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Enumeration of planar bipartite tight
irreducible maps

Jérémie Bouttier∗ Emmanuel Guitter† Hugo Manet‡

October 14, 2024

We consider planar bipartite maps which are both tight, i.e. without vertices
of degree 1, and 2b-irreducible, i.e. such that each cycle has length at least
2b and such that any cycle of length exactly 2b is the contour of a face. It
was shown by Budd that the number N (b)

n of such maps made out of a fixed
set of n faces with prescribed even degrees is a polynomial in both b and the
face degrees. In this paper, we give an explicit expression for N (b)

n by a direct
bijective approach based on the so-called slice decomposition. More precisely,
we decompose any of the maps at hand into a collection of 2b-irreducible tight
slices and a suitable two-face map. We show how to bijectively encode each
2b-irreducible slice via a b-decorated tree drawn on its derived map, and how
to enumerate collections thereof. We then discuss the polynomial counting of
two-face maps, and show how to combine it with the former enumeration to
obtain N (b)

n .
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1. Introduction

The study of random maps has been a subject of constant interest over the last sixty
years, ever since Tutte’s first papers on the subject. Of particular interest is the number
of maps of fixed genus g and with n labeled faces of prescribed degrees: explicit formulas
were given by Tutte as early as 1961 in [Tut62] in the case of planar (i.e. genus 0) maps
with at most two faces of odd degree. This formula was extended very recently to the
case of planar maps with an arbitrary (necessarily even) number of odd-degree faces in
[BGM24b].

It was also recently realized that enumeration formulas remain simple in the case of
tight maps, i.e. maps without vertices of degree 1. It was shown by Norbury in [Nor10;
Nor13] that the number of tight maps of fixed genus g with n labeled faces of respective
degree b1, . . . , bn is in fact a quasi-polynomial of degree 2n+6g− 6 in the bi’s depending
on their parity (provided that n ≥ 3 if g = 0). An explicit expression for this quasi-
polynomial was given in [BGM24b] in the case g = 0.

A remarkable extension of Norbury’s result was obtained by Budd in [Bud22a] for the
case of essentially 2b-irreducible maps with even degrees bi = 2mi. By essentially 2b-
irreducible, we mean maps that have no contractible cycle of length less than 2b and any
contractible cycle of length 2b is the contour of a face of degree 2b. It was shown that the
number of such maps is now a polynomial of degree 2n+ 6g − 6 in both b and the mi’s.
One of Budd’s motivations was to consider the limit where b and the mi’s are taken to
be large, which corresponds to considering so-called irreducible metric maps, having an
unexpected connection with Weil-Petersson volumes of hyperbolic surfaces [Bud22b].

The systematic study of planar irreducible maps, or more generally maps with a pre-
scribed girth (which is the shortest length of a cycle in the map), was initiated by Bernardi
and Fusy in [BF12a; BF12b] via the existence of a canonical bi-orientation of such maps.
In a later work, it was shown in [BG14a; BG14b] how to recover their results by a sub-
stitution approach or, alternatively, via the decomposition of irreducible maps into slices
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upon cutting these maps along properly chosen geodesic paths. Let us also mention the
paper [AP15] which develops an approach based on blossoming trees.

In [Bud22a], Budd relies precisely on the substitution approach of [BG14a] which, in
the case of even-degree faces, he generalizes to maps having arbitrary genus and adapts
to deal with tight maps. The purpose of the present paper is, in the case g = 0, to
recover and sharpen the results of [Bud22a] by using instead the slice decomposition
approach. This allows us to write a slightly more explicit expression for the polynomials
counting 2b-irreducible maps with prescribed even degrees, and to give a combinatorial
interpretation of the various terms in that expression. Our main result consists in the
following theorem:

Theorem 1.1. Let n, b,m1, . . . ,mn be positive integers and let us denote by N (b)
n (2m1,

. . . , 2mn) the number of planar bipartite tight 2b-irreducible maps with n labeled faces of
respective degrees 2m1, . . . , 2mn. Then, for n ≥ 3, m1 ≥ b + 1 and m2, . . . ,mn ≥ b, we
have

N (b)
n (2m1, . . . , 2mn) = (n− 3)!

∑
k1,...,kn≥0

p
(b)
k1
(m1)q

(b)
k2

(m2) · · · q(b)kn
(mn)α

(b)
k1+···+kn,n−3 (1)

where p
(b)
k (m) and q

(b)
k (m) denote the polynomials in b and m:

p
(b)
k (m) :=

(
m− b− 1

k

)(
m+ b+ k

k

)
=

1

(k!)2

k∏
i=1

(
m2 − (b+ i)2

)
(2)

q
(b)
k (m) :=

(
m+ b

k

)(
m− b− 1 + k

k

)
=

1

(k!)2

k−1∏
i=0

(
m2 − (b− i)2

)
(3)

and α
(b)
k,n the polynomial in b given by the expression:

α
(b)
k,n = [un−k]

1(
1− u

b∑
j=2

1
b

(
b
j

)(
b

j−1

)
(−u)j−2

)n+1 . (4)

The quantity N (b)
n (2m1, . . . , 2mn) is a polynomial in b and m1, . . . ,mn, of total degree

2n− 6. It is symmetric in the variables m1, . . . ,mn, and even in each of them.

Some remarks are in order. First, note that α(b)
k,n = 0 for k > n, hence the sum in (1) is a

finite sum. Second, the fact that α
(b)
k,n is a polynomial in b can be seen directly from (4)

by noting that the fraction in the right-hand side is a series in u whose coefficients are
polynomial in b. We refer to Section 3.1 for a more detailed discussion, and in particular
to Proposition 3.7 below for a manifestly polynomial expression of α(b)

k,n. Third, it follows
from [BGM24b] that Theorem 1.1 also holds for b = 0 upon understanding Equation (4)
as α(0)

k,n = δk,n and noting that every map is 0-irreducible. Finally, Equation (1) does not
quite hold if we take all mi equal to b: for n ≥ 4, one needs to add an extra pathological
term (n−1)!

2 (−1)n, see [Bud22a, Theorem 1] and Appendix C.
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Outline. Let us now discuss the path to Theorem 1.1. It is a consequence of a chain of
bijective decompositions described in Section 2. The first idea, borrowed from [BGM24b],
consists in decomposing a (at this stage, not necessarily irreducible nor tight) planar
bipartite map into a two-face map with face degrees 2m1, 2m2 and a collection of slices,
which are so to say pieces of maps lying in-between two geodesics, built out of the faces
with degrees 2m3, . . . , 2mn. This decomposition is recalled in Section 2.1, where we
also show how to extend it to the case of tight irreducible maps by imposing simple
conditions on the two-face map and independent irreducibility and tightness conditions
on the slices. Then, following [BG14a], we explain in Section 2.2 how a tight irreducible
slice can be decomposed recursively. We show in Section 2.3 that this decomposition has
a bijective representation involving a decorated tree which spans the derived map of the
slice. A decorated tree is then naturally decomposed into its components living on the
primal map, which we call arrow trees, and blossoming vertices which are isolated dual
vertices with the same (prescribed) degrees as their corresponding primal faces, among
2m3, . . . , 2mn. Arrow trees and blossoming vertices are studied in Section 2.4. As seen
in Section 2.5, the tightness property can be pulled back from the derived map onto the
decorated tree, specifically as a property of its blossoming vertices.

Section 3 is devoted to the enumerative consequences of the above chain of decomposi-
tions. In practice, the initial problem of enumerating planar bipartite tight 2b-irreducible
maps with prescribed face degrees boils down to two separate counting problems. On
the one hand, the problem of counting collections of tight irreducible slices; on the other
hand, that of counting two-face maps. The first problem reduces to counting collections
of decorated trees. This is performed in two steps. We first count arrow trees in Sec-
tion 3.1 in two different ways, eventually yielding Equation (4) for their contribution
α
(b)
k,n to formula (1), as well as a recursive way to compute it. We then evaluate in Sec-

tion 3.2 the number of ways to connect the arrow trees via blossoming vertices into the
desired collection of decorated trees. As it turns out, each individual configuration of a
blossoming vertex is counted polynomially in b and in the mi corresponding to its degree
through Equation (3), and their connection with arrow trees amounts to a convolution
which preserves this polynomiality. The second problem, i.e. counting two-face maps, is
addressed in Section 3.3. The irreducibility constraint imposes that these two-face maps
have a long enough cycle, which also yields a polynomial in b,m1,m2 for their enumera-
tion. Section 3.4 explains how to combine everything, namely how to attach the slices to
the two-face maps. This last step leads to the formula (1), which is actually shown to be
a totally symmetric polynomial in the mi’s, which also depends polynomially on b. We
also explore there a number of particular instances of Theorem 1.1.

Section 4 gathers some concluding remarks, while extra material may be found in the
appendices. Appendix A discusses how to reconstruct a slice from its associated decorated
tree, by a closing procedure. Appendix B checks the compatibility of formula (1) with the
expression obtained in [Bud22a]. Appendix C discusses the enumeration of 2b-irreducible
2b-angulations, which falls just outside the range of validity of Theorem 1.1.
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Basic definitions. Let us start by introducing some terminology related to maps, we
refer to [Sch15] for more details. A planar map (hereafter called a map for short) is a
connected (multi)graph drawn on the sphere without edge crossings. Loops and multiple
edges are allowed. A map consists of vertices, edges and faces. It is customary to draw a
planar map on the plane, this amounts to choosing one face as the outer face. A corner
is the angular sector delimited by two consecutive edges incident to a same vertex, hence
also incident to a same face. The degree of a vertex or a face is its number of incident
corners. In this paper, we consider bipartite maps: the vertices can be partitioned in two
sets in such a way that every edge connects vertices from different sets. Equivalently, for
planar maps, this amounts to requiring that every face be of even degree.

A path on a map is a path on the sphere that consists of edges and vertices of the map.
The length of a path is its number of edges, counted with multiplicity. The path is said
simple if it does not visit a vertex more than once (except at its endpoints for a simple
closed path). A simple closed path of non-zero length is called a cycle. The girth of a
map is the minimal length of a cycle on the map. For d a non-negative integer, a map
is said d-irreducible if it has girth at least d, and every cycle of length d is the contour
of a face (by contour of a face, we mean the closed path formed by its incident edges).
Note that every map is 0-irreducible. As we consider bipartite maps, whose all cycles
necessarily have even length, we will take d an even integer and write d = 2b.

Following [BGM24b], we define a tight map as a map with some of its vertices marked,
which is such than any leaf (vertex of degree 1) is marked. In particular, a tight map
having no marked vertex is a map without leaves.

Given a map and two of its vertices u, v, the (graph) distance between u and v is the
minimal length of a path connecting them. Such a path of minimal length is called a
geodesic.

Acknowledgements. We thank Timothy Budd, Guillaume Chapuy, Éric Fusy and Gré-
gory Miermont for fruitful discussions related to this work. We acknowledge financial
support from the Agence Nationale de la Recherche via the grants ANR-18-CE40-0033
“Dimers”, ANR-19-CE48-0011 “Combiné” and ANR-23-CE48-0018 “CartesEtPlus”.

2. Slice decomposition of (tight) irreducible maps

2.1. Slice decomposition of maps

An elementary slice is a planar map with one marked face, chosen as the outer face,
having one marked incident vertex called the apex and one marked incident edge called
the base, which satisfy the following constraints: denoting by A the apex and by B, C
the endpoints of the base (with the outer face appearing on the right when going from
B to C),

• the blue boundary, defined as the portion AB of the contour of the outer face when
going from A to B with the outer face on the right is a geodesic,
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B C

A

BC

A = B A = C

Figure 1: A generic slice (left) and the two possible slices without inner faces: the trivial
slice (middle) and the empty slice (right).

• the red boundary, defined as the portion CA of the contour of the outer face when
going from C to A with the outer face on the right is the unique geodesic between
C and A,

• the apex is the only vertex common to the blue and red boundaries.

See Figure 1 for examples. Note that, by the triangle inequality and the bipartiteness
assumption, the length of AB minus the length of CA is equal to ±1. When this difference
is equal to −1, then it follows from the above constraints that the whole slice is necessarily
equal to the trivial slice, reduced to a single edge and two vertices, A = B and C. In the
following, we will call slice for short an elementary slice which is not trivial. Note that
a slice may still be equal to the empty slice, reduced to a single edge and two vertices,
A = C and B. For b a non-negative integer, we say that a slice is 2b-irreducible if it has
girth at least 2b, and every cycle of length 2b is the contour of an inner face of the slice.

The following proposition is a slight variant1 of [BGM24b, Proposition 4.7]:

Proposition 2.1. Fix an integer n ≥ 3 and positive integers m1, . . . ,mn. There is a
bijection between the set of planar bipartite maps with n labeled faces of respective degrees
2m1, . . . , 2mn, and the set of tuples of the form (m12, s1, . . . , sk+1), for some k between
0 and n− 3, such that:

• m12 is a planar map with exactly two (labeled) faces of respective degrees 2m1 and
2m2, and with (k + 1) among its vertices marked, one of them being distinguished,

1In [BGM24b, Proposition 4.7] it is assumed that the maps are tight. As explained in the proof of this
proposition, the construction does not require tightness but is “compatible” with it. Here, we restate
this compatibility property as the first item of Proposition 2.3.
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γ̃
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s10 s8
s9

s7

1

2

γ

Figure 2: Sketch of the decomposition of a map m with two marked faces 1 and 2
(left) into elementary slices, by cutting its preimage m̃ (right) along leftmost
geodesics. In the notations of the main text, we have m1 = 6, m2 = 4 and
k = 9.

• si is a non-empty slice for every i = 1, . . . , k + 1,

• there is a bijection between {3, . . . , n} and the union of the sets of the inner faces
of s1, . . . , sk+1, such that each j = 3, . . . , n is mapped to a face of degree 2mj, and
3 is mapped to an inner face of s1.

Remark 2.2. A slight extension of this bijection applies to maps m which, in addition to
the labeling of their faces, have some of their vertices marked (these can be intuitively re-
garded as “faces of zero degree”). Such maps still correspond to tuples (m12, s1, . . . , sk+1)
as above, but now each slice si may have some of its vertices not belonging to its red
boundary marked, and may be reduced to the marked empty slice (i.e. the empty slice
having its non-apex vertex marked). Under this bijection, the number of marked vertices
in the original map is equal to the total number of marked vertices in s1, . . . , sk+1. In this
paper, where we concentrate on irreducibility, we will always consider maps m without
such faces of degree zero.

We refer to [BGM24b, Section 4.4] for a detailed description of the bijection. To
summarize, it consists in the following steps, illustrated on Figure 2.

1. We start from a map m with n labeled faces of respective degrees 2m1, . . . , 2mn

which we draw in the complex plane with the face 1 containing the origin and the
face 2 chosen as the outer face2. We call separating girth the minimal length of a
separating cycle, i.e. a cycle enclosing the origin. We denote by γ the innermost
separating cycle of length equal to the separating girth. By convention we orient
γ in the counterclockwise direction.

2. We consider the preimage m̃ of m by the mapping z 7→ exp(2iπz): it is an infi-
nite map with two faces 1̃ and 2̃ of infinite degrees, which is invariant under the

2Note that we interchange the roles of faces 1 and 2 with respect to [BGM24b, Section 4.4].
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translation z 7→ z + 1. The minimal separating cycle γ lifts to a biinfinite geodesic
γ̃ = (γ̃i)i∈Z, oriented from −∞ to +∞.

3. We cut m̃ along each leftmost geodesic going from a corner incident to one of the
infinite faces 1̃ and 2̃ to γ̃i for i large enough (indeed such a leftmost geodesic
eventually coalesces with γ̃). This decomposes m̃ into a collection of elementary
slices, possibly trivial or empty. Upon restricting to an appropriate fundamental
domain, this collection is finite, and each face 3 . . . , n of m corresponds to an inner
face of degree 2mi appearing in exactly one slice. If the map m carries marked
vertices, each of them appears in exactly one slice deprived of its red boundary,
which allows to transfer the markings canonically.

4. We let (s1, . . . , sk+1) be the elementary slices in this decomposition which are nei-
ther trivial nor empty, where by convention s1 contains the face corresponding to
face 3, which allows us to list the other slices in some canonical way. Note that,
since each of the s1, . . . , sk+1 contains at least a face, we have necessarily k ≤ n−3.

5. By replacing the slices (s1, . . . , sk+1) by marked empty slices (i.e., empty slices with
the non-apex vertex marked), and performing the slice decomposition backwards,
we obtain the two-face map m12 with its k+1 marked vertices. The marked empty
slice replacing s1 gives rise to the distinguished marked vertex in m12.

Let us record some useful properties of the above bijection in the following proposition,
which combines the discussions of [BGM24b, Section 4.4] (regarding compatibility with
tightness) and [BG14a, Section 9.3] (regarding compatibility with irreducibility and girth
constraints).

Proposition 2.3. Let m be a planar map with n labeled faces, let (m12, s1, . . . , sk+1) be
its image by the above bijection. Then:

• m is tight (i.e. has no leaves) if and only if all among m12, s1, . . . , sk+1 are tight
(note that m12 may have leaves provided they are marked),

• for any b ≥ 1, m is essentially 2b-irreducible (i.e. every non-separating cycle has
length at least 2b and every such cycle of length 2b is the contour of a face) if and
only if all among s1, . . . , sk+1 are 2b-irreducible,

• the separating girth of the map m is equal to the length of the unique cycle of m12,

• the contour of face 2 is the unique minimal separating cycle in m if and only if the
corresponding second face in m12 is simple and has no incident marked vertex.

From these properties, denoting by 2m1 and 2m2 the degrees of faces 1 and 2, we deduce
that, for any b ≥ 1:

• if m1,m2 > b, m is 2b-irreducible if and only if all among s1, . . . , sk+1 are 2b-
irreducible, and the length of the unique cycle of m12 is at least 2(b+ 1),
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• if m1 > b, m2 = b, m is 2b-irreducible if and only if all among s1, . . . , sk+1 are
2b-irreducible, the length of the unique cycle of m12 is 2b (hence this cycle is the
contour of face 2), and none of the vertices of this cycle are marked.

In view of Propositions 2.1 and 2.3, the problem of enumerating planar bipartite tight
2b-irreducible maps is highly dependent on our ability to characterize tight 2b-irreducible
slices. This is the purpose of the following sections where we show that 2b-irreducible
slices have a canonical decomposition which allows us to encode them by b-decorated
plane trees, themselves formed of so-called b-arrow trees attached to each other via
blossoming vertices.

Remark 2.4. By specializing Propositions 2.1 and 2.3 to the case m1 = b+1 and m2 = b,
we find that planar tight 2b-irreducible maps with n labeled faces of respective degrees
2b+ 2, 2b,m3, . . . ,mn are in bijection with tight 2b-irreducible slices with n− 2 labeled
inner faces of respective degrees m3, . . . ,mn. Indeed, we note that the map m12 produced
in the decomposition consists of a cycle of length 2b to which is attached a single edge
leading to a single marked vertex, which forces k = 0 hence a single slice is obtained.

2.2. Recursive decomposition of irreducible slices

Let b be a positive integer. As explained in details in [BG14a], 2b-irreducible slices can be
decomposed recursively, at the price of introducing a slightly extended notion of slices.
More precisely, for p ≥ 0, we define a 2p-slice as a planar map with one marked face (the
outer face) having one marked incident vertex (the apex A) and one marked incident
edge (the base BC) satisfying the following constraints:

• the blue boundary (defined as the portion AB of the contour of the outer face when
going from A to B with the outer face on the right) is a shortest path among all
paths connecting B to A which do not pass via the base,

• the red boundary (portion CA of the contour of the outer face when going from C
to A with the outer face on the right) is the unique geodesic between C and A,

• the apex is the only vertex common to the blue and red boundaries,

• the length of AB minus the length of CA is equal to 2p+ 1,

• the slice has at least one inner face.

See Figure 3 for examples. Note that a 0-slice is nothing but a non-trivial, non-empty
elementary slice, and that the contour of the outer face of a 2p-slice is simple. A 2p-slice
is said 2b-irreducible if it has girth at least 2b and if every cycle of length 2b is the contour
of an inner face.

We now discuss the precise recursive decomposition of a 2b-irreducible 2p-slice, for
p ≤ b (we will not need the case p > b in this paper). This requires us to distinguish
three cases:

(I) when 0 ≤ p ≤ b− 1, except special case (III) below;

9



B C

A

A = C

B

Figure 3: Examples of 2-slices: a generic one (left)—note that it differs from the 0-slice
of Figure 1 only by a shift of the base edge—and the 4-angle slice (right). Both
are 4-irreducible.

(II) when p = b;

(III) when p = b− 1 and the outer face has degree 2b.

Recursive decomposition of a 2b-irreducible 2p-slice, case (I): 0 ≤ p ≤ b − 1. Take
a 2b-irreducible 2p-slice σ, as defined just above, with 0 ≤ p ≤ b − 1. The first step of
the decomposition, illustrated on Figure 4, is done as follows: let us denote by P0 the
red boundary, travelled from C to A, and by P∞ the longer path from C to A obtained
by prefixing the blue boundary travelled from B to A with the base edge travelled from
C to B. The lengths of P∞ and P0 differ by 2p+2, and their sum is equal to the degree
of the outer face. Using the 2b-irreducibility constraint, we deduce that the length of P0

cannot be equal to 0 unless we have p = b− 1 and the degree of the outer face is exactly
2b: this case corresponds to a unique configuration, called the 2b-angle slice, which will
be treated separately in case (III) below. In all other cases, the length of P0 is at least
1, and we consider the leftmost shortest path P1 among all paths from C to A which do
not pass via the first edge CD1 of P0. Then, since P0 is the unique geodesic from C to
A, the difference between the length of P1 and that of P0 must be positive, and is even
by bipartiteness: it is equal to 2p1 for some p1 ≥ 1. The part of σ in-between P0 and P1

is then a 2b-irreducible 2p1-slice with base CD1, which we denote by σ1. Note that we
have p1 ≤ p+ 1 since P1 is not longer than P∞, and if p1 = p+ 1 then P1 = P∞: in this
case, σ1 is the same map as σ, except that we have shifted the base edge by one step
to the right, so it becomes a 2(p + 1)-slice. For p1 ≤ p, we continue the decomposition
iteratively: denoting by D2 the endpoint of the first edge of P1, we consider the leftmost
shortest path P2 among all paths from C to A which stay in-between P1 and P∞ and
do not pass via the edge CD2. Then, the length of P2 is equal to that of P1 plus 2p2
for some p2 ≥ 1, and the part of the map in-between P1 and P2 is a 2b-irreducible 2p2-
slice with base CD2, which we denote by σ2. As P2 is not longer than P∞, we have
p1 + p2 ≤ p + 1, and in the case of equality we have P2 = P∞, and we may stop the
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A

C

B

D1

D2

D3

C

D2

A2 = A

D3

C

A3

C

D1

A1

P3
P2

P1

P0

σ3

σ2

σ1

Figure 4: Case (I) of the decomposition. When p ≤ b − 1 and the slice is not reduced
to the 2b-angle slice, we know that A ̸= C so we name D1 the first vertex on
the red boundary P0. P1 is the leftmost shortest path from C to A avoiding
CD1. Cutting along P1 yields a 2p1-slice σ1 with apex A1 and base edge CD1.
We start again in the rest of the slice (which is now a 2(p− p1)-slice with base
BC), until Pq goes through BC and the blue boundary (here q = 3).

iteration. For p1 + p2 ≤ p, we continue the iteration, defining a path P3 and a 2p3-slice
σ3 with p3 ≥ 1 and p1 + p2 + p3 ≤ p + 1, and so on. Eventually, after q iterations, we
will have Pq = P∞, and p1 + · · ·+ pq = p+ 1, and we stop here. What we have done so
far can be summarized into the following:

Proposition 2.5. For any integers b, p with 0 ≤ p ≤ b − 1, there is a face-preserving3

bijection between the set of 2b-irreducible 2p-slices σ not equal to the 2b-angle slice, and
the set of sequences of the form (σ1, . . . ,σq) where q is a positive integer and, for any
j = 1, . . . , q, σj is a 2b-irreducible 2pj-slice for some pj ≥ 1, with p1 + · · ·+ pq = p+ 1.

The bijectivity can be checked by exhibiting the reverse bijection: given a sequence
(σ1, . . . ,σq) as in the proposition, it consists in gluing its elements into a single 2p-slice
σ. The key property is that 2b-irreducibility is preserved in this operation: in a nutshell
this is because we are gluing along geodesics, hence we cannot create “short” cycles. See
[BG14a, Section 5.1].

We then continue the recursion by further decomposing the σj . Two situations may
occur:

• if q ≥ 2, or if p < b− 1, then each σj is a 2pj-slice with pj ≤ b− 1: we may apply
3By face-preserving, we mean that there is a degree-preserving bijection between the inner faces of σ

and those of σ1, . . . ,σq.
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to it again the case (I) of the decomposition we have just described, or possibly the
case (III) described below,

• otherwise, for q = 1 and p = b − 1, we get a single 2b-slice σ1: we apply to it the
case (II) of the decomposition described below.

Let us observe that, in each “branch” of the recursion, we will eventually arrive at either
case (II) or case (III). Indeed, for q > 2, each σj contains fewer faces than σ while, for
q = 1, we pass from a 2p-slice to a 2(p+ 1)-slice. So, we end up with either the 2b-angle
slice or a 2b-irreducible 2b-slice.

Remark 2.6. This decomposition holds in particular for p = 0, i.e. for non-empty 2b-
irreducible slices. In this case, we have necessarily4 q = 1 and p1 = 1. This corresponds
to transforming the 0-slice into a 2-slice by changing its base from BC to CD1. For
instance, applying the decomposition to the 0-slice of Figure 1-left, we obtain the 2-slice
of Figure 3-left, where CD1 is renamed BC.

Recursive decomposition of a 2b-irreducible 2p-slice, case (II): p = b. Suppose now
that we have a 2b-irreducible 2b-slice σ with apex A and base BC, and consider the inner
face f immediately to the left of the base. Denoting by 2m the degree of f , consider its
sequence of incident corners (c0, . . . c2m−1), as read clockwise around f when going from
B to C, and introduce the proximity to the apex ℓj := d(A,B) − d(A, Vj), where d(·, ·)
is the graph distance in σ deprived of its base edge, and Vj is the vertex incident to cj
for j = 0, . . . , 2m− 1. See Figure 5 for an example. We have in particular ℓ0 = 0 (since
V0 = B), ℓ2m−1 = 2b + 1 (by the definition of a 2b-slice), and |ℓj − ℓj−1| = 1 for any
j = 1, . . . , 2m − 1. Note that this implies m ≥ b + 1. We may now cut the slice along
the leftmost geodesic from Vj to A, for all j. It is easily seen that the part of the map
in-between the leftmost geodesic from Vj−1 to A and the leftmost geodesic from Vj to A
is a 2b-irreducible elementary slice σj with base Vj−1Vj for all j ∈ {1, . . . , 2m−1}. More
precisely, σj is the trivial slice whenever ℓj − ℓj−1 = −1 (this occurs m − b − 1 times),
while it is the empty slice or a 2b-irreducible 0-slice whenever ℓj − ℓj−1 = 1 (this occurs
m+ b times). To summarize, we have the following:

Proposition 2.7. For any integers m > b ≥ 1, there is a quasi-face-preserving5 bijection
between the set of 2b-irreducible 2b-slices where the base edge is incident to an inner face
of degree 2m, and the set of (2m − 1)-tuples of 2b-irreducible elementary slices, exactly
m − b − 1 of which being equal to the trivial elementary slice. (Note that the m + b
remaining elementary slices are necessarily either equal to the empty slice, or to a 2b-
irreducible 0-slice.)

Again, the bijectivity can be checked by exhibiting the reverse bijection. The most
subtle point, already discussed in [BG14a], is to check that this reverse bijection preserves
2b-irreducibility: again we use the fact that we are gluing slices along geodesics, but we

4Unless we are in case (III), which can only happen if 0 = b− 1 hence b = 1.
5By this, we mean that all inner faces except the inner face of degree 2m incident to the base edge are

preserved.
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1
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3

1

4

1

2
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σ4

f

2b + 1

σ9

σ1

σ7

σ3
σ3

σ4

σ7

σ5

σ2

σ6

σ8

L
L

Figure 5: Case (II) of the decomposition, here for p = b = 1. This 2-irreducible 2-slice
is composed of a face f of degree 10, and 9 elementary slices. Left: we draw
the (green) leftmost geodesic towards the apex from each vertex incident to f ;
this delimits the slices σ1, . . . ,σ9 (here, the slices σ1,σ6 and σ8 are empty,
and σ2,σ5 and σ9 are trivial). The small labels in the corners of f are the
proximities to the apex, here equal to 5 minus the length of a shortest path
to A avoiding BC: they go from 0 at B to 2b + 1 = 3 at C by steps of ±1.
Right: the result after cutting along the geodesics. The green arrows show how
to glue back the elementary slice boundaries, in order to recover the original
slice. Note that this slice is not tight, since it has a leaf L incident to f .

must also observe that, when “recreating” the base edge BC, we connect two vertices
at graph distance at least 2b + 1, so we cannot create a non-facial cycle of length 2b.
This property would not be ensured if we applied decomposition (II) to a 2p-slice with
p < b, and in particular to a 0-slice. In retrospect, this justifies why we need to introduce
2p-slices for p > 0.

Having decomposed the 2b-slice σ as above, two situations may occur:

• we only obtain trivial and empty slices: the recursive decomposition terminates
here,

• we obtain at least one 0-slice: we apply to it the case (I) of the decomposition, or
possibly the special case (III) if b = 1 and the 0-slice is a 2-angle.

Recursive decomposition of a 2b-irreducible 2p-slice, case (III): the 2b-angle slice.
We finally treat the special case where p = b− 1 and the outer face is of degree 2b. Since
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the contour of the outer face is a cycle, by irreducibility it is also the contour of an inner
face f of degree 2b. The whole slice then consists of a single cycle of length 2b. Note
that, with p = b − 1, the red boundary is reduced to the vertex C = A, and the blue
boundary comprises all edges apart from the base. We call this slice the 2b-angle slice.
Such slice will be an atom in our recursive decomposition, which terminates here.

Altogether, combining steps (I), (II) and (III) decomposes any 2b-irreducible 2p-slice
with 0 ≤ p ≤ b into pieces which are either the trivial slice, the empty slice, or the
2b-angle slice (one may check that the recursion always terminates by induction on the
number of inner faces). Figure 6 shows an example of full decomposition of a 0-slice in
the case b = 2.

2.3. Decorated tree formulation

Assume b > 0 and 0 ≤ p ≤ b and consider a 2b-irreducible 2p-slice σ to which we apply
the above recursive decomposition. Following [BG14a; BG14b], it is useful to encode this
decomposition in the form of a tree, which we call b-decorated tree or decorated tree for
short, and we will denote by T (σ). It turns out that T (σ) can be naturally drawn on
the derived map ∆(σ).

Recall from [Sch15] that the derived map ∆(M) of a map M is the quadrangulation
obtained by superimposing M—hereafter called the primal map—with its dual map.
The derived map has three types of vertices, namely primal vertices, dual vertices and
edge-vertices, which are respectively in bijection with the vertices, faces and edges of the
primal map. Precisely, if the primal map has two vertices U and V connected by the
edge UV which has face f on its left and face g on its right, then the derived map has an
edge-vertex ∆(UV ) corresponding to the edge UV , which is of degree 4 and connected
(in clockwise order) to the vertices ∆(U),∆(f),∆(V ),∆(g). Each edge of the derived
map connects an edge-vertex to either a primal or a dual vertex, and hence corresponds
to either a primal half-edge or a dual half-edge accordingly.

In addition to being drawn on the derived map, the tree T (σ) carries some extra data,
which we represent in the form of decorations as follows.

• Each primal half-edge belonging to T (σ) and incident to a primal vertex of degree
at least two in T (σ) carries a number, ranging between 1 and b, of arrows pointing
from the primal vertex to the edge-vertex.

• Each dual vertex in T (σ) may be incident, in addition to regular dual half-edges
(which carry no arrow), to dangling half-edges which we call leaflets.

The reader is invited to have a first look at Figure 10, which features these decorations
in the case b = 2.

Let us now explain how to construct T (σ). In a nutshell, we perform the recursive
decomposition described in the previous subsection, and build progressively the tree at
each step, according to specific rules described below. We start with the following useful
definition:
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b = 2

0-slice

(I) (I)

(I) (II)

(I)
4-angle slice

(II)(I)(I)

(I) (II)

(I) 4-angle slice

(empty)

(trivial)

apex

2-slice

2-slice

2-slice

2-slice

2-slice

0-slice

0-slice

0-slice

4-slice

4-slice

4-slice

(III)

(III)

A

B

C

C

A

B

2-slice

Figure 6: An example of decomposition of a 2b-irreducible 0-slice with 5 faces, in the case
b = 2. In the second step (I) (upper line), the green geodesic cuts the 2-slice in
two sub-slices denoted by A○ and B○. In the end, we are left with 1 occurrence
of the trivial slice, 13 occurrences of the empty slice, and 2 occurrences of the
2b-angle slice.
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B

C = A

f

trivial slice

empty slice

2b-angle slice ∆(f)

∆(BC)

B

C = A

B = A
C

∅

∆(BC)
∆(C)

(here b = 2)

Figure 7: Initialisation of the recursive construction of T (σ). Primal vertices and edge-
vertices are represented as black dots and white squares, respectively. On the
right, leaflets are shown in blue.

Definition 2.8. Given a 2p-slice σ, with apex A, base BC, and outer face f0, we define
the tree vertex set S(σ) as the set of all vertices of the derived map ∆(σ) deprived of
∆(f0) and from the primal and edge-vertices corresponding to the vertices and edges of
the blue boundary. In particular, neither ∆(A) nor ∆(B) belong to S(σ), but ∆(BC)
and ∆(f) do, where f is the inner face incident to BC. We extend this definition by
setting S(σ) = {∆(BC),∆(C)} for σ the trivial slice, and S(σ) = ∅ for σ the empty
slice.

This allows us to state an “invariant” of the recursion, which will be verified inductively:

Proposition 2.9. Given a 2b-irreducible 2p-slice σ with 0 ≤ p ≤ b, T (σ) is a tree drawn
on the derived map ∆(σ), having vertex set S(σ). Every edge-vertex in S(σ) has degree
two in T (σ), except ∆(BC) which has degree one, and which we choose as the root. For
p = b, ∆(BC) is connected to ∆(f). For p ≤ b − 1, ∆(BC) is connected to ∆(C) by a
primal half-edge carrying b − p arrows, unless σ is equal to the 2b-angle slice, in which
case ∆(BC) is connected to ∆(f).

We now give the precise construction rules. See Figure 10 for a full application of our
construction.

Recursive construction of the decorated tree, initialisation. We define T (σ) when σ
is an “atom” of our recursive decomposition, namely when it is equal either to the trivial
slice, to the empty slice, or to the 2b-angle slice. For the trivial slice, T (σ) consists of a
single primal half-edge connecting ∆(BC) to ∆(C), carrying no arrow. This tree is called
the trivial tree. For the empty slice, T (σ) is defined as the empty graph containing no
vertex. For the 2b-angle slice, corresponding to the case (III) discussed in the previous
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C

B
b−p

p3

p2 p1

σ1

σ2

σ3

T (σ1)

T (σ2)

T (σ3)D1

D2

D3

∆(C)

∆(BC)

∆(CD1)
∆(CD2)

∆(CD3)

σ T (σ)

C

B

D1

D2

D3

A A

Figure 8: Tree formulation of the case (I) decomposition of Figure 4. Primal vertices
and edge-vertices are represented as black dots and white squares, respectively.
Represented in light blue, the tree vertex set S(σ) (left), and its decomposition
as the disjoint union of the sets {∆(BC)}, {∆(C)}, S(σ1), . . . , S(σq) (middle).
On the right, the tree T (σ) constructed in the text.

subsection, T (σ) consists of a single dual half-edge connecting ∆(BC) to ∆(f) (with f
the inner face), and 2b − 1 leaflets incident to ∆(f). See Figure 7 for an illustration.
Note that all these conventional definitions are consistent with the property that T (σ)
has vertex set S(σ). We now turn to the recursive part of the construction, for which
we have to distinguish the cases (I) and (II) discussed in the previous subsection.

Recursive construction of the decorated tree, case (I): 0 ≤ p ≤ b − 1. Suppose that
we are in case (I) of the recursive decomposition. As summarized in Proposition 2.5, σ is
then decomposed into a sequence (σ1, . . . ,σq) where q is a positive integer and, for any
j = 1, . . . , q, σj is a 2b-irreducible 2pj-slice for some pj ≥ 1, with p1 + · · ·+ pq = p+ 1.
Then, T (σ) consists of the following elements (see Figure 8 for an illustration):

• the primal half-edge connecting ∆(BC) to ∆(C), on which we place b− p arrows,

• for each j = 1, . . . , q, the primal half-edge connecting ∆(C) to ∆(CDj) (with CDj

the base of σj), on which we place pi arrows,

• and the trees T (σ1), . . . , T (σq) which we proceed to construct recursively.

Assuming that Proposition 2.9 holds for σ1, . . . ,σq, we may verify that it also holds for
σ, by making the key observation that the tree vertex set S(σ) is the disjoint union of
the sets {∆(BC)}, {∆(C)}, S(σ1), . . . , S(σq). We also observe that, in T (σ), the primal
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B

C

σ4

σ7

σ3

f

T (σ4)
T (σ7)

T (σ3)

5 ∆(f)

∆(BC)

σ T (σ)

L

Figure 9: Tree formulation of the case (II) decomposition of Figure 5 (for b = 1). In
T (σ), the empty slices σ1,σ6,σ8 give rise to leaflets (shown in blue) while the
trivial slices σ2,σ5,σ9 give rise to twigs (shown in brown). For convenience we
display on the dual vertex ∆(f) its half-degree, here equal to m = 5. Note that
the vertex L of degree 1 incident to f in σ gives rise in T (σ) to a twig followed
by a leaflet, when going clockwise around ∆(f). Such pattern is forbidden in
tight maps.

vertex ∆(C) has degree q + 1 ≥ 2, and that the total number of arrows on its incident
primal half-edges is equal to (b− p) + p1 + · · ·+ pq = b+ 1.

Recursive construction of the decorated tree, case (II): p = b. Suppose now that
we are in case (II) of the recursive decomposition and let m be the half-degree of the
inner face f . As summarized in Proposition 2.7, σ is then decomposed into a tuple
(σ1, . . . ,σ2m−1) of 2b-irreducible elementary slices, exactly m−b−1 of which are trivial.
Then, T (σ) consists of the following elements (see Figure 9 for an illustration):

• the dual half-edge connecting ∆(BC) to ∆(f),

• for each j = 1, . . . , 2m− 1, the dual half-edge connecting ∆(f) to the edge-vertex
corresponding to the base of σj , unless the latter is equal to the empty slice, in
which case we replace the dual half-edge by a leaflet attached to ∆(f),

• and the trees T (σ1), . . . , T (σ2m−1) which we proceed to construct recursively.

Assuming that Proposition 2.9 holds for the σj which are neither trivial nor empty,
we may verify that it also holds for σ, by making the key observation that the tree
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vertex set S(σ) is the disjoint union of the sets {∆(BC),∆(f)}, S(σ1), . . . , S(σ2m−1).
We also observe that, in T (σ), the dual vertex ∆(f) has degree 2m, accounting for the
contribution of leaflets. It is incident to exactly m− b− 1 dual half-edges leading to an
instance of the trivial tree (namely, the tree corresponding to the trivial slice, see again
Figure 7). We call twig the combination of such a dual half-edge and its attached trivial
tree, so that ∆(f) is attached to exactly m − b − 1 twigs. The remaining contribution
m+b+1 to the degree of ∆(f) comes from leaflets, dual half-edges leading to non-trivial
trees, and the root dual half-edge coming from ∆(BC).

b = 2

special dual vertex

labeled dual vertex

leaflet

twig

4

3

3

3

edge-vertex

primal vertex

root

Figure 10: The decorated tree representation of the decomposition in Figure 6. Here
we draw the tree superimposed on the slice. We indicated in light blue a
bioriented edge-vertex, in gray a regular bent edge-vertex, and in pink a special
bent edge-vertex. The primal and edge-vertices corresponding to the blue
boundary of the slice are shown in grey, and do not belong to the tree vertex
set.

Characterization of b-decorated trees. Let us now give an intrinsic characterization
of the trees that we obtain. A b-decorated tree is a plane tree satisfying the following
properties.

• It is made of three types of vertices: primal, dual, and edge-vertices, connected
by either primal half-edges connecting a primal vertex to an edge-vertex, or dual
half-edges connecting a dual vertex to an edge-vertex.

• It carries two types of decorations:

– arrows, in number between 1 and b, placed on all primal half-edges incident
to a primal vertex of degree at least two, and pointing away from that vertex;
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– leaflets, incident to dual vertices, that contribute to their degrees.

• Around each primal vertex of degree at least two, the total number of arrows is
equal to b+ 1.

• The tree is planted on an edge-vertex of degree one, hereafter called the root. All
the edge-vertices different from the root have degree two.

• An edge-vertex incident to two primal half-edges is called a bioriented edge: it must
have both its incident half-edges carrying arrows, with b arrows in total, and may
therefore exist only when b ≥ 2.

• An edge-vertex incident to two dual half-edges is called a dual/dual edge-vertex : it
may exist only when b = 1, and must have exactly one of its adjacent dual vertices
of degree 2b = 2 (see Figure 14).

• An edge-vertex incident to one primal half-edge and one dual half-edge is called a
bent edge-vertex, which must be of one of the following types:

– a twig-vertex : the primal half-edge carries no arrow, hence leads to a primal
vertex of degree one. The ensemble made of the twig-vertex, its incident
half-edges, and the adjacent primal vertex, form a twig ;

– a special bent edge-vertex : the primal half-edge carries b − 1 arrows, and the
adjacent dual vertex has degree 2b;

– a regular bent edge-vertex : the primal half-edge carries b arrows, and the
adjacent dual vertex has degree at least 2b+ 2.

• Each dual vertex of degree 2b, hereafter called special dual vertex, is incident to
exactly one dual half-edge and 2b− 1 leaflets.

• Every other dual vertex has an even degree larger than 2b, and is hereafter called
labeled dual vertex. A labeled dual vertex of degree 2m has label m ≥ b+1, and is
adjacent to exactly m− b− 1 twig-vertices.

See again Figure 10 for an example of a b-decorated tree in the case b = 2. With this
characterization at hand, we may state the following:

Proposition 2.10. For b ≥ 1 and p = 0, . . . , b, the mapping σ 7→ T (σ) is a bijection
between the set of 2b-irreducible 2p-slices different from the 2b-angle slice, and the set of
b-decorated trees such that the root edge-vertex is incident to a primal half-edge carrying
b− p arrows when p ≤ b− 1, or to a dual half-edge leading to a labeled dual vertex when
p = b. For each m, the number of inner faces of degree 2m in σ is equal to the number
of dual vertices of degree 2m in T (σ).

This proposition may be proved by checking that the b-decorated trees have a recursive
decomposition which is equivalent to that of 2b-irreducible slices. For completeness, we
also give a self-contained description of the inverse bijection in Appendix A.
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Remark 2.11. For completeness, let us mention an alternate but equivalent way to
represent b-decorated trees, which is strongly reminiscent of the Z-mobiles considered
in [BF12b]. We still have three types of vertices (primal, dual and edge-vertices), con-
nected by primal and dual half-edges. We still plant the tree on an edge-vertex of degree
one, and every other edge-vertex has degree two. We still have leaflets6 attached to the
dual vertices and contributing to their degree (which must be an even integer larger than
or equal to 2b). But instead of placing arrows on some primal half-edges, we now assign
an integer weight to every (primal or dual) half-edge, with the following rules:

• the weight of a primal half-edge is an integer between 1 and b+ 1,

• the weight of a dual half-edge is either −1, 0 or +1,

• defining the total weight of a vertex as the sum of the weights of its incident half-
edges (ignoring leaflets):

– each primal vertex has total weight b+ 1,

– each non-root edge-vertex has total weight b,

– for every m ≥ b, each dual vertex of degree 2m has total weight b + 1 − m;
if m = b it is incident to exactly one dual half-edge of weight +1 and 2b − 1
leaflets; if m ≥ b+1 it has no incident dual half-edge of weight +1 (hence has
exactly m− b− 1 incident dual half-edges of weight −1).

We recover the previous representation by placing i arrows on each primal half-edge of
weight i, for every i between 1 and b. Note that the primal half-edges of weight b + 1
and the dual half-edges of weight −1 only appear within twigs. Let us observe finally
that, in the absence of dual vertices of degree 2b (which implies that there are no dual
half-edges of weight +1), we recover precisely the (b+1)-dibranching mobiles as defined
in [BF12b, Definition 8].

2.4. Arrow trees and blossoming vertices.

From the discussion of the previous subsections, the problem of enumerating 2b-irreducible
maps can be achieved by first enumerating 2b-irreducible slices, which in turn amounts
to enumerating b-decorated trees. In order to do so, it is useful to further decompose
these decorated trees into more elementary components as follows (see Figure 11).

Let us assume first that b > 1 (the case b = 1 will be treated at the end of this
subsection).

b-arrow trees. Take a b-decorated tree corresponding to a 0-slice, drawn on the derived
map, and keep only the part of the tree drawn on the primal map, without the twigs. In
other words, we keep only the primal half-edges which carry arrows and their incident
vertices. This cuts the decorated tree into a number of connected components, which
are themselves plane trees built out of both bioriented edges and oriented half-edges

6Leaflets correspond to buds in the terminology of [BF12b].
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b = 2

4

4

3

3

decorated tree b-arrow trees simplified b-arrow trees

3 3

blossoming vertices

Figure 11: Decomposition of the decorated tree (left) of Figure 10 into its connected
components made of b-arrow trees and blossoming vertices (middle). The b-
arrow trees may be further reduced into simplified b-arrow trees (right).

(corresponding to the primal half-edges incident to a bent edge-vertex). We shall call
b-arrow trees these connected components. They are naturally planted by selecting as
root the edge-vertex closest to the root of the b-decorated tree. A b-arrow tree is then
characterized as follows (see Figure 12)

(i) it is made of primal vertices of degree at least two and edge-vertices of degree one
or two, connected by primal half-edges carrying between 1 and b arrows;

(ii) around each primal vertex there is a total number of arrows equal to (b+ 1);

(iii) around each edge-vertex of degree two (still called bioriented edge-vertex) there is
a total number of arrows equal to b;

(iv) next to each edge-vertex of degree one there are either b− 1 or b arrows, the root
vertex having b.

Simplified b-arrow trees. For the purposes of enumeration, it is useful to slightly sim-
plify the above characterization thanks to the following remark. Consider an edge-vertex
of degree one with b arrows which is not the root of the b-arrow tree. To fulfill the
condition (ii), its adjacent primal vertex necessarily has degree two and has one arrow
on the other side. Then it is in turn adjacent to a bioriented edge whose other half-edge
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b = 3

b

b

b−1

b−p

p

root edge-verticesbioriented

b+1
arrows

b

b−1b−1

1

simplification rule
edge-vertex of degree 1

primal vertex

attaching point

Figure 12: Environments of the various vertices in a b-arrow tree. For simplified b-arrow
trees, non-root half-edges with b arrows are removed as shown on the right.

carries (b − 1) arrows. We may thus at no cost remove this bivalent primal vertex and
its two incident half-edges and keep only the remnant half-edge with (b− 1) arrows (see
Figure 12-right and Figure 11-bottom right for an example). Doing so for each half-edge
with b arrows different from the root of the b-arrow tree, we end up with a slightly sim-
pler notion of what we hereafter call simplified b-arrow trees, where point (iv) above is
replaced by

(iv’) next to each edge-vertex of degree one different from the root, there are b−1 arrows.
These edge-vertices will be called attaching points. Next to the root there are b
arrows.

Note that each attaching point of a simplified b-arrow tree may be equally connected to
a special or a labeled dual vertex in the b-decorated tree, and that there is a unique way
to make this connection: this requires 2 additional half-edges and vertices to undo the
simplification in the case where the dual vertex is labeled.

Blossoming vertices. If we now keep only the part of the original decorated tree drawn
on the dual map and the twigs, all the dual vertices keep their degrees and we thus obtain
a collection of blossoming vertices (see Figure 13) which are either special dual vertices
of degree 2b or labeled dual vertices of degree 2m for some m ≥ b + 1. We will call
the blossoming vertices special or labeled accordingly. Recall that a special blossoming
vertex is decorated by 2b−1 leaflets, and its incident half-edge incident to its parent bent
edge-vertex will be called the root of this vertex. As for a labeled blossoming vertex of
degree 2m, its root is also the incident half-edge incident to its parent bent edge-vertex.
The vertex is now decorated by m−b−1 twigs and a total of m+b other half-edges, which
are either leaflets or attaching points, which are the half-edges incident to its children
bent edge-vertices in the decorated tree.

Note that we use the same denominations “root” and “attaching point” for the (primal)
b-arrow trees and the (dual) blossoming vertices. In the decorated tree, the roots of
blossoming vertices will be matched with the attaching points of the arrow trees, and
vice versa.
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2b+1m

2b−1 leaflets
m− b−1 twigs

labeledspecial

total degree 2m

2m−1
blossoming vertex blossoming vertex

Figure 13: Representation of the order of decorations around blossoming vertices. Apart
from their root, the special blossoming vertices are decorated with 2b − 1
leaflets, while labeled blossoming vertices with label m are decorated with m−
b− 1 twigs and m+ b other decorations (interchangeably leaflets or attaching
points). We represented on the left the proximity profile corresponding to the
labeled blossoming vertex in the center, as defined in Figure 5. Each leaflet
corresponds to an up step associated with an empty slice, each attaching
point to an up step with an associated 0-slice and each twig to a down step
associated with a trivial slice. The example of labeled blossoming vertex
shown here satisfies the tightness condition of Proposition 2.12.

The case b = 1. In the case b = 1, the discussion is different, since the connection
between faces can be achieved via dual/dual edge-vertices. We still have blossoming
vertices of two types, special (with 2b−1 = 1 leaflet) and labeled with m− b−1 = m−2
twigs, which work similarly to the case b > 1. What would correspond to 1-arrow trees
is a collection of either degree-two primal vertices, each connected to two regular bent
edge-vertex (when linking two labeled vertices), or special dual/dual edge-vertices (when
linking a special vertex to a labeled one). In all cases, for each attaching point of a
labeled vertex, there is a unique corresponding blossoming vertex, and there is a unique
way to make the connection (with two or four half-edges, depending on whether the other
blossoming vertex is special or labeled). See Figure 14 for an example.

2.5. Characterization of tightness

So far, we did not impose that our slices be tight. A remarkable feature of the above
decomposition of slices is that the tightness of the slice is entirely characterized by simple
constraints on the decorations of the blossoming vertices in the associated decorated tree.

More precisely, recall that, in the context where there is no marked vertex, a slice is
tight whenever it has no leaf. Assume on the contrary that the slice contains a leaf L,
which is incident to a face f of degree 2m. We know that m > b, as otherwise the contour
of the face would contain a cycle of size less than or equal to 2b − 2, which contradicts
the 2b-irreducibility. The face f will therefore give rise to a blossoming vertex labeled m,
which is built in a step (II). With cs the corner of f incident to L (see Figure 5 around
vertex L, with s = 5), we then know that:
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3

2

Figure 14: Example of a 1-decorated tree. In gray and in light blue, the unique way
to connect two labeled blossoming vertices (gray) or a labeled to a special
blossoming vertex (light blue).

- The proximity profile has ℓs−1 = ℓs + 1 = ℓs+1 ;

- The slice σs is the trivial slice ;

- The slice σs+1 is the empty slice.

This latter property follows from the fact that the leftmost geodesic from L starts with
the only edge leaving L, which is also the base of the slice σs+1. Conversely, if we
find a trivial slice followed by an empty slice around f , then the identifications of the
elementary slice boundaries shown on Figure 5 create a leaf. For the blossoming vertex
associated with f , this translates into a decoration where a twig follows immediately (in
clockwise order) a leaflet.

We thus have the following characterization:

Proposition 2.12 (Characterization of tightness). A 2b-irreducible slice (without marked
vertices) is tight if and only if, at each blossoming vertex of the associated b-decorated
tree, the sequence of decorations read in clockwise order around this vertex from its root
does not contain the pattern of a twig followed immediately by a leaflet. A decorated tree
with this property will be said to be tight.

3. Enumeration

Our goal is to obtain the expression (1) for the number Nb(m1, . . . ,mn) of planar bipartite
tight 2b-irreducible maps which can be constructed from a fixed number n of labeled faces
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with prescribed even degrees 2m1, . . . , 2mn. From the bijection of Proposition 2.1 and
the characterizations of Proposition 2.3, this can be done by enumerating, on the one
hand, tight maps with two faces of prescribed degrees (and marked vertices) with a
control on the length of their unique cycle and, on the other hand, sequences of tight 2b-
irreducible 0-slices. Using the coding of 2b-irreducible 0-slices by b-decorated trees, this
latter enumeration translates into the counting of sequences of b-decorated trees whose
blossoming vertices are of a prescribed nature (i.e. special or labeled with a prescribed
label) and satisfy the tightness characterization described in Proposition 2.12. Let us first
proceed to the counting of b-decorated trees, where we start by enumerating sequences of
(simplified) b-arrow trees (Section 3.1) and then combine them with blossoming vertices
to obtain the desired sequences of b-decorated trees (Section 3.2).

3.1. Sequences of simplified arrow trees

Let us start with some notation:

Definition 3.1. α
(b)
k,n : Let n, k and b be non-negative integers with b > 1. We denote

by α
(b)
k,n the number of ordered (k + 1)-uples of simplified b-arrow trees with a total of

n+ 1 attaching points, one of them being distinguished in the first arrow tree.

When b = 1, we did not use b-arrow trees for the decorated tree decomposition. Still,
we define:

α
(1)
k,n := δk,n (5)

to account for the fact that there is a unique way to connect children blossoming vertices
to their parent blossoming vertex (see Figure 14 and the related discussion at the end of
Section 2.4). This connection is either via a dual/dual edge-vertex if the child is special,
or via a pair of bent edge-vertices otherwise.

The goal of this section is to obtain an expression for α
(b)
k,n and to show that it is for

k ≤ n a polynomial in b, of degree 2(n − k). Note that α
(b)
k,n vanishes for k > n since

a simplified b-arrow tree has at least one attaching point. Another related quantity of
interest is the number U (b)

0,n of simplified b-arrow trees with n attaching points, for n ≥ 1.
We have the relation

U (b)
0,n =

α
(b)
0,n−1

n
, (6)

as obtained upon forgetting the distinguished attaching point in the first and unique tree
counted by α

(b)
0,n−1.

Definition 3.2. For 0 ≤ p ≤ b − 1, we define a simplified b-arrow tree of excess p as a
tree which follows the rules (i), (ii) and (iii) of simplified b-arrow trees, but instead of
(iv’) satisfies:

(iv”) next to each edge-vertex of degree one different from the root, there are b−1 arrows.
These edge-vertices will be called attaching points. Next to the root there are b− p
arrows.

26



We denote by U (b)
p,n the number of simplified b-arrow trees of excess p with n attaching

points. Note that this notation is consistent with our definition of U (b)
0,n just above, since

simplified b-arrow trees are nothing but simplified b-arrow trees of excess 0.
In the case p = b−1, when following the rules (i), (ii), (iii) and (iv”), the root edge (with

one arrow) connects the root vertex to a primal vertex of degree at least three, so that
there are at least two attaching points: as a consequence, U (b)

b−1,1 should a priori vanish.
For convenience, we decide that the degenerate configuration of the tree consisting of a
single edge-vertex, which serves both as root and as attaching point, is also considered
as a simplified b-arrow tree of excess p = b− 1. We therefore set accordingly

U (b)
b−1,1 = 1. (7)

See Figure 15 for an illustration. The variable p acts as a catalytic variable, as we are
eventually interested in U (b)

0,n.

b−p

n = 2

b = 3

b−p

n = 1

Figure 15: Examples of simplified b-arrow trees with excess p = 2, when b = 3. Left: the
two possible cases with n = 2 attaching points, leading to U (3)

2,2 = 2. Right:
the degenerate configuration (which appears since p = b − 1) with n = 1

attaching point, leading to U (3)
2,1 = 1.

3.1.1. Elementary argument for the polynomiality in b

Starting from the root of a simplified b-arrow tree with excess p, we either are directly
at an attaching point (if we are in the degenerate configuration, namely when p = b− 1
and n = 1), or, climbing the tree, the root is connected to an inner (primal) vertex. If
this vertex is of degree 2, then7 its unique child is counted by U (b)

p+1,n. We then climb the
tree and cross all the vertices of degree 2 until we reach an inner (primal) vertex with
at least 2 children, or an attaching point. More precisely, we reach an attaching point if
and only if n = 1, which yields

U (b)
p,1 = 1 for 0 ≤ p ≤ b− 1. (8)

7Note that if p = b − 1, this situation does not appear, since we would then have an edge bearing b
arrows not connected to the root, which is forbidden in simplified b-arrow trees.
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Assume n > 1, we then reach an inner vertex with q ≥ 2 children. We denote by
p1, . . . , pq ∈ {1, . . . , b − 1} the excesses8 of the corresponding children subtrees, and by
n1, . . . , nq ≥ 1 their respective numbers of attaching points. Clearly we have n1 + · · ·+
nq = n. We denote s := p1 + · · · + pq. Then we have p + 1 ≤ s ≤ b: indeed, let us call
p0 the excess of the subtree just before we reach the vertex with q children. We have
p ≤ p0 ≤ b−1 since, by tree rules (ii) and (iv”), the excess increases by 1 at each crossing
of an inner (primal) vertex of degree 2. Moreover, (b− p0) + p1 + · · ·+ pq = b+1 by the
same rules, i.e. s = p0 + 1.

As an example before we address the general case, let us first treat explicitly the case
n = 2. The only integer composition of n = 2 yields q = 2, n1 = n2 = 1. We then have

U (b)
p,2 =

b∑
s=p+1

∑
p1,p2≥1
p1+p2=s

U (b)
p1,1

U (b)
p2,1

=
b∑

s=p+1

s−1∑
p1=1

1 =
b∑

s=p+1

(s− 1)

=
b(b− 1)

2
− p(p− 1)

2
=

[
m(m− 1)

2

]b
p

.

(9)

From this, we deduce α
(b)
0,1 = 2U (b)

0,2 = b(b − 1). More generally we can write α
(b)
n−1,n =

(2+(n−1))U (b)
0,2

(
U (b)
0,1

)n−1
. Indeed, for k = n−1 we have exactly one arrow tree T2 with

two attaching points, counted by U (b)
0,2 , and n− 1 other trees counted by U (b)

0,1 . This yields

n different sequences according to the position of T2, each counted by U (b)
0,2

(
U (b)
0,1

)n−1
.

As we distinguish an attaching point in the first tree, this yields 2 possibilities if T2 is in
first position, and one possibility otherwise. Altogether, with U (b)

0,1 = 1 and U (b)
0,2 = b(b−1)

2
we have

α
(b)
n−1,n =

n+ 1

2
b(b− 1). (10)

The case n = 3 is still doable by hand. We either have q = 2 or q = 3. When q = 3,
we have n1 = n2 = n3 = 1, which yields after computations

b∑
s=p+1

∑
p1,p2,p3≥1

p1+p2+p3=s

U (b)
p1,1

U (b)
p2,1

U (b)
p3,1

=
b∑

s=p+1

s−1∑
p1=1

s−p1−1∑
p2=1

U (b)
p1,1

U (b)
p2,1

U (b)
s−p1−p2,1

=

[
m(m− 1)(m− 2)

6

]b
p

.

(11)

When q = 2, we have the two symmetric cases n1 = 2, n2 = 1 and n1 = 1, n2 = 2. The

8Note that children subtrees cannot have excess 0.
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first (and the second, by symmetry) is counted by

b∑
s=p+1

∑
p1,p2≥1
p1+p2=s

U (b)
p1,2

U (b)
p2,1

=

b∑
s=p+1

s−1∑
p1=1

U (b)
p1,2

=

b∑
s=p+1

s−1∑
p1=1

[
m(m− 1)

2

]b
p1

=

[
m(m− 1)

4

(
b(b− 1)− (m+ 1)(m− 2)

6

)]b
p

.

(12)

Altogether, upon summing (11) and twice (12), we get

U (b)
p,3 =

[
m(m− 1)(m− 2)

6
+ 2

m(m− 1)

4

(
b(b− 1)− (m+ 1)(m− 2)

6

)]b
p

=

[
m(m− 1)

2

(
b(b− 1)− (m− 1)(m− 2)

6

)]b
p

.

(13)

We may then, from this formula and (9), derive the explicit expression:

α
(b)
n−2,n =

n+ 1

6

(
3n+ 4

4
b+ 1

)
b(b− 1)2. (14)

This follows from α
(b)
n−2,n = (3+(n−2))U (b)

0,3

(
U (b)
0,1

)n−2
+(2(n−2)+

(
n−2
2

)
)
(
U (b)
0,2

)2(
U (b)
0,1

)n−3

obtained similarly to the derivation of Equation (10). This is also a particular case of
the general Equation (16) which we will see just below.

Let us now discuss the case of general n. We have the following:

Proposition 3.3. For b > 1, n ≥ 1, p ∈ {0, . . . b− 1}, the quantity U (b)
p,n is a polynomial

in b and p of total degree 2(n− 1), with a non-zero coefficient for b2(n−1).

Proof. In the general case, we sum over all possible values of q ≥ 2, over n1, . . . , nq with
sum n, over s ≥ p+ 1, and over p1, . . . , pq with sum s. The trick is that, for fixed n, we
have a finite number of configurations of q ∈ {2, . . . , n} and n1, . . . , nq ≥ 1 summing to
n. We then have the recurrence formula, valid for 0 ≤ p ≤ b− 1 and n ≥ 2:

U (b)
p,n =

n∑
q=2

∑
n1,...,nq≥1

n1+···+nq=n

b∑
s=p+1

∑
p1,...,pq≥1

p1+···+pq=s

U (b)
p1,n1

· · · U (b)
pq ,nq

(15)

which allows us to prove Proposition 3.3 by recurrence. Indeed, the sum over s and over
the simplex of the p1, . . . , pq is a discrete integration of dimension q of the polynomial
U (b)
p1,n1 · · · U

(b)
pq ,nq , which yields a polynomial of degree 2(n1−1)+· · ·+2(nq−1)+q = 2n−q

in b and p. The dominant terms in the recurrence formula then come from the terms for
q = 2, with a total degree of 2(n− 1), which, with initialization U (b)

p,1 = 1, concludes the
recurrence for the total degree. Setting p = 0 yields the degree 2(n− 1) in b alone.
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This leads to the following:

Corollary 3.4. For k ≤ n, α(b)
k,n is a polynomial in b of degree 2(n− k).

Proof. We may retrieve, in the general case, the value of α(b)
k,n by the formula:

α
(b)
k,n =

∑
n1,...,nk+1≥1

n1+···+nk+1=n+1

n1U (b)
0,n1

· · · U (b)
0,nk+1

. (16)

arising from Definition 3.1. In particular, since U (b)
0,ni

is of degree 2(ni − 1) in b, α(b)
k,n is a

polynomial in b of degree 2(n1−1)+ · · ·+2(nk+1−1) = 2(n+1)−2(k+1) = 2(n−k).

3.1.2. Direct formula via Lagrange inversion

Besides the above purely combinatorial approach, we may obtain a slightly more explicit
direct (non-recursive) formula for α

(b)
k,n with an analytic approach based on a Lagrange

inversion. More precisely, let us establish the expression (4) for α
(b)
k,n, namely:

Proposition 3.5. For k, n non-negative integers and b ≥ 1, we have

α
(b)
k,n = [un−k]

1(
1 +

b∑
j=2

1
b

(
b
j

)(
b

j−1

)
(−u)j−1

)n+1 . (17)

Proof. For b = 1 this indeed yields α
(1)
k,n = δk,n which is the desired value defined in

Equation (5). Assume now b > 1 and let U0(z) be the generating function of simplified
b-arrow trees counted with a weight z per attaching point. By Definition 3.1, we have

α
(b)
k,n = [zn]U ′

0(z)U0(z)
k =

n+ 1

k + 1
[zn+1]U0(z)

k+1. (18)

More generally, for 0 ≤ p ≤ b−1, we introduce the generating function Up(z) of simplified
b-arrow trees of excess p, still counted with a weight z per attaching point. We may write

Up(z) =
∑
n≥1

U (b)
p,nz

n, 0 ≤ p ≤ b− 1. (19)

We may now obtain the formula:

Up(z) =

p+1∑
q=1

∑
p1,...,pq≥1

p1+···+pq=p+1

q∏
j=1

Upj (z), 0 ≤ p ≤ b− 1, (20)

with the convention Ub(z) := z. This values ensures that, when p = b − 1, the q = 1
term of the sum, which is equal to Ub(z), gets the proper value z, consistent with (7).
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Equation (20) simply expresses the fact that, in a non-degenerate simplified b-arrow tree
of excess p, the root vertex is connected to a primal vertex which has a number q ≥ 1 of
other neighbours which are edge-vertices. Removing this primal vertex and its incident
primal half-edges, the tree is split into q rooted subtrees, which are simplified b-arrow
trees with respective excesses denoted p1, . . . , pq. From rules (ii), (iii) and (iv”), we get
the constraint p1 + · · ·+ pq = p+ 1.

Note the similarity of this decomposition with the case (I) of the decomposition of
b-irreducible p-slices: indeed, for 0 ≤ p ≤ b − 1, Up(z) also counts b-irreducible p-slices
with all inner faces of degree 2b, each weighted by z.
Remark 3.6. Note that Equation (20) can be obtained from Equation (15) by isolating
the term s = p + 1 in the latter and identifying the rest of the sum as U (b)

p+1,n, which
yields:

U (b)
p,n = U (b)

p+1,n +

n∑
q=2

∑
n1,...,nq≥1

n1+···+nq=n

∑
p1,...,pq≥1

p1+···+pq=p+1

U (b)
p1,n1

· · · U (b)
pq ,nq

, 0 ≤ p ≤ b− 1 (21)

with the convention that U (b)
b,n := δn,1 consistent with the convention Ub(z) = z. Then,

translated in generating series, this yields

Up(z) = Up+1(z) +

p+1∑
q=2

∑
p1,...,pq≥1

p1+···+pq=p+1

q∏
j=1

Upj (z), 0 ≤ p ≤ b− 1 (22)

which is equivalent to Equation (20).
In its equivalent form (22), we see that the system (20) is triangular, as it may be

rewritten

Up+1(z) = Up(z)−
p+1∑
q=2

∑
p1,...,pq≥1

p1+···+pq=p+1

q∏
j=1

Upj (z) (23)

for 0 ≤ p ≤ b − 1, where the sum in the right-hand side involves only U1(z), . . . , Up(z).
It follows that Up(z) is a polynomial in U0(z) for all p. We may express it explicitly via
the following trick, borrowed from [BG14a, Section 5.4]: let us define Up+1(z) recursively
for all p ≥ b via the relation (23). Note that, in this relation, we may take the sum over
q from 2 to ∞, since the terms q > p + 1 give no contribution. Then, in terms of the
generating function U(t, z) :=

∑
p≥1 Up(z)t

p, the relation yields

U(t, z) = t(U(t, z) + U0(z))−
∞∑
q=2

U(t, z)q (24)

which may be rewritten as

t =
U(t, z)

(1− U(t, z))(U(t, z) + U0(z))
. (25)
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Using the Lagrange inversion formula, we obtain, for all p ≥ 1,

Up(z) = [tp]U(t, z) =
1

p
[up−1] ((1− u)(u+ U0(z)))

p = hp(U0(z)) (26)

where

hp(u) :=

p∑
j=1

(−1)j−1

p

(
p

j

)(
p

j − 1

)
uj (27)

is a polynomial in u, with zero constant term and with linear term u. Recalling that
Ub(z) = z, we find that U0(z) is algebraic and determined implicitly by

z = hb(U0(z)). (28)

Applying the Lagrange-Bürmann inversion formula to (18), we get

α
(b)
k,n =

n+ 1

k + 1
[zn+1]U0(z)

k+1 = [un−k]

(
u

hb(u)

)n+1

(29)

from which (17), hence (4), follows immediately.

Pushing further the above computations, we may arrive at another expression for α(b)
k,n,

which has the interest of being manifestly polynomial in b:

Proposition 3.7. For k, n non-negative integers, we have

α
(b)
k,n =

∞∑
s=0

(−1)n−k+s

(
n+ s

n

) ∑
ℓ1,...,ℓs≥1

ℓ1+···+ℓs=n−k

rℓ1(b) · · · rℓs(b) (30)

where

rℓ(b) :=
1

b

(
b

ℓ+ 1

)(
b

ℓ

)
=

1

ℓ!(ℓ+ 1)!

ℓ∏
i=1

(b− i+ 1)(b− i) (31)

is a polynomial of degree 2ℓ in b. As a consequence, α(b)
k,n is a polynomial of degree 2(n−k)

in b for k ≤ n, and vanishes for k > n.

Let us remark that, in (30), the term s = 0 contributes only for k = n, and the
rightmost sum is then equal to 1 as it involves a single term corresponding to the empty
sequence: this yields α

(b)
n,n = 1 as wanted. For k > n, the rightmost sum vanishes for

all s, since no sequence satisfies the wanted condition: this yields α
(b)
k,n = 0 as expected.

Note finally that rℓ(0) = rℓ(1) = 0 for all ℓ ≥ 1, and hence α
(0)
k,n = α

(1)
k,n = δk,n as wanted.

Proof of Proposition 3.7. Observe that, in (27), we may replace the upper bound of the
sum by ∞ since all terms j > p have a zero contribution. Replacing p by b, doing the
change of variable j = ℓ+ 1, and putting the first term apart, this allows to rewrite

hb(u) = u+

∞∑
ℓ=1

(−1)ℓrℓ(b)u
ℓ+1 (32)
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with rℓ(b) as in the proposition. Plugging this expression in the right-hand side of (29),
we get

α
(b)
k,n = [un−k]

1

(1 +
∑∞

ℓ=1(−1)ℓrℓ(b)uℓ)
n+1

= [un−k]
∞∑
s=0

(−1)s
(
n+ s

n

)( ∞∑
ℓ=1

(−1)ℓrℓ(b)u
ℓ

)s (33)

which gives the wanted formula (30).

We list for bookkeeping purposes the following simple values for k = n, n−1, n−2, n−3:

• α
(b)
n,n = 1 for all n ;

• α
(b)
n−1,n = n+1

2 b(b− 1) for n ≥ 1, see Equation (10);

• α
(b)
n−2,n = n+1

6

(
3n+4

4 b+ 1
)
b(b− 1)2 for n ≥ 2, see Equation (14);

• α
(b)
n−3,n = n+1

12

(
3n2+9n+7

12 b3 − 3n2−3n−11
12 b2 − 3n+2

3 b− 1
)
b(b− 1)2 for n ≥ 3.

3.2. Sequences of decorated trees

The purpose of this section is to establish the following:

Proposition 3.8. For integers n, b ≥ 1, k ≥ 0 and m1, . . . ,mn ≥ b, the number of (k+1)-
tuples of tight b-decorated trees having n blossoming vertices of degrees 2m1, . . . , 2mn,
where the first tree contains the blossoming vertex of degree m1, is equal to

F
(b)
k (m1, . . . ,mn) := (n− 1)!

∑
k1,...,kn≥0

q
(b)
k1

(m1) · · · q(b)kn
(mn)α

(b)
k+k1+···+kn,n−1 (34)

with α
(b)
k,n as in (4) and, recalling Equation (3),

q
(b)
k (m) :=

(
m+ b

k

)(
m− b− 1 + k

k

)
=

1

(k!)2

k−1∏
i=0

(
m2 − (b− i)2

)
. (35)

By the correspondence between decorated trees and slices, we immediately obtain the
following:

Corollary 3.9. For integers n, b ≥ 1, k ≥ 0 and integers m1, . . . ,mn ≥ b, the quan-
tity F

(b)
k (m1, . . . ,mn) in (34) is the number of (k + 1)-tuples (s1, . . . , sk+1) of tight 2b-

irreducible 0-slices such that there is a bijection between {1, . . . , n} and the union of the
sets of the inner faces of s1, . . . , sk+1, such that each j = 1, . . . , n is mapped to a face of
degree 2mj, and 1 is mapped to an inner face of s1. In particular, for k = 0, the number
of tight 2b-irreducible 0-slices with n inner faces of degrees 2m1, . . . , 2mn is equal to

F
(b)
0 (m1, . . . ,mn) = (n− 1)!

∑
k1,...,kn≥0

q
(b)
k1

(m1) · · · q(b)kn
(mn)α

(b)
k1+···+kn,n−1. (36)
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Recall that α
(b)
k,n vanishes for k > n hence the sums in (34) and (36) are finite sums.

The first step in the proof of Proposition 3.8 consists in observing that the quantity
q
(b)
k (m), which is a polynomial in m2 and b, counts the number of possible decorations

around a blossoming vertex of degree 2m with k attaching points satisfying the tightness
condition of Proposition 2.12. Indeed, for m = b we have q

(b)
k (b) = δk,0 as wanted for a

special vertex which by definition has 0 attaching point. For m > b, each decoration is
coded by a word of length 2m− 1 over the alphabet {A,L, T} (where these letters stand
for attaching point, leaflet and twig respectively) with k occurrences of A, m + b − k
occurrences of L and m− b− 1 occurrences of T , and no occurrence of the pattern TL.
Such a word has the form

Li0T j0ALi1T j1A · · ·ALikT jk (37)

where i0, i1, . . . , ik are non-negative integers summing to m+ b− k and j0, j1, . . . , jk are
non-negative integers summing to m− b− 1. There are

(
m+b
k

)
choices for the former and(

m−b+k−1
k

)
for the latter, leading to the expression (35).

The second step of the proof consists of the following:

Lemma 3.10. Let n, b, k,m1, . . . ,mn be as in Proposition 3.8 and fix non-negative inte-
gers k1, . . . , kn. Then, the number of tuples of decorated trees as in Proposition 3.8 where
we add the requirement that, for each i = 1, . . . , n, the i-th blossoming vertex has exactly
ki attaching points, is equal to (n− 1)!q

(b)
k1

(m1) · · · q(b)kn
(mn)α

(b)
k+k1+···+kn,n−1.

Proof. This results from general considerations on the enumeration of plane forests with
labeled vertices, similar to those developed in [BGM24b, Appendix A].

Precisely, we first observe that for any k0 ≥ 0, the quantity (n − 1)!α
(b)
k0,n−1 is the

number of (k0 + 1)-tuples of simplified b-arrow trees with a total of n attaching points,
that are numbered from 1 to n, the one numbered 1 being in the first arrow tree. Indeed,
in α

(b)
k0,n−1 there is a unique distinguished attaching point which is in the first tree, which

we number 1, and we have (n− 1)! ways to number the other attaching points. Now, we
take k0 = k+ k1 + · · ·+ kn, and for each i = 1, . . . , n we choose a decoration for the i-th
blossoming vertex in one of the q

(b)
ki

(mi) ways, and attach the root of that blossoming
vertex to the arrow tree attaching point numbered i. At this stage, we no longer have
free attaching points incident to arrow trees, but we still have k1+ · · ·+ kn = k0− k free
attaching points incident to blossoming vertices, while the number of trees is still k0+1.
There is then a canonical way to assemble these trees into a sequence of (k0+1)−(k0−k) =
k+1 decorated trees with the first tree containing the first blossoming vertex. Indeed, we
represent each of the k0 +1 tree by a sequence formed by a simple up step followed by a
number of down steps equal to its number of free attaching points. This yields a sequence
of steps with k0 + 1 up steps and k0 − k down steps. We write this sequence cyclically,
and connect each down step with the closest available following up step with non-crossing
arches; in the original trees, this corresponds to connecting the free attaching points to
some of the roots. This yields a cyclic sequence of k+1 decorated trees, which we break
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into a linear sequence by demanding that the first blossoming vertex be in the first tree.
This is precisely a tuple of decorated trees of the wanted type.

From this lemma, Proposition 3.8 is deduced by summing over all possible k1, . . . , kn.

3.3. Two-face maps with marked vertices

Having enumerated (k + 1)-tuples of tight 2b-irreducible 0-slices in the previous section,
we are now left with the counting of maps m12 with two faces of prescribed degrees,
and (k + 1) marked vertices. More precisely, it is the purpose of the present section to
establish the following:

Proposition 3.11. Let k, c,m1,m2 be non-negative integers with m1,m2 > c. Then, the
number p

(c)
k (m1,m2) of tight planar maps with exactly two (labeled) faces of respective

degrees 2m1 and 2m2, with (k + 1) among their vertices marked, one of them being
distinguished, and with their unique cycle of length at least 2(c+ 1), is equal to

p
(c)
k (m1,m2) =

∑
k1,k2≥0
k1+k2=k

p
(c)
k1
(m1)q

(c)
k2

(m2) (38)

with q
(c)
k2

(m2) as in (3) or (35) with b, k,m → c, k2,m2, namely

q
(c)
k2

(m2) =

(
m2 + c

k2

)(
m2 − c− 1 + k2

k2

)
=

1

(k2!)2

k2−1∏
i=0

(
m2

2 − (c− i)2
)

(39)

and p
(c)
k1
(m1) as in (2), namely

p
(c)
k1
(m1) :=

(
m1 − c− 1

k1

)(
m1 + c+ k1

k1

)
=

1

(k1!)2

k1∏
i=1

(
m2

1 − (c+ i)2
)
. (40)

Note that, borrowing from [BGM24b] the notation

pk,e(m) :=

(
m+ e

2 − 1

k

)(
m− e

2 + k

k

)
=

1

(k!)2

k∏
i=1

(m2 − (i− e

2
)2) (41)

for k ≥ 0, e ∈ Z, we have p
(c)
k (m) = pk,−2c(m) and q

(c)
k (m) = pk,2c+2(m).

We emphasize that p
(c)
k (m1,m2) counts two-face planar maps whose unique cycle has

length at least 2(c+1). A first idea would be to count maps for which the unique cycle has
a fixed length, and then perform a summation. While this may be done, see Remark 3.17
below, it is actually not the most direct route to the expression (38). Instead, we adapt
the approach of [BGM24b, Sections 4.2 and 5.2] which relies on a bijection between
two-face maps and pairs of sequences of trees with possibly different lengths.

We first need to enumerate sequences of rooted plane trees, with some vertices marked,
such that every leaf is marked. Such sequences are best encoded by concatenating Dyck
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2m1−1

2c+1

`1 {{
−`1

`1+2c+2{
Figure 16: Top: a schematic picture of a word of the form (42), viewed equivalently as

a lattice path with height difference 2c + 1 (here c = 2). Calling −ℓ1 the
minimum height (here ℓ1 = 3), we may decompose this path into 2ℓ1 + 2c +
2 blocks (Dyck paths) separated by ℓ1 down steps, which are markable (as
indicated by squares) and ℓ1 + 2c + 1 up steps. Bottom: alternatively, this
codes for a sequence S1 of 2ℓ1 + 2c + 2 rooted plane trees (displayed as gray
blobs connected by a spine of edges). The roots of the first ℓ1 trees can be
marked or not (as indicated by squares). The roots of the last ℓ1+2c+2 trees
are not marked (as indicated by crosses).

paths with marked steps, where the marking of the leaves is enforced by forbidding a
certain pattern. The sequences of such Dyck paths are themselves in one-to-one corre-
spondence with appropriate words over a three-letter alphabet avoiding some pattern.

More precisely, take integers c, k1 ≥ 0 and m1 ≥ c + 1, and consider words of length
2m1 − 1 over the alphabet {M,D,U} (where these letters stand for marked-down, down
and up respectively) with k1 occurrences of M , m1 − c − 1 − k1 occurrences of D and
m1+ c occurrences of U , and with no occurrence of the pattern UD. Any such word has
the form

Di0U j0MDi1U j1M · · ·MDik1U jk1 (42)

where i0, i1, . . . , ik1 are non-negative integers summing to m1−c−1−k1 and j0, j1, . . . , jk1
are non-negative integers summing to m1 + c. There are

(
m1−c−1

k1

)
choices for the former

and
(
m1+c+k1

k1

)
for the latter, leading to the total number of words p

(c)
k1
(m1) as in (40).

Note that p
(c)
k1
(m1) = 0 for k1 ≥ m1 − c as it should.

By interpreting the letter U as coding for an elementary up step (1, 1), and the letter
D (respectively M) as coding for an elementary down step (respectively a marked ele-
mentary down step) (1,−1), each word codes for a directed lattice path in Z2 starting at
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(0, 0), of total length (number of steps) equal to (m1+c)+(m1−c−1−k1)+k1 = 2m1−1,
and height difference (final ordinate) equal to (m1+ c)− (m1− c− 1− k1)− k1 = 2c+1.
This path is equipped with a total of k1 markings on the down steps. Calling −ℓ1 the
minimal height of this path (see Figure 16), with ℓ1 ≥ 0 by construction, we can de-
compose the path into 2ℓ1 + 2c + 2 blocks separated by the ℓ1 down steps (that can be
marked or not) which correspond to the first passage at height h for h = −1, . . . ,−ℓ1
followed by the ℓ1 + 2c + 1 up steps9 which correspond to the last passage at height h
for h = −ℓ1, . . . , 2c. Each block is a Dyck path made of an equal number of up and
down steps which, as is well-known, is the contour path of a rooted plane tree: recall that
the contour path of a rooted plane tree with a total of m non-root vertices is the path
of length 2m obtained by going clockwise around the tree from its root and recording
the distance to the root of the successive encountered corners. Each non-root vertex in
the tree is in correspondence with a down step along the Dyck path (following the last
passage at this vertex along the contour) and we may therefore transfer the markings
of the down steps to their associated non-root vertices. The absence of the UD pattern
then guarantees that all the (non-root) leaves of the tree are marked. As for the root of
the tree, we mark it if the block at hand is followed by a marked down step, which is
possible only for the ℓ1 first blocks in the decomposition. Altogether, we arrive at the
following:

Proposition 3.12. For fixed integers c, k1 ≥ 0 and m1 ≥ c+1, the number of sequences
S1 made of 2ℓ1+2c+2 rooted plane trees with a total of m1− (c+1)− ℓ1 internal edges,
for some (unfixed) value ℓ1 with 0 ≤ ℓ1 ≤ m1− (c+1) , with a total of k1 marked vertices
and such that all the (non-root) leaves of the trees are marked and the roots of the last
ℓ1 + 2c+ 2 plane trees are not marked is given by p

(c)
k1
(m1) as in (40).

Take now integers c, k2 ≥ 0 and m2 ≥ c+1 and consider words of length 2m2 − 1 over
the alphabet {M,D,U} with k2 occurrences of M , m2 + c − k2 occurrences of D and
m2 − c− 1 occurrences of U , again with no occurrence of the pattern UD. As seen from
the direct correspondence M → A, D → L, U → T , c → b, k2 → k and m2 → m with the
calculation presented in the proof of Proposition 3.8, the total number of words with the
above requirement is now q

(c)
k2

(m2) as in (39). Note that q(c)k2
(m2) = 0 for k2 ≥ m2+ c+1

as it should. Each word now codes for a lattice path of total length 2m2 − 1 and height
difference −(2c + 1), see Figure 17. Calling −ℓ2 the minimal height of this path, with
ℓ2 ≥ 2c + 1 by construction, we can decompose the path into 2ℓ2 − 2c blocks which are
Dyck paths coding for rooted plane trees. As before, we transfer the markings of the
down steps within a Dyck path to their associated non-root vertices in the associated
plane tree. The absence of the UD pattern then guarantees that all the (non-root) leaves
of the trees are marked. As for the root of the trees, we mark them if the block at hand
is followed by a marked down step, which is possible only for the ℓ2 first blocks in the
decomposition. Altogether, we arrive at the following:

Proposition 3.13. For fixed integers c, k2 ≥ 0 and m2 ≥ c + 1, the number of se-
quences S2 made of 2ℓ2 − 2c rooted plane trees with a total of m2 + c− ℓ2 internal edges,

9that cannot be marked, as we only mark down steps.
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2m2−1

−(2c+1)

`2 {

−`2

`2−2c{ {
Figure 17: Top: a lattice path with height difference −(2c+1) having minimal height −ℓ2

(with ℓ2 ≥ 2c+1, here c = 2 and ℓ2 = 6). We may decompose this path as in
Figure 16, creating now 2ℓ2 − 2c blocks (Dyck paths). Bottom: alternatively,
this codes for a sequence S2 of 2ℓ2 − 2c rooted plane trees (displayed as gray
blobs connected by a spine of edges), where the roots of the first ℓ2 trees are
markable, while the roots of the last ℓ2 − 2c are not.

for some (unfixed) value ℓ2 with 2c+1 ≤ ℓ2 ≤ m2+ c , with a total of k2 marked vertices
and such that all the (non-root) leaves of the trees are marked and the roots of the last
ℓ2 − 2c plane trees are not marked is given by q

(c)
k2

(m2) as in (39).

We are now ready for the proof of Proposition 3.11.

Proof of Proposition 3.11. As in [BGM24b], we use the fact that a planar map with
two faces can be built out of two sequences of plane trees by sticking them together.
Consider more precisely a sequence S1 of plane trees as defined in Proposition 3.12 and
call 2ℓ1 +2c+2 the length of this sequence, with ℓ1 ≥ 0. Consider also a sequence S2 of
plane trees as defined in Proposition 3.13 and call 2ℓ2 − 2c the length of this sequence,
with ℓ2 ≥ 2c+1. As in Figure 16 (resp. Figure 17), we transform the sequence S1 (resp.
S2) into a single connected object by attaching the trees with a spine made of 2ℓ1+2c+1
(resp. 2ℓ2 − 2c− 1) elementary edges.

Assume first that ℓ2 ≤ ℓ1 + 2c + 1 so that the spine of S1 is longer than (or of the
same length as) that of S2. We then shorten the spine of S1 by pulling up the (ℓ1+1)-th
tree and by zipping the spine so as to attach the root of the (ℓ1 + 1 − j)-th tree to
that of the (ℓ1 + 1 + j)-th one for j = 1, . . . , ℓ1 + 2c + 1 − ℓ2. This creates a shorter
spine of length 2ℓ2 − 2c − 1 with we may now glue “face to face” with the spine of S2

and close it into a cycle of length 2(ℓ2 − c) by adding an extra closing edge as shown in
Figure 18-top. The final result is a map with two faces f1 and f2 of respective degrees
2× (m1− (c+1)− ℓ1)+ 2ℓ1+2c+2 = 2m1 and 2× (m2+ c− ℓ2)+ 2ℓ2− 2c = 2m2 with
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`1 {`1+2c+2{

{̀
2−2c

{
`2

`2− 2c
{ {`1+2c+2{`1

`2
{

2c+1 ≤ `2 ≤ `1+2c+1

`2 ≥ `1+2c+1 ≥ 2c+1

2(`1+c+1)

f1

f2

f2

f1

2(`2−c)

f2

Figure 18: The gluing of two sequences of rooted trees into a two-face map (see text)
according to whether ℓ2 lies between 2c+ 1 and ℓ1 + 2c+ 1 (top) or is larger
than or equal to ℓ1+2c+1 (bottom). The green arrows indicate which vertices
to identify in the gluing process. In both case, the length of the separating
loop (indicated in blue) is larger than or equal to 2(c + 1). Squares indicate
markable vertices and crosses non-markable ones. The red circle indicates the
mandatory marking of the distinguished vertex.
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separating cycle of length L = 2(ℓ2 − c) with an additional distinguished marked vertex
incident to f1 corresponding to the endpoint of the zip, leading to a total of k1 + k2 + 1
marked vertices (and all the leaves marked). Note that the gluing procedure is such that
a markable vertex is always glued to an unmarked one and the tip of the zip is initially
not marked. These two conditions are crucial to ensure that all vertices are markable in
the two-face map and that the construction is reversible without ambiguity as to which
side to assign vertex markings after unzipping. Note also that the additional marking is
needed to know where and how far to unzip. Finally, since ℓ2 ≥ 2c+ 1, we deduce that
L ≥ 2(c+ 1).

Assume now that ℓ2 ≥ ℓ1 + 2c + 1 so that the spine of S1 is shorter than (or of
the same length as) that of S2. We now shorten this latter spine by pulling down the
(ℓ2 + 1)-th tree (counted from the right on Figure 18-bottom) and by zipping the spine
so as to attach the root of the (ℓ2 + 1− j)-th tree to that of the (ℓ2 + 1 + j)-th one for
j = 1, . . . , ℓ2−(ℓ1+2c+1). The two spines then have the same length 2ℓ1+2c+1 and we
may again glue them and close the resulting segment into a cycle of length 2(ℓ1 + c+ 1)
by adding an extra closing edge. The final result is again a map with two faces f1 and f2
of respective degrees 2m1 and 2m2 with now a separating cycle of length L = 2(ℓ1+c+1)
with an additional distinguished marked vertex incident to the face f2 (leading to a total
of k1 + k2 + 1 marked vertices). Again the gluing procedure is such that a markable
vertex is always glued to an unmarked one and the tip of the zip is initially not marked,
as required to ensure that all vertices are markable in the two-face map and that the
construction is reversible without ambiguity. Finally, since ℓ1 ≥ 0, we deduce that,
again, L ≥ 2(c+ 1).

Note that if ℓ2 = ℓ1 + 2c + 1, both constructions are fully identical: this corresponds
to the case where no zipping is necessary and the additional marked vertex is on the
separating loop itself.

This ends the proof of Proposition 3.11 by summing over k1 and k2 with k1+k2 = k.

Remarks. We end this section with some remarks regarding the quantity p
(c)
k (m1,m2).

Remark 3.14. In the case m1 = c+1, we have p
(c)
k1
(m1) = δk1,0, so that (38) reduces, via

k2 = k, to
p
(c)
k (c+ 1,m2) = q

(c)
k (m2). (43)

This gives a direct interpretation of q
(c)
k (m2) which can be recovered as follows: we

already know that q(c)k (m2) counts the sequences S2 of Proposition 3.13. The requirement
m1 = c + 1 forces that ℓ1 = 0 (recall that 0 ≤ ℓ1 ≤ m1 − (c + 1)), and that S1 is the
empty spine of length 2c+1, composed of 2c+2 non-markable vertices, with all the trees
reduced to their root vertex. When zipping S2 to match it (see Figure 19, top), we end
up with a map with a face of degree 2m2 and a simple face of degree 2c+ 2, where the
cycle is also the contour of this simple face, and all the vertices of this cycle are markable.
As before, this map has k+1 markings, one of them distinguished, and all its leaves are
marked.
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`1 {`1+2c+2{ {
2c

`2− 2c
{ {

`2
{

m2 = 2c, `2 = 2c

2(c+1)

f1

f2

f1

2c

f2

2c+2
m1=c+1⇒ `1 = 0
`2 ≥ 2c+1

Figure 19: Top: limit case of the gluing of Figure 18-bottom. Taking m1 = c+1 implies
that ℓ1 = 0 and yields a two-face map where the face f1 is simple, and its
incident vertices are all markable. This is counted by q

(c)
k (m2) if f2 has degree

2m2 (and there is a total of k+1 markings, one being distinguished). Bottom:
degenerate case m2 = c. The gluing now yields a two-face map where the face
f2 is simple, and its incident vertices are non-markable. This degenerate case
is not a particular case of the gluing of Figure 18-top, since here the separating
loop has length 2c. The vertices of the empty spine are non-markable, and
the zipping matches the rightmost tree of S1 with the leftmost vertex of S2

(see the brown arrow). This is counted by p
(c)
k (m1) if f1 has degree 2m1 (and

there is a total of k + 1 markings, one being distinguished).
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Remark 3.15. Proposition 3.11 assumes that m1,m2 > c. In the case m2 = c, we have
q
(c)
k2

(m2) = δk2,0, so that (38) reads, via k1 = k,

p
(c)
k (m1, c) = p

(c)
k (m1). (44)

This leads to a new interpretation of p
(c)
k (m1,m2) when m2 = c, from the following

direct interpretation of p(c)k (m1): we already know that p(c)k (m1) counts the sequences S1

of Proposition 3.12. If we now replace S2 by the empty spine of length 2c− 1 (composed
of 2c non-markable vertices with all the trees reduced to their root vertex), and zip S1 to
match it (see Figure 19, bottom), we end up with a map with a face of degree 2m1 and
a simple face of degree 2c, where the cycle is also the contour of this simple face, and all
the vertices of this cycle are now non-markable. As always, this map has k+1 markings,
one of them distinguished, and all its leaves are marked. This interpretation of p(c)k (m1),
or equivalently of p(c)k (m1,m2) when m2 = c, will be useful in the next remarks, as well
as for our main theorem 1.1.

Remark 3.16. We have the relation

q
(c)
k (m) =

k∑
i=0

(
2c+ 1

i

)
p
(c)
k−i(m) (45)

which can be understood as follows: according to Remark 3.15, p(c)k−i(m) counts two-face
maps with a total of k + 1− i marked vertices, one distinguished, with a simple face f0
of degree 2c having no incident marked vertex, the other face being of degree 2m. In
particular, the distinguished marked vertex is not incident to f0 and the branch leading
from f0 to this vertex has no-zero length. We may unzip the first edge of this branch so
as to obtain a larger simple face f ′

0 of degree 2c+ 2 and a shorter (by one edge) branch.
None of the vertices incident to f ′

0 are marked, except possibly the incident vertex at the
beginning of the new branch leading to the distinguished vertex (note that this branch
may be reduced to the distinguished vertex itself). If we now mark i among the 2c + 1
other vertices incident to f ′

0, which can be done in
(
2c+1
i

)
ways, we end up with a two-

face map with a simple face of degree 2c + 2, the other face being still of degree 2m,
with a total of k + 1 marked vertices, one of them distinguished and exactly i marked
vertices along its unique cycle deprived of its vertex incident to the branch leading to
the distinguished vertex. Summing over i, this enumerates precisely maps counted by
q
(c)
k (m) according to Remark 3.14.
From (45), we get the alternative expression

p
(c)
k (m1,m2) =

∑
k1,k2,i≥0

k1+k2+i=k

(
2c+ 1

i

)
p
(c)
k1
(m1)p

(c)
k2
(m2). (46)

which displays that p
(c)
k (m1,m2) is indeed symmetric in its two arguments as it should.
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Remark 3.17. For bookkeeping purposes, let us mention another approach to computing
p
(c)
k (m1,m2). Let us denote by o

(d)
k (m1,m2) the number of planar tight maps with exactly

two (labeled) faces of respective degrees 2m1 and 2m2, with (k+1) among their vertices
marked, one of them being distinguished, and with their unique cycle of length exactly
2d. As p(c)k (m1,m2) corresponds to two-face maps whose cycle has length at least 2(c+1),
we have, for m1,m2 ≥ c+ 1,

p
(c)
k (m1,m2) =

∑
d≥c+1

o
(d)
k (m1,m2). (47)

Then, in terms of the same univariate polynomials p(c)k (m) and q
(c)
k (m) as above, we have

the expression

o
(d)
k (m1,m2) =

∑
κ1,κ2≥1

κ1+κ2=k+1

(2d)(κ1 + κ2)

κ1κ2
p
(d)
κ1−1(m1)q

(d−1)
κ2−1 (m2)

+ p
(d)
k (m1)δm2,d + δm1,dq

(d−1)
k (m2) (48)

which may be combinatorially interpreted as follows. Consider a map contributing to
o
(d)
k (m1,m2): cutting along its unique cycle and filling the holes with new simple faces f̃1

and f̃2 of degree 2d, we get, upon transferring the markings to face f2: on one hand a two-
face map Q with a simple face f̃1 and the initial face f2, and on the other hand a two-face
map P with a simple face f̃2 and the initial face f1 without markings incident to the face
f̃2. Calling κ1 and κ2 the total number of markings in Q and P respectively, those maps
are the two types of maps considered respectively in Remarks 3.14 (with c = d− 1, k =
κ1−1) and 3.15 (with c = d, k = κ2−1), except we miss the distinguished marked vertex
in one of those faces. After correcting this problem, since there are 2d ways to reassemble
the maps P and Q, this gives a number of possibilities equal to (2d)p

(d)
κ1−1(m1)q

(d−1)
κ2−1 (m2).

Doing so, we obtain a two-face map with a pair of distinguished vertices (one incident to
f2, and one incident to f1 but not f2). Starting from a two-face map without distinguished
vertices, there are κ1κ2 ways to choose such pairs, and κ1 + κ2 ways to choose one
distinguished vertex in the whole map, so, to correct the above problem, we multiply the
preceding expression by κ1+κ2

κ1κ2
. Summing over κ1 + κ2 = k + 1 we get the first term in

Equation (48).
The extra terms on the second line correspond to the pathological situation where there

is no marked vertex incident to one of the faces, forcing the corresponding sequence of
trees to contain only trees reduced to their root vertex. We have checked by computer
algebra that the expressions (38) and (47) match for the first values of k, and one might
look for a general algebraic proof, besides the combinatorial proof that we sketched here.

3.4. The final result: enumeration of tight irreducible maps

We are now ready to prove Theorem 1.1 via the following:
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Proposition 3.18. For integers n ≥ 3, b, c ≥ 1, m1,m2 ≥ c + 1, and m3, . . . ,mn ≥
b, the number of planar bipartite tight maps with n labeled faces of respective degrees
2m1, . . . , 2mn which are essentially 2b-irreducible (as defined in Proposition 2.3) and
have separating girth at least 2(c+ 1) is equal to

(n− 3)!
∑

k,k3,...,kn≥0

p
(c)
k (m1,m2)q

(b)
k3

(m3) · · · q(b)kn
(mn)α

(b)
k+k3+···+kn,n−3. (49)

Note again that α
(b)
k,n = 0 for k > n hence the sum in (49) is finite.

Proof. By Proposition 2.3, we need to enumerate tuples of the form (m12, s1, . . . , sk+1) as
in Proposition 2.1, where furthermore the unique cycle of m12 has length at least 2(c+1),
and where s1, . . . , sk+1 are 2b-irreducible. Proposition 3.11 enumerates the former and
Corollary 3.9 the latter, upon changing n into n− 2 and shifting the face labels by 2. By
summing over k, the wanted number reads∑

k≥0

p
(c)
k (m1,m2)F

(b)
k (m3, . . . ,mn) (50)

which yields (49) by (34).

We may now proceed to the:

Proof of Theorem 1.1. The expression (1) for N (b)
n (2m1, . . . , 2mn) is obtained:

• in the case m2 > b as a direct corollary of Proposition 3.18, using the fifth item in
Proposition 2.3 and the expression (38) for p

(c)
k (m1,m2) with c = b,

• in the case m2 = b as a direct consequence of the sixth item in Proposition 2.3 and
of the interpretation of Remark 3.15 for p

(c)
k (m1,m2) when m2 = c = b.

Let us now verify the polynomiality properties of N (b)
n (2m1, . . . , 2mn). From their expres-

sions (39) and (40) with c → b, p(b)ki
(mi) and q

(b)
ki

(mi) are polynomials of total degree 2ki in

b and mi (and even in mi). Recall that α(b)
k,n−3 vanishes for k > n−3 and that for k ≤ n−3

it is by Corollary 3.4 or Proposition 3.7 a polynomial of degree 2(n− 3− k) in b. There-
fore, each non-zero term in the sum in (1) is of degree 2(n−3−

∑
i ki)+2

∑
i ki = 2n−6

in b and the mi’s. Its top degree term in the mi’s is
∏

i
m

2ki
i

(ki!)2
which, for

∑
i ki = n − 3,

is not present in any other non-zero term. Thus, the total degree of N (b)
n (2m1, . . . , 2mn)

is exactly 2n− 6. The expression (1) is clearly symmetric in m2, . . . ,mn, and also sym-
metric upon exchanging m1 and m2, as proved in Remark 3.16, hence it is symmetric in
all its arguments.

The formula (1) given in this paper can be identified as [Bud22a, Equation (66)], as
discussed in Appendix B.
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Particular cases. Using q
(b)
k (b) = p

(b)
k (b+1) = δk,0, we have the following specializations:

Proposition 3.19. For n ≥ 3 and m1,m2 ≥ b not both equal to b, we have

N (b)
n (2m1, 2m2, 2b, . . . , 2b︸ ︷︷ ︸

n−2 times

) = (n− 3)!
n−3∑
k=0

p
(b)
k (m1,m2)α

(b)
k,n−3. (51)

Proposition 3.20. For n ≥ 3 and m > b, we have

N (b)
n (2m, 2b, . . . , 2b︸ ︷︷ ︸

n−1 times

) = (n− 3)!
n−3∑
k=0

p
(b)
k (m)α

(b)
k,n−3, (52)

N (b)
n (2m, 2b+ 2, 2b, . . . , 2b︸ ︷︷ ︸

n−2 times

) = (n− 3)!

n−3∑
k=0

q
(b)
k (m)α

(b)
k,n−3. (53)

Proposition 3.21. For n ≥ 3, we have

N (b)
n (2b+ 2, 2b, . . . , 2b︸ ︷︷ ︸

n−1 times

) = (n− 3)!α
(b)
0,n−3. (54)

For b = 2 and n ≥ 3, this yields

N (2)
n (6, 4, . . . , 4︸ ︷︷ ︸

n−1 times

) =
(2(n− 3))!

(n− 3)!
(55)

for the number of 4-irreducible dissections of the hexagon by (n − 1) labeled quadran-
gles, in agreement10 with [MS68] and [FSP08]. Indeed, the tightness (and even the
2-connectedness) of the map follows automatically from the irreducibility constraints.

Finally, recalling Remark 2.4 (with n → n+ 2) and Corollary 3.9, we get:

Proposition 3.22. For n ≥ 1 and m1, . . . ,mn ≥ b, we have

N (b)
n+2(2b+ 2, 2b, 2m1, . . . , 2mn) = F

(b)
0 (m1, . . . ,mn)

= (n− 1)!
∑

k1,...,kn≥0

q
(b)
k1

(m1) · · · q(b)kn
(mn)α

(b)
k1+···+kn,n−1. (56)

4. Conclusion

In this paper, we gave a fully combinatorial proof of Theorem 1.1 counting the number
of planar bipartite tight 2b-irreducible maps with labelled faces of prescribed degrees. As
opposed to Budd’s approach in [Bud22a] based on a substitution of formal power series,

10up to a 6
(n−1)!

factor, since these papers consider maps with a rooted boundary (factor of 6) and
undistinguished quadrangles (factor of 1

(n−1)!
).
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we had recourse here to a decomposition of desired maps into (tight 2b-irreducible) slices
for which we presented a bijective enumeration based on b-decorated trees drawn on their
derived map.

Even though we have not worked out the details, we believe that the assumption of
bipartiteness is not essential, and our formula can be extended to the enumeration of
planar tight d-irreducible maps with labelled faces of arbitrary odd or even degrees.
The case d = 0 was treated in detail in [BGM24b, Theorem 2.12] and involves quasi-
polynomials instead of ordinary polynomials.

The decorated tree formulation of Section 2.3 involves placing arrows on the primal
half-edges of the map, which form arrow trees. Such construction is strongly reminiscent
of the approach of Bernardi and Fusy, which consists in choosing an appropriate biori-
entation of the map. We noted in Remark 2.11 that, in the absence of special vertices
(which corresponds to maps with no face of degree 2b), our b-decorated trees correspond
precisely to the (b+ 1)-dibranching mobiles of [BF12b, Definition 8]. Reintroducing the
faces of degree 2b in their formulation seems to add an extra challenge, and we wonder
whether the ideas of [BFL23], which involve working with orientations of the derived
map, could solve this issue.

Finally, we cannot help but notice that the general structure of the right-hand side
of Equation (1) is very reminiscent of [BGM24a, Equation (32)] for planar bipartite
maps with a number of labelled tight boundaries of prescribed degrees (and arbitrary
even-valent internal faces).

A. Going back from a decorated tree to a 0-slice

We discuss here how to get back from a b-decorated tree for some b ≥ 1 to the associated
tight 2b-irreducible 0-slice. In practice we rather construct the dual map of the 0-slice by
a classical procedure of closure consisting in matching the leaflets of the decorated tree
to properly placed buds via a system of non-crossing arches.

The first step of the construction consists in adding buds to the decorated tree as
follows (see Figure 20). We first complete the decorated tree by adding a dual half-edge
from its univalent root edge-vertex v0 to a dual vertex ∆0 in the outer face. Then, all
edge-vertices have degree two in the (completed) decorated tree while they had degree
four in the derived map. The added buds then correspond to the missing incident dual
half-edges. More precisely, an edge-vertex v of the decorated tree may be a bioriented
edge-vertex and we then attach to v two buds, one in each corner around v in the
decorated tree (to account for the fact that v should be incident to two dual half-edges
not covered by the tree in the derived map). The vertex v may be a bent edge-vertex: we
then attach one bud to v (to account for the fact that v should now be incident to one
dual half-edges not covered by the tree in the derived map). The sector in which we put
the bud is determined by demanding that the order of appearance clockwise around v be
dual half-edge/bud/primal half-edge, where the primal or dual nature of each half-edge
is determined from the nature of its incident vertex other than the edge-vertex. This
applies in particular to the twig-vertices. Finally, it may be that v is (special) dual/dual
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b = 2

4

3

3

4

3

3

3

4

3

apex

base
v0

∆0

Figure 20: Constructing a 2b-irreducible 0-slice from a b-decorated tree (here b = 2). Top
left: we first equip the tree with buds attached to bioriented edge-vertices (two
buds each, green) and to bent edge-vertices (one bud each). Bottom: the path
coding for the sequence of leaflets and buds read counterclockwise around the
tree from ∆0 (black steps). The path is (minimally) completed into a Dyck
path by adding an initial series of l = 3 up steps (in blue) and a final series
of l + 1 = 4 down steps. We also indicated (dark grey arrows) the canonical
matching of up and down steps. Top center: we add accordingly a sequence
of l leaflets and one of l+ 1 twigs (with buds) attached to ∆0. Each leaflet is
then canonically matched to a subsequent bud counterclockwise around the
tree by a system of non-crossing arches (in dark grey). Top right: removing
the primal edges yields the dual map (in grey) of the desired 0-slice (in black).

edge when b = 1, in which case we add no bud. Altogether, this yields 2 buds for each
bioriented edge-vertex, 1 bud for each bent edge-vertex, and 0 bud for each dual/dual
edge-vertex.

Consider now a descending subtree T of the decorated tree, which codes for a 2p-
(sub)slice for some p between 0 and b, and which we root at the parent half-edge of ∆(BC)
if the 2p-slice has base BC (this parent edge is a primal half-edge with p descending
arrows if 1 ≤ p ≤ b or a dual edge without arrows if p = 0). We define the charge c(T )
of the subtree T as the total number of incident leaflets minus that of incident buds.

Proposition A.1. We have

c(T ) =

{
2p if 1 ≤ p ≤ b,
1 if p = 0.

(57)
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Proof. Assume b > 1. The above property is proved by induction on the three cases that
arise:

(I) T is a subtree coding for a 2p-slice with p < b, excluding case (III);

(II) T is a subtree coding for a 2b-slice;

(III) T is a subtree coding for a 2(b− 1)-slice that is a 2b-angle.

In case (I), ∆(C) is an internal vertex of the tree with q descending subtrees coding
for 2pi-slices with pi ≥ 1 (1 ≤ i ≤ q) and p1 + · · · + pq = (p + 1). From the induction
hypothesis, those contribute a total of 2p1 + · · ·+ 2pq to c(T ). If 0 < p < b, ∆(BC) is a
bioriented edge-vertex and gives rise to two buds hence contributes −2 to c(T ), so that
c(T ) = 2(p1 + · · ·+ pq)− 2 = 2p as wanted. If p = 0, ∆(BC) is a bent edge-vertex and
gives rise to one bud hence contributes −1 to c(T ), so that c(T ) = 2(p1+ · · ·+ pq)− 1 =
2(0 + 1)− 1 = 1 as wanted (in fact we necessarily have q = 1 and p1 = 1 in this case).

In case (II), ∆(BC) is a bent edge-vertex and contributes −1 to c(T ). The descending
subtree starts with a labeled vertex of degree 2m with m− b−1 twigs, each contributing
−1 to c(T ) and a total of m+ b leaflets or subtrees coding for 0-slices, each contributing
+1 (from the induction hypothesis). This leads to c(T ) = −1−(m−b−1)+(m+b) = 2b
as wanted.

In case (III), ∆(BC) is a bent edge-vertex and contributes −1 to c(T ). The descending
subtree is a single special vertex carrying 2b−1 leaflets. This leads to c(T ) = −1+2b−1 =
2(b− 1) as wanted. This ends the proof for b > 1.

For b = 1, the only difference is in case (III) where ∆(BC) is a dual/dual edge-vertex
and contributes 0 to c(T ). The descending subtree is reduced to a special dual vertex
with 1 leaflet, hence c(T ) = 0 + 1 = 1 as wanted since the 2-angle map is a 0-slice.

The main lesson of the above proposition is that, if we now consider the whole decorated
tree coding for a 0-slice, completed with the dual half-edge connecting v0 to ∆0, this tree,
when equipped with buds, has charge +1 hence has exactly one more incident leaflet
than buds. More precisely, reading the sequence of leaflets and buds encountered by
going counterclockwise around the tree from ∆0 gives a two-letter word in the alphabet
{+1,−1} (with the correspondence leaflet → +1 and bud → −1) with one more +1 than
−1. This in turn can be represented as a two-step path with up (+1) and down (−1)
steps, starting from height 0 and ending at height +1. Calling −l the minimum height,
with l ≥ 0, we can transform this path into a Dyck path from height 0 to height 0, and
staying above or at height 0, by completing the path with l preceding up steps and l+1
following down steps and by shifting the heights by +l. Now, as it is well-known for
Dyck paths, each ascending step can be matched canonically to a subsequent descending
step at the same height on its right (see Figure 20-bottom).

Transposed to the bud-equipped completed decorated tree, this means that, if we
further equip it by l leaflets and l+1 twigs attached to ∆0 (with a bud attached to each
new added twig) and read the sequence of leaflets and buds counterclockwise around
the completed tree, there is a canonical matching where each leaflet is connected to a
subsequent bud by an arch so that the arch system is non-crossing, does not cross the
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tree, and no arch passes below ∆0 (see Figure 20, top). These arches reconstruct precisely
the missing dual half-edges so that, if we now remove from the tree the primal half-edges
(i.e. the half-edge carrying arrows and the primal half-edges in the twigs), and erase all
the edge-vertices, we find the dual map of the 0-slice that we are looking for. The apex
of the 0-slice is dual to the external face while its base is dual to edge of the dual map
that contained v0 (see Figure 20, top right).

B. Compatibility of formula (1) with Budd’s expression

We start from (1), and express α
(b)
k,n via (18). This leads to:

N (b)
n (2m1, . . . , 2mn) = (n− 2)![zn−2]S

with S =
∑

k1,...,kn≥0

p
(b)
k1
(m1)q

(b)
k2

(m2) · · · q(b)kn
(mn)

U0(z)
1+

∑
i≥1

ki

1 +
∑
i≥1

ki

(58)

We now invert the relation (45) with c → b, namely:

p
(b)
k (m) =

k∑
j=0

(−1)j
(
2b+ j

j

)
q
(b)
k−j(m) (59)

which leads to:

S =
∑

k1,...,kn≥0

k1∑
j=0

(−1)j
(
2b+ j

j

)
q
(b)
k1−j(m1)q

(b)
k2

(m2) · · · q(b)kn
(mn)

U0(z)
1+

∑
i≥1

ki

1 +
∑
i≥1

ki

=
∑

k0,k1,...,kn≥0

(−1)k0
(
2b+ k0

k0

)
q
(b)
k1

(m1) · · · q(b)kn
(mn)

U0(z)
k0+1+

∑
i≥1

ki

k0 + 1 +
∑
i≥1

ki

(60)

through renaming (j, k1) → (k0, k0 + k1). We now deduce:

S =

ˆ U0(z)

0
dr

∑
k0,k1,...,kn≥0

(−1)k0
(
2b+ k0

k0

)
r
k0+

∑
i≥1

ki
q
(b)
k1

(m1) · · · q(b)kn
(mn)

=

ˆ U0(z)

0

dr

(1 + r)2b+1

∑
k1,...,kn≥0

r

∑
i≥1

ki
q
(b)
k1

(m1) · · · q(b)kn
(mn)

=

ˆ U0(z)

0

dr

(1 + r)2b+1

n∏
i=1

I(b,mi; r)

(61)

with I(b,m; r) :=
∑+∞

k=0 r
kq

(b)
k (m) as in [Bud22a, Equation (48)]. This reproduces pre-

cisely the result of [op. cit., Equation (66)] upon identifying this reference’s J−1(b; z) to
our U0(z): indeed, recall from (28) that U0(z) is determined implicitly by z = hb(U0(z)),
and note that our hb(u) is the same as J(b;u) as defined in [op. cit., Equation (49)].
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C. Counting planar 2b-irreducible 2b-angulations with n faces

In this appendix, we consider the problem of counting planar 2b-irreducible 2b-angula-
tions, that is 2b-irreducible maps whose all faces have degree 2b. Note that such maps
are automatically bipartite and tight. We noted after Theorem 1.1 that it does not quite
hold in the case where all mi are equal to b, for there is an pathological term as visible
in [Bud22a, Theorem 1]. Precisely, we have the following:

Proposition C.1. For any n ≥ 3, the number of 2b-irreducible 2b-angulations with n
labeled faces is equal to

N (b)
0,n(2b, . . . , 2b︸ ︷︷ ︸

n times

) = (n− 3)!
n−3∑
k=0

(−1)k
(
2b+ k

k

)
α
(b)
k,n−3 + 1n≥4

(n− 1)!

2
(−1)n. (62)

Let us observe that the first term in the right-hand side is equal to the right-hand side
of (1) for m1 = · · · = mn = b, since p

(b)
k (b) = (−1)k

(
2b+k
k

)
and q

(b)
k (b) = δk,0. Here it

is slightly puzzling that the sign alternates with k, whereas under the assumptions of
Theorem 1.1 all the terms in (1) were non-negative. In the remainder of this appendix,
we give a combinatorial, but unfortunately not bijective, derivation of Proposition C.1.
It is based on an argument which was mentioned, but not detailed, at the end of [BG14a,
Section 9.3].

The bijection described in Section 2.1 does not easily allow to count 2b-irreducible
2b-angulations: in the two items characterizing 2b-irreducible maps at the end of Propo-
sition 2.3, it is always assumed that face 1 has a degree strictly larger than b. To
circumvent this issue, we first count closely related objects by specializing Proposi-
tion 3.18 to the case c = b − 1, m1 = . . . = mn = b: noting that, by (43), we have
p
(b−1)
k (b, b) = q

(b−1)
k (b) =

(
2b−1
k

)
, we obtain the following:

Lemma C.2. For any n ≥ 3, the number of essentially 2b-irreducible 2b-angulations
with n labeled faces with separating girth equal to 2b is equal to

β(b)
n := (n− 3)!

∑
k≥0

(
2b− 1

k

)
α
(b)
k,n−3. (63)

Note that, by (18), we have

∑
n≥3

β
(b)
n

(n− 3)!
zn−3 =

∑
k≥0

(
2b− 1

k

)
U ′
0(z)U0(z)

k = U ′
0(z)(1 + U0(z))

2b−1 (64)

with U0(z) as in Section 3.1.2 (recall that it depends implicitly on b). Integrating over
z and multiplying by 2b, we deduce that (1 + U0(z))

2b is the generating function of
essentially 2b-irreducible 2b-angulations with two marked faces 1 and 2, such that face
1 is rooted and such that the separating girth is equal to 2b, counted with a weight z
per unmarked face. In what follows, we denote the set of such maps by Mb, and by Nb

its subset consisting of maps which are 2b-irreducible in the strong (not just essentially)
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pi p′
i p′′

i

Figure 21: The pathological maps pi, p′
i and p′′

i , i = 1, . . . , b, in Mb (here b = 4 and
i = 1). The arrow indicates the root and the cross the marked inner face. In
pi, there are two minimal separating cycles (shown in red and blue) which
intersect each other, hence are not cuttable. The maps p′

i and p′′
i contain

no uncuttable cycles, but they are still pathological in the sense that, when
cutting a map in Mb along its cuttable cycles (as explained in the text) then
we cannot find two consecutive elements pi,p

′
i,p

′′
i with the same index i.

sense, which means that the only separating cycles of length 2b are the contours of the
marked faces. The following lemma corresponds to [BG14a, Equation (9.21)] specialized
to the case of 2b-angulations:

Lemma C.3. Let us denote by Nb(z) the generating function of maps in Nb, counted
with a weight z per unmarked face. Then, we have

(1 + U0(z))
2b =

1

1− (Nb(z)− 1− 2bz)− b 2z+z2

1+2z+z2

. (65)

Proof. Let m be a map in Mb, i.e. a map contributing to (1 + U0(z))
2b, which we draw

in the complex plane with the face 1 containing the origin and the face 2 chosen as the
outer face. Let C be the set of separating cycles of m with length 2b. We say that a
cycle c ∈ C is cuttable if it does not intersect any other cycle c′ ∈ C, that is c′ remains
within one of the two closed regions delimited by c. Upon cutting m along all cuttable
cycles, we decompose it into a sequence of maps (m1, . . . ,mℓ) nested into one another.
These maps belong also to Mb, since they have naturally two marked faces and may be
rooted in some canonical manner. All of them have at least one unmarked face.

Now, we observe that for each mj , two situations may arise: either it contains no
minimal separating cycle other than the contours of the marked faces, in which case it
belongs to Nb, or it contains such a cycle, which necessarily intersects another minimal
separating cycle as it would have been cuttable otherwise. In that case, using the essential
2b-irreducibility, we see that mj necessarily coincides with the “pathological” map pi

displayed on Figure 21 for some i = 1, . . . , b (this index indicates the position of the root
corner).

We note that there is an extra constraint on the sequence (m1, . . . ,mℓ): let p′
i and p′′

i

be the other “pathological” maps displayed on Figure 21. While they belong to Nb, it is
not possible to have within the sequence (m1, . . . ,mℓ) two consecutive elements equal
to pi, p′

i or p′′
i with the same index i (otherwise we would have either cut m along an
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uncuttable cycle, or have in m a cycle of length 2b which is neither separating nor the
contour of a face).

We may code for this constraint in the following way: to the sequence (m1, . . . ,mℓ)
we associate a word w of length ℓ over the alphabet {O,P1, . . . , Pb}, by replacing each
mj equal to pi, p′

i or p′′
i for some i by the letter Pi, and all other mj ’s by the letter O.

The word w is such that two letters Pi with the same index cannot appear consecutively.
Splitting w at each occurrence of O, it may be decomposed as w0Ow1O · · ·Owk for some
k ≥ 0 where w0, . . . , wk are so-called Smirnov words [FS09, Example III.24], and have
the multivariate generating function

S(v1, . . . , vb) =

(
1−

b∑
i=1

vi
1 + vi

)−1

(66)

where vi is the weight per occurrence of the letter Pi. Attaching a weight u per occurrence
of O, we deduce that the generating function of the words w of the wanted form is equal
to ∑

k≥0

S(v1, . . . , vb)
k+1uk =

S(v1, . . . , vb)

1− uS(v1, . . . , vb)
=

1

1− u−
∑b

i=1
vi

1+vi

. (67)

The generating function of the sequences (m1, . . . ,mℓ) obeying our constraint is then
obtained by substituting u = Nb(z)−1−2bz (corresponding to the generating function of
maps in Nb having at least one unmarked face and different from p′

1,p
′′
1, . . . ,p

′
b,p

′′
b ) and,

for all i = 1, . . . , b, vi = 2z + z2 (corresponding to the combined weights of pi,p
′
i,p

′′
i ).

This yields the right-hand side of (65), and we may conclude by verifying that the
mapping m 7→ (m1, . . . ,mℓ) is a bijection.

End of the proof of Proposition C.1. By Lemma C.3, we have

Nb(z) = 2− (1 + U0(z))
−2b + 2bz − b

2z + z2

1 + 2z + z2

= 1−
∑
i≥1

(−1)i
(
2b− 1 + i

i

)
U0(z)

i + b
z2(3 + 2z)

(1 + z)2
.

(68)

Extracting the coefficient of zn−2 for n ≥ 3 and using (18), we get

[zn−2]Nb(z) =
∑
i≥1

(−1)i−1

(
2b+ i− 1

i

)
i

n− 2
αi−1,n−3 + b(−1)n(n− 1)1n≥4

=
2b

n− 2

∑
k≥0

(−1)k
(
2b+ k

k

)
αk,n−3 + b(−1)n(n− 1)1n≥4.

(69)

We obtain the wanted expression (62) by multiplying by (n − 2)! to label the n − 2
unmarked faces, and dividing by 2b to remove the rooting of face 1.
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