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ABSTRACT
In this work, we investigate a new deep learning reconstruction method of blood flow
velocity within deformed vessels from contrast enhanced X-ray projections and vessel
geometry. The principle of the method is to perform linear or nonlinear dimension
reductions on the Radon projections and on the mesh of the vessel. These low
dimensional projections are then fused to obtain the velocity field in the vessel.
The accuracy of the reconstruction method is proved using various neural network
architectures with realistic unsteady blood flows. The approach leverages the vessel
geometry information and outperforms the simple PCA-net.
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1. Introduction

It is well-known that cardiovascular diseases are influenced by blood flow patterns [1–
3]. Blood is a complex example of particulate suspension nanofluid, that has attracted
much attention recently [4,5] . Classical imaging techniques like magnetic resonance
and ultrasound have a low spatio-temporal resolution and the hemodynamic param-
eters like shear stresses are difficult to estimate with accuracy [6–9]. The evolution
with time of the concentration of a tracer injected in the vessel can be exploited with
X-ray CT measurements to evaluate the velocity field[10–13]. The propagation of the
tracer in the vessel can be described with a transport partial differential equation. In
a recent work, we have investigated a method to reconstruct the velocity field from
Radon projections perpendicular to the vessel that leverages this equation as a regu-
larization term [14]. The computational times to apply this variational inversion with
the adjoint method remain very high.

Recent advances in deep learning have demonstrated success in addressing complex
inverse problems, particularly those involving parametrized Partial Differential Equa-
tions [15]. Emerging methodologies for inverse problems involve fundamental governing
laws in the loss function significantly reducing the parameters search complexity [16–
19]. Operator approximations with deep learning techniques that have the property
of discretization invariance have been proposed in recent works [20]. Motivated by
recent novel deep learning approaches and aiming to enhance the efficiency of our
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former variational reconstruction scheme, we have explored a new inversion method
integrating Proper Orthogonal Decomposition (POD) or Principal Component Anal-
ysis (PCA) with deep learning techniques [21]. The principle of our new method is
to map dimensionality-reduced representations of the Radon projections and blood
velocity field with a neural network architecture to estimate the inverse operator. The
inputs and outputs of the networks are expanded in terms of basis functions spanning
linear spaces. They are calculated offline from snapshots obtained with a sampling
of the parametric Radon projection or velocity spaces. The method outperforms the
variational approaches developed in our former work in terms of accuracy and online
computation times. We have demonstrated the efficiency of the framework through re-
alistic simulations carried out with stationary velocity fields. This work is in line with
many recent works devoted to the proof-of-concept data-driven modeling of cardio-
vascular flows [22]. Some deep learning models for 3D aortic pressure and velocity flow
fields have been described in other works [23,24].

Yet, the proposed method has some limitations. The shape of the vessel is fixed and
we have only considered steady velocity fields. The artery flow field is also determined
by the inflow velocity, which changes throughout the cardiac cycle and it is crucial to
systematically account for the unsteady velocity variations. It is well-known that shape
variations are crucial factors affecting velocity fields and the derived hemodynamic
parameters. Velocity, shear stress and pressure drop strongly scale with the diameter.
The aortic flow fields are highly sensitive to geometric and topological variations [25].

In this work, our aim is to generalize our former deep learning approach to varying
shapes and unsteady flows. The principle of the method is to use dimension reductions
for the input mesh and Radon projections with linear or nonlinear PCA to obtain the
time dependent velocity field. Then we investigate several methods to fuse the in-
formation from the mesh and Radon projections. High-fidelity studies require a high
spatio-temporal resolution [26] and it is time-consuming and challenging to obtain
a large dataset. We thus test the approach on scarse and large datasets with differ-
ent resolutions. We compare several neural network architectures to solve our inverse
problem and we show the effectiveness of the fusion methods.

We structure this paper as follows. In section 2, following the introduction, the
methodological tools will be presented: the inverse problems with a PDE constraint,
the linear and nonlinear dimension reduction techniques, and the deep learning
approaches to approximate the unknown velocity field with the fusion of the reduced
coefficients are described. In section 3, simulation details are presented with the
mesh deformation scheme, finite elements tools, neural network architectures and
optimization strategies. The results for blood flow reconstruction leveraging these
methods to tackle the inverse problem are elaborated in Section 4, followed by a
discussion of the findings and a conclusion.

2. General methodological outline

In this work, we develop a proof-of-concept pipeline that uses the Radon projections
and the mesh coordinates to infer the velocity field in a new vessel. The method is
based on linear and nonlinear dimension reduction methods like PCA and kernel PCA
described in the following. The pipeline uses randomised perturbations of a mesh and
parametrized velocity fields to produce a large data set of geometries and simulated
blood flows.
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2.1. Inverse problem statement

We consider the inverse problem of the blood flow reconstruction which takes advan-
tage of the Radon projections perpendicular to the vessel as elaborated in [21]. In
this work, a set of model parameters µ in the set M is used to parametrize the flow
field. Two-dimensional projections are acquired perpendicularly to the z axis which is
the main vessel axis direction. The lumen of the vessel and the simulation time are
referred to Ω ∈ R3 and [0, T ]. We consider then in this domain a convection-diffusion
for the density of the tracer f(x, t):

e(f,V, µ) =
∂f(x, t)

∂t
+V · ∇f(x, t)−D△f(x, t) = 0, (1a)

f(x, t) = fin ∀x ∈ (D) ∀t ∈ [0, T ], (1b)

f(x, 0) = 0 ∀x ∈ Ω− (D). (1c)

In this model, V = (u, v, w) : [0, T ] × Ω → R3 represents the velocity field obtained
with the Navier-Stokes (NS) equations. The inlet boundary where the contrast agent
enters the vessel with the density fin is a disk (D) in the plane z = 0.

The modelization of a realistic blood velocity field is carried out with the Navier-
Stokes equation. The equations have been studied extensively. The incompressible
unsteady Navier-Stokes equation can be written as [27]

∂V

∂t
+ (V.∇)V = −∇p+ 1

Re
∇2V in Ω× [0, T ], (2a)

∇V = 0 in Ω× [0, T ]. (2b)

where p the pressure and Re = UL
ν is the Reynolds number defined by a characteristic

length L, U a characteristic velocity and ν the kinematic viscosity. Initial and boundary
conditions must be considered to define the solution. For the boundary solution, will
use a zero pressure outlet condition, and a parabolic or flat inlet velocity V(z = 0, t)
parametrized by the parameter µ1, as detailed in the following.

2.2. Data reduction with PCA and kernel PCA

The algorithmic scheme and the numerical implementation of the deep learning
method are detailed in the following section. The first step is a dimension reduction
applied to the Radon projections Rf or to the mesh nodes coordinates with Proper
Orthogonal Reduction (POD), named also Principal Component Analysis (PCA). We
also investigate the nonlinear kernel PCA technique for the mesh geometries. Dimen-
sionality reduction refers to the problem to map high-dimensional data points to low
dimensions such that as much structure as possible is preserved.
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2.2.1. Linear dimension reduction with PCA

Let g denote the scalar field, depending on the parameter µ, on which we want to
perform the linear dimension reduction. This field corresponds to the Radon projec-
tions, the components of the velocity field or the mesh coordinates. The vectors g(µ)
are vectors of Rm where m is the number of coefficients of the Radon projections or
the number of points of the Finite Element (FE) approximation and it depends on a
parameter µ ∈ M. The first idea is to characterize the manifold

M = {g(µ), µ ∈ M} (3)

as low dimensional linear subspace [28]. In order to characterize the manifold, it is
populated by Ns samples or snapshots. The corresponding solutions {yj}1≤j≤Ns

=
{g(µj)}1≤j≤Ns

are computed solving the full-order system. These solutions constitute
a training set that is going to be used to construct the reduced order model. The
calculated basis vectors giving the essential information on the data are spanning
linear finite dimensional spaces that minimize the empirical projection errors, with
dimensions NR, N

3
V , Nm for the Radon projections, the velocity field and the mesh

coordinates respectively.
The snapshots in the training set are collected in a matrix, namely Y =

[y1, .....yNs] ∈ Rm×Ns . In order to eliminate the redundancies and to further reduce the
dimension of the linear subspace where the solution is sought, the principal component
analysis (PCA) technique is used, based on the singular value decomposition (SVD)
of Y [29]. It produces two unit matrices Φg ∈ RNs×Ns and Ψg ∈ Rm×m and a diagonal
matrix D = diag(σ1, ...., σd) ∈ Rd×d such that:

Ψt
gY Φg =

(
D 0
0 0

)
= Σ ∈ Rm×Ns (4)

The singular values are sorted in descendent order, σ1 ≥ σ2 ≥ .... ≥ 0 Considering
the first Ng columns of the matrix Ψg, the space span(ψg,1, ψg,i, ......, ψg,Ng

) is an
approximation to the manifold collecting most of the information. The PCA enables
the data to be represented using only the most significant modes. In the following,
we have used the number of modes that capture cumulatively more than 90% of the
variance of flow features, Radon projection features, or mesh variations.

2.2.2. Nonlinear dimension reduction with kernel PCA

In the former section, we have presented the proper orthogonal decomposition method.
The number of degrees of freedom is readily reduced to the dimension of the linear
space using a reduced basis technique obtained with the set of solutions of the para-
metric problem. Nonlinear dimension reduction techniques have been used recently
in works devoted to data-driven modeling of cardio-vascular flows [30]. It is found
that the nonlinear reduction methods like autoencoder architectures achieve superior
results. For mesh geometries, nonlinear reduction schemes are leveraged in [22]. In
this work, t-Stochastic Neighbor Embedding (t-SNE) method has been used for mesh
reduction. The (t-Stochastic Neighbor Embedding) t-SNE is a statistical method for
visualising high-dimensional data by embedding each N-dimensional data point in a
reduced space, typically of two or three dimensions [31]. This technique belongs to
the class of non-parametric techniques: it provides a mapping of the given data points
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only, without an explicit mapping prescription on how to project further points which
are not contained in the data set to low dimensions.

For complex data, the PCA strategy can be extended to use a nonlinear dimension-
ality reduction technique, namely, the kernel principal component analysis (kPCA), in
order to find a nonlinear manifold, with an expected lower dimension [32–35]. kPCA is
an algorithmically simple approach, proposing an explicit and analytical forward map-
ping from the full-order space to the reduced-order space. More specifically, kernel
principal component analysis (kPCA) is a nonlinear dimensionality reduction tech-
nique, based on applying PCA to a transformed training set, with transformation
defined by a kernel k(., .). The kernel is used to build a Gram matrix G ∈ RNs×Ns

with Gij = k(yi, yj) for i, j = 1, ..., Ns from the snapshots (yi)1≤i≤Ns
= (g(µi))1≤i≤Ns

.
G is symmetric positive definite, its SVD decomposition can be written as:

G = V ΣV t (5)

The square diagonal matrix Σ has entries (σ2i )1≤i≤Ns
. The dimensionality reduction

is performed by selecting the reduced dimension Ng. Matrix V ∗ ∈ RNs×Ng is taken as
containing the first Ng columns of the matrix V . Similarly as with PCA, we define
the maping g : Rm → RNs with g(x)i = k(xi, x) for i = 1, ...Ns. The kPCA forward
mapping can be defined as

F : Rm → RNg , (6a)

x 7→ z = (V ∗)tg(x). (6b)

The choice of an appropriate kernel function is relevant to guarantee the efficiency and
the accuracy of the method.

2.3. Deep learning approaches

2.4. Blood flow reconstruction with PCA-net

In our former work, we have used a fully connected network to connect the PCA
coefficient of the steady velocity field and the PCA coefficients of the Radon pro-
jections. The approach to obtain an approximate solution of the inverse problem is
detailed in [21]. The neural architecture is displayed in Figure 1. The methodology
integrates dimension reduction with deep neural architectures to learn data-driven
maps between the input and output function spaces, the Hilbert space of the ve-
locity LV = L2(Ω → R3) and the Hilbert space of the Radon projections V and
Lp = L2([0, T ]× [−a, a]× [0, zmax] → R) where a and zmax are transverse and longitu-
dinal lengths. The Hilbert space LV is decomposed into the product of three Hilbert
spaces LV = Lx

V × Ly
V × Lz

V for the components. The principle of the method is to
approximate the nonlinear inverse operator Ψ = Ψx × Ψy × Ψz : Lp → LV from
velocity and Radon projection samples. In this setting, the velocity components are
Vx = Ψx(p), Vy = Ψy(p) and Vz = Ψz(p), for Radon projections p . The approximation
for this operator is a neural network Ψθ = Ψx

θ × Ψy
θ × Ψz

θ : Lp → LV , where θ ∈ RD

corresponds to the D neural network parameters. In order to estimate the optimal
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parameters θ∗, we consider the loss function function L : RD → R:

L(θ) = 1

N

N∑
n=1

Ex
n + Ey

n + Ez
n

∥Ψx(pn)∥2 + ∥Ψy(pn)∥2 + ∥Ψz(pn)∥2
(7)

where N denotes the amount of data, and Ex
n = ∥Vx(pn) − Ψx

θ (pn, θ)∥2L2
, Ey

n =

∥Vy(pn)−Ψy
θ(pn, θ)∥

2
L2

and Ez
n = ∥Vz(pn)−Ψz

θ(pn, θ)∥2L2
the reconstruction errors in-

curred by using the network along x, y and z respectively. The approach investigated is
similar to the general methodology developed in [20] for data-driven approximation of
input-output maps between infinite-dimensional spaces. We define the PCA subspaces
approximating Lp and LV and spanned with the orthonormal bases {ψRf,i}1≤i≤NR

for
Lp and {ψV,i}1≤i≤N3

V
= {ψx

V,ix}1≤ix≤NV
× {ψy

V,iy}1≤iy≤NV
× {ψz

V,iz}1≤iz≤NV
for LV of

rank NR and NV for each velocity component. Then we construct a mapping α that
takes as input the PCA coefficients of the Radon projections and outputs the basis
coefficients of the velocity. The input-to-output map is based on a fully connected net-
work (FC) and it will be referred to as PCA-FC in the following. For the component
along x of the solution map Ψθ, it is possible to use the expansion:

Ψx
θ (p, θ)(M) =

NV∑
j=1

αx
j (FLp

p, θ)ψx
V,j (8)

The function αx
j : RNR ×RD → R, for 1 ≤ j ≤ NV , maps the PCA basis coefficients of

the approximation of p , FLp
p = {(ψRf,i, p)}1≤i≤NR

and the ones corresponding to the
velocity along x, F x

LV
V . Similar expansions with data-driven bases hold for the other

directions.

Figure 1. Fully connected network connecting the time dependent Radon projections and the time dependent

velocity field.

.
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2.5. Information fusion with deep learning architectures

Figure 2. Fully connected network connecting the time dependent Radon projections, the mesh and the time

dependent velocity field: Fusenet 1.

.

The objective of this work is to leverage the mesh information and to fuse the re-
duced features from the Radon projections and from the mesh to estimate the velocity
field. Information fusion has been investigated with deep learning techniques [36]. We
will use combination of linear or nonlinear dimension reductions, concatenation of fea-
tures, features dot products and fully connected networks for an effective information
fusion. The deep learning architectures used for information fusion are presented in
Figure 2 and Figure 3. The deep learning architectures will be described precisely in the
numerical section. We summarize in this subsection the main principles of the meth-
ods. In the diagrams shown in Figures 2 and 3, the inputs are the Radon transform
and the coordinates of the meshes. Some feature dimension reduction is performed
with PCA or kernel PCA for the mesh and with PCA for the Radon projections.
To obtain the PCA coefficients of the velocity field, we have used several classical
techniques to fuse the features obtained with the former embeddings to generate a
single representation based on dot product or concatenation. On these diagrams, the
reduced coordinates of the Radon projection, velocity field and mesh are denoted as
R̂f , V̂ or m̂ respectively. Let NR, NV and Nm denote the number of modes considered
to describe the Radon projections, each velocity field component and the simulation
mesh repectively. The PCA coefficients are sampled for Ns times regularly spaced in
the time interval [0,T], with a time step ∆t. At the end of this post-processinng step,
Nm, NR ×Ns and 3×NV ×Ns coefficients are concatenated as vectors for the input
and ouput of the network.
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Figure 3. Fully connected network connecting the time dependent Radon projections, the mesh and the time

dependent velocity field: Fusenet 2.

.

The two fusion architectures are referred to as Fusenet1 and Fusenet2.
FuseNet1: In the first method denoted as FuseNet1 and displayed in Figure 2, we use
a pairwise dot product of the vector features obtained with the two embeddings. The
size of the dot product vector corresponds to the number of nodes in the mesh. Then
a fully connected network is used to output the reduced velocity coordinates and a
reverse PCA is performed to obtain the velocity field. This neural network architec-
ture has been used when the number of vertices in the mesh is small. For simulations
with a high spatial discretizations and many nodes, the number of parameters to tune
grows, this model does not perform well and the network is prone to overfitting.
FuseNet2: In the second method denoted as FuseNet2 and displayed in Figure 4, we
concatenate the vectors obtained with the mesh or Radon projection embeddings.
Then fully connected layers are used to to generate the PCA coefficients of the ve-
locity field. These PCA coefficients are then used to produce the flow field solutions
for the considered geometry. Let m a mesh in the mesh manifold M, the information
fusion operator for both methods can be written as:

Ψx
θ (p,m, θ)(M) =

NV∑
j=1

αx
j (FLp

(p), FM(m), θ)ψx
V,j(M) (9)

where FM denotes the mesh coordinates dimension reduction operator. We focus here
on simple fusion information methods, more elaborate approaches based on attention
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networks may also be considered [36].

3. Simulations details

3.1. Mesh deformation scheme

The 3D vessels displayed in Figure 4.a, 4.d were used to generate synthetic data by
applying random spatial perturbations to the original mesh. To prevent unnatural,
discontinuous geometric differences within each mesh phantom, the perturbations are
based on the amplitude of a sinusoid, which distributes the perturbation lengthwise.
Variations in shape are due to synthetic perturbations applied to the artery diameter,
the function of which is a sinusoid with randomised amplitude, frequency, phase and
vertical displacement. This ensures smooth, continuous variation along the length of
the artery. The scaling ratio s for the coordinates of the surface points can be written
as:

s(z) = 0.9 + 0.2 ∗ r ∗ cos(2πz/L+ ϕ) (10)

where r is a scalar randomly sampled between 0 and 1, L is a random length sampled
between in the range [0.4,0.8] times the vessel length, and the phase ϕ randomly
sampled between [0, π/2]. The mesh manifold samples are thus parametrized with
µ2 = (r, L, ϕ). Starting for an initial mesh geometry, we have used a mesh deformation
scheme based on radial basis functions (RBF) [37–39]. RBF shape parametrization
technique is based on the definition of a map, M(x) : Rm → Rm, defined as M(x) =

p(x)+
∑NC

i=1 γiφ(∥x−xCi
∥) whereNC the number of control points, p(x) is a low degree

polynomial term, (γi)1≤i≤NC
are some weights and φ(∥x − xCi

∥) a radial function
based on the Euclidean distance between the control points position xCi

and x. In the
following, we have considered Gaussian splines. The principle of the method is that
after the computation of the weights and the polynomial terms from the coordinates
of the control points before and after the deformation, we can deform all the points
of the mesh accordingly. The proposed mesh deformation strategy was implemented
with the Pygem library [40]. Some examples of meshes are displayed in Figure 4.b and
Figure 4.c for the very coarse case. With this method, 1000 phantom 3D meshes were
generated with a coarse discretization, but two different refinement levels, as detailed
in the following.

3.2. Finite elements simulation details

In order to evaluate the performance of our approach, we generate the reference numer-
ical solutions by using the finite element Fenics library. The numerical experiments
have been performed with the type of generated realistic phantoms generated with
the previous method and displayed on Figure 4. The computational domain is a vessel
with a total streamwise length of 10 cm with a bifurcation and an average diameter
of approximately 10 millimeters. We have used the Fenics software [41,42] to per-
form the finite elements simulations. In order to test the method, we have created
two datasets. The first one, denoted as Dataseta in the following, is a large set with
a coarse spatio-temporal resolution. The second dataset, referred to as Datasetb, is
scarse and corresponds to a less coarse spatio-temporal resolution. The spatial dis-
cretization remains coarse in comparison with the resolution standards in the field.
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(a) Original Coarse mesh. (b) Deformed Coarse mesh, exemple 1.

(c) Deformed Coarse mesh, exemple 2. (d) Original mesh with higher spatial resolution.

Figure 4. Original meshes and deformed meshes obtained with the deformation scheme .

Dataseta
This dataset corresponds to a coarse resolution.The time step is set as dt = 0.01s with
a total run time of T = 0.5s and Nt = 50 time steps. The velocity fields to be recon-
structed V∗(x, t) are calculated with the non-stationary incompressible Navier-Stokes
equations with Re=200 [21]. The simulation domain is discretized with P1 finite el-
ements and 2236 vertices. The time step and the number of nodes in this simulation
are small but similar to the ones used for simple CFD simulations [30].

Standard non-slip conditions were applied at the wall. Boundary conditions included
a fixed, parabolic or flat velocity inlet and zero pressure outlet condition for all cases
to produce realistic data. The inflow velocity was set as follows:

{
µ1 + µ1sin(πt) for t ≤ 0.5

µ1 + µ1(3/2− 0.5cos(2π(t− 0.5))) for t ≥ 0.5
(11)

with a velocity parameter µ1 which will be sampled as described in the following.
It is well-known that stable spatial discretizations are required for Navier-Stokes sim-
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ulations. The Taylor-Hood (P2− P1) finite elements [43] are used in this study. The
algorithm used for the non-stationary Navier-Stokes velocity field is the Incremental
Pressure Correction scheme in Fenics[41,42]. This space-time grid generates a set of
coarse synthetic velocity fields.

Datasetb
The spatial discretization grid includes 64000 nodes with P1 finite elements similar
to the one used in [14]. More refined meshes should be considered for very high-
resolution simulations [26] . The time discretization is chosen such that dt=0.002
which is similar to the time step used in [44]. Following [45], the inlet velocity is
defined as the waveform:{

µ1sin(πt/T ) for t ≤ T
µ1

π
T (t− T )exp(−κ(t− T )) for Tc > t > T

(12)

where µ1 is a constant amplitude, T is the opening-time of the valve, Tc the total
duration of the cardiac cycle and 1/κ represents the typical time for the closing of the
valve. In the following, the following values have been chosen T = 0.4s, Tc = 0.8s and
κ = 70s−1. In this case, the number of time steps is thus Nt = 400.

The simulation of the transport equation was performed as explained in [21]. The
inlet tracer concentration is set to 1kg/m3 with a diffusion coefficient 1e − 5. The
method developed yields similar results for diffusion coefficients in the range [ 1e-
5,1e-4 ] but it does not perform well for high Peclet numbers. The Radon projections
perpendicular to the main vessel direction are evaluated with the Scipy library [46,47]
for Nz=128 values equally spaced. The Radon projections are measured for Np =100
values, for Nθ = 180 projection angles in the angular range [0,π], for each time step
tp = pT/Nt in the time domain, [0, T]. A Gaussian white noise with peak-to-peak
signal-to-noise ratio (PSNR) between 0 and 20 dB is used to obtain noisy projections,
which is defined as:

PSNR = 20log(
Smax

nmax
) (13)

where Smax is the maximum signal amplitude and nmax the maximum noise amplitude.

3.3. Dataset generation and network architecture

In this subsection, we present in detail the dataset generation and the network architec-
ture. In the first step, 1000 synthetic meshes were generated using the mesh deforma-
tion scheme presented above and various µ2 values. PCA or nonlinear kPCA reduction
was then performed and 10 synthetic meshes were sampled uniformly from the first
5 PCA or kPCA coefficients. With these ten sampled geometries, the non-stationary
Navier-Stokes equations were solved with an inflow velocity field parametrized by the
parameter µ1 randomly sampled between 0 and 0.6m/s. For the coarse meshes and
Dataseta, for each geometry, 130 velocity fields were generated. The total number of
velocity field snapshots is 1300. For the higher resolution meshes and Datasetb, for
each geometry, 13 velocity fields were generated. The total number of velocity field
snapshots is 130. This scarse dataset was generated because of the larger computa-
tional cost required by higher spatio-temporal resolutions. As detailed in the following,
the computational time needed to generate the samples of the two datasets is similar.
This computational fluid dynamics and Radon projections datasets were then post-
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processed to obtain eigen functions for Nm = 5, NR = 6, NV x = 3, NV y = 3, NV z = 3
modes for the mesh, the Radon projections, and velocity components respectively.
The PCA modal basis coefficients are estimated every ∆t = 0.03s and vectors of
size (NR × Ns, 3 × NV × Ns) = (75, 135) and (NR × Ns, 3 × NV × Ns) = (156, 234)
are obtained to describe the evolution of the Radon projections and velocity field for
simulations performed with the Dataseta or the Datasetb respectively.

The kernel PCA was implemented with the Scikit library [47] with a radial Gaussian
kernel function with γ = 0.1 as hyper-parameter and 5 components. The γ parame-
ter was optimized after numerical experimentation, trying to accumulate a significant
amount of variance in the data. The number of PCA modes for each variable, velocity,
Radon and mesh geometry, have been chosen to approximate more than 95% of the
variance. The nonlinear kernel PCA captures approximately 2% more variance than
the linear PCA. When more basis functions are included in the PCA approach, the
errors stagnates and the basis can be considered as nearly optimal for the inversion
for the range of the flow patterns investigated. The training/validation dataset was
composed of 1000 randomly selected meshes, Radon and velocity fields, with the re-
maining 300 going into the test set for the Dataseta. For the Datasetb, the numbers
of training/test samples were 100/30. The training was implemented using the open-
source library Keras 2.2.5 with Tensorflow backbone and performed on an HPC cluster
with 4 processors. Model training lasted 100 epochs and training/validation loss was
monitored to prevent overfitting. For the simple PCA net, we designed the neural
network architecture with 4 hidden layers of width (500, 1000, 1000, 1000) (Figure 1).
For the fusion networks, we have tested several architectures to obtain the best re-
sults with the minimum number of training parameters. The best results have been
obtained with the fully connected neural networks displayed in Figure 2 and Figure
3. The numbers of units in the hidden layers are indicated on these figures. The ve-
locity field, Radon projection or mesh reduced coordinates are denoted as V̂ , R̂f , m̂
respectively. Relu activation functions are used in the layers, except in the last layer.
For the neural architecture used with the Dataseta, the number of training parameters
are 3238195 for the classical PCA net already studied in [21], 2385871 for Fusenet1
and 225975 for Fusenet2 respectively with a reduced dimension of 5 for the mesh. The
network Fusenet1, displayed in Figure 2, is used for the Dataseta with a coarse spatial
resolution. An increase in the number of modes in the mesh leads to an increase of
the number of parameters in the network, and the model does not perform well. For
the networks used for the Datasetb, the number of trainable parameters are 3473716
and 378825 for the classical PCA net and Fusenet2 repectively. The number of hidden
layers, the number of weights per hidden layer, the nonlinear activation functions, the
batch size for mini-batch gradient descent, the number of epochs to perform training
have been optimized. The network is trained on 100 epochs with an Adam optimizer,
and a decreasing learning rate between 10−3 and 10−4.

4. Results and discussion

In this section, we present the numerical results and we compare the fusion methods
against former PCA-net method. We will test the proposed schemes on non-stationary
velocity fields. We will visualize the recovered solutions and analyse the reconstruction
errors of the various approaches.
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4.1. Results

In order to illustrate qualitatively the results, we first display in Figure 5 some horizon-
tal sections of the density of the tracer which is exploited to reconstruct the velocity
field with the less coarse spatial resolution simulations. We show examples of the re-
constructed velocity components in Figure 6 to 11 obtained with the Fusenet2 method
based on kernel PCA for some test velocity fields and some test mesh from the dataset
Datasetb. Cross-sections of the reconstructed and of the true velocity are displayed
on these figures, for the selected simulation times and position along the z axis. We
also present the error maps on these figures. Some streamlines for the ground truth
and reconstructed velocity fields can be seen on Figure 12. The Fusenet1 and Fusenet2
models performs also well for the coarse resolution. These figures show qualitatively
that good reconstruction results are obtained with the proposed approaches.

Table 1. Reconstruction errors for the velocity components and the velocity norm for the

methods investigated and the coarse spatio-temporal resolution Dataseta, PSNR=20 dB.

Method V Vx Vy Vz

PCA-net 0.0377(0.0081) 0.0878 (0.0220) 0.1235 (0.0297) 0.0222 (0.0047)
FuseNet1, PCA 0.0079 (0.0039) 0.0191 (0.0100) 0.0225 (0.011) 0.0049 (0.0024)
FuseNet1, kPCA 0.0069 (0.0033) 0.0179 (0.0087) 0.0191 (0.0091) 0.0040 (0.002)
FuseNet2 PCA 0.0129 (0.0035) 0.0314 (0.0106) 0.0377 (0.0086) 0.0079 (0.0021)
FuseNet2, kPCA 0.0094 (0.0043) 0.0250 ( 0.0123) 0.0225 (0.0094) 0.0058 (0.0027)

Table 2. Reconstruction errors for the velocity components and the velocity norm for the
methods investigated and the finer spatio-temporal resolution Datasetb, PSNR=20 dB.

Method V Vx Vy Vz

PCA-net 0.0491(0.0205) 0.1141 (0.0552) 0.1605 (0.0742) 0.0288 (0.0118)
FuseNet2 PCA 0.0167 (0.0072) 0.0490 (0.0222) 0.0408 (0.0180) 0.0103 (0.0044)
FuseNet2, kPCA 0.0127 (0.0090) 0.0338 ( 0.0240) 0.0305 (0.0188) 0.0078 (0.0055)

Table 3. Reconstruction errors for the velocity components and the velocity norm
for Fusenet1 architecture and kPCA and different noise levels for the Dataseta.

PSNR V Vx Vy Vz

20 dB 0.0069 (0.0033) 0.0179 (0.0087) 0.0191 (0.0091) 0.0040 (0.0020)
0 dB 0.0653 (0.0540) 0.0697 (0.0536) 0.0698 (0.0524) 0.0642 (0.0549)

(a) Tracer density for z = 0.15. (b) Tracer density for z = 0.17.

Figure 5. Examples of tracer denisty field cross-sections, t=0.15s, inlet tracer concentration 1.0kg/m3, µ1 =
0.5m/s.
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Table 4. Reconstruction errors for the velocity components and the velocity norm

for Fusenet2 architecture and kPCA and different noise levels for the Datasetb.

PSNR V Vx Vy Vz

20 dB 0.0096 (0.0066) 0.0271 (0.0182) 0.0251 (0.0189) 0.0057 (0.004)
10 dB 0.0915 (0.0820) 0.0976 (0.0804) 0.0978 (0.0786) 0.0902 (0.0823)

(a) Ground truth velocity along x. (b) Reconstructed velocity along x. (c) Error map for velocity along x.

Figure 6. Distribution along x of ground truth velocity, reconstructed velocity of Fusenet2 method and its

error map: slice location z=0.155m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion
coefficient 1e-5, PSNR=20 dB.

(a) Ground truth velocity along y. (b) Reconstructed velocity along y. (c) Error map for velocity along y.

Figure 7. Distribution along y of ground truth velocity, reconstructed velocity of Fusenet2 method and its

error map: slice location z=0.155m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion
coefficient 1e-5, PSNR=20 dB.

(a) Ground truth velocity along z. (b) Reconstructed velocity along z. (c) Error map for velocity along z.

Figure 8. Distribution along z of ground truth velocity, reconstructed velocity of Fusenet2 method and its

error map: slice location z=0.155m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion
coefficient 1e-5, PSNR=20 dB.

The reconstruction errors are summarized in table 1 and table 2 for the velocity
components and the velocity norm for the various reconstruction strategies for a low
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(a) Ground truth velocity along x. (b) Reconstructed velocity along x. (c) Error map for velocity along x.

Figure 9. Distribution along x of ground truth velocity, reconstructed velocity of Fusenet2 method and its

error map: slice location z=0.165m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion

coefficient 1e-5, PSNR=20 dB.

(a) Ground truth velocity along y. (b) Reconstructed velocity along y. (c) Error map for velocity along y.

Figure 10. Distribution along y of ground truth velocity, reconstructed velocity of Fusenet2 method and

its error map: slice location z=0.165m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion

coefficient 1e-5, PSNR=20 dB.

(a) Ground truth velocity along z. (b) Reconstructed velocity along z. (c) Error map for velocity along z.

Figure 11. Distribution along z of ground truth velocity, reconstructed velocity of Fusenet2 method and
its error map: slice location z=0.165m, t=0.05s, µ1 = 0.25m/s, inlet tracer concentration 1.0kg/m3, diffusion

coefficient 1e-5, PSNR=20 dB.

noise level with PSNR=20 dB, for the two datasets. The tables compare the errors
for simple PCA-net, FuseNet1 and FuseNet2, for linear or nonlinear reductions for
the mesh coordinates. The reconstruction errors for various values of the PSNR are
displayed in table 3 and 4 for the Fusenet1 and Fusenet2 with kernel PCA method for
the Dataseta and Datasetb respectively. With the fusion approaches, the reconstruc-
tion errors for the velocity show large reductions and the methods are able to give
a good approximation of these unknowns fields. Table 1 and 2 show that leveraging
the reduced mesh information, the reconstruction results are improved.The proposed
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(a) Ground truth velocity field. (b) Reconstructed velocity field.

Figure 12. Streamlines with velocity norm of the ground truth and reconstructed velocity fields with Fusenet2

method t=0.3s, µ1 = 0.5m/s, PSNR=0 dB.

approach outperforms the simple reconstruction method proposed in our former work
(Simple PCA-net) with a fully connected network connecting the PCA coefficients of
the velocity and of the Radon projections, that has been used for a stationary veloc-
ity field, without the mesh information. Moreover, our results show that the better
reconstruction errors are achieved with Fusenet1 based on dot product for the coarse
spatio-temporal resolution and with Fusenet2 with concatenation of velocity and mesh
reduced information for the less coarse one. We obtain also good reconstruction results
for the transverse components of the velocity. The reconstruction degrades with the
increase of the noise level. The results obtained for the less coarse spatio-temporal
resolution degrade slightly with respect to the ones achieved with the coarse one with
a higher standard deviation. For the same offline computational time, less snapshots
have been considered in this work and the reduced order model is less accurate. The
results of this section thus clearly demonstrate the effectiveness of the proposed fusion
methodologies to solve our inverse problem for a non stationary velocity field and vary-
ing geometries. It should be noted that these results are obtained with fusion networks
with less parameters than the simple PCA-net. The results with the nonlinear kernel
PCA outperform slightly the ones obtained the linear PCA for the same number of
coefficients. With the linear PCA method, 10 coefficients are necessary to reach the
same level of accuracy as the one obtained with the nonlinear reduction method with
5 coefficients.

4.2. Discussion

4.2.1. Results discussion

Many studies have emphasized the impact of blood flow and stress distribution for the
study of atherosclerosis diseases. In our previous research work, we proved the effi-
cacy of a novel inversion method in reaching rich insights into blood velocity patterns,
with notable enhancement in spatial resolution when compared with common medical
imaging techniques like NME or ultrasound. This innovative approach is based on
integration of deep learning techniques with dimension reduction schemes applied to
either Radon projections or blood flow velocity fields. The proposed approach can also
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achieve an accurate reconstruction of the transverse components of the blood veloc-
ity field. As detailed in our former work, the proposed method based on a coupling
of PCA and deep learning significantly outperforms the classical variational meth-
ods. The classical formlation of the inverse problem with the Navier-Stokes equation
as constraint is based on the adjoint method [14]. It is very time consumming, does
not leverage the regularizing effect of dimension reduction methodologies and yields
less robust and accurate reconstructions. They are examples of physics informed deep
learning approaches. Yet, this study was restricted to stationary velocity fields and does
not leverage the mesh information. The aim of this work is to propose a new inverse
problem formulation capable of tackling time dependent Radon projections and vessel
domains. In this new proof-of-concept study, we show that the blood flow in vessels
can be reconstructed using deep learning techniques, Radon measurements, and mesh
information in an automatic process, and with a good accuracy. The proposed method
with a fusion of mesh information and Radon measurements information achieves lower
reconstruction errors compared to the former scheme. The numerical trials conducted
on practical cases proved the effectiveness of the proposed approach for robust flow es-
timations and in tackling complex nonlinear dynamic inverse problems. We also outline
the interest of deep learning methods in solving these inverse problems characterized
by parametric partial differential equation constraints and diverse geometries. Notably,
this approach performs well with noisy data. Two architectures have been proposed.
A choice has to be done depending on the spatio-temporal resolution and data set
size. The Fusenet2 architecture with a concatenation of reduced latent variables rep-
resenting Radon and mesh geometry information is more robust, easier to train and
accurate for high-dimensional and scarse data, which are common in hemodyanmics.
The datasets considered are small and may not be representative of all possible dynam-
ics in the blood flow investigated. A larger and more diverse dataset could enhance
the generalizability of the findings. Yet, for the very scarse dataset Datasetb, more
latent coefficients are leveraged, the amount of extracted information from the data
is higher and the model performance degrade only slightly. A more comprehensive
representation of the underlying data is considered and meaningful flow patterns can
be learned from the limited dataset. As shown on Table 4, lower noise levels have to
be considered to achieve good reconstruction for the Datasetb. A small dataset exac-
erbates the sensivity to noise, the model may memorize the noise or outliers present
in the limited training samples. In contrast, a larger dataset helps mitigate overfitting
by exposing the model to a more comprehensive representation of the underlying data
distribution, resulting in improved generalization to unseen examples. The ability of
the proposed approach to generalize to unseen data for more complex fluid problems
in the low data regime remains an open question. The approach does not require a
precise knowledge of boundary and initial conditions and material properties which
are required for complex biomedical Computational Fluid Dynamics simulations but
very challenging to determine. The proposed data-driven method does not require the
knowledge of the PDE forward mapping based on the underlying physics and the pre-
cise knowledge of the mesh geometry. In our former work, laminar, steady-state flow
conditions were enforced. The study was here generalized to time dependent blood
flows. We have considered not only stationary velocity fields but extended the method
to more complex non stationary velocity fields with time dependent inflow waveforms.
Another contribution is that the methods can account for varying blood vessels. We
have extended the former approach with geometrical parametrization and with a di-
mension reduction applied to moving domains and meshes. The results obtained when
the mesh information is taken into account outperform the ones obtained with the
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minimum information based on Radon projections.
In this work, we have used dimensionality reduction techniques to produce

dimensionality-reduced representations of vessel shapes, Radon projections and ve-
locity fields. PCA and kernel PCA are suitable tools for dimensionality-reduced rep-
resentations of 3D shapes. Our results suggest that linear projection-based reduced
order methods may not be optimal for dimensionality reduction for complex geome-
tries because the number of required modes increase significantly. Manifolds for real
data are expected to be strongly nonlinear and one needs to make use of nonlinear
techniques. Nonlinear autoencoders are known to provide a great flexibility and bet-
ter approximation results than linear projection techniques for nonlinear manifolds
[48–50]. In this work, we have investigated a simple dimension nonlinear dimension
with kernel PCA for the meshes manifold and we obtain good reconstruction results.
In the future, other approaches for creating dimensionality-reduced representations of
the varying mesh structures could be explored with autoencoders [23]. Moreover, we
have investigated the variation of one mesh from one patient. It could be interesting
to have several meshes for different subjects in the dataset and study other nonlinear
dimension reductions or extension of basic PCA with a mixing of linear subspaces
[51,52]. The nonlinear reduction techniques could also be exploited for the velocity
field. In [30], the authors compares various nonlinear dimension reduction techniques
in cardiovascular flows. It is shown that for the spatial reduction, nonlinear autocen-
coders achieves the best overall performance. In this work, for the sake of simplicity,
we have focussed on PCA for the velocity reduction, which does not require the inves-
tigation of multiple architectures. The motivation to use PCA is that it is the simplest
dimension reduction approach with no hyperparameters and we can extend our for-
mer work based on a simple PCA-net. The main objective of the work was to fuse the
Radon and mesh geometry information by building on the already proposed approach.
PCA has the advantage to remains interpretable through its formulation in terms of a
modal basis expansion. Nonlinear embeddings for the velocity field may enhance our
results and they will be investigated in future research. They are sometimes criticized
for their limited interpretability and susceptibility to overfitting and they require to
tune more parameters. Mode decomposing autoencoders [30] could be useful to obtain
interpretable spatial modes.

4.2.2. Method limitations

There are several drawbacks related to the proposed approach. The deep learning tech-
nique proposed has some offline computational cost. which may make the use of these
methods challenging in practice. The CPU time for the generation of the snapshots
for the tracer concentration and velocity is around 150-200h for one CPU for both the
Dataseta with coarse spatio-temporal resolution and the scarse Datasetb with a less
coarse one. The training time of the deep learning models ranges between 2393s and
4925s for one CPU. The reconstruction times are below 0.7s for the various networks
investigated. The online runtime of the deep learning methods is much smaller than
the one of the classical variational methods. The first limitation of the method is that
the generation of the CFD training dataset is time consuming for good spatial and
time resolutions. Moreover, the meshes investigated are coarse and in order to go be-
yond model development, it will be crucial to improve the spatial resolution. A range
of values for the Reynolds number must be investigated to replace an average Reynolds
number. Parallel simulations could be performed to sample efficiently the CFD mani-
fold. Yet, depending on the a priori knowledge of the manifold where the velocity field
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lives, for example if there are some informations about the inlet or outlet boundary
conditions, the number of snapshots could be reduced. In the case of limited training
data, it could also be interesting to develop bayesian neural network based approaches
that provide uncertainty quantification. These methods are practical methods when
needing to compute several solutions in parallel or several times or for clinical applica-
tions. The main conclusion of the work is that the reconstruction results are improved
when the geometry of the mesh is fused with the Radon projection information. Yet,
the full understanding of the performance of various types of deep learning models on
such problems is still an open question.

The presented method has been evaluated by leveraging synthetically generated
data with a good knowledge of their structure and complexity. It has to be further
explored considering real-world cardiovascular datasets and 3D patient-specific blood
flows. Despite these limitations, it can be shown that the approach is successful for
the modeling of blood flows from Radon projections and mesh geometry. It allows for
great flexibility in personalization of blood flows models.

5. Conclusion

We have explored an innovative inversion approach to reconstruct the blood flow
leveraging Radon projections orthogonal to the vessel direction alongside with mesh
geometry data. The method presented couples linear or nonlinear reductions with
deep learning networks. Reduced bases for the velocity field, the Radon projections
and the mesh are extracted from a collection of high-fidelity solutions via PCA or
nonlinear PCA and employs fully connected neural networks to accurately estimate
the coefficients of the velocity field to be reconstructed with the input reduced features.
Numerical results on unsteady velocity fields and deformed meshes show the accuracy
of the proposed method with speed up at the online stage compared to the traditional
variational methods and lower reconstruction errors with respect to the simple PCA-
net already studied.

6. Acknowledgment

The authors acknowledge financial support of the China Scholarship Council(CSC).

References

[1] Shi Y, Lawford P, Hose R. Review of zero-d and 1-d models of blood flow in the cardio-
vascular system. Biomedical engineering online. 2011;10:1–38.

[2] Crosetto P, Reymond P, Deparis S, et al. Fluid–structure interaction simulation of aortic
blood flow. Computers & Fluids. 2011;43(1):46–57.

[3] Quarteroni A, Manzoni A, Vergara C. The cardiovascular system: mathematical mod-
elling, numerical algorithms and clinical applications. Acta Numerica. 2017;26:365–590.

[4] Abdelsalam S, Zaher A. Biomimetic amelioration of zirconium nanoparticles on a rigid
substrate over viscous slime a physiological approach. Appl Math Mech. 2023;44:1563–
1576.

[5] Abdelsalam S. Revolutionizing bioconvection: artificial intelligence-powered nanoencapsu-
lation with oxytactic microorganisms. Engineering Applications of Artificial intelligence.
2024;137.

19



[6] Jiang J, Kokeny P, Ying W, et al. Quantifying errors in flow measurement using phase
contrast magnetic resonance imaging: comparison of several boundary detection methods.
Magnetic resonance imaging. 2015;33(2):185–193.

[7] Pelc NJ, Sommer FG, Li KC, et al. Quantitative magnetic resonance flow imaging. Mag-
netic resonance quarterly. 1994;10(3):125–147.

[8] MacDonald ME, Frayne R. Cerebrovascular mri: a review of state-of-the-art approaches,
methods and techniques. NMR in Biomedicine. 2015;28(7):767–791.

[9] Markl M, Schnell S, Wu C, et al. Advanced flow mri: emerging techniques and applications.
Clinical radiology. 2016;71(8):779–795.

[10] Korporaal JG, Benz MR, Schindera ST, et al. Contrast gradient-based blood velocimetry
with computed tomography: theory, simulations, and proof of principle in a dynamic flow
phantom. Investigative radiology. 2016;51(1):41–49.

[11] Bouillot P, Brina O, Chnafa C, et al. Robust cerebrovascular blood velocity and flow rate
estimation from 4d-cta. Medical physics. 2019;46(5):2126–2136.

[12] Barfett JJ, Velauthapillai N, Fierstra J, et al. Intra-vascular blood velocity and volumetric
flow rate calculated from dynamic 4d ct angiography using a time of flight technique. The
international journal of cardiovascular imaging. 2014;30:1383–1392.

[13] Daly SM, Leahy MJ. ‘go with the flow’: a review of methods and advancements in blood
flow imaging. Journal of biophotonics. 2013;6(3):217–255.

[14] Huang S, Sigovan M, Sixou B. Reconstruction of vascular blood flow in a vessel from
tomographic projections. Biomedical Physics & Engineering Express. 2021;7(6):065032.
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