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ABSTRACT

With technological advancements, combining information
from various tasks has become increasingly important. How-
ever, most feature learning approaches still focus on single-task
learning. To address this, we propose a multitask learning-
based model that simultaneously performs segmentation and
saliency estimation. Our model is evaluated on two hyper-
spectral datasets: HS-SOD for computer vision and Pavia
University (PU) for remote sensing, which demonstrate strong
generalization capabilities. By utilizing the additional spectral
dimension in hyperspectral data, the model improves its ability
to distinguish between materials and objects, leading to higher
accuracy. The architecture features a shared encoder-decoder
structure for efficiency, with an attention block enhancing
segmentation by capturing key spectral-spatial features and a
dense ASPP block improving salient object detection through
multi-scale context. Extensive testing shows our model out-
performs single-task approaches and state-of-the-art methods,
proving its effectiveness and efficiency.

Index Terms— Hyperspectral Image Classification, Multi-
task Learning, Remote Sensing, Image Segmentation, Salient
Object Detection, Shared-encoder decoder, ASPP, Attention
Network

1. INTRODUCTION

Hyperspectral imaging is a vital technique in remote sensing
and image processing, capturing detailed spectral information
across numerous bands for precise material identification [1].
Unlike traditional RGB images, hyperspectral images cap-
ture extensive spectral data, enabling diverse applications in
agriculture, environmental monitoring, medical imaging, and
many more [2, 3]. With the rise of large datasets, advanced
methods like machine learning and deep learning have shown
significant progress in analyzing such data [4]. However, the
computational cost increases when addressing tasks separately,
as each requires substantial resources and training time. To
address this, multitask learning has emerged as an effective

approach, enhancing both efficiency and accuracy by simul-
taneously tackling multiple objectives and utilizing shared
representations in areas such as computer vision and remote
sensing.

Multitask learning (MTL) has evolved significantly, from
its introduction to neural networks [5] to recent advance-
ments in adaptive optimization for reinforcement learning [6].
Cipolla et al. [7] introduced the algorithm for handling mul-
titask loss by computing uncertainty. Many researchers used
a multitask learning approach with deep learning algorithms
for applications such as building extraction, height and depth
estimation of a building, and so on [8, 9]. Ji et al. [10] intro-
duced a few-shot multitask learning approach for the scene
classification of optical remote-sensing images. Adding to
this, a semi-supervised few-shot multitask learning network
for iterative label correction was introduced [11]. Further,
Zhu et al. [12]proposed a novel semantic-guided image–text
retrieval framework with segmentation. However, there is still
room to explore multitasking for uncorrelated tasks, which
could explore new applications for different objectives. Thus,
our study focuses on applying multitasking to two distinct
domains: saliency estimation and image segmentation.

In our study, we explore multitask learning with hyperspec-
tral data, focusing on image segmentation and salient feature
detection through saliency maps. The motivation arises from
the need to enhance efficiency and accuracy in processing
complex hyperspectral datasets, which present significant chal-
lenges for conventional single-task approaches due to their
high dimensionality. By integrating image segmentation and
salient object detection into a unified framework, we aim to
exploit shared representations, improving overall model per-
formance and reducing computational costs. This approach
enhances segmentation accuracy while highlighting critical
features, enabling more effective interpretations of hyperspec-
tral imagery for applications like environmental monitoring
and disaster management. Multitask learning is particularly
crucial in scenarios requiring real-time processing, such as
autonomous vehicles that need to segment roads and detect
pedestrians simultaneously. Our task set consists of image



segmentation and saliency estimation, which are challenging
to optimize jointly due to their low relatedness.

2. PROPOSED METHOD

In this section, we elaborate on the proposed architecture and
parameters used in detail. The proposed network aims for joint
image segmentation and salient object detection that helps in
better scene understanding. The overview of the proposed
network architecture is shown in Figure 1

2.1. Framework of the Proposed Architecture

For the proposed work, Principal Component Analysis (PCA)
has been utilized to address the data dimensionality. We have
selected the principal components that contribute to at least
98% of the total explained variance in the data as the re-
duced feature set. Further, to extract shared representations, an
encoder-decoder approach is considered as it is highly flexible
and can be adapted to various types of data and tasks. The
proposed architecture adopts an encoder-decoder approach,
employing ResNet-50 [13] as a shared encoder. ResNet is a
good choice for a shared encoder in multitask learning due to
its ability to effectively learn deep representations without the
vanishing gradient problem, owing to its residual connections.
These connections allow ResNet to train large deep networks,
capturing complex features that are beneficial for multiple
tasks. At the decoder end, we have incorporated an Attention
block to enhance image segmentation and employed Dense
ASPP (Atrous Spatial Pyramid Pooling) [14] to generate the
saliency map.

2.1.1. Segmentation Block

The segmentation block consists of an attention block and a
4-block upsampling decoder. An attention block in a neural
network architecture is designed to selectively emphasize or
suppress certain parts of the input feature map, enabling the
model to focus on more relevant information. The attention
mechanism generates attention weights for each spatial loca-
tion in the input, which are applied to modulate the feature
map.

Let X be the input feature map, and W represents the set
of learnable parameters in the attention block. The attention
mechanism can be mathematically expressed as follows:

M = σ (Conv (X,W )) ∗X (1)

α = Softmax (Conv (M,W )) (2)

γ = α ∗X (3)

where, Conv(·) denotes the convolutional layer, W is the
learnable parameter, σ(·) is a non-linear activation function,

∗ denotes the elementwise multiplication, α represents the
attention weights, and γ is the attention output.

2.1.2. Saliency Detection Block

Atrous Convolution handles the multi-scale feature extrac-
tion in salient object detection to achieve a large receptive
field without increasing the computation cost. DeepLabV3
introduces multiple atrous convolution layer parallel called
ASPP (Atrous Spatial Pyramid Pooling). The Dense ASPP
module is generally represented as a concatenation of dilated
convolutions with varying dilation rates. The mathematical
formulation for a Dense ASPP module with dilation rates r1,
r2,......rn can be represented as:

Y = Concat(Convr1(X,Wr1), .....Convrn(X,Wrn)) (4)

Here Convr1(X,Wr1) denotes the dilated convolution with
dilation rate rn applied to the input feature map X using the
corresponding set of filters Wri . The Concat(· · · ) operation
combines the feature maps obtained from these dilated con-
volutions along the channel dimension. The dilation rate con-
sidered for the proposed work is 6, 12, and 18. Dense ASPP
can be adapted for salient object detection, where the goal is
to identify and highlight the most visually distinct objects or
regions in an image.

2.2. Multitask Loss

This research uses multitask learning by considering the
saliency detection and segmentation tasks together. Let
χ = (Xi)

N1
i=1 represent number of bands in the hyperspectral

image where X being input feature map with height H and
width W for every image. The corresponding pixel-wise
ground truth (GT ) map for segmentation is given as

(GTi,j,k | GTi,j,kϵ{1, 2, ....., C})N1×H×W (5)

The salient object, S, represented as (Si)
N2

i=1 with the
ground-truth binary map for all the bands of the hyperspec-
tral image denoted as ρ = (Pi)

N2

i=1, where P is the image
pixel. Further, all the parameters in the shared encoder are
represented as θSH ; parameters of the salient detection block
as θSD and the parameters of the segmentation block as θSE .
The minimization of the cost function is given as

ȷ1 (χ; θSH , θSE) = − 1

N1

N1∑
i=1

H∑
j=1

W∑
k=1

I {GTijk = C}

· log (hcjk (Xi; θSH , θSE)) (6)

ȷ2 (ρ; θSH , θSD) =
1

N2

N2∑
i=1

Si −
∫

(Pi; θSH , θSD) (7)



Fig. 1: Framework of the proposed joint multitask learning model for segmentation and saliency estimation for hyperspectral
imagery.

Here, I is the indicator function, C represents the probability of
the segmentation map, and h is the segmentation function. hcjk

is the (j, k)th element of the cth probabilistic segmentation
map and integral

∫
is the output function for saliency map.

Equation (6) represents a cross-entropy loss for the image
segmentation task, and Equation (7) is the squared Euclidean
loss for the salient object detection task.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the dataset considered for this research
work in Section 4.1 and the experimental settings in Section
4.2. The detailed experiment results are listed in Section 4.3
as quantitative analysis, and qualitative analysis is listed in
Section 4.4.

3.1. Dataset

The efficacy of this study is evaluated using two datasets from
different domains: the Hyperspectral Salient Object Detection
(HS-SOD) is a computer vision hyperspectral dataset, and the
Pavia University dataset (PU) is a remote sensing dataset.

The HS-SOD dataset includes 60 hyperspectral images
captured in Japan’s public parks, featuring 81 spectral bands in
the 380–780 nm range, with a resolution of 1024×768 pixels.
These images, acquired using an NH-AIK model hyperspectral
camera, provide both ground truth and sRGB-rendered images,
allowing for diverse variations in object size, position, and
contrast. The PU dataset, acquired in 2001 by the ROSIS
sensor over Northern Italy, consists of 103 spectral bands with
a spatial resolution of 1.3m and an image size of 610×340
pixels covering nine land use/land cover classes,

3.2. Experimental Setup

The experiment was conducted on a system with an Intel Xeon
Silver 4214R CPU (2.40 GHz), 64 GB RAM, and an NVIDIA
GeForce RTX A6000 GPU (51 GB RAM), using Ubuntu 14.04
and PyTorch. The key hyperparameter includes a learning
rate of 0.001 with stochastic gradient descent, momentum of
0.7, and weight decay of 0.0005. The network was trained
for 100 epochs on full-resolution images with a mini-batch
size of 128. For the HS-SOD dataset, 25% was used for
training and 75% for testing, while the PU dataset was split
into 10% training, 10% validation, and 80% testing. Random
initialization was applied for kernel weights, and RMSProp
was used for optimization.

3.3. Quantitative Analysis

The proposed multitask learning model demonstrated clear
improvements over the single-task approach for both image
segmentation and saliency estimation tasks on the HS-SOD
and Pavia University (PU) datasets, as shown in Tables 1 and
2.

For image segmentation, the multitask model achieved
higher IoU, precision, and recall compared to the single-task
model. This suggests that sharing information between seg-
mentation and saliency estimation tasks helped the model bet-
ter capture spatial-spectral relationships in hyperspectral data,
leading to more accurate and consistent segmentation results.
IoU was chosen to measure the overlap between predicted and
true regions. At the same time, precision and recall were used
to assess the model’s ability to minimize false positives and
false negatives, which is crucial for accurate segmentation. For



Table 1: Comparison of the proposed method as single-task
and multitask for image segmentation on both HS-SOD and
Pavia University datasets.

Image Segmentation

Metric HS-SOD PU
Single-task Multitask Single-task Multitask

IoU (%) 94.89 97.72 91.98 95.98
Precision 0.892 0.948 0.828 0.912
Recall 0.887 0.951 0.813 0.929

Table 2: Comparison of the proposed method as single-task
and multitask for saliency estimation on both HS-SOD and
Pavia University datasets.

Salient Object Detection

Metric HS-SOD PU
Single-task Multitask Single-task Multitask

F-measure 0.907 0.961 0.892 0.942
AUC 0.912 0.943 0.893 0.947
MAE 0.081 0.032 0.097 0.041

saliency estimation, the multitask model also outperformed
the single-task model in terms of F-measure, AUC, and MAE.
The use of these metrics is crucial: F-measure captures the bal-
ance between precision and recall, AUC evaluates the model’s
performance across different threshold levels, and MAE re-
flects the model’s precision in identifying salient objects. The
lower MAE and higher AUC indicate more precise and reliable
saliency detection, likely because the segmentation task helps
better in defining object boundaries.

3.4. Qualitative Analysis

The visual representation of the proposed method on two dif-
ferent datasets, viz, HS-SOD and PU, is depicted in Figure 2
and Figure 3, respectively. The HS-SOD dataset categorizes
objects with varying shapes, sizes, and complexities, offer-
ing a comprehensive assessment of the proposed model’s per-
formance across diverse scenarios. Additionally, overhead
remote-sensing hyperspectral images featuring objects at mul-
tiple scales, such as those in the PU dataset, were analyzed.
For saliency estimation, the focus is on highlighting specific
objects or features—in this case, a building in the PU dataset.
Our model successfully identifies and emphasizes the build-
ing, closely aligning with the ground truth, demonstrating
its robustness and accuracy. The visualization of predicted
results shows that the model excels in both image segmenta-
tion and saliency map generation, effectively handling diverse
scenarios, including varying object scales. The multitasking
approach consistently captures salient features and delivers
precise segmentation.

Fig. 2: Visual comparison of segmented results and saliency
map on sample images from the HS-SOD dataset. Images
are categorized to demonstrate the efficacy of the proposed
methodology across various scenes. (a) RGB (b) segmented
result (c) ground truth saliency map (d) predicted saliency
map.

a) b) c) d)

Fig. 3: Visual comparison of segmented results and saliency
map on a remotely sensed Pavia University dataset. Legend
depicting the segmented result and class assignments to demon-
strate the efficacy of the proposed methodology across various
scenes. (a) RGB (b) segmented result (c) ground truth saliency
map (d) predicted saliency map.



4. CONCLUSION

In this research, we proposed an efficient learning-based mul-
titasking model for joint image segmentation and saliency
estimation using hyperspectral data. Our model integrates
both spectral and spatial features through a shared encoder
and separate decoders for segmentation and detection blocks,
resulting in a lightweight architecture due to parameter sharing.
We evaluated the model on two distinct datasets, HS-SOD (for
computer vision) and Pavia University (for remote sensing),
to assess its generalization capabilities. Visual comparisons
of the generated saliency maps demonstrated improved re-
sults with sharper boundary edges compared to other methods.
However, we faced difficulties in detecting edges for objects
with faint contrasts and complex features, likely caused by
inadequate parameter tuning and optimization. Notably, our
approach outperformed single-task methods across various
evaluation metrics, demonstrating its potential for extension
to a wide range of complex multitasks in both computer vi-
sion and remote sensing. Future work involves refining the
model through parameter tuning and optimization strategies
to improve its ability to handle complex edge identification,
with the potential integration of other data modalities to further
enhance performance.

5. REFERENCES

[1] Chein-I Chang, Hyperspectral imaging: techniques for spectral
detection and classification, vol. 1, Springer Science & Business
Media, 2003.
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