
HAL Id: hal-04787103
https://hal.science/hal-04787103v1

Submitted on 16 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Efficient Parallel GPU Scheduling: Interference
Awareness with Schedule Abstraction

Nordine Feddal, Houssam- Eddine Zahaf, Giuseppe Lipari

To cite this version:
Nordine Feddal, Houssam- Eddine Zahaf, Giuseppe Lipari. Towards Efficient Parallel GPU Schedul-
ing: Interference Awareness with Schedule Abstraction. 32nd International Conference on Real-Time
Networks and Systems (RTNS 2024), ACM, Nov 2024, Porto, Portugal. �hal-04787103�

https://hal.science/hal-04787103v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards Efficient Parallel GPU Scheduling: Interference
Awareness with Schedule Abstraction

Nordine Feddal

Univ. Lille, CNRS, Inria

Centrale Lille, UMR 9189 CRIStAL

F-59000 Lille, France

Houssam-Eddine Zahaf

Nantes Université, CNRS, INRIA

Centrale Nantes, IMT Atlantique

LS2N, UMR 6004

F-44000 Nantes, France

Giuseppe Lipari

Univ. Lille, CNRS, Inria

Centrale Lille, UMR 9189 CRIStAL

F-59000 Lille, France

ABSTRACT
GPUs are powerful computing architectures that are increasingly

used in embedded systems for implementing complex intelligent

applications. Unfortunately, it is difficult to predict their temporal

behavior, especially when multiple parallel tasks are concurrently

executed. Running one single task at a timemay results in severe un-

derutilization of the resources; on the other hand, running multiple

tasks concurrently may introduce mutual interference.

In this work, we introduce Parallel Batch Scheduler (PBS) to

enable parallel execution of a set of real-time tasks on GPUs. PBS

avoids concurrent execution when it might jeopardize schedulabil-

ity, and it identifies scenarios where parallel flows might enhance

platform utilization and therefore schedulability. To find the feasible

scenarios, we propose a scheduling analysis based on a scheduling

graph, in which all possible concurrent and serialized scenarios are

evaluated for schedulability. To mitigate the explosion in the state

space, we propose a technique to reduce the size of the graph.

Through an extensive set of experiments, we demonstrate that

PBS outperforms both serialized and fully parallel execution ap-

proaches, highlighting its effectiveness in maximizing GPU utiliza-

tion while maintaining schedulability. We illustrate the usefulness

of our approach through the development of a tool that takes the

trace of the execution generated by our schedulability analysis and

manages GPU workload submissions for GPU tasks.

CCS CONCEPTS
• Computer systems organization→ Real-time system speci-
fication.

KEYWORDS
Real-time, scheduling, GPU, interference, scheduling graphs

1 INTRODUCTION
Current trends in embedded system design and development con-

sist in integrating machine learning and artificial intelligence into

complex embedded applications. Due to the heavy computational re-

quirements, designers are moving towards heterogeneous platforms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RTNS 2024, November 7–8, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1724-6/24/11

https://doi.org/10.1145/3696355.3696361

consisting of multi-core CPUs coupled with massively parallel ac-

celerators such as Graphical Processing Units (GPUs). The adoption

of these platforms represents a difficult challenge for developers of

safety-critical applications, e.g. avionics and automotive systems,

where real-time predictability is of utmost importance.

One of the main challenges for the design of such systems lies in

ensuring predictable temporal behavior of the GPUs. The compute

capacity of GPUs comprises hundreds of Arithmetic Logical Units

grouped into streaming multiprocessors (SMs), and each GPU can

consist of multiple SMs. The number of SMs has been increasing

across different generations of GPUs, ranging from 16 for average-

sized GPUs to over 100 for the largest GPUs. These GPUs can be

programmed using various APIs, such as Vulkan, OpenCL, etc. They

enable the offloading of parallel tasks (called kernels) to the GPUs.

Programmers have the flexibility to submit GPU kernels either se-

quentially, in a First-In-First-Out (FIFO) manner, or concurrently. In

concurrent execution, tasks compete for GPU resources, which are

arbitrated by the GPU internal schedulingmechanisms. For NVIDIA

GPUs, this feature is known as Simultaneous Kernels (SMK), and it

is only possible when the involved kernels satisfy specific runtime

conditions [14].

Using the GPU as a single resource, by sequentially submitting

the kernels to execute, can lead to underutilization of its comput-

ing capacity, especially for legacy code that has been designed for

smaller GPUs compared to modern ones. On the other hand, exper-

imental results on NVIDIA architectures have uncovered counter-

intuitive behavior when concurrently executing multiple indepen-

dent kernels. Parallel execution flows might result in extra latency

compared to the baseline FIFO execution, as discussed in [14]. This

outcome is attributed to contention for memory and computing

resources among independent CUDA kernels. The work conducted

by [25] has studied the runtime conditions under which the run-

time costs can be important. They proposed techniques to classify

kernels as memory-bound or compute-bound and they have shown

how they might impact the temporal behavior of each other. With-

out proper mechanisms to control parallel execution within the

GPU and the timing behavior of different parallel kernels, it is im-

possible to guarantee the respect of the system’s timing constraints.

In this paper, we propose the Parallel Batch Scheduler, a novel
GPU scheduler approach for periodic real-time parallel GPU kernels,

and its corresponding schedulability analysis. The analysis pre-

computes a parallel schedule that ensure that all jobs will meet

their deadlines by exploring possible parallel executions that do

not jeopardize the system schedulability.

The contributions of this paper include: (i) an abstract execu-

tion model of GPU kernels that considers interference, and (ii) a

scheduler for GPU kernels through the construction of a sequence

https://orcid.org/0000-0002-0334-9692
https://orcid.org/0000-0002-7544-5309
https://doi.org/10.1145/3696355.3696361


RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

of schedulable jobs featuring parallel execution. We evaluate the

performance of our scheduler against FIFO schedulers and com-

pletely parallel schedulers through an extensive set of synthetic

experiments. Finally, we present the design of a tool that is able to

play the generated schedules online on the GPU.

2 SYSTEM MODEL
2.1 GPU Architecture and programming model
A General Purpose Graphics Computing Unit (GPGPU, or sim-

ply GPU) comprises computation resources and memory copy re-

sources. Computation elements consist of hundreds of small Arith-

metic Logic Units (ALUs) arranged in one or multiple streaming

multiprocessors (SMs), which, in turn, are grouped into Graphic Pro-

cessing Clusters (GPCs). Memory transfers are handled by a copy

engine, a coprocessor responsible for executing memory copy oper-

ations between different address spaces. Programming the GPU can

be done using special APIs such as the OpenCL standard, Vulkan,

the Nvidia CUDA proprietary API, and others. From the program-

mer’s perspective, these APIs expose a similar set of functionalities.

Typically, GPU programs follow a specific programming pattern:

first, memory allocation is performed on both the CPU (host) and

GPU (device) sides, usually during the initialization stage because it

can be a time-consuming operation. Next, memory copy operations

are executed between the main memory and the GPU-accessible

memory. One or more programs (also called kernels in the NVidia

terminology) are then launched and executed on the GPU; and

finally, the results are copied back to the main memory.

Programming a GPU kernel involves a specific task decomposi-

tion. Initially, the parallel task is defined as a compute grid, which

is further composed of several blocks. A thread block is a set of

threads that can be executed either serially or in parallel. Different

blocks can be allocated on a single SM or dispatched to different

SMs, but all the threads of the same block are executed within the

same SM. The programmer defines the number of thread blocks

per grid and the number of threads per block. When a single GPU

kernel is used at a time, the NVIDIA runtime, through its block

scheduler, dispatches the blocks to different SMs in a round-robin

fashion [14]. The programmer can submit multiple CUDA kernels

using CUDA streams. A CUDA stream is an abstraction of a queue

containing compute and copy operations: all operations within the

same stream are executed in the order of their submission, whereas

operations from different streams are dispatched independently,

allowing operations belonging to different streams to overlap in

time. In this scenario, the GPU block scheduler dispatches thread

blocks from different kernels among the SMs, taking into account

the occupancy of memory and compute resources requested by the

submitted kernels [15]. The simultaneous submission of different

kernels to the GPU can introduce interference, which might have

high runtime costs, as shown in [25].

2.2 Task model
We consider a set of 𝑛 periodic real-time tasks, denoted as T =

{𝜏1, 𝜏2, · · · , 𝜏𝑛}. Each task 𝜏𝑖 represents a single GPU kernel and is

characterized by the following parameters:

• T(𝜏𝑖 ): The task period, which is the exact time interval be-

tween two consecutive activations of task 𝜏𝑖 .

• D(𝜏𝑖 ): The task relative deadline. Task 𝜏𝑖 must complete no

later than D(𝜏𝑖 ) from it activation.

• C(𝜏𝑖 ):Worst-case execution time of task 𝜏𝑖 when all its blocks

execute in parallel on the GPU without interference.

A job 𝐽 is an instance of the periodic task. We denote as 𝜏 (𝐽 ) the
task to which job 𝐽 belongs. For brevity, we overload our previous

notation to jobs: for example, the worst-case execution time of job

𝐽 will be denoted as C(𝐽 ), which is the same as C(𝜏 (𝐽 )).
A job is further characterised by an arrival time a(𝐽 ) and an

absolute deadline d(𝐽 ). Let 𝐽 be the 𝑘-th job of task 𝜏 : then a(𝐽 ) =
𝑘 · T(𝐽 ) and d(𝐽 ) = a(𝐽 ) + D(𝐽 ). We denote by 𝑓 (𝐽 ) the finishing
time of the job in a specific schedule. A job is ready if it is arrived

but it has not yet completed. The system maintains a queue of

ready jobs to be scheduled. The hyperperiodH represents the least

common multiple of the periods of all tasks in the task set.

We define as A(𝑡1, 𝑡2) the set of jobs with arrival time between

𝑡1 and 𝑡2:

A(𝑡1, 𝑡2) = {𝐽 |𝑡1 ≤ a(𝐽 ) ≤ 𝑡2}

2.3 Block allocation
When a job is submitted to the GPU, the block scheduler allocates

the kernel blocks to the SMs in a round-robin fashion based on their

occupancy. Occupancy is computed according to the number of

blocks B(𝜏𝑖 ), the number of threads TH(𝜏𝑖 ), the number of registers

per thread Regs(𝜏𝑖 ), and the size of shared memory Smem(𝜏𝑖 ).
These parameters are crucial in determining if parallel execution is

allowed. A job may fit or not on the GPU. The order of submission

of the parallel jobs has an impact on their allocation. We give an

example below to illustrate these concepts.

Example 2.1. Consider two jobs 𝐽1 and 𝐽2: 𝐽1 contains 4 blocks

of 64 threads each, and 𝐽2 only 1 block of 192 threads. Suppose we

want to execute these two jobs in parallel on a GPU with only two

SMs of 256 threads each.

Suppose we submit {𝐽1, 𝐽2} to the block scheduler, in this order.

The hardware block scheduler will first allocate the blocks of 𝐽1 in

round-robin order (see paper [14] for a model of the block scheduler

of NVidia): therefore, it will allocate two blocks of 𝐽1 on the first

SM, using 128 threads, and the other two blocks on the second SM,

again using 128 threads. When it tries to allocate the single large

block of 𝐽2, it will not fit in any of the SMs, and 𝐽2 will not execute

in parallel with 𝐽1.

Conversely, suppose that the jobs are submitted in the reverse

order {𝐽2, 𝐽1}: the large block of 𝐽2 is allocated first filling 3/4 of the
first SM, and all the other blocks of 𝐽1 will easily fit on the second

SM. In this case, 𝐽1 and 𝐽2 will execute in parallel. □

The previous example shows that the order in which jobs are

submitted to the hardware block scheduler plays an important role

in their execution order, and therefore it impacts the schedulability

of the system.

Definition 2.2. (batch of jobs) A batch of jobs 𝛽 = ⟨𝐽1, 𝐽2, . . . , 𝐽𝑛⟩
is an ordered sequence of jobs to be submitted to the GPU, every

job will be submitted using a different CUDA stream.

Definition 2.3 (Eligible Jobs batch). Let R(𝑡) be a set of ready

jobs at time 𝑡 and let 𝛽 = ⟨𝐽1, . . . , 𝐽𝑛⟩ be a batch of jobs such that

∀𝑖 = 1, . . . , 𝑛 𝐽𝑖 ∈ R(𝑡).



Towards Efficient Parallel GPU Scheduling: Interference Awareness with Schedule Abstraction RTNS 2024, November 7–8, 2024, Porto, Portugal

𝛽 is eligible, if all its jobs can be immediately executed in parallel

when they are submitted to the GPU block scheduler in the same

order.

To check if a job batch is eligible, we simulate the allocation

algorithm described in [14]. The simulation algorithm will return

true if the batch is eligible, and false otherwise.
Please, remark that the graph analysis described in Section 3 does

not depend on the specific details of the block allocation algorithm,

and it can be easily generalized by using any other method to assess

the eligibility of a batch of jobs. For the rest of the paper, we will

abstract away from the details of the specific allocation algorithm:

we will instead assume that an oracle will tell us if a batch of job

is eligible or not and return its completion time. Since the order

of submission has an impact on eligibility, we need to check all

possible permutations of any subset of R(𝑡) for eligibility.

2.4 Scheduling model
In this section, we define a novel off-line scheduler that selects a

batch of the ready jobs to be submitted to the GPU, ensuring that

all jobs will complete before their deadlines, called Parallel Batch
Scheduler.

Let R(𝑡) be the set of ready jobs at time 𝑡 ; that is, the set of

jobs whose arrival time is less than or equal to 𝑡 and that have

not yet completed at time 𝑡 . When the scheduler is invoked, it

selects a batch of jobs from R(𝑡) that is eligible (see Definition 2.3)

and submits them to the GPU using a different CUDA stream per

job. Then, it waits for the last job to finish before selecting a new

batch. We call the interval of time between two invocations of

the scheduler a scheduling frame. During a scheduling frame, jobs

execute in parallel. The scheduler is therefore invoked at scheduling

frames boundaries.

The Parallel Batch Scheduler (PBS) is parallel, because it can sub-

mit multiple jobs to the GPU that will be executed in parallel; it is

non-preemptive, because it takes a new scheduling decision only

when the previous job batch has finished. PBS is non-work conserv-
ing at the job level: in fact, some GPU resource can be freed before

the end of the scheduling frame, and nothing else is submitted to

the GPU even if a new job arrives before the end of the scheduling

frame. On the other hand, PBS is work-conserving at the batch level:
the scheduler takes a decision based on the ready jobs present at

the beginning of the new scheduling frame, and it is not allowed to

keep the GPU idle waiting for more jobs to arrive.

2.5 Interference
When a job batch is composed of two or more kernels (tasks),

interference may occur, leading to increased total execution times.

This interference primarily arises from bus contention and/or data

cache loading and eviction.

Three different main approaches have been proposed in the lit-

erature to upper bound the interference. The first approach in [9]

involves analyzing the binary code (PTX and SASS) to determine

the conditions under which interference might occur. The second

approach is measurement-based [10], and consists in pushing the

GPU to extreme behaviors through benchmarking and modeling in-

terference profiles using linear and non-linear regressions. Another

𝜏1 𝜏2 𝜏3

T(𝜏𝑖 ) 4 5 10

D(𝜏𝑖 ) 4 5 10

C(𝜏𝑖 ) 1 3 3

batches completion

⟨𝜏1, 𝜏2⟩ 4

⟨𝜏1, 𝜏3⟩ 4

⟨𝜏2, 𝜏3⟩ 4

⟨𝜏1, 𝜏2, 𝜏3⟩ 6

Figure 1: Parameters for the task set of the example.

approach involves leveraging AI techniques to infer the potential

presence of interference [11].

In this paper, we abstract away this problem by considering that

we know the completion time of every possible batch of tasks that

may be executed in parallel, that is the completion time of the

last job to complete in the batch. We are aware that deriving this

information may be difficult; we are currently experimenting with

different models for computing worst-case execution times and

interference in realistic case studies. In Section 4.2 we will describe

how we derived execution bounds for our experiments.

3 THE SCHEDULING GRAPH
Our approach is based on the generation of a scheduling graph
representing all possible valid sequences of execution of the jobs in

the hyperperiod. The number of possible scheduler configurations

grows exponentially with the number of tasks and jobs to schedule.

Therefore, one of the main challenges is to reduce as much as it

is possible the size of the state-space by removing unnecessary

nodes from the graph. In this section, we first describe the core idea

that motivates our approach with an example, then we discuss the

scheduling graph generation and the reduction strategies in details.

3.1 Example of the impact of interference on
schedulability

For our motivating example, let us consider 3 tasks, 𝜏1, 𝜏2, and 𝜏3
having the parameters described in Figure 1. Consider the set of jobs

generated by these tasks from time instant 0 until the hyperperiod

H = 20, which includes: 5 jobs of task 𝜏1 (ranging from 𝐽1 to 𝐽5), 4

jobs of task 𝜏2 (ranging from 𝐽6 to 𝐽9), and 2 jobs of task 𝜏3 (𝐽10 and

𝐽11). For simplicity, we consider that the GPU has enough resources

to execute all tasks in parallel, so we do not report the other task

parameters such as the number of blocks, threads, and registers. We

use the Parallel Batch Scheduler described in the previous section

as a scheduler. Figure 2 illustrates 4 different scheduling scenarios

for the same job set.

In Figure 2a, jobs are executed one after the other, as we do not

allow parallel execution of multiple kernels
1
. Scheduling is non-

preemptive, and the jobs are submitted according to the Earliest

Deadline First order. Therefore, 𝐽1 is executed first, followed by 𝐽6,

etc. Although none of the tasks suffers from interference due to

parallel execution, job 𝐽7 misses its deadline.

In Figure 2b, we show the case in which the scheduler always

dispatches all ready jobs at once. That is, at time instant 0, jobs 𝐽1,

1
On Nvidia GPUs, this can be obtained simply by submitting all jobs using the same

CUDA stream.



RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

0 2 4 6 8 10 12 14 16 18 20 22

𝜏1

𝜏2

𝜏3

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

𝐽6 𝐽7 𝐽8 𝐽9

𝐽10 𝐽11

missed

missed

(a)

0 2 4 6 8 10 12 14 16 18 20 22

𝜏1

𝜏2

𝜏3

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

𝐽6 𝐽7 𝐽8 𝐽9

𝐽10 𝐽11

𝐼123

𝐼123 𝐼23

𝐼123 𝐼23

𝐼12

𝐼12

𝐼123

𝐼123 𝐼23

𝐼123 𝐼23

missed
𝐼12

𝐼12

(b)

0 2 4 6 8 10 12 14 16 18 20 22

𝜏1

𝜏2

𝜏3

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

𝐽6 𝐽7 𝐽8 𝐽9

𝐽10 𝐽11

𝐼23

𝐼23

𝐼12

𝐼12 𝐼23

𝐼23

(c)

0 2 4 6 8 10 12 14 16 18 20 22

𝜏1

𝜏2

𝜏3

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

𝐽6 𝐽7 𝐽8 𝐽9

𝐽10 𝐽11

𝐼23

𝐼23

𝐼23

𝐼23

(d)

𝐼23 𝐼12 𝐼123 missed

Figure 2: Four different schedules for the example task set.

𝐽6, and 𝐽10 are all submitted to the GPU
2
. As kernels execute in

parallel, they suffer from mutual interference, and their execution

slows down. At the completion of the first batch of jobs (𝐽1, 𝐽6, 𝐽10)

at time 6, a new batch is submitted composed of 𝐽2 and 𝐽7. Due

to the interference between jobs, 𝐽3, 𝐽4, 𝐽5, 𝐽6, and 𝐽7 miss their

respective deadlines.

Fig. 2c and Fig. 2d represent two of the schedules generated by

our schedule exploration algorithm. The algorithm evaluates the

impact of the interference due to the parallel execution of the active

kernels, and selects one of the eligible batches to execute on the

GPU. Therefore, scenarios that might jeopardize schedulability due

to excessive interference (Figure 2b), or the serialized execution

(Figure 2a) are discarded by our algorithm.

In the above example, 𝐽1 is executed without concurrency in

the first scheduling frame. At its completion, a batch composed of

𝐽6 and 𝐽10 is submitted to the GPU for parallel execution. Further,

𝐽2 and 𝐽7 are executed in parallel in the same scheduling frame

in Figure 2c, while their execution is serialized in Figure 2d. In

these two cases, no deadline is missed, and the GPU resources are

utilized in a better way than in both the previous situations. Both

are schedulable, but Figure 2d uses fewer GPU resources.

In general, it is hard to determine the best schedule order to

minimize the GPU resources utilization without jeopardizing the

system predictability. Our schedulability analysis, calledGPUSched,
is based on the exploration of all possible job batches to be submitted

to PBS.

In the previous example of Figure 2, at time 0 three jobs are ready

to be executed: 𝐽1, 𝐽6 and 𝐽10. The number of possible eligible job

sets is the number of permutations of 𝑛 ≤ 3 jobs, which means that

2
On Nvidia GPUs, this can be achieved by submitting every task to a separate stream.

we need to analyse

3∑︁
𝑖=1

3!

(3 − 𝑖)! = 15 possible batches of jobs. By

progressing in the schedule, the number of combination can grow

very rapidly.

In this work, we represent all possible parallel and serialized

schedules with a Direct Acyclic Graph called a scheduling graph.
Each vertex in the graph represents the state of the GPU at the

beginning of a scheduling frame, and each outgoing edge is labeled

with the next batch of jobs to be scheduled. The main contribution

of this paper is a method to perform the graph exploration within

a reasonable amount of time.

In the remainder of this section, we will first formally describe a

scheduling graph, and related notion. Further, we will outline the

different approaches that allow us to build our scheduling graph,

namely expansion and reduction. In the expansion phase, the graph

considers new scheduling states according to task activations and

scheduling decisions. During the reduction phase (which includes

merging and splitting), we reduce the graph size to control the

scheduling state design space.

3.2 Structure of the scheduling graph
Definition 3.1 (Scheduling Graph). We denote G = (V, E) the

scheduling graph, whereV is the set of vertices and E is the set

of edges. A vertex 𝑣𝑖 ∈ V represents the state of the system at the

beginning of a scheduling frame, that is the state of each job (not

yet arrived, ready, executed, etc.).

More formally, a vertex 𝑣𝑖 is characterized by:

• 𝑡 (𝑣𝑖 ) is a time instant;



Towards Efficient Parallel GPU Scheduling: Interference Awareness with Schedule Abstraction RTNS 2024, November 7–8, 2024, Porto, Portugal

• ready(𝑣𝑖 ) is the set of jobs ready to be executed in the system
at time 𝑡 (𝑣𝑖 ), i.e. ∀𝐽 ∈ ready(𝑣𝑖 ) a(𝐽 ) ≤ 𝑡 (𝑣𝑖 ) and 𝐽 has not

yet started execution;

• exe(𝑣𝑖 ) is the set of jobs already completed at time 𝑡 (𝑣𝑖 );
• dom(𝑣𝑖 ) is a set of time interval lengths that contains the

time differences between the current vertex and all domi-

nated vertices (see next section).

An edge 𝑒𝑖, 𝑗 from 𝑣𝑖 to 𝑣 𝑗 is identified by the batch 𝛽 ⊆ ready(𝑣𝑖 )3
that is executed in the scheduling frame between 𝑡 (𝑣𝑖 ) and 𝑡 (𝑣 𝑗 ).
By definition, exe(𝑣 𝑗 ) ≡ exe(𝑣𝑖 ) ∪ 𝛽 and ready(𝑣 𝑗 ) ≡ ready(𝑣𝑖 ) \
𝛽 ∪ A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣 𝑗 )).

Each path in the graph represents a schedule.

Definition 3.2 (Execution order path). A path 𝜋 = {𝑣0, . . . , 𝑣𝑛} is a
sequence of vertices connected by edges:∀𝑖 ∈ [0, 𝑛−1] ∃ 𝑒𝑖,𝑖+1 ∈ E.
We associate each path 𝜋 with the list of jobs executed along the

path 𝜋 denoted exe(𝜋) = exe(𝑣𝑛).

A vertex 𝑣 𝑗 is an immediate successor of vertex 𝑣𝑖 if there exist an
edge 𝑒𝑖, 𝑗 . A vertex 𝑣𝑖 is a successor of 𝑣𝑖 if it exists a path between

𝑣𝑖 and 𝑣 𝑗 . We denote by succ(𝑣𝑖 ) the set of immediate successors

of vertex 𝑣𝑖 .

A job set is schedulable if during the schedule graph generation

we find a path for which all jobs have been scheduled and all of

them respect their timing constraints.

Definition 3.3 (Schedulable Path). A path 𝜋 is a schedulable path

if and only if the current time of its last vertex 𝑣𝑖 is 𝑡 (𝑣𝑖 ) ≥ 𝐻 and

all jobs in all vertices along the path finish their executions before

their deadlines.

3.3 Expansion phase
The scheduling graph generation in described in Algorithm 1. It

maintains an initially empty list of schedulable vertices S, and a

list L of vertices to be expanded. At each iteration it computes the

successors of one vertex of this list, thus building the graph.

At the beginning, only one vertex 𝑣0 is present, with 𝑡 (𝑣0) = 0,

exe(𝑣0) = ∅, and ready(𝑣0) = A(0, 0) (line 2). This initial vertex is
also added to the list L of vertices to be expanded.

The algorithm selects a new vertex from the list, let it be 𝑣𝑖
(line 5). First it checks for domination propagation. This allows to

reduce the graph size under certain conditions(see next section for

an explanation of the notion of the domination relation).

Then, in case the set of ready jobs of 𝑣𝑖 is empty (i.e ready(𝑣𝑖 ) ≡
∅), we skip the idle time by fast-forwarding the time 𝑡 (𝑣𝑖 ) to the

next job arrival time (line 13, see next section for an explanation of

this procedure).

Further, it computes all eligible batches of ready(𝑣𝑖 ) (see Defi-
nition 2.3), denoted as P(𝑣𝑖 ) (line 15): it does this by invoking an

oracle on each permutation of each distinct subset of ready(𝑣𝑖 ). The
oracle tells us if a batch can execute in parallel on the GPU.

For each eligible batch 𝛽 ∈ P(𝑣𝑖 ) the algorithm generates a new

vertex 𝑣𝑠 having:

• 𝑡 (𝑣𝑠 ) is the finishing time of the batch 𝛽 , which is also the

finishing time of the scheduling frame.

3
With an abuse of notation, we extend classical operators on sets to batches with the

natural semantics.

Algorithm 1 GPUSched

1: S ← ∅ ⊲ The list of schedulable vertices

2: L ← {𝑣0} ⊲ The list of vertices to expand

3: G ← {{𝑣0}, ∅} ⊲ Init the graph G
4: while L ≠ ∅ do
5: Extract 𝑣𝑖 from L ⊲ Vertex to expand

6: for all Δ ∈ dom(𝑣𝑖 ) do ⊲ Check that domination holds

7: if A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑖 ) + Δ) ≠ ∅ then ⊲ Check Lemma 3.10

8: Remove Δ from dom(𝑣𝑖 )
9: Split(𝑣𝑖 ,Δ)
10: end if
11: end for
12: if ready(𝑣𝑖 ) ≡ ∅ then ⊲ If no ready jobs

13: FastForward(𝑣𝑖 ) ⊲ Skip idle time

14: end if
15: Compute set of eligible batches P(𝑣𝑖 )
16: for all 𝛽 ∈ P(𝑣𝑖 ) do
17: create vertex(𝑣𝑠 )
18: 𝑡 (𝑣𝑠 ) ← 𝑡 (𝑣𝑖 ) +𝐶 (𝛽) ⊲ Compute frame end

19: ready(𝑣𝑠 ) ← ready(𝑣𝑖 ) \ 𝛽 ∪ A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑠 ))
20: exe(𝑣𝑠 ) ← exe(𝑣𝑖 ) ∪ 𝛽

21: dom(𝑣𝑠 ) ← dom(𝑣𝑖 )
22: end create
23: if no deadline miss ∈ [𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑠 )] then
24: dominated← false
25: for all 𝑣 𝑗 ∈ V do ⊲ Check dominance

26: if 𝑣𝑠 ⊴ 𝑣 𝑗 then ⊲ If 𝑣𝑠 is dominated

27: Merge(𝑣 𝑗 , 𝑡 (𝑣𝑠 ) − 𝑡 (𝑣 𝑗 ))
28: dominated← true
29: break ⊲ Stop checking domination

30: else
31: if 𝑣 𝑗 ⊴ 𝑣𝑠 then ⊲ If 𝑣𝑠 dominates 𝑣 𝑗
32: Merge(𝑣𝑠 , 𝑡 (𝑣 𝑗 ) − 𝑡 (𝑣𝑠 ))
33: discard 𝑣 𝑗 and its successors in G, L
34: end if
35: end if
36: end for
37: if not dominated then
38: Add 𝑣𝑠 to G as successor of 𝑣𝑖
39: if 𝑡 (𝑣𝑠 ) < 𝐻 then
40: Add 𝑣𝑠 to L
41: else
42: Add 𝑣𝑠 to S
43: end if
44: end if
45: end if
46: end for
47: end while

• exe(𝑣𝑠 ) = exe(𝑣𝑠 ) ∪ 𝛽 ;

• ready(𝑣𝑠 ) = ready(𝑣𝑖 ) \ 𝛽𝑘 ∪ A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑠 ),);
• dom(𝑣𝑠 ) = dom(𝑣𝑖 ) (see next section for an explanation of

this part).



RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

If the finishing time of the scheduling frame is beyond the deadline

of any of the executed jobs, then a job has missed its deadline. The

vertex is then pruned and will not be added to the graph (line 23).

The new vertex 𝑣𝑠 is then analyzed in the merging phase to see

if we really need to add it to the graph (Lines 25-37). If this new

vertex is not dominated, it is added to the graph as a successor of

vertex 𝑣𝑖 and it is added to the list L of vertices that need to be

further expanded.

3.4 Domination relation
To reduce the number of vertices that need to be explored,GPUSched
introduces a domination relation between vertices.

Definition 3.4 (Domination relation.). A vertex 𝑣 𝑗 is dominated by

vertex 𝑣𝑖 , and we write 𝑣 𝑗 ⊴𝑣𝑖 , if and only if the following conditions
are verified:

exe(𝑣 𝑗 ) ≡ exe(𝑣𝑖 ) ∧ ready(𝑣 𝑗 ) ≡ ready(𝑣𝑖 ) ∧ 𝑡 (𝑣 𝑗 ) ≥ 𝑡 (𝑣𝑖 )

The domination relation tells us that the two vertices, 𝑣 𝑗 and 𝑣𝑖 ,

represent two different states of the system in which exactly the

same set of jobs has been processed (exe(𝑣 𝑗 ) ≡ exe(𝑣𝑖 )) and the

same set of jobs is ready to be executed (ready(𝑣 𝑗 ) ≡ ready(𝑣𝑖 )).
However, 𝑡 (𝑣𝑖 ) is no later than 𝑡 (𝑣 𝑗 ), therefore the schedule rep-
resented by 𝑣𝑖 is no worse than the schedule represented by 𝑣 𝑗 , as

stated by the following lemmas.

Lemma 3.5. Let us assume two vertices 𝑣𝑖 and 𝑣 𝑗 such that 𝑣 𝑗 ⊴ 𝑣𝑖 .
If a job’s deadline is missed in the scheduling frame ending at 𝑣 𝑗 ,
then a deadline is also missed in the scheduling frame ending at 𝑣𝑖 .
Conversely, if no deadline is missed in 𝑣𝑖 , then no deadline is missed
in 𝑣 𝑗 .

Proof. Descends directly from the definition of domination re-

lation and scheduling frame. □

Lemma 3.6. Let us assume two vertices 𝑣𝑖 and 𝑣 𝑗 such that 𝑣 𝑗 ⊴ 𝑣𝑖 .
Then, no jobs arrives between 𝑡 (𝑣 𝑗 ) and 𝑡 (𝑣𝑖 ):

A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣 𝑗 )) ≡ ∅

Proof. By contradiction: a job arriving between 𝑡 (𝑣 𝑗 ) and 𝑡 (𝑣𝑖 )
would be in ready(𝑣𝑖 ) but not in ready(𝑣 𝑗 ) and this contradicts the

hypothesis that 𝑣 𝑗 ⊴ 𝑣𝑖 . □

As a consequence of Lemma 3.6, the possible eligible batches in 𝑣 𝑗
are the same as those in 𝑣𝑖 and therefore the immediate successors

of 𝑣 𝑗 are similar to the immediate successors of 𝑣𝑖 , in the sense

that they execute the same jobs, however with a possibly earlier

finishing time.

Definition 3.7 (Delta). Let us assume two vertices 𝑣𝑖 and 𝑣 𝑗 such

that 𝑣 𝑗 ⊴ 𝑣𝑖 . We denote by Δ 𝑗,𝑖 = 𝑡 (𝑣 𝑗 ) − 𝑡 (𝑣𝑖 ) ≥ 0 the interval of

time between the two vertices.

Lemma 3.8. Let 𝑣𝑖 and 𝑣 𝑗 be two vertices of the scheduling graph,
such that 𝑣 𝑗 ⊴ 𝑣𝑖 .

Consider a vertex 𝑣 ′𝑗 immediate successor of 𝑣 𝑗 , and let the edge
𝑒 (𝑣 𝑗 , 𝑣 ′𝑗 ) be annotated by job batch 𝛽𝑥 ∈ P(𝑣 𝑗 ) (we remind the reader
that P(𝑣 𝑗 ) is the set of all eligible job batches in 𝑣 𝑗 ).

Then, it exists a vertex 𝑣 ′𝑖 ∈ succ(𝑣𝑖 ) such that:
• the edge 𝑒 (𝑣𝑖 , 𝑣 ′𝑖 ) is annotated with 𝛽𝑥 ∈ P(𝑣𝑖 ) ≡ P(𝑣 𝑗 );

• 𝑡 (𝑣 ′𝑖 ) = 𝑡 (𝑣 ′𝑗 ) + Δ 𝑗,𝑖 .

Proof. Since 𝑣 𝑗 ⊴𝑣𝑖 , by definition ready(𝑣 𝑗 ) ≡ ready(𝑣𝑖 ), hence
P(𝑣 𝑗 ) ≡ P(𝑣𝑖 ). Therefore, every successor of 𝑣 𝑗 has a correspond-

ing vertex successor of 𝑣𝑖 for which the same batch of jobs is exe-

cuted. Since the same batch of jobs is executed in the two edges,

their execution timemust be the same, let it be 𝑥 . Then, by definition

of Δ 𝑗,𝑖 ,

𝑡 (𝑣 ′𝑖 ) = 𝑡 (𝑣𝑖 ) + 𝑥 = 𝑡 (𝑣 𝑗 ) + Δ 𝑗,𝑖 + 𝑥 = 𝑡 (𝑣 ′𝑗 ) + Δ 𝑗,𝑖 .

□

Notice that, if the domination relation holds for two vertices

𝑣 𝑗 ⊴ 𝑣𝑖 , it may not hold for all of their successors. In fact, the set of

their ready jobs can be different, because the respective schedul-

ing frames end at different instants, as explained in the following

example.

Example 3.9. Consider vertices 𝑣𝑖 and 𝑣 𝑗 with 𝑣 𝑗 ⊴𝑣𝑖 , ready(𝑣𝑖 ) =
ready(𝑣 𝑗 ) = {𝐽1, 𝐽2, 𝐽3}, 𝑡 (𝑣𝑖 ) = 200, 𝑡 (𝑣 𝑗 ) = 220, Δ 𝑗,𝑖 = 20.

Let us consider the job batch 𝛽𝑥 = ⟨𝐽1, 𝐽2⟩, whose execution time

is 50. Further, suppose that job 𝐽4 arrives at time a(𝐽4) = 260.

From 𝑣𝑖 we can generate vertex 𝑣
′
𝑖 with 𝑡 (𝑣

′
𝑖 ) = 250 and ready(𝑣 ′𝑖 ) =

{𝐽3} (because 𝐽4 has not arrived yet). The set of eligible batches in

𝑣 ′𝑖 is P(𝑣
′
𝑖 ) = {⟨𝐽3⟩}.

From 𝑣 𝑗 we can generate vertex 𝑣
′
𝑗 with 𝑡 (𝑣

′
𝑗 ) = 270 and ready(𝑣 ′𝑗 ) =

{𝐽3, 𝐽4}, and the set of eligible batches isP(𝑣 ′𝑗 ) = {⟨𝐽3⟩, ⟨𝐽4⟩, ⟨𝐽3, 𝐽4⟩}.
Notice that, 𝑣 ′𝑖 does not dominate 𝑣 ′𝑗 because job 𝐽4 arrived be-

tween 𝑡 (𝑣 ′𝑖 ) and 𝑡 (𝑣
′
𝑗 ).

This means that, starting from 𝑣 ′𝑗 we can generate states that

cannot be generated from 𝑣 ′𝑖 . Hence, we cannot eliminate node 𝑣 ′𝑗
from the analysis, otherwise the exploration of the task graph will

be incomplete. □

To avoid this kind of situations, we keep track of the difference

in completion time between the dominated vertices and the dom-

inating one with the list dom(𝑣𝑖 ). This will allow us to check if

a timing anomaly might occur in the future, and ensure that the

domination relationship can be propagated to the successors.

The following lemma gives us the condition for the domination

of the successors.

Lemma 3.10. Let 𝑣𝑖 and 𝑣 𝑗 be two vertices of the scheduling graph,
such that 𝑣 𝑗 ⊴ 𝑣𝑖 . Let 𝑣 ′𝑗 be an immediate successor of 𝑣 𝑗 , and let 𝛽𝑥
be the batch of jobs executed in the scheduling frame between 𝑣 𝑗 and
𝑣 ′𝑗 . Let 𝑣

′
𝑖 be the immediate successor of 𝑣𝑖 such that the same batch

of jobs 𝛽𝑥 is executed from 𝑣𝑖 to 𝑣 ′𝑖 .
Then, 𝑣 ′𝑗 ⊴ 𝑣

′
𝑖 if and only if A(𝑡 (𝑣 ′𝑖 ), 𝑡 (𝑣

′
𝑖 ) + Δ 𝑗,𝑖 ) ≡ ∅.

Proof. Let𝐶 (𝛽𝑥 ) denote the execution time of the batch of jobs

𝛽𝑥 . By definition of the domination relation we have that 𝑣 ′𝑗 ⊴ 𝑣
′
𝑖

iff ready(𝑣 ′𝑗 ) ≡ ready(𝑣 ′𝑖 ). The latter is true only if the set of jobs

A(𝑡 (𝑣 𝑗 ), 𝑡 (𝑣 𝑗 ) + 𝐶 (𝛽𝑥 )) ≡ A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑖 ) + 𝐶 (𝛽𝑥 )). The interval

[𝑡 (𝑣𝑖 ), 𝑡 (𝑣 𝑗 ) +𝐶 (𝛽𝑥 )] can be split in three parts:

• Since 𝑣 𝑗 ⊴ 𝑣𝑖 , no job arrives in interval [𝑡 (𝑣 𝑗 ), 𝑡 (𝑣𝑖 )].
• All jobs arriving in [𝑡 (𝑣 𝑗 ), 𝑡 (𝑣 ′𝑖 )] belong to ready(𝑣 ′𝑗 ) and to

ready(𝑣 ′𝑖 ); in fact, they arrive after the two scheduling frames

have been started and they must wait for their completion

before being considered for execution.



Towards Efficient Parallel GPU Scheduling: Interference Awareness with Schedule Abstraction RTNS 2024, November 7–8, 2024, Porto, Portugal

Algorithm 2Merging two vertices

1: procedure Merge(𝑣𝑖 ,Δ) ⊲ 𝑣𝑖 is the dominating vertex

2: dom(𝑣𝑖 ) ← dom(𝑣𝑖 ) ∪ {Δ}
3: for all 𝑣𝑘 ∈ succ(𝑣𝑖 ) do ⊲ Propagate to successors

4: if A(𝑡 (𝑣𝑘 ), 𝑡 (𝑣𝑘 ) + Δ) ≠ ∅ then ⊲ If it is not dominant

5: Split(𝑣𝑘 ,Δ) ⊲ Split again the node

6: else
7: Merge(𝑣𝑘 ,Δ) ⊲ Else, recursively propagate

domination

8: end if
9: end for
10: end procedure

Algorithm 3 Split vertex

1: procedure Split(𝑣𝑘 ,Δ) ⊲ 𝑣𝑘 is the vertex to be split

2: create vertex(𝑣𝑠 )
3: 𝑡 (𝑣𝑠 ) ← 𝑡 (𝑣𝑘 ) + Δ
4: ready(𝑣𝑠 ) ← ready(𝑣𝑘 ) ∪ A(𝑡 (𝑣𝑘 ), 𝑡 (𝑣𝑘 ) + Δ)
5: exe(𝑣𝑠 ) ← exe(𝑣𝑘 )
6: dom(𝑣𝑠 ) ← dom(𝑣𝑘 ) ⊲ The other deltas are still

respected

7: end create
8: add 𝑣𝑠 to the successors of 𝑣𝑘
9: add 𝑣𝑠 to L
10: end procedure

• If a job arrives in [𝑡 (𝑣 ′𝑖 ), 𝑡 (𝑣
′
𝑗 )], then it will be in ready(𝑣 ′𝑗 )

but it will not be in ready(𝑣 ′𝑖 ); therefore, 𝑣
′
𝑖 does not dominate

𝑣 ′𝑗 .
• If no job arrives in [𝑡 (𝑣 ′𝑖 ), 𝑡 (𝑣

′
𝑗 )], thenA(𝑡 (𝑣

′
𝑖 ), 𝑡 (𝑣

′
𝑖 )+Δ 𝑗,𝑖 ) ≡

∅, and ready(𝑣 ′𝑗 ) ≡ ready(𝑣 ′𝑖 ), hence 𝑣
′
𝑗 ⊴ 𝑣

′
𝑖 .

□

3.5 Merging and splitting
Following Lemma 3.10, when merging a vertex 𝑣 𝑗 into a dominating

vertex 𝑣𝑖 , we need to store their time difference Δ 𝑗,𝑖 in the list

dom(𝑣𝑖 ). Then, vertex 𝑣 𝑗 is not added to the list of vertices to be

explored (or it is removed if it was in that list). In the special case

in which Δ 𝑗,𝑖 = 0, the two vertices are equivalent so we can simply

remove 𝑣 𝑗 and skip the merging phase.

The merging procedure is shown in Algorithm 2. We first add Δ
to the list of domination intervals dom(𝑣𝑖 ). There are two possibili-
ties: either 𝑣𝑖 is a new vertex with no successors yet, in which case

the procedure completes immediately. If 𝑣𝑖 is an already expanded

vertex, then we try to recursively propagate the domination relation

to all successors. For every successor of 𝑣𝑖 , we first check if the con-

dition of Lemma 3.10 is verified; if so, we merge this vertex as well.

If not, we invoke procedure Split (described in Algorithm 3) which

creates a new vertex that reflects the different state: in particular,

the new vertex will contain a ready set ready(𝑣𝑠 ) which includes

the newly arrived jobs.

Let us go back to Algorithm 1 to explain how the merge and

split procedures are used in the graph generation. When generating

the outgoing vertices from 𝑣𝑖 in the exploration phase, for every

Algorithm 4 Fast-Forward procedure

1: procedure FastForward(𝑣𝑖 ) ⊲ 𝑣𝑖 is the vertex to be advanced

2: 𝛿 ← min{a(𝐽 ) |𝐽 ∈ A(𝑡 (𝑣𝑖 ), 𝐻 )} − 𝑡 (𝑣𝑖 )
3: dom(𝑣𝑖 ) ← ∅
4: 𝑡 (𝑣𝑖 ) ← 𝑡 (𝑣𝑖 ) + 𝛿
5: ready(𝑣𝑖 ) ← A(𝑡 (𝑣𝑖 ), 𝑡 (𝑣𝑖 ))
6: end procedure

Δ ∈ dom(𝑣𝑖 ) we check if there is a job arrival in the interval of

length Δ after the finishing time (line 6); if a job arrival exist, we

split again the schedule and generate one more vertex because the

domination relation does not hold anymore between the successor

of 𝑣𝑖 and the corresponding dominated vertex.

After that, the algorithm checks for idle time. Suppose a vertex

has ready(𝑣𝑖 ) ≡ ∅ (line 13), and let 𝑡 (𝑣𝑖 ) + 𝛿 be the earliest arrival

time. We know that for every Δ ∈ dom(𝑣𝑖 ) there is no arrival in

𝑡 (𝑣𝑖 ) + Δ (because this check comes after lines 6-11), hence Δ ≤ 𝛿 .

Therefore, all vertices dominated by 𝑣𝑖 experience the same idle

time; as a consequence, we can skip this idle time in 𝑣𝑖 and in all

dominated vertices by advancing 𝑡 (𝑣𝑖 ) ← 𝑡 (𝑣𝑖 ) + 𝛿 and by setting

all Δ ∈ dom(𝑣𝑖 ) to 0 (see Algorithm 4). Notice that, when Δ ≡ 0,

the dominated vertices are equivalent to the dominating one, so we

can simply discard them from the list: dom(𝑣𝑖 ) ← ∅.
After creating the vertex 𝑣𝑠 , and after ensuring that no deadline

miss happens in the scheduling frame, we compare 𝑣𝑠 against all

existing vertices in the graph, looking for a domination (line 25). If

𝑣𝑠 is dominated, we merge it into the dominating vertex (line 26). If

𝑣𝑠 dominates an existing vertex 𝑣 𝑗 , we discard the entire subgraph

starting from 𝑣 𝑗 and we merge it into 𝑣𝑠 .

Before continuing the explanation of GPUSched, we present the
following lemma that resumes the properties of the merge and split

operations.

Lemma 3.11 (All successors are dominated). Let 𝑣𝑖 and 𝑣 𝑗 be
two vertices of the scheduling graph, such that 𝑣 𝑗 ⊴ 𝑣𝑖 . Let us suppose
that 𝑣 𝑗 is not discarded by the graph, and let 𝑣 ′𝑗 be a successor of 𝑣 𝑗 .

Then, there is a successor 𝑣 ′𝑖 of 𝑣𝑖 in the graph such that 𝑣 ′𝑗 ⊴ 𝑣
′
𝑖 .

Proof. Since 𝑣 𝑗 ⊴𝑣𝑖 ,GPUSched keeps the difference Δ = 𝑡 (𝑣 𝑗 )−
𝑡 (𝑣𝑖 ) stored in the list dom(𝑣𝑖 ). By induction. In the base step, let us

consider the immediate successors. Suppose that 𝑣 ′𝑗 is an immediate
successor of 𝑣 𝑗 and let 𝛽 be the job batch scheduled between 𝑣 𝑗 and

𝑣 ′𝑗 . By Lemma 3.8, there is an immediate successor 𝑣 ′𝑖 of 𝑣𝑖 such that

the same job batch 𝛽 is scheduled between the two. By Lemma 3.10,

there are 2 cases to consider:

• Case A: the interval [𝑡 (𝑣 ′𝑖 ), 𝑡 (𝑣
′
𝑖 ) + Δ] does not contain any

new job arrival. Then 𝑣 ′𝑗 ⊴ 𝑣
′
𝑖 ;

• Case B: the interval [𝑡 (𝑣 ′𝑖 ), 𝑡 (𝑣
′
𝑖 ) + Δ] contains a new job

arrival; in this case, GPUSched invokes the Split procedure
which generates a new vertex 𝑣𝑠 , successor of 𝑣𝑖 , with:

– 𝑡 (𝑣𝑠 ) = 𝑡 (𝑣 ′𝑖 ) + Δ = 𝑡 (𝑣 ′𝑗 ) (by construction of Δ);

– ready(𝑣𝑠 ) = ready(𝑣 ′𝑗 );
– exe(𝑣𝑠 ) = exe(𝑣 ′𝑗 ) = exe(𝑣 ′𝑖 )
Hence, 𝑣𝑠 is a successor of 𝑣𝑖 and 𝑣

′
𝑗 ⊴ 𝑣𝑠 .



RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

By induction, we can apply the same reasoning to any non-

immediate successors of 𝑣𝑖 and 𝑣 𝑗 . We can conclude that, for any

vertex that would have been generated directly or indirectly by 𝑣 𝑗 ,

we can find a successor of 𝑣𝑖 that dominates it. □

We now analyse Algorithm 1, starting at line 37. If 𝑣𝑠 is not

dominated and it finishes within the hyperperiod, it is added to

list L, otherwise it is the last vertex of a schedulable path and it is

added to the list of vertices S. The algorithm terminates when the

expansion list L is empty and the schedulable solutions are in S.
Each schedulable solution produced byGPUSched is one feasible

schedule that respects all the job deadlines when executed by the

Parallel Batch Scheduler described in Section 2.4. To implement such

schedule, we select one of the vertices from S, let it be 𝑣𝑠 and we

reconstruct the path leading to 𝑣𝑠 from the graph. Since every vertex

in the path represents the state of the schedule at the beginning of

a scheduling frame, and each edge represents the batch of jobs to

be executed, we can build a scheduling table that will be given as

input to the Parallel Batch Scheduler for submitting the batches in

the given order and at the given time to the GPU block scheduler.

We now describe the algorithm through an example.

Example 3.12. Let us consider the example illustrated in Figure 3

that shows the expansion and merging operations on the graph. We

consider the following sequence of jobs: 𝐽3 (𝑎 = 6,𝐶 = 5), 𝐽4 (𝑎 =

6,𝐶 = 4), 𝐽5 (𝑎 = 17,𝐶 = 6), 𝐽6 (𝑎 = 18,𝐶 = 5). For the sake of

simplicity, we assume that execution time of parallel tasks is equal

to their execution time when executing in isolation.

For vertices 𝑣1 and 𝑣2, we suppose that 𝑡 (𝑣1) = 10, 𝑡 (𝑣2) = 7

(finishing times are shown in parenthesis in the figure). Also, sup-

pose that exe(𝑣1) ≡ exe(𝑣1) and ready(𝑣1) ≡ ready(𝑣2) ≡ {𝐽3, 𝐽4}.
Therefore 𝑣2 ⊴ 𝑣1 and 𝑣1 is merged into 𝑣2 with Δ2,1 = 3.

The algorithm GPUSched explores the eligible batches for the

ready jobs 𝐽3 and 𝐽4 starting from 𝑣2. When 𝐽3 is executed first, it

creates vertex 𝑣3, finishing at time instant 𝑡 (𝑣3) = 12. When 𝐽4 is

executed first, it creates 𝑣4, finishing at time instant 𝑡 (𝑣4) = 11. It is

also possible to submit 𝐽3 and 𝐽4 in parallel with submission 𝐽3/𝐽4
and 𝐽4/𝐽3, creating 𝑣5 and 𝑣6, both finishing at time instant 15, so

𝑣5 is merged with 𝑣6. The time difference Δ2,1 stored in dom(𝑣2)
is propagated to all of its successors. In vertex 𝑣3, we have only 𝐽4
as a ready job; therefore, it is executed, creating vertex 𝑣7, ending

at time instant 𝑡 (𝑣7) = 16. Similarly, from 𝑣4, only 𝐽3 is ready to

execute, leading to the creation of vertex 𝑣8, finishing at time instant

𝑡 (𝑣8) = 16. Vertices 𝑣7 and 𝑣8 are therefore merged.

When GPUSched analyses 𝑣6, it finds an empty ready job set,

therefore it skip the idle time until 𝑡 = 17 and dom(𝑣6) ← ∅. From
there, only 𝐽5 is ready, so it generates vertex 𝑣9 with 𝑡 (𝑣9) = 23.

Then, it analyses 𝑣8. It notices that 𝑡 (𝑣8) + Δ2,1 = 18 > 17,

therefore the domination with 𝑣2 successors is not valid anymore.

It performs a split to reflect this generating vertex 𝑣 ′
8
with 𝑡 (𝑣 ′

8
) =

16 + Δ2,1 = 19. Then, like 𝑣6, it skips the idle time from 16 to 17,

and generates vertex 𝑣16 which is immediately merged with 𝑣9.

𝑣 ′
8
has both 𝐽5 and 𝐽6 in its ready job list, and it can explore their

different possible submission profiles, generating vertices 𝑣11, 𝑣12
and 𝑣14. The first one is merged into 𝑣9 with a Δ9,11 = 2; from 𝑣9,

the last job 𝐽6 is executed to create 𝑣13 with 𝑡 (𝑣13) = 28.

Starting from 𝑣 ′
8
, it is also possible to submit 𝐽6 and further

𝐽5, creating 𝑣14 and 𝑣15 with completion times of 24 and 30. The

parallel submission of 𝐽5 and 𝐽6 from 𝑣 ′
8
allows having the shortest

completion time at 25 in vertex 𝑣12. This vertex dominates all others

as it executes all jobs and completes at time instant 25.

Theorem 3.13. Consider a set of periodic tasks to be executed on a
GPU, with hyperperiod 𝐻 , which produces the set of jobs J in [0, 𝐻 ].

Let S be the set of schedules produced by Algorithm GPUSched. If
S ≡ ∅ then no schedulable solution can be found for PBS.

Proof. By contradiction. Suppose a schedule exists for the PBS,

but GPUSched is unable to find it. First, notice that all possible

combinations and permutations of jobs that can execute completely

in parallel or serialized (as required by the Parallel Batch Scheduler)
are generated by GPUSched. However, some of these combinations

may results in vertices that are discarded from the graph, either

because they are pruned, or because they aremerged: any successor
from these vertices will not end up in S.

A vertex 𝑣 𝑗 is pruned if a deadline is missed: any path containing

𝑣 𝑗 is not schedulable, and any successor of 𝑣 𝑗 will not be part of a

feasible schedule. A vertex 𝑣 𝑗 is merged if ∃𝑣𝑖 , 𝑣 𝑗 ⊴ 𝑣𝑖 . No successor
of 𝑣 𝑗 will be in S. However, from Lemma 3.11, for any successor 𝑣 ′𝑗
of 𝑣 𝑗 (immediate or not), there is a successor 𝑣 ′𝑖 of 𝑣𝑖 that dominates

it. From Lemma 3.5, if no deadline is missed in 𝑣 ′𝑗 , then no deadline

is missed in 𝑣 ′𝑖 . Hence, if there is a feasible successor of 𝑣 𝑗 , there is
a successor of 𝑣𝑖 ∈ S, which is a contradiction. □

One consequence of Theorem 3.13 is that GPUSched is optimal
for PBS: it analyses all possible schedules that can be generated by

PBS, and selects the schedulable ones.

4 IMPLEMENTABILITY OF PBS SCHEDULER
4.1 PBS Scheduler over GPU Internals
We illustrate the usefulness of our approach by presenting a configu-

ration tool that takes as input the schedule generated byGPUSched,
builds the scheduling table, and submits the kernels according to

the order established in the table.

To achieve this, we assign a CUDA stream to every task for all

jobs submissions related to that task. All CUDA streams have the

same priority. During the initialization phase, our PBS scheduler

parses a trace file containing the activation time for every batch of

jobs and the list of considered kernels.

Our PBS scheduler then loops over the different table entries. At

each iteration, it submits the corresponding jobs (kernels) to the

GPU, with each job in its own CUDA stream. Further, it invokes

cudaDeviceSynchronize() to enforce their synchronization, and

waits for the batch completion. There are two possible strategies at

this point. In the first strategy, a timer sleeps until the next entry ac-

tivation, strictly adhering to the prebuilt schedule. Alternatively, the

scheduler might wait for the latest submission within the batch to

be released, allowing it to start earlier and reclaim the unused execu-

tion time for the next batches. This tool and our schedulability anal-

ysis tool are available on https://gitlab.cristal.univ-lille.fr/gpusched.

4.2 The oracle
In this work, we assume there exists an oracle capable of determin-

ing whether kernels can be executed in parallel or not, and if so,

https://gitlab.cristal.univ-lille.fr/gpusched


Towards Efficient Parallel GPU Scheduling: Interference Awareness with Schedule Abstraction RTNS 2024, November 7–8, 2024, Porto, Portugal

· · · 𝑣1 (10)

· · · 𝑣2 (7)

𝑣3 (12)

𝑣4 (11)

𝑣5 (12)

𝑣6 (12)

𝑣7 (16)

𝑣8 (16)

𝑣 ′
8
(19)

𝑣9 (23)

𝑣12 (25)

𝑣13 (28)

𝑣11 (25)

𝑣14 (24)

𝑣15 (30)

𝑣16 (23)

𝐽3

𝐽4

𝐽3/𝐽4
𝐽4/𝐽3

𝐽4

merge

𝐽3

𝐽6

merge

fast-forward,𝐽5

merge

split

𝐽5/𝐽6 or 𝐽6/𝐽5

merge

fast-forward,𝐽5

𝐽5

𝐽6

merge

𝐽5

merge

merge

Figure 3: Example of merge

to define their completion time. For the first part, we take into ac-

count the kernel submission parameters (number of blocks, threads,

registers, and shared memory). We use the “revealed hidden details”

reported in the related work. This part of the oracle is integrated

into our schedulability analysis tool available online.

Furthermore, for every combination of parallelizable kernels, we
build benchmarking scenarios. In each scenario, kernels are sub-

mitted to the GPU, each in its own stream. All streams have the same

priority, similar to our runtime.We then invoke cudaDeviceSynchr-
onize and measure the elapsed time between kernel submissions

and the return of cudaDeviceSynchronize. We repeat this opera-

tion multiple times. From this, one can extract either worst-case,

typical, or the average scenario according to the required target

guarantees.

5 STATE OF THE ART
In this work, we focus on scheduling issues within GPUs. This

has been a hot topic in the real-time systems community during

the last few years, with multiple efforts aimed at providing real-

time guarantees for parallel application running on GPUs. We can

classify related work on GPU scheduling into three classes: papers

that focus on (1) reverse engineering the GPU to extract internal

features, (2) works to estimate execution time profiles, and (3) works

interested in the scheduling within the GPU itself.

The internal design of many GPUs (NVIDIA, AMD) is closed-

source due to intellectual property concerns. Multiple efforts have

focused on reverse engineering their internal scheduling mecha-

nisms. For Nvidia GPUs, a set of experiments have been carried out

in [2] and the authors have revealed important aspects of a GPU

scheduler. The authors of [14] continued in these efforts to model

the hierarchical scheduling structure of NVIDIA GPUs. AMD GPUs

are presented as a viable alternative to execute safety critical appli-

cations in [16]. The authors of [17] identified the different points

that might affect the performance of a real-time task executing on

AMD GPUs, and they reported their internal scheduling rules.

With regards to estimating the execution time within the GPU,

multiple efforts are being made using different techniques. The

work in [9] focuses on building Control Flow Graphs for a single

GPU warp. The authors of [11] employ a different approach to

estimate the execution time of a kernel using machine learning

methodologies. Authors of [6] investigate the interference between

CPU cores and integrated accross different Integrated GPU. In [5],

an exhaustive set of experiments is conducted across multiple gener-

ations of NVIDIA Jetson boards to analyze the evolution of memory

contention. In [22], authors provide a method for producing stress
programs that intentionally contend for GPU resources in order to

enable more confident measurement-based WCET estimations.

In order to ensure the schedulability of real-time applications, it

is required to precisely control their execution order, and this often

means to bypass the closed-source internal mechanisms of the GPU.

Several works proposed building real-time schedulers on top of the

GPU internal schedulers [4, 7, 23]. The GPU is treated as a single

resource scheduled using non-preemptive algorithms via software

locks [7], or as a preemptive resource bymodifying the NVIDIA pro-

prietary drivers [4]. With the continuous increase in GPU compute

power, it becomes urgent to consider parallel execution within the

GPU to improve its utilization. This can be achieved through parti-

tioning, or through parallel workload submissions techniques such

as Spatial Multikernel or Spatial Partitioning [1] and Simultaneous

Multikernel (SMK) [21]. Some works [1, 19, 24, 26] partition the

GPU based on workload characteristics, such as compute-bound,

memory/interconnect-bound, and problem-size-bound. They evalu-

ate various compile-time spatial partitioning schemes. Recent works

[18, 27], SM-level scheduling is used to improve GPUs resources

utilization. This can be even more important as recent work allows

to partiton recent NVIDIA GPUs’ SMs transparently using library

titled libsmctrl [3].
Another crucial aspect of our paper is the reduction of schedula-

bility analysis complexity for a set of real-time tasks executing in

parallel on the GPU. Schedulability analysis for a set of independent

non-preemptive tasks has always been a hot topic in real-time sys-

tems. However, the nature of the target platforms can significantly

influence the analysis methodologies. Classical schedulability anal-

ysis for multicores is typically classified to those for partitioned and

global schedulers. Various schedulability tests have been proposed



RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

for both partitioned and global scheduling strategies. A recent re-

view and pointers to these analysis can be found in [20].

Recently, a novel schedulability worst-case response time analy-

sis technique based on exploring all possible execution states has

been proposed in [12, 13], called schedule abstraction graphs (SAG).

SAG is a promising approach that balances schedulability analy-

sis pessimism and temporal complexity. It uses graphs to explore

the space of all possible schedules, utilizing state abstraction. The

goal is to build possible execution states, to derive some real-time

properties such as WCRT. It has been proven efficient compared to

related work.

Our work employs a similar approach but with a completely

different methodology and objectives. Instead of finding a real-time

property by identifying the worst scenario, our scheduling graph

enforces scheduling decisions to find the most suitable sequence

that allows the system to be schedulable. These decisions are taken

during the construction of the scheduling graph, unlike SAG, which

simulates a scheduler. In our scheduling graph, the process stops as

soon as the system finds a single feasible execution trace from time

0 to the hyper-period, while SAG must explore all system states be-

fore deriving any property. Additionally, scheduling within a GPU

is significantly different from the related work of SAG. GPU sched-

uling is more akin to GANG scheduling as a task might execute

in parallel on different SMs compared to global scheduling, where

a task always execute on a single core. Henceforth, the core state

does not depend only on the local core execution state, but on the

state on all cores at the same time. Moreover, the exploration space

in SAG depends only on task execution, whereas our approach

also accounts for interference. SAG produces the a single property,

while our approach generates a schedule. Our approach and SAG

shares the idea of pruning and merging to avoid combinatorial state

space explosion, while these two operations are still very different.

6 RESULTS AND DISCUSSIONS
In this section, we evaluate the efficacy of PBS’s schedulability

analysis in comparison to exclusive-serialized and completely par-

allel executions. In the first approach (EDFserial) each task uses

the GPU as a single resource, and jobs are scheduled in EDF order.

In contrast, in the completely parallel approach (EDFParallel) all
eligible jobs are executed in the EDF order: the algorithm checks

the eligibility of each job in the EDF order, and if a job is eligible it

is included in the batch. This algorithm is completely deterministic

as it always selects the same batch from the same ready set.

6.1 Parameters of the experiments
We consider a GPU consisting of 8 SMs, each SM may contain up to

1024 threads and 32 blocks. The task set generation process begins

with two inputs: the target utilization𝑈 and the number of tasks

𝑛. For each task set, we generate 𝑛 tasks with their parameters to

meet the target total utilization. Task periods are randomly selected

from a predefined list spanning from 400 to 1600. This strategy

mitigates the generation of excessively large hyper-periods and

subsequently reduces the overall number of jobs. We employ the

UUniFast-Discard algorithm [8] to generate the utilizations for 𝑛

tasks. The execution time for each task is computed as the multipli-

cation of its utilization and period, representing the time required

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ep
ta
nc
e
ra
ti
o

GPUsched small sf
EDFserial
EDFParallel small

(a) Schedulability for small slowdown factors.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ep
ta
nc
e
ra
ti
o

GPUsched large sf
EDFserial
EDFParallel large

(b) Schedulability for large slowdown factors.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ep
ta
nc
e
ra
ti
o

GPUsched mix sf
EDFserial
EDFParallel mix

(c) Schedulability for mixed slowdown factors.

Figure 4: Schedulability ratio: varying utilization.

for task execution without any interference. Consequently, the

effectively scheduled workload may be larger than the baseline uti-

lization, as tasks encounter interference when executed in parallel.

Within the uniform approach, the occupancy vector for each task is

generated by multiplying the corresponding GPU capacity by the

task utilization. In terms of interference, we explore three scenar-

ios. Firstly, we simulate relatively small interference by inflating

execution time by slowdown factors in [1, 1.4]. Secondly, we con-
sider larger slowdown impact, randomly chosing slowdown factor

in [1.7, 1.9]. Finally, we introduce completely random slowdown

factors in [1.1, 1.9].



Towards Efficient Parallel GPU Scheduling: Interference Awareness with Schedule Abstraction RTNS 2024, November 7–8, 2024, Porto, Portugal

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization

0

500

1000

1500

2000

C
P
U
ti
m
e
(m

s)

(a) Running time of GPUSched for task sets of 5 tasks.

4 5 6

Number of tasks

10
1

10
2

10
3

10
4

C
P
U
ti
m
e
(m

s)

(b) Running time as a function of the number of tasks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Job set size

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ve
rt
ic
es

(c) Size of the graph with and without vertex merging.

Figure 5: Running time and graph size.

6.2 Simulations and discussions
In Figure 4 we show the schedulability ratio obtained by analysing

tasks sets consisting of 5 tasks, with varying utilizations from 0.2 to

2.0, for different interference scenarios. For each point in the graphs

we randomly generated 50 sets, and we run GPUSched on each of

them. On the Y axis we report the percentage of schedulable task

sets with GPUSched, EDFserial (where no parallelism is permitted)

and EDFParallel. Clearly, GPUSched largely dominates the others

as the utilization increases. We notice that EDFParallel is a good
solution when the interference is small; however, when the inter-

ference increases, its behavior becomes much more unpredictable.

In Figure 5a we show the execution time distribution of the

GPUSched algorithm running on task sets of 5 tasks each in the

large slowdown scenarios. The execution time is in the order of 1

second, with a variability due to the random parameters of the task

set. We also notice that the variability is much smaller for low and

for high utilization: this is due to the fact that, for small utilizations,

a lot of vertices are merged together due to the idle time; and for

large utilizations, many vertices as pruned as non-schedulable. The

distribution is very similar for the other scenarios (not shown here).

In Figure 5b we show the average analysis time of GPUSched as

a function of the number of tasks, for an utilization of𝑈 = 1. The Y

axis is in logarithmic scale (inms): the running time of the algorithm

is highly dependent in the number of tasks. In fact, the algorithm

must generate all possible eligible batches at the beginning of the

scheduling frame, and this means testing all permutations of all

subsets of the ready job set, whose maximum size is equal to the

number of tasks. For practical purposes, current use of modern GPU

consists in executing a few large tasks consisting of many parallel

threads each. We believe that a limit of 6 tasks is still reasonable

for many modern applications. It is currently impossible to use our

algorithm for task sets with more than 6 or 7 tasks.

In Figure 5c, we show how the number of vertices in the graph

grows during the analysis for 5 tasks and utilization equal to 1,

when we merge the vertices (blue line) and when we do not merge

them (red line). On the X axis, we show the job number as analysis

progresses; please notice that the Y-axis is in logarithmic scale. The

number of vertices generated very quickly reaches 10
7
with only

14 jobs when we do not merge vertices; with the merge operation

enabled, the number of vertices remains in the order of 10
3
as the

analysis progresses. This practically demonstrates the effectiveness

of the merge operation for reducing the size of the graph: in fact,

our algorithm is able to analyse tasks sets with up to 6 tasks thanks

to vertex merging. We stopped the analysis after job 14 to avoid an

excessive large number of vertices in the no-merge configuration.

7 CONCLUSION
We proposed a novel approach for executing real-time tasks in par-

allel within the GPU, aiming to enhance GPU resource utilization

while guaranteeing the respect of real-time constraints and mitigat-

ing interference through the use of scheduling graphs. Our work

addresses the challenges of abstracting GPU execution and explores

the different scheduling states through our scheduling graph. A

key challenge in our proposed techniques is the reduction of the

size of the state graphs, without eliminating feasible schedules.

We are working on ways to improve our PBS scheduler. In our

proposed approach, once a batch of jobs is submitted to the GPU

the scheduler has to wait for the completion of the last job before

submitting new jobs to the GPU. This may lead to a waste of re-

sources, because new arriving jobs are blocked until the completion

of the batch even if enough resources are available. However, sub-

mitting new jobs while a batch is executing may add interference

and modify the completion time; therefore, our execution model

is not valid anymore. We are currently working toward extending

the graph representation and the domination relationship to take

into account this new scheduling model.



RTNS 2024, November 7–8, 2024, Porto, Portugal Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

REFERENCES
[1] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for gpgpu

spatial multitasking. In IEEE International Symposium on High-Performance Comp
Architecture, pages 1–12, 2012. doi:10.1109/HPCA.2012.6168946.

[2] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson

Smith. Gpu scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE
Real-Time Systems Symposium (RTSS), pages 104–115, 2017. doi:10.1109/RTSS.
2017.00017.

[3] Joshua Bakita and James H. Anderson. Hardware compute partitioning on nvidia

gpus*. In 2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 54–66, 2023. doi:10.1109/RTAS58335.2023.00012.

[4] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru.

Deadline-based scheduling for gpu with preemption support. In 2018 IEEE Real-
Time Systems Symposium (RTSS), pages 119–130, 2018. doi:10.1109/RTSS.2018.
00021.

[5] Nicola Capodieci, Roberto Cavicchioli, Ignacio Sañudo Olmedo, Marco Solieri,

and Marko Bertogna. Contending memory in heterogeneous socs: Evolution in

nvidia tegra embedded platforms. In 2020 IEEE 26th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pages
1–10, 2020. doi:10.1109/RTCSA50079.2020.9203722.

[6] Roberto Cavicchioli, Nicola Capodieci, andMarko Bertogna. Memory interference

characterization between cpu cores and integrated gpus in mixed-criticality

platforms. In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–10, 2017. doi:10.1109/ETFA.2017.
8247615.

[7] Glenn A Elliott, Bryan C Ward, and James H Anderson. Gpusync: A framework

for real-time gpu management. In 2013 IEEE 34th Real-Time Systems Symposium,

pages 33–44. IEEE, 2013.

[8] P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis of multipro-

cessor tasksets. In 1st International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), pages 6–11, July 2010.

[9] Louison Jeanmougin, Thomas Carle, Pascal Sotin, and Christine Rochange. Warp-

Level CFG Construction for GPU Kernel WCET Analysis. In Peter Wägemann,

editor, 21st International Workshop on Worst-Case Execution Time Analysis (WCET
2023), volume 114, pages 1:1–1:13, Vienne, Austria, July 2023. Schloss Dagstuhl

– Leibniz-Zentrum für Informatik. URL: https://hal.science/hal-04171474, doi:
10.4230/OASIcs.WCET.2023.1.

[10] Alessio Masola, Nicola Capodieci, Roberto Cavicchioli, Ignacio Sanudo Olmedo,

and Benjamin Rouxel. Memory-aware latency prediction model for concurrent

kernels in partitionable gpus: Simulations and experiments. In Dalibor Klusáček,

Julita Corbalán, and Gonzalo P. Rodrigo, editors, Job Scheduling Strategies for
Parallel Processing, pages 46–73, Cham, 2023. Springer Nature Switzerland.

[11] Alessio Masola, Nicola Capodieci, Benjamin Rouxel, Giorgia Franchini, and

Roberto Cavicchioli. Machine learning techniques for understanding and predict-

ing memory interference in cpu-gpu embedded systems. In 2023 IEEE 29th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 147–156, 2023. doi:10.1109/RTCSA58653.2023.00026.

[12] Mitra Nasri and Bjorn B. Brandenburg. An exact and sustainable analysis of

non-preemptive scheduling. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 12–23, 2017. doi:10.1109/RTSS.2017.00009.

[13] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A response-time

analysis for non-preemptive job sets under global scheduling. In Euromicro
Conference on Real-Time Systems, 2018. URL: https://api.semanticscholar.org/

CorpusID:21708009.

[14] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and M. Bertogna. Dissect-

ing the cuda scheduling hierarchy: a performance and predictability perspective.

In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 213–225, 2020. doi:10.1109/RTAS48715.2020.000-5.

[15] Ignacio SañudoOlmedo, Nicola Capodieci, and Roberto Cavicchioli. A perspective

on safety and real-time issues for gpu accelerated adas. In IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, pages 4071–4077,
2018. doi:10.1109/IECON.2018.8591540.

[16] Nathan Otterness and James H. Anderson. AMD GPUs as an Alternative

to NVIDIA for Supporting Real-Time Workloads. In Marcus Völp, editor,

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165

of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:23,

Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.10,

doi:10.4230/LIPIcs.ECRTS.2020.10.
[17] Nathan Otterness and James H. Anderson. Exploring amd gpu scheduling details

by experimenting with “worst practices”. In Proceedings of the 29th International
Conference on Real-Time Networks and Systems, RTNS ’21, page 24–34, New York,

NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453417.
3453432.

[18] Sujan Kumar Saha, Yecheng Xiang, and Hyoseung Kim. Stgm: Spatio-temporal

gpu management for real-time tasks. In 2019 IEEE 25th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages

1–6, 2019. doi:10.1109/RTCSA.2019.8864564.
[19] Reyyan Tekin, Houssam-Eddine Zahaf, and Giuseppe Lipari. Pruda: An api for

time and space predictible programming in nvdia gpus using cuda. In Junior
Workshop: JRWRTC-Real-Time Networks and Systems 2019, 2019.

[20] Micaela VERUCCHI and Marko BERTOGNA. A comprehensive analysis of dag

tasks: solutions for modern real-time embedded systems.

[21] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Simultaneous

multikernel gpu: Multi-tasking throughput processors via fine-grained sharing.

In 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 358–369. IEEE, 2016. doi:10.1109/HPCA.2016.7446078.

[22] Tyler Yandrofski, Jingyuan Chen, Nathan Otterness, James H. Anderson, and

F. Donelson Smith. Making powerful enemies on nvidia gpus. In 2022 IEEE Real-
Time Systems Symposium (RTSS), pages 383–395, 2022. doi:10.1109/RTSS55097.
2022.00040.

[23] Houssam-Eddine Zahaf and Giuseppe Lipari. Design and analysis of program-

ming platform for accelerated gpu-like architectures. In Proceedings of the
28th International Conference on Real-Time Networks and Systems, RTNS ’20,

page 1–10, New York, NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3394810.3394826.
[24] Houssam-Eddine Zahaf and Giuseppe Lipari. Design and analysis of program-

ming platform for accelerated gpu-like architectures. In Proceedings of the
28th International Conference on Real-Time Networks and Systems, RTNS 2020,

page 1–10, New York, NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3394810.3394826.
[25] Houssam-Eddine Zahaf, Ignacio Sanudo Olmedo, Jayati Singh, Nicola Capodieci,

and Sebastien Faucou. Contention-aware gpu partitioning and task-to-partition

allocation for real-time workloads. In Proceedings of the 29th International Con-
ference on Real-Time Networks and Systems, RTNS ’21, page 226–236, New York,

NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453417.
3453439.

[26] Houssam-Eddine Zahaf, Ignacio Sanudo Olmedo, Jayati Singh, Nicola Capodieci,

and Sebastien Faucou. Contention-aware gpu partitioning and task-to-partition

allocation for real-time workloads. In Proceedings of the 29th International Con-
ference on Real-Time Networks and Systems, RTNS ’21, page 226–236, New York,

NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453417.
3453439.

[27] An Zou, Jing Li, Christopher D. Gill, and Xuan Zhang. Rtgpu: Real-time gpu

scheduling of hard deadline parallel tasks with fine-grain utilization. IEEE
Transactions on Parallel and Distributed Systems, 34(5):1450–1465, 2023. doi:
10.1109/TPDS.2023.3235439.

https://doi.org/10.1109/HPCA.2012.6168946
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTAS58335.2023.00012
https://doi.org/10.1109/RTSS.2018.00021
https://doi.org/10.1109/RTSS.2018.00021
https://doi.org/10.1109/RTCSA50079.2020.9203722
https://doi.org/10.1109/ETFA.2017.8247615
https://doi.org/10.1109/ETFA.2017.8247615
https://hal.science/hal-04171474
https://doi.org/10.4230/OASIcs.WCET.2023.1
https://doi.org/10.4230/OASIcs.WCET.2023.1
https://doi.org/10.1109/RTCSA58653.2023.00026
https://doi.org/10.1109/RTSS.2017.00009
https://api.semanticscholar.org/CorpusID:21708009
https://api.semanticscholar.org/CorpusID:21708009
https://doi.org/10.1109/RTAS48715.2020.000-5
https://doi.org/10.1109/IECON.2018.8591540
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.10
https://doi.org/10.4230/LIPIcs.ECRTS.2020.10
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.1109/RTCSA.2019.8864564
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1109/RTSS55097.2022.00040
https://doi.org/10.1109/RTSS55097.2022.00040
https://doi.org/10.1145/3394810.3394826
https://doi.org/10.1145/3394810.3394826
https://doi.org/10.1145/3453417.3453439
https://doi.org/10.1145/3453417.3453439
https://doi.org/10.1145/3453417.3453439
https://doi.org/10.1145/3453417.3453439
https://doi.org/10.1109/TPDS.2023.3235439
https://doi.org/10.1109/TPDS.2023.3235439

	Abstract
	1 Introduction
	2 System Model
	2.1 GPU Architecture and programming model
	2.2 Task model
	2.3 Block allocation
	2.4 Scheduling model
	2.5 Interference

	3 The Scheduling Graph
	3.1 Example of the impact of interference on schedulability
	3.2 Structure of the scheduling graph
	3.3 Expansion phase
	3.4 Domination relation
	3.5 Merging and splitting

	4 Implementability of PBS scheduler
	4.1 PBS Scheduler over GPU Internals
	4.2 The oracle

	5 State of the art
	6 Results and discussions
	6.1 Parameters of the experiments
	6.2 Simulations and discussions

	7 Conclusion
	References

