of the Gamma distribution takes the following form
(Equation (3)):

f xð Þ= x=βð Þα−1 exp x=βð Þ½ �
βΓ αð Þ α,β>0, ð3Þ

where α is the shape parameter and β is the scale param-
eter. The second parametric SRG (SRG2) used the mixed
exponential distribution to determine the amount of pre-
cipitation on wet days. This distribution is a probability
mixture of 2 one-parameter exponential distributions,
with the mixing parameter α controlling the use of either
a larger (μ1) or smaller (μ2) exponential mean. The den-
sity function is in the form (Equation (4)),

f xð Þ= α

μ1
exp −

x
μ1

� �
+
1−α

μ2
exp −

x
μ2

� �
: ð4Þ

To simulate the occurrence of precipitation, a uni-
form random number (u) ranging from 0 to 1 was gener-
ated and compared to either P01 or P11 based on the
previous day's condition (dry/wet). If the previous day
was dry and u≤P01, the current day is considered wet.
Conversely, if the previous day was dry and u≥P01, the
current day is considered dry. The same comparison is
performed when the previous day was wet but with u
being compared to P11. When the occurrence model sim-
ulates a wet day, a new uniform random number (u1) is
generated, and the precipitation amount for
that rainy day is determined using the inverse of
the cumulative distribution function (ICDF) of the expo-
nential distribution for SRG1 and the mixed exponential
distribution for SRG2 as follows: Amount= f −1 u1ð Þ. The
initialization of the simulation, on the day d=1 for a
given month, involves comparing u to the unconditional
probability of a rainy day, π1. If u≤π1, the first day is con-
sidered wet; otherwise, it is considered dry.

For the semiparametric SRG (SRG3), a first-order
Markov chain with three-state (dry, wet and extremely

TABLE 1 Summary of the methods developed

Name
of SRG Type of SRG Methods Performance evaluation tests

SRG1 Parametric Rainfall occurrence: first-order two-state Markov
chain

Rainfall amounts: Gamma distribution

Wilcoxon test Ho: means of SRGs and Obs are
equal Ha: means of SRGs and Obs are different

SRG2 Parametric Rainfall occurrence: First-order two-state Markov
chain

Rainfall amounts: mixed exponential distribution

Ansari-Bradley test Ho: SRGs and Obs are
identical by dispersion Ha: SRGs and Obs differ
by dispersion

SRG3 Semiparametric Rainfall occurrence: First-order three-states
Markov chain

Rainfall amounts: Kernel density estimation

Kolmogorov–Smirnov test Ho: SRGs and Obs
come from the same distribution Ha: SRGs and
Obs do not come from the same distribution

Note: SRG means stochastic disaggregation models for rainfall.

HOUNGNIBO ET AL. 5573
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wet) is used to simulate the occurrence of precipitation.
A day is considered dry Jd=0ð Þ if the daily amount is less
than or equal to 0.1mm, extremely wet Jd=2ð Þ if the
daily amount is greater than or equal to the 80th percen-
tile of the daily precipitation amount for the simulated
month, and wet Jd=1ð Þ otherwise. Six probabilities P01,
P02, P11, P12, P21 and P22 are sufficient to define this Mar-
kov process. The unconditional probabilities for wet days
(π1), extremely wet days (π2) and dry days (π0) are given
by the formulas (Equation (5)),

π1=
P01 1+P02+P22ð Þ−P02 P01−P21ð Þ

1+P01−P11ð Þ 1+P02−P22ð Þ− P01−P21ð Þ P02−P12ð Þ ,

π2=
P02−π1 P02−P12ð Þ

1+P02−P22
,

π0=1− π1+π2ð Þ:
ð5Þ

The precipitation amounts on wet and extremely wet
days were estimated using the kernel method. Let
x1,x2,x3,…,xn be a series of daily amounts on wet or
extremely wet days. The probability density estimator
using the kernel method is (Equation (6)),

bf xð Þ= 1
nh

Xn
i=1

K
x−xi
h

� �
, x �ℝ, ð6Þ

where xi is the ith value of the series of size n, K is the
kernel satisfying the conditions K xð Þ>0 andR +∞
−∞ K xð Þdx=1 and h is the bandwidth. A Gaussian ker-

nel was chosen and h was estimated using Silverman's
(1986) formula: h≈ 1:06bσn−1=5, where bσ is the standard
deviation of the series.

The simulation of precipitation occurrence at the ini-
tialization day (d=1 of the month) was carried out by
comparing a uniform random number u with π0 and
π0+π1ð Þ. The state on the first day is considered dry
(J1=0) if u<π0ð Þ, wet (J1=1) if π0<u< π0+π1ð Þ, and
extremely wet (J1=2) otherwise. The occurrences of the
subsequent days are then determined by considering the
state of the previous days and comparing the uniform
random number u generated with the transition probabil-
ities. For instance, if J1=0, the state on the second day
(J2) is considered dry if u<P00, wet if P00<u< P00+P01ð Þ
and extremely wet otherwise. The process was iterated
for each day until the last day of the month. The amounts
of rain were generated using the inverse function of bf xð Þ.

The forecast conditional values of the precipitation
occurrence parameters (π0, π1, π2, P01, P11,…) were esti-
mated using Equation (1). For example, π0 was estimated
each month as a function of pB, pA and the mean portion

of dry days in below-normal x Bð Þ, near-normal x Nð Þ and
above-normal x Að Þ years for that month as follows:

π0=pBX
Bð Þ
+ 1−pB−pAð ÞX Nð Þ

+pAX
Að Þ
: ð7Þ

The precipitation amount parameters cannot be esti-
mated as a function of forecast probabilities such as
occurrence parameters. Indeed, the parameters, α, μ, μ1
and μ2 are iteratively estimated using a maximum likeli-
hood estimation approach, while bf xð Þ is estimated using
the Gaussian kernel method. Consequently, these param-
eters are estimated from historical records consistent
with the forecast as described above. They are separately
estimated for each month of the target season and are
considered constant for that month.

The evaluation of the three SRGs involved assessing
their ability to capture certain statistics from historical
rainfall time series (actual climatology). One hundred
realizations, each of the same length as the historical rain-
fall record (50 years), were generated for the target season
using each SRG. The evaluation focused on characteristics
such as dry spells (consecutive days with rainfall amounts
≤0.1 mm), wet spells and cumulative daily rainfall for the
season of interest. Nonparametric statistical tests were
employed to examine the equality of means, variances
and distributions between the observed and generated
series. These tests included the Wilcoxon test for means,
the Ansari-Bradley test for variances and the
Kolmogorov–Smirnov test for distributions. A significance
level of 5% was used, with a p-value less than 0.05 indicat-
ing rejection of the null hypothesis of equality and imply-
ing a significant difference. Conversely, for p-values
exceeding 0.05, it is not possible to conclude the presence
of a significant difference. Quantile–quantile graphs and
probability density curves (PDF) were also generated to
compare the distributions of the generated and observed
series. A logarithmic transformation was applied to the
daily rainfall amounts to enhance interpretation. The
evaluation was conducted for the July–August–September
(JAS) season, as it encompasses over 50% of the total
annual rainfall in the study areas (Figure 3). Table 1 sum-
marizes the SRG methods developed in this study.

2.3 | Seasonal rainfall forecast
disaggregated

The consistency between the West African RCOF
seasonal rainfall forecasts and those obtained
from disaggregated forecasts was analysed. A total of
18 seasonal rainfall forecast formats (PB−PN −PA)
from the West African RCOF were disaggregated,
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including five above-average, five below-average, four
average to above-average and four average to below-
average forecasts. The disaggregation process involved
conditionally generating 1000 simulations of 100 daily
rainfall series for the JAS season for each forecast and
station. The relative frequencies of seasonal cumulative
rainfall falling below-average, average and above-average
were determined from each simulation and compared
with the initial probabilities of the disaggregated fore-
casts. To assess the agreement between the frequencies

obtained and the initial forecast categories (PB,PN ,PA), a
chi-square goodness-of-fit test was conducted at a signifi-
cance level of 5% for each simulation.

Furthermore, forecasts expressed with probabilities
15–35–50 and 20–50–30 were also disaggregated. These
forecasts were specific to the Kandi area in 2008 and
2003, respectively, during the West African RCOF.
Cumulative distribution function curves were generated
to compare the distributions of observed and simulated
series. As the forecasts were issued for 2003 and 2008, the

FIGURE 2 Topographic map of Kandi and Parakou, located within the Republic of Benin. The dots denote the location of the rain

gauges used
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reference period taken into account for the observations
(climatology) was 1971–2000.

2.4 | Case study area and data

Kandi and Parakou (Figure 2), two municipalities in the
northern region of the Republic of Benin in West Africa,
were chosen for this study. These municipalities are situ-
ated in the central part of the West African RCOF cover-
age area (Figure 2). The region is characterized by a
plateau with an elevation ranging from 250 to 350 m.
Kandi is located within the Niger River catchment area,
while Parakou lies within the Oueme River catchment
area. Both municipalities are home to synoptic weather
stations operated by the Benin National Meteorology
Agency (METEO BENIN). The climate of these areas falls
under the Sudanese classification and is characterized by
two distinct seasons. The rainy season typically spans
from April to October, while the dry season occurs from
November to March (Figure 3). The average annual rain-
fall in Kandi and Parakou (1991–2020) amounts to
approximately 1047 and 1151 mm, respectively. Notably,
the months of July, August and September (JAS) contrib-
ute to over 50% of the total annual rainfall in both munic-
ipalities. These regions are mainly engaged in
agricultural activities (INSAE, 2016; Toko, 2013), with
the most commonly grown crops like maize (Zea mays
L.) and sorghum (Sorghum). Like most of the municipali-
ties in Benin, the populations of Kandi and Parakou are
vulnerable to interannual and intraseasonal rainfall vari-
abilities (Boko et al., 2012), highlighting the crucial need
for seasonal rainfall forecasts to drive appropriate adapta-
tion strategies.

For this study, two climate datasets were used:

• The daily precipitation series from 1971 to 2020 for the
Kandi and Parakou rain gauges from the database of
METEO BENIN as shown in Figure 3.

• Seasonal climate forecast maps of cumulative rainfall
from the archives of ACMAD and CRA from 1998 to
2019 as illustrated in Figure 1. These seasonal forecasts
are presented in the categorical “Tercile” format.

3 | RESULTS

3.1 | Performance of SRGs in
reproducing observation

The validation of rainfall occurrences is based on the analy-
sis of the ability of SRGs to reproduce dry and wet spells
statistics, as shown in Figures 4 and 5. For the JAS period
(1971–2020), the average length of dry spells was 1.9 days
with a standard deviation of 1.24 days for Kandi and
2.03 days with a standard deviation of 1.54 days for Para-
kou (Figure 4a). The maximum length of dry spells was
8 days for Kandi and 12 days for Parakou, with four dry
spells lasting more than 7 days in Kandi and 18 in Parakou.
On the other hand, the average length of wet spells was
2.1 days with a standard deviation of 1.65 days for Kandi
and 2.28 days with a standard deviation of 1.72 days for
Parakou. The maximum length of wet spells reached
23 days for Kandi and 16 days for Parakou (Figure 5a).

Figures 4a and 5a demonstrate a good agreement
between the series generated by SRGs and the observations
regarding mean and variance for both dry and wet spell
lengths. The differences are mostly less than 0.1 days for all
SRGs. The distributions of p-values, as shown in Figures 4b
and 5b, indicate that, except for a few simulations, there
was no significant difference between the generated series
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and the observations in terms of mean (Wilcoxon test), var-
iance (Ansari-Bradley test) and distribution (Kolmogorov
test). The generated maximum values are also consistent
with the observations at the Parakou station for both dry
and wet spell lengths. Conversely, all SRGs underestimate
the maximum wet spell lengths at the Kandi station. This
station has recorded an exceptionally long wet spell of
23 days (in 1999), which is challenging to reproduce using
SRGs. Nonetheless, SRGs demonstrate their effectiveness
in reproducing dry spell occurrences lasting more than
7 days.

Figure 6 displays the daily rainfall statistics. Observa-
tion averages for Kandi and Parakou were 7.5 and
6.6 mm�day−1, respectively, with high variability (13.4
and 14.2 mm). The highest cumulative daily rainfall was
133.8 mm in Kandi and 176 mm in Parakou (Figure 6a).
Comparing the observations with the SRGs (Figure 6b),
there was no significant difference in terms of averages
for more than 90% of the simulations and the two sta-
tions considered. However, at the Parakou station, a sig-
nificant difference was observed between the observed
variance and that of the SRG1 for all the simulations. It
was not the case for the SRG1 and SRG2 for more than
47% of the simulations. Considering Kandi's station, no

significant difference in terms of variance was observed
between the observations and SRGs for more than 60%
of the simulations. The distributions of the daily rainfall
from SRG2 and SRG3 were similar to the observed
rainfall according to the Kolmogorov–Smirnov test for
most of the simulations. The rainfall amounts simulated
by SRG3 were, on average, higher than the observations
and showed significant dispersion. Regarding the maxi-
mum cumulative daily rainfall, SRG2 and SRG3 were
nearly identical, with SRG3 showing a lower dispersion.
The PDFs of the daily rainfall on wet days (rainfall
greater than 0.1) were plotted to evaluate the agreement
between the simulated and observed series. SRG2's
probability density curves closely matched the observa-
tions, while a slight discrepancy was observed with
SRG1 and SRG3's curves (Figure S1, Supporting Infor-
mation). For rainfall amounts less than 1 mm, the prob-
ability density curves of SRG1 and SRG3 were lower
than the observation. The opposite was observed for
rainfall amounts greater than 1 mm. The quantile–
quantile diagram (Figure S2) showed that SRG2 and
SRG3 accurately reproduced the observed quantiles for
values less than 100 mm. However, these SRGs deviated
from the observations for the extreme quantiles.
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FIGURE 4 Dry spell statistics (a) and p-value of statistical tests (b) for the July–August–September season at the Kandi and Parakou

rain gauges, covering the period from 1971 to 2020 for observations (Obs) and 100 realizations of 50 seasons for SRGs. SD stands for standard

deviation. The symbol X denotes observations, and the horizontal line indicates p-value = 0.05
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FIGURE 5 Wet spell statistics (a) and p-value of statistical tests (b) for the July–August–September season at the Kandi and Parakou

rain gauges, covering the period 1971–2020 for observations (Obs) and 100 realizations of 50 seasons for SRGs. SD stands for standard

deviation. The symbol X denotes observation, and the horizontal line indicates p-value = 0.05
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FIGURE 6 Daily rainfall statistics (a) and p-value of statistical tests (b) for the July–August–September season at Kandi and Parakou

rain gauges, covering the period 1971–2020 for observations (Obs) and 100 realizations of 50 seasons for SRGs. SD stands for standard

deviation. The symbol X denotes observation, and the horizontal line indicates p-value = 0.05
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3.2 | Analysis of disaggregated seasonal
forecasts

3.2.1 | Consistency between West African
RCOFs seasonal rainfall forecasts format
and those obtained from disaggregated
forecasts

Figures 7 and 8 display the frequencies resulting from the
disaggregation of the thousand realizations for each SRG,
each category of the initial forecast, and both locations.
Red, green and blue dots represent the average frequency
for the below-average, average and above-average catego-
ries. Tables S1 and S2 provide a concise summary of these
values for a better understanding. Figure 7 predomi-
nantly shows the initial below-average and above-average
categories, while Figure 8 mainly highlights the average
category. Furthermore, Figure 9 illustrates the p-values
obtained from the chi-square test for each simulation
when comparing the frequencies obtained for the three
categories with the categories of the initial forecasts.

The category forecasts resulting from the disaggrega-
tion of the below-average and above-average forecasts
(Figure 7) maintained, to some extent, the initial signal
for SRG2. This means that the distribution of PB, PN
and PA is well separated when the above or below
average were predominant, while it was grouped
around 33% when all categories had similar probabili-
ties (between 30% and 35%). The average frequencies
after disaggregation were as follows: 15–34–51, 23–30–
47, 28–32–40, 27–33–40, 31–33–36, 34–34–32, 42–32–26,
46–33–21, 48–32–31 and 46–34–20, respectively, for the
10–35–55, 15–35–50, 20–35–45, 25–35–40, 30–35–35, 35–
35–30, 40–35–25, 45–35–20, 50–35–15 and 55–35–10
forecasts (Table S1). On average, SRG1 also preserved
the forecast signals expressed by the probabilities of 10–
35–55, 15–35–50, 20–35–45, 25–35–40, 40–35–25, 45–35–
20, 50–35–15 and 55–35–15 (Figure 7), with average
proportions of 25–29–46, 17–37–46, 26–34–40, 27–33–37,
42–31–27, 44–29–27, 43–31–26 and 47–29–24. Compared
to SRG2, SRG1 had a wider dispersion in each category
distribution. SRG3 only respected the trends of the
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initial forecasts, but there was a significant discrepancy
between the categories (10–35–55, 15–35–50, 20–35–45,
50–35–15, 55–35–10).

Regarding the forecasts where the average category
predominated (Figure 8 and Table S2), the frequencies
obtained after disaggregation with SRG1 and SRG2
were observed to respect the trends of the initial fore-
casts. SRG3, on the other hand, systematically simu-
lated 40% of the majority of the predominant average
category, regardless of the initial PN value. It also
exhibited a substantial dispersion compared to SRG1
and SRG2.

The p-values of the chi-square test in Figure 9 support
these results. For SRG2, there were no significant differ-
ences between the proportions obtained after disaggrega-
tion and the categories of the initial forecasts (expected
proportions) for 75% of the simulations for the initial
forecasts 25–35–40, 30–35–35, 35–35–30 and 40–35–25,
for more than 50% of the simulations for the 10–35–55
and 45–35–20 forecasts, and for less than 50% of the

simulations for the 10–35–50, 20–35–45, 50–35–15, and
55–35–10 forecasts. For SRG1, the frequencies obtained
after disaggregation are equivalent to the categories of
the initial forecasts for more than 50% of the simulations
for the 10–35–55, 15–35–50 and 40–35–25 forecasts
and less than 50% of the simulations for the 20–35–45,
45–35–20, 50–35–15 and 55–35–10 forecasts. Globally,
this is a weaker performance than SRG2 but still accept-
able for the predominant average forecasts. For these
simulations, it was found that SRG1 and SRG2 effectively
discriminate the categories. For SRG3, there was a signifi-
cant difference between the proportions after disaggrega-
tion and the categories of the initial forecasts for all
simulations, except for the 40/45% of the average pre-
dominant prescribed PN values.

In summary, SRG2 outperformed both SRG1 and
SRG3 in all categories. Among the three SRGs, SRG3 per-
formed the worst. Additionally, the SRGs performed bet-
ter in terms of average forecasts compared to below-
average and above-average forecasts.
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3.2.2 | Comparison of disaggregated
forecasts to climatology

The seasonal rainfall forecasts for the Kandi area in 2003
and 2008, provided by the West African RCOF, are used as
examples. These forecasts were expressed as probabilities
of 15–35–50 and 20–50–30. Figures 10 and 11 display
cumulative distribution function (CDF) curves represent-
ing the forecasts for above-average (15–35–50) and average
(20–50–30) rainfall, respectively, for each SRG model pre-
sented in this study. These CDFs were compared with
observations (reference period: 1971–2000 or climatology).

Regarding the above-average forecast (15–35–50),
Figure 10 shows that seasonal rainfall amounts were
most likely to be greater than the second climatological
tercile (680.3 mm) for all SRGs. The occurrence probabil-
ity was approximately 60% for SRG2 and SRG3 and 62%
for SRG1. The cumulative seasonal JAS rainfall in 2008
aligned with the forecast made at the PRESASS forum
and exceeded the climatology. The likelihood of this
event based on the climatological distribution was less

than 5%, compared to 20% for SRGs. Compared to the cli-
matology, a rightward shift was observed in the CDFs of
all SRGs.

For the average to above-average forecast (20–50–30),
the CDFs of SRG1 and SRG2 overlapped with those of
the climatology, as shown in Figure 11. The cumulative
seasonal rainfall had an equal chance of occurrence for
these SRGs compared to the climatology. The probability
of exceeding the cumulative seasonal rainfall equal to the
first tercile was more than 60% for all SRGs. This forecast
corresponds to the one developed at the West African
RCOF Forum in 2003, and the cumulative seasonal rain-
fall for that year was above-average and relatively consis-
tent with the issued forecast.

4 | DISCUSSION

SRGs have generally shown good agreement in reprodu-
cing dry and wet spells. However, it has been found that,
for some climates, first-order Markov models generate
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synthetic precipitation series with too few long dry
periods (Racsko et al., 1991; Wilks, 1999). Like other
SRGs, SRG3 demonstrated good performance in reprodu-
cing maximum dry spells for the two stations, even
though (Gregory et al., 1993) pointed out that a multi-
state Markov model requires a long historical series to
estimate the parameters of the Markov chain correctly.
One can conclude that the 50 years of historical data used
for Kandi and Parakou stations were adequate for esti-
mating a large number of parameters in the three-state
Markov chain. SRGs also demonstrated a strong ability to
reproduce the frequency of dry spells longer than 7 days,
which represents a significant risk for crops during their
growth phase. All SRGs replicated the mean of dry and
wet spells, consistent with previous studies, particularly
that of Houngninou et al. (2017), who worked in north-
ern Benin and used a first-order Markov chain to model
rainfall occurrences. However, poor reproduction of the
longest wet spells was observed for Kandi station, possi-
bly due to the exceptional nature of such an event
(observed only once in the historical series). These kinds
of events are difficult for the SRGs to capture. Among the
three SRGs, only SRG2 could reproduce the mean, vari-
ance, maximum and quantiles of observed daily precipi-
tation amounts. This could be related to the model used
for simulating precipitation amounts in SRG2. According

to Wilks and Wilby (1999), this model usually performs
better than the gamma and exponential laws for the sto-
chastic simulation of rainfall amounts. Acharya et al.
(2017) also found that SRG2 is the best model for simu-
lating precipitation in New York City.

An important aspect of the performance of SRGs con-
ditioned on probabilities of seasonal forecasts is that the
proportion of synthetic outputs in each of the three cate-
gories should correspond to the initial probabilities
(Wilks, 2002). For the parametric SRGs (SRG1 and
SRG2), a good agreement was found between the initial
forecast categories and the proportions obtained after dis-
aggregation. SRG2 outperformed SRG1 in this aspect.
SRG2's ability to maintain the trend between the initial
and disaggregated forecast categories could be due to its
good performance. The semiparametric SRG (SRG3) was
the worst among the SRGs. The prevalence of average
years in the historical series could explain the good per-
formance of the SRGs in the disaggregation of average
categories. However, this same prevalence could nega-
tively affect SRG3 in the above-average and below-
average categories, leading to a need for a review of the
resampling method used for disaggregation.

The main results of the disaggregation of the fore-
casts expressed as probabilities 15–35–50 and 20–50–30
showed that SRG1 and SRG2 exhibited adequate

Observed for year 2008

Forecast probability 15−35−50

300 400 500 600 700 800 900 1000 1100 1200

0.00

0.25

0.50

0.75

1.00

Cumulative seasonal rainfall [mm/season]

P
ro

b
ab

ili
ty

 o
f 

ex
ce

ed
an

ce

Obs SRG1

SRG2 SRG3

Range of values < first tercile

Range of values between first and second tercile

Range of values > second tercile

FIGURE 10 Comparison between the climatology CDF and the CDF for the seasonal amounts generated from the stochastic

disaggregation models for rainfall (SRG) conditioned on the West African RCOF seasonal rainfall forecast probability (15–35–50 for the JAS
season of the year 2008 at Kandi). Period 1971–2000 for climatology (Obs) and 30 disaggregated JAS seasons for SRGs. The cumulative

seasonal rainfall for 2008 is shown in a dashed vertical line
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behaviour compared to the climatology regarding cumu-
lative seasonal rainfall. The CDF curves of SRGs were
found to shift to the right of the climatology for above-
average forecasts and interweave around the climatology
for average to above-average forecasts. This behaviour
was similar to that found by Apipattanavis et al. (2007,
2010), who used a semiparametric SRG in their analysis.

The main limitation of this study is the limited num-
ber of rain gauges used (only two locations in the
Sudanese region) due to data availability. A larger num-
ber of rain gauge stations would be necessary to provide
a more robust evaluation of the SRG methods. In particu-
lar, adding stations in the Sahelian and Guinean regions
would regionally extend the usefulness of our results.
Furthermore, the proposed method is built on single-site
simulation and disaggregation. However, a multi-site
simulation and disaggregation would better consider the
spatial dependence structure of rainfall in this region and
constrain the simulations more. Finally, if our method
has the advantage of requiring only rainfall, using SWGs
rather than SRGs could improve the relevancy of the dis-
aggregation process by integrating, for example, other
variables like air temperature, moisture, wind and so
forth, for distributed applications in hydrology and

agriculture. However, this is a general weakness of the
West African RCOF seasonal forecasts, which have not
provided forecasts for these variables.

5 | CONCLUSION

The objective of this study was to disaggregate seasonal
rainfall forecasts from the West African RCOF on a daily
scale. To achieve this, three SRGs were developed, and
their efficiency in reproducing the main statistics of his-
torical data was assessed. The seasonal rainfall forecasts
were disaggregated by estimating the SRG parameters
with a constructed historical series consistent with the
forecasts. The evaluation demonstrated that the first-
order two-state Markov chain, combined with a mixed
exponential distribution (SRG2), performed the best in
simulating rainfall occurrence and amount. This outper-
formed the first-order two-state Markov chain combined
with a gamma distribution (SRG1) and the first-order
three-state Markov chain combined with a kernel density
estimation (SRG3). Regarding seasonal rainfall forecast
disaggregation, the chi-square test showed that SRG2
maintained the trends of the initial forecasts and did
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FIGURE 11 Comparison between the climatology CDF and the CDF for the seasonal amounts generated from the stochastic

disaggregation models for rainfall (SRG) conditioned on the West African RCOF seasonal rainfall forecast probability (20–50–30 for the JAS
season of the year 2003 at Kandi). Period 1971–2000 for climatology (Obs) and 30 disaggregated JAS seasons for SRGs. The cumulative

seasonal rainfall for 2003 is shown in a dashed vertical line
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better than SRG1 and SRG3. The chi-square test con-
firmed the agreement between the initial forecasts and
the frequencies obtained after disaggregation. Further-
more, the representation of forecasts disaggregated by the
CDF curves revealed an appropriate shift of the curves
with respect to that of the climatology. This study provides
a useful guideline for producing sector-specific (hydrology,
agriculture, etc.) seasonal forecasts relevant to the West
Africa region. However, robust methods for constructing
climatology more consistent with seasonal forecasts must
be explored to improve this work. Additionally, this study
only produces daily precipitation time series on a local
scale, so there is a need to develop a spatial and temporal
disaggregation tool for the subregion. This tool must con-
sider other parameters, such as temperature, wind, humid-
ity and so forth, to apply sector-specific seasonal forecasts.
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