
HAL Id: hal-04787098
https://hal.science/hal-04787098v1

Submitted on 16 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling real-time template-tasks on manycores
heterogeneous platforms

Houssam-Eddine Zahaf, Nicola Capodieci, Audrey Queudet

To cite this version:
Houssam-Eddine Zahaf, Nicola Capodieci, Audrey Queudet. Scheduling real-time template-tasks on
manycores heterogeneous platforms. IEEE 14th International Symposium on Industrial Embedded
Systems, IEEE, Oct 2024, Chengdu, China, China. �hal-04787098�

https://hal.science/hal-04787098v1
https://hal.archives-ouvertes.fr

Scheduling real-time template-tasks on manycores
heterogeneous platforms

Houssam-Eddine Zahaf
Nantes Université, Centrale Nantes,

INRIA (1), LS2N, UMR 6004
F-44000 Nantes, France

houssameddine.zahaf@univ-nantes.fr

Nicola Capodieci
University of Modena, Dept. of Physics,

Informatics and Mathematics
Modena, Italy

nicola.capodieci@unimore.it

Audrey Queudet
Nantes Université, Centrale Nantes,

INRIA (1), LS2N, UMR 6004
F-44000 Nantes, France

audrey.queudet@univ-nantes.fr

Abstract—Recent broadband cellular network technology
requires to guarantee respect for timing constraints to ensure
the required Quality of Service (QoS) and improve user
experience. The Base Transceiver Station (BTS) must activate
and process a large set of real-time tasks, representing
user requests, on a heterogeneous many-core platform.
Each request is an instance of a heterogeneous parallel and
conditional Directed Acyclic Graph (HPC-DAG) task that
must complete no later than a predefined deadline. Classical
real-time scheduling and schedulability analysis approaches
can not be directly applicable to such systems because task
activation profiles can drastically change based on end-user
requests. Additionally, classical schedulability analysis might
exhibit scalability issues in supporting a large number of task
instances on hundreds of cores.

This work addresses the problem of allocating and
scheduling a set of real-time tasks to a heterogeneous
platform composed of hundreds of cores. We present efficient
scheduling and allocation approaches to guarantee that all
timing constraints are respected within a single scheduling
frame. We propose novel schedulability tests, allowing us to
explore numerous possible design choices for user requests.
The performance of the proposed approaches is studied
through a large set of synthetic experiments.

Index Terms—Real-time, Scheduling, HPC-DAG, Templates,
Runtime Instantiation, Multi-objective Optimization,
Scheduling Configuration

I. INTRODUCTION

5G networks are cellular networks that divide the service
area into small cells. In each cell, all 5G wireless devices
communicate via radio waves with a base station using
frequency channels assigned by the station. These base
stations connect to switching centers and routers for phone
services, internet access, and other services through high-
speed connections to the core network.

5G users have diverse requests, ranging from
phone calls and internet browsing to industrial low-
latency communication. Each service triggers specific
functionalities modeled as Directed Acyclic Graph (DAG)
tasks processed by the base station. For example, users in
the same cell with similar needs might trigger similar DAG
tasks. These tasks consist of subtasks (nodes) representing
signal processing operations and the flow of data between
them (edges). They are scheduled to minimize latency
and meet real-time constraints. DAGs may also involve
conditional execution based on runtime evaluations.

Different 5G services have varying urgency levels. To
guarantee a certain quality of service, each DAG task
associated with a service is subject to timing constraints
and must be completed within a predefined window.
To ensure all user requests are fulfilled within these

scheduling frames, all DAG instances must complete
by their deadlines. Providers equip base stations with
many-core platforms (around a hundred cores) featuring
CPUs and accelerators like DSPs. A single station typically
serves hundreds of users concurrently. User requests and
their corresponding DAG tasks are processed in intervals.
A base station handles all considered user requests within
a single time window. In other words, once processing
begins, any incoming requests are queued and processed
after the current batch is complete. We call this time
window a scheduling frame. User requests can change
drastically between scheduling frames. Classical real-time
scheduling techniques are not suitable for handling large-
scale scheduling due to their complexity and scalability
limitations. Additionally, they lack the flexibility to
adapt to varying user requests across different scheduling
frames. The problem is further more complex by the
heterogeneous nature of the platform (different instruction
sets, microarchitectures) and the dynamic behavior of tasks.
Commonly, 5G operators address these issues by increasing
computational power and cores on their platforms. They
also employ on-the-fly list scheduling across all cores.
However, this approach introduces significant overhead
due to complex scheduler design, making it challenging to
guarantee timing constraints.

Contributions: In this work, we propose a novel
scheduling and schedulability analysis for a set of DAG
task templates on heterogeneous many-core platforms.
Templates allow for dynamic instantiation at runtime based
on user requests, whose profiles are unknown beforehand
and can vary significantly between scheduling frames.
All instances must complete within a single scheduling
frame. Unlike existing task schedulers in 5G BTS that rely
only on runtime decisions, our approach leverages offline
scheduling to reduce online scheduler complexity.

Our approach addresses several key challenges: (i)
efficiently allocating and scheduling a large number of task
instances across the platform’s diverse cores, (ii) handling
cores with different instruction set architectures (ISA),
and (iii) adapting to variations in user requests between
scheduling frames. By leveraging multiple scheduling
scenarios, our approach is able to dynamically adapt
allocation and scheduling based on real-time activation
requests while having a simpler runtime-scheduler design.

II. RELATED WORK

In this work, we focus on real-time task scheduling
on a many-core platform. We briefly review the current

1

trends in many-core scheduling within the context of
5G networks and real-time scheduling on heterogeneous
multicore platforms. Platforms can be categorized
into two types: homogeneous and heterogeneous. In
homogeneous platforms, all processors are identical while
in heterogeneous platforms, processors differ, leading to
different execution times for the same task on different
cores. Furthermore, a task may not be allowed to execute
on all processors due to differences in the ISA.

Compute platforms in BTS are heterogeneous,
incorporating multiple accelerators alongside general-
purpose processors, utilizing multi-core platforms with
digital signal processors (DSP) and other accelerators
[1] [2]. Related work in 5G task scheduling frequently
employs the list scheduling approach, where tasks are
executed in isolation, utilizing their dedicated resources
[3], [4]. Typically, execution decisions are made on-the-
fly according to user requests, and real-time tasks are
scheduled as best-effort tasks. However, this approach does
not guarantee the respect of timing constraints. During
periods of high load, user requests might be denied.

Designing complex real-time applications on multicore
exposes the designer to a number of choices, like deciding
task allocation, the degree of parallelism, the scheduling
policy, etc. Many models of computation have been
proposed to capture the specific properties of real-time
systems. The Directed Acyclic Graphs (DAGs) are one
of the most popular models that are able to capture the
parallel execution in real-time tasks [5], [6], [7], [8].
In this model, each vertex represents a sub-task, while
edges express control flow dependencies among them.
The real-time community has proposed schedulability tests
to check whether all tasks in the system will meet their
deadlines [9]. The HPC-DAG task model [10] has been
recently proposed, as an extention of conditional DAG
model [6]. It introduces the alternative feature, allowing
alternative implementations of parts of the task. Authors
in [11] addressed the worst-case response time (WCRT)
analysis for DAG tasks on heterogeneous platform.
Similar work has been achieved by [12] but limited to
simpler platforms, featuring only CPU-GPU. Even when
having the same ISA, differences in microarchitecture can
have an important impact on execution times, increasing
schedulability analysis complexity [13]. Authors in [14]
targeted global scheduling approaches for heterogeneous
processors. However, all the works cited have a high
complexity that is not scalable to the large number of
cores that features BTS platforms. In addition, they are
not flexible enough to handle the severe changes that task
activations might experience, according to the end-user
requests.

In this work, we adopt the approach of allocating
resources exclusively to a task instance during its
execution. This ensures that the requirements of a simple
online scheduler are met. Additionally, we provide both
spatial and temporal isolation to respect task deadlines
and to support various end-user requests. Our approach is
proposed for, but not limited to, list schedulers.”

III. SYSTEM MODEL

A. Hardware platform

We consider a hardware platform compound of m* cores.
Cores are indexed incrementally, we denote by pj the jth

core of the platform. Each core pj is characterized by its
ISA(pj). A typical architecture that we consider in this work
is described in Figure 1. We denote by mg the count of
cores having ISA equal g as, and by ISAs the list of all
ISAs supported in the platform.

· · ·
· · ·
· · ·

DSP cluster

CPUs Cluster Acc. Cluster

D
R

A
M Memory Bus

Fig. 1: A typical hardware architecture

B. HPC-DAG task model

In this work, we extend the HPC-DAG model [10], which
stands for Heterogeneous Parallel Conditional DAG model,
to support the differences that might exist at the instantiation
stage of user requests. According to the moment when a
task is considered, it can be in one of three stages: (i)
specification task, (ii) concrete task, and (iii) runtime task.
We consider a set of n tasks, that is, T = {τ1, · · · , τn}.

1) Specification task: It is a DAG, that captures all the
application developer specifications, denoted as τi. D(τi)
defines the task’s relative deadline, V(τi) is a set of graph
nodes representing subtasks, A(τi) is a set of alternative
nodes, and Γ(τi) is a set of conditional nodes. The set of all
the nodes is represented by N = V∪A∪Γ. E(τi) is the set of
edges of the graph. An edge e(ni, nj) ∈ E(τi) represents a
precedence constraint and related communication between
node ni and node nj , where ni and nj can be subtasks,
alternative nodes or conditional nodes. The immediate
predecessors of a node nj is denoted by pred(nj) and is the
set of all nodes ni for which there exists an edge (ni, nj).
The set of predecessors of a node nj is the set of all nodes
for which there exists a path towards nj . A node with no
predecessor is a source node of the graph, and a graph
can have several source nodes. The immediate successors
of a node nj is denoted by succ(nj) and is the set of all
nodes nk for which there exists an edge (nj , nk). The set
of successors of a node nj is the set of all nodes for which
there exists a path from nj . A node with no successors is a
sink node of the graph, and a graph can have several sink
nodes.

A subtask v ∈ V(τi) is the basic schedulable unit and
represents a block of code to be executed sequentially. A
subtask is characterized by:

• An instruction set architecture ISA(v) which defines
the cores where the subtask is eligible to execute.

• A worst-case execution time C(v) when executing the
subtask on a core having the same ISA.

A conditional node γ ∈ Γ(τi) represents alternative paths
in the graph due to non-deterministic on-line conditions.

* m is equal to more than 100 compute elements

2

Non-determinism implies that at runtime, only one of the
outgoing edges of γ is executed, but it is not possible
to know in advance which one. An alternative node
a ∈ A(τi) represents alternative implementations of parts
of the graph/task. During the configuration phase, our
methodology selects one among many possible alternative
implementations of the program by selecting only one
of the outgoing edges of a and removing (part of) the
paths starting from the other edges according to the
task activation profile, timing constraints, and available
resources. This can be useful when modeling subtasks that
can be executed on different cores with different execution
costs. Conditional nodes and alternative nodes always have
at least two outgoing edges, so they cannot be sinks. For
the sake of simplicity and without loss of generality, we
also assume that conditional nodes always have at least
one predecessor node, so they cannot be sources.

2) Concrete tasks: A concrete task is an instance of a
specification task where all alternatives have been removed
by making implementation choices. It is represented as τ .
V,Γ, E are respectively the subset of subtasks, conditional
nodes and their precedence constraints that have been
selected to generate the concrete task τ . We denote by Ω(τ)
the set of all concrete tasks of specification task τ . The
procedure to generate all concrete tasks is defined in [10].

3) Runtime tasks: A runtime task is an instantiation
of a concrete task according to a end-user request. This
instantiation is achieved at runtime and is known at the start
of a scheduling frame. At this stage, conditional choices are
known. We denote by τ a runtime task of concrete task τ .
We denote ∆(τ) the set of all possible runtime tasks of
concrete task τ .

Example 1. Consider the specification task shown in
Figure 2a. Each subtask node is labeled by its index and
ISA. Alternative nodes are represented by square boxes,
while conditional nodes are represented by diamond boxes.
The gray boxes indicate the corresponding closing nodes
for alternatives and conditionals.

vCPU
1 A A

vDSP
2 vACC

3 vDSP
4

vCPU
8

C
vACC
5 vACC

6

vDSP
7

C

(a) Task specification

vCPU
1 C vCPU

8C

vACC
6

vDSP
7

vACC
5

(b) Concrete task τ

vCPU
1 vCPU

8vACC
6vACC

5

(c) Runtime task τ

Fig. 2: Specification, concrete and runtime tasks

Subtask vCPU1 is the source node of the DAG and is
marked with the CPU ISA, indicating that it will be
allocated exclusively to a core having ISA of type CPU.
Subtask vACC3 has an outgoing edge to vDSP

4 , so subtask
vDSP
4 cannot start its execution before subtask vACC3

has completed. Subtask vCPU1 has an outgoing edge to
alternative node A. Thus, τ can continue the execution
either: (i) by following vDSP

2 and then vACC3 , vDSP
4 ,

and finishing its instance on vCPU8 ; or (ii) by following

the conditional node C and selecting, according to an
undetermined condition evaluated online, either to execute
(i) vACC5 followed by subtask vACC6 or (ii) vDSP

7 . The two
sub-graphs represent alternative ways to execute the same
functionalities at different costs.

Figure 2b represents one of the concrete tasks of τ .
Figure 2c represents a possible instantiation of the concrete
task τ .

In this work, we restrict to well-nested concrete graphs:
for every conditional (respectively alternative) node, there
is always a corresponding closing node denoted with gray
color in Figure 2a, such that all paths starting from the
conditional (respectively alternative) node includes the
corresponding closing node.

We consider scheduling within a single time-frame.
Without loss of generality, we set the scheduling
frame length T to the largest task deadline, i.e.,
T = max{D(τ),∀τ}.

We present now a set of definitions and symbols that
might be applyable to specification, concrete or runtime
tasks. Therefore, when the task stage is not required to be
defined, the task is represented by ”·”.

We denote by π(·) an arbitrary path of a given task. We
denote by πh(·) the hth path of the task. Π(·) denotes the
set of all paths of the task in the parameter.

We denote by len(π(·)) the length of path π(·) and it is
computed as follows:

len(π(·)) =
∑

v∈π(·)

C(v)

We denote by crit(·) the critical path of a given task, such
that :

len(crit(·)) = max{len(π(·)),∀π(·) ∈ Π(·)}

We denote by vol(τ) the total cumulative WCET of
concrete task τ . It is computed as follows :

vol(τ) = max
∀τ∈∆(τ)

{
∑

v∈V(τ)

C(v)}} (1)

We denote by volg(τ) the total cumulative WCET of the
concrete task for subtasks having ISA g. It is computed as
follows :

volg(τ) = max
∀τ∈∆(τ)

{
∑

v∈V(τ)

{C(v)|ISA(v) = g}}}

We define Ug(τ) as the utilization of the concrete task
τ on compute elements having ISA g, it is computed as
follows:

Ug(τ) =
volg(τ)

T

Finally, |τ , g| denotes the number of subtasks of concrete
task τ having ISA g.

IV. SCHEDULABILITY AS A MULTIOBJECTIVE
OPTIMIZATION PROBLEM

The main challenge of this work is to allocate a set
of specification tasks to a platform composed of hundreds

3

of heterogeneous cores. In addition, it must take into
account the severe variability that might be exhibited in end-
user requests between two scheduling frames; i.e., a given
number of activations of the same task in one frame might
be very different from the number of activations of the same
task in another frame. One approach to solving this problem
is to use a pure on-the-fly scheduling approach that takes
into account handling user requests at runtime, similarly to
the current trend in industry. However, this approach does
not provide guarantees on the timeliness of the end-user
requests, and some of the user requests are dropped and
only “high” level urgency tasks are considered.

Our approach builds offline a set of different schedulable
scenarios that exhibit different activation profiles. At
runtime, the most suitable scheduling scenario is selected.
The main challenge of our approach is to generate accurate
and representative scheduling scenarios that can handle a
wide range of activation profiles.

Definition 1. (Task Activation Profile) Activation profile
act(τ) of the concrete task τ is a number of instances
of τ that can be active within a single scheduling frame,
ensuring that all the act(τ) instances of τ complete no later
than D(τ).

A task activation profile is not unique; a task might have
multiple activation profiles during its lifetime.

Definition 2. (Scheduling configuration)
Let T = {τ1, τ2, · · · , τn} be a set of n specification tasks,

scheduled onto m cores.
We denote by Sa(T) the ath scheduling configuration of

task set T , if and only if:

• For every task τ , a concrete task τ is selected
• For concrete task τ , an activation profile is associated

Our objective is to maximize the activation profiles for
the different tasks. Since multiple specification tasks need
to be optimized simultaneously, maximizing the number of
instances for one task specification is contradictory to the
objective of maximizing the number of instances for other
specification tasks. Constructing a single activation profile
that can accurately represent user requests across different
scheduling frames is impractical. Instead of relying on a
single scheduling configuration, as in classical real-time
systems, we generate multiple scheduling configurations.
At runtime, the system can dynamically select the most
suitable scheduling configuration to be adapted according
to the actual end-user requests.

Definition 3. (Dominance) Let S1 and S2 be two distinct
scheduling configurations.

Configuration S1 dominates S2 if and only if:

∀τ, act(τ) ∈ S1 > act(τ) ∈ S2

Definition 4. (Incomparability) Let S1 and S2 be two
scheduling configurations.
S1 and S2 are incomparable if S1 does not dominate S2

and S2 does not dominate S1.

The objective of this work is to generate a set of
incomparable solutions that better represent a wide range
of end-user requests, forming the Pareto front of scheduling
configurations (as depicted in Figure 3).

Example 2. Let us consider the following example. Our
taskset is composed of two tasks τ1 and τ2. The results of
Pareto front are represented in Figure 3.

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

of τ1

of τ2

Fig. 3: An example of the pareto front of scheduling
configurations for 2 tasks

On the first scheduling configuration on the left, the
activation profile of act(τ1) is equal to 17, and the one
of τ2 it is equal to 2. In the next configuration, we have 16
of task τ1 and 3 of task τ2. These two solutions as well as
the other scheduling configurations presented in this figure,
are incomparable.

The optimization problem addressed in this paper
consists of two distinct sub-problems: (i) building the
different scheduling configurations (the Pareto front),
and (ii) assessing the schedulability of every scheduling
configuration. To avoid combinatorial explosion, it is
necessary to find a compromise in complexity between the
technique used to build the Pareto front and the techniques
used to assess schedulability. In our approach, every
task instance executes exclusively on a subset of cores
in a federated scheduling fashion, in line with industrial
approach. This allows a simple yet efficient runtime
schedulers design. During the schedulability analysis
phase, the maximal number of task instances that can be
activated while still meeting the deadline is computed. We
build an optimal pareto front.

V. HPC-DAG TEMPLATES SCHEDULABILITY ANALYSIS

In our approach, a task runs exclusively on a selected
subset of cores. Two primary are considered: (i) determining
the schedulability of a task, and (ii) defining the size of
the core subset on which a given task executes. We will
begin by presenting the schedulability analysis for a single
specification task executing on a predefined subset of cores.
Further, we will explain how to extend this analysis to
multiple tasks and the entire platform.

A. Single task schedulability and execution subset of cores

We use list scheduling, similarly to existing solutions
[2]. It is required to compute the WCRT, which depends
on the concurrency within a task and the interference
among its sub-tasks. This subsection presents two distinct
schedulability tests, based on WCRT bounds derived
from the literature. Our methodology is flexible and can
accommodate other WCRT analysis for typed DAGs.

1) Single task worst-case response time: Different
concrete tasks derived from the same specification task
may require varying types and numbers of cores for
execution, potentially leading to different WCRTs. At this
stage, let’s assume that concrete implementation decisions
have been made. Given the large size of the platform,

4

each concrete task instance will only execute on a specific
subset of cores. We will also assume that the number of
cores on which a concrete task instance τ , will execute is
known and represented as δ(τ). The number of cores of
ISA g allocated to task τ is denoted by m

δ(τ)
g .

Let R(τ , δ(τ)) denote the WCRT for the concrete task τ
on the subset of cores δ(τ). If R(τ , δ(τ)) ≤ D(τ), then the
task is schedulable; otherwise, it is not. In the literature,
various methods have been proposed for computing the
WCRT for typed DAG tasks (i.e., tasks without conditionals
or alternatives) in [16] and [17].

Jeffrey et al. [16] introduced the first response time bound
for typed DAG tasks on a heterogeneous platform.

Theorem 1. (Jeffrey et al. [16]) Let τ be a typed DAG task.
The response time of τ is upper-bounded by:

R(τ) = len(crit(τ))+
∑

g∈ISAs

volg(τ)

m
δ(τ)
g

− len(crit(τ))

maxg{mδ(τ)
g }

(2)

Han et al. [17] enhanced the Jeffrey-bound [16] by
computing tighter bounds for intra-task interferences. This
is achieved by enumerating parallel paths within a single
task and identifying in part the interference that they might
have on each other.

Theorem 2. (Han et al. [17]) Let τ be a typed DAG task.
The response time of τ is upper bounded by :

 R(τ) = max
πh∈Π

R(πh)

R(πh) = len(πh) +
∑

g∈ISAs

∑
v∈ivs(πh,g)

C(v)

m
δ(τ)
g

(3)
where ivs(π, g) is the set of subtasks having ISA g that are
not in the path π, but can block sub-tasks of type g in π. It
can be computed as the set minus of all sub-tasks and all
ancestors and predecessors of all sub-tasks in path π.

The response time analysis detailed in Equations (2) and
(3) is specifically designed for typed-DAG tasks without
alternatives or conditionals. These analyses can not be
directly applied to the HPC-DAG specification task. The
Jeffrey and Han bounds can be easily adapted for the HPC-
DAG task model by incorporating conditional nodes in
the computation of the concrete task volume, as outlined
in Equation (1). Conversely, alternative nodes provide the
flexibility to apply these bounds to various concrete tasks,
where the choice of a concrete task may depend on the
task’s timing constraints and the specific subset of cores
allocated for the task instance’s execution.

Selecting a concrete task with the smallest WCRT might
lead to an increased demand on scarce resources, which
are typically more efficient. In certain scenarios, it might
be advantageous to choose a concrete task that reduces the
demand on limited computing resources, even if this choice
leads to a larger WCRT. In subsequent sections, we will
explore how the selection of concrete tasks influences the
effectiveness of our proposed approach.

2) Task minimal platform: As indicated by Equations (2)
and (3), the response time of a concrete task is primarily
determined by the task’s volume for each ISA and the
number of cores allocated per ISA. Consequently, it is
crucial to define the number of cores per ISA necessary
for a given task to meet its deadline. Allocating too many

cores may lead to a shorter response time, but this could
potentially decrease the number of task instances that can
be executed in parallel. Conversely, allocating too few
cores could increase the task’s response time, possibly
compromising the task’s ability to meet its schedulability
requirements. There are likely numerous core configurations
that could satisfy the schedulability constraints. In this
section, we propose a technique to focus only on the most
advantageous configurations. Let’s assume that the selection
of concrete tasks has already been completed.

Example 3. In this example, we consider concrete task τ
described in Figure 4. The task deadline is equal to 30.

vCPU
1

vCPU
2

vACC
3

C vCPU
7C

vACC
4

vACC
5

vDSP
6

Fig. 4: Task example

Sub-task ISA C(v)
v1 CPU 5
v2 CPU 5
v3 ACC 4
v4 ACC 7
v5 ACC 7
v6 DSP 3
v7 CPU 6

Fig. 5: Task execution times

We will compute Jeffrey et al. response time bounds.
Let consider the set of cores δ1(τ) compound of 4 CPUs,
5 DSPs and 3 ACCs. The response time for τ on δ1 is
therefore equal to 28.2. When considering the set of cores
δ2(τ) compound of 3 DSPs, 3 CPUs and 3 ACCs. The
response time for τ on δ2 is equal to 27. For the the set of
cores δ3(τ) compound of 2 DSPs, 2 CPUs and 2 ACCs, the
response time is equal to 29.5, while for the set of cores δ4,
compound of 1 CPU, 1 DSP, and 1 ACC, the response time
is equal to 37. The set of cores in δ2 has fewer resources
than δ1 in every ISA and in addition results in a shorter
response time. Thus, from a perspective of schedulability
and resource utilization, it is more advantageous to use
platform δ2. It is important to note that the response time
on platform δ2 is less than that on δ3. However, since δ3

uses fewer resources, comparing the two response times
directly is not straightforward; each platform presents its
advantages and limitations. The last set of cores can not
be considered, as it does not allow to respect the timing
constraints, i.e. D(τ) = 30.

Similar observations apply to the computation of Han et
al. bound.

Definition 5. (Core configuration dominance)
Let τ be a concrete task and δ1(τ) and δ2(τ) be two

core configurations to execute τ .
δ1(τ) dominates δ2(τ) if and only if

∃g ∈ ISAs, mδ1(τ)
g < mδ2(τ)

g (4)

∀g′ ̸= g, m
δ1(τ)
g′ ≤ m

δ2(τ)
g′ (5)

R(τ, δ1(τ)) ≤ R(τ, δ2(τ)) (6)

Definition 6. (Core configuration incomparability)
Let τ be a concrete task and δ1(τ) and δ2(τ) be two

core configurations.
δ1(τ)) and δ2(τ) are incomparable if δ1(τ) is not

dominated by δ2(τ) and δ1(τ) does not dominate δ2(τ).

5

The objective of our approach is to assess all
incomparable core configurations that enable a given
concrete task to meet its timing constraints. While one
may examine every configuration from zero core up to
the total number of cores available on the platform, the
design space can become exceedingly vast, especially with
platforms comprising hundreds of cores.

For a given task, if each subtask is allocated its own
core, it will not experience interference and will start its
execution immediately after its predecessor completes. In
such scenarios, the WCRT is equal to the length of the
concrete task’s critical path. Consequently, we define the
upper bound for the subset of cores as the number of
subtasks per (ISA), that is:

∀g ∈ ISAs,mδx

g = |τ , g| (7)

where |τ , g| denotes the number of subtasks of task τ
that use ISA g.

We are aware that WCRT bounds provided in Equations
(2) and (3) tend to overestimate the response time, implying
that the actual response time could be smaller. Nevertheless,
this bound is likely sufficient for respecting the task’s timing
constraints because it overestimates the task’s requirements.
Indeed, subtasks belonging to the same paths do not
generate interference and can likely be executed on the same
core without degrading the task’s response time.

Our approach explores iteratively all incomparable core
configurations, starting with the upper bound in Equation 7
and decreasing to an empty configuration without any cores.
In each iteration, we examine a specific core configuration
and calculate the WCRT for the considered concrete task.
If the WCRT is shorter than or equal to the task’s deadline
and the new core configuration is not dominated (as per
Definition 5), it is incorporated into the collection of non-
dominated core configurations. If the new core configuration
dominates other already core configurations in the non-
dominated list computed core configurations, these are
dropped. This process continues iteratively until all potential
core configurations have been evaluated. The complete set
of non-dominated core configurations is denoted as δall(τ).

The technique outlined in this section for generating the
list of core configurations considers exclusively concrete
tasks. We consider the complete set of incomparable
core configurations for a task specification. Therefore,
we use an iterative process that generates the list of all
core configurations for each concrete task. Subsequently,
we merge these configurations, excluding dominated core
configuration. The generation of core configurations is
conducted only once, and the computed core configurations
are not recomputed during the schedulability analysis.

In the following section, we will describe different
techniques for selecting core configurations based on
activation profiles, WCRT, required resources, and their
scarcity, etc.

B. Task set schedulability

In the previous section, we focus on the execution
of individual task instances in isolation. However,
within a scheduling frame, multiple instances of various
specification tasks are executed concurrently. To facilitate
the execution of different task instances across the entire

platform, resources must be allocated to concrete tasks,
both spatially and temporally.

In this section, we will outline the techniques employed
to allocate and schedule task instances onto different cores.
Typically, a set of resources is allocated to a task instance,
which remain dedicated to that instance during its execution.
Upon completion, the task releases the resources, making
them available for other task instances within the same
scheduling frame.

Definition 7. (Partial and Complete Configuration)
A complete configuration is a scheduling configuration

onto which every specification task is associated with a
number of instances, scheduled without missing deadlines.

A partial configuration is a configuration that is not
complete.

It is important to note that the objective of this work is
to create a set of non-dominated scheduling configurations,
each corresponding to different activation profiles.
Algorithm 1 is invoked to perform schedulability analysis
and to construct all possible scheduling configurations.

Algorithm 1 is iterative and recursive. At each invocation,
it computes iteratively the different possible scheduling
configurations for a single specification task in the input.
Therefore, it produces a set of scheduling configurations.
When all specification tasks are processed, all produced
non-dominated scheduling configurations are returned,
building therefore our pareto front used at runtime. For
the initial launch, the partial scheduling configuration in
the input is completely empty, i.e., no number of instances
is associated with possible activation profiles for the
specification task in the input. Tasks are submitted to
Algorithm 1 in according to their relative deadline, (i.e.
the smallest deadline first).

Algorithm 1 full algorithm

1: Input: Configuration config, sched, τ
2: Output: ConfigList,
3: if (isComplete(config)) then
4: add to pareto(config, configList)
5: end if
6: (inst numb, core list) = max instances(config, τ)
7: while (inst numb ≥ 0) do
8: input nb = min(inst numb, input nb);
9: configT = clone(config)

10: allocate max instances(configT, τ)
11: τ = nextTask;
12: full algorithm(configT, sched, τ);
13: inst numb = inst numb− 1
14: end while
15: return true;

The algorithm begins by checking if the current
scheduling configuration is complete (Line 3), i.e., if
all specification tasks have been processed. If it is
complete, the current scheduling configuration is added
to the configuration list. Dominance is checked, and
all dominated scheduling configurations are discarded.
Otherwise, there are still tasks that have not been processed
yet. In such cases, the algorithm computes the maximum
number of instances of the specification task in input,
that can be feasibility allocated to different resources of

6

the scheduling configuration in input, in addition to those
already allocated to it (Line 6). It’s important to note that
the invocation of the max instances algorithm in Line 6
also returns the list of eligible cores on which instances
of the current specification task might be allocated. The
techniques for computing the number of instances and
the list of candidate cores are detailed in the subsequent
section.

Once the maximal number of instances is defined, the
iterative process of our algorithm starts. It tries to allocate a
given number of task instances ranging from the maximum
number (defined in Line 6) to 0. Therefore, each iteration
will create a new scheduling configuration, starting from
the scheduling configuration in input (Line 9). Furthermore,
the algorithm invokes itself recursively using the copied
configuration and the next specification task (Line 12).

Each configuration keeps track of the tasks that have not
yet been instantiated to compute the next task to instantiate
(Line 11). The recursion stops when all specification task
and possible number of instances have been explored.

C. Computing maximum number of task instances
This section aims to compute the maximum number

of instances for a specification task in a scheduling
configuration under two conditions: the schedulability of
the already allocated task instances is not jeopardized, and
all instances of the current task specification meet their
deadlines.

Firstly, we need to define the list of cores where the
current task specification can be allocated. It’s important
to note that we can only allocate concrete tasks to a sub-
platform. Therefore, let’s assume that the concrete task has
been selected, denoted as τ . The latter requires the sub-
platform δ(τi) to be capable of completing the task such
that R(τ , δ(τi)) ≤ D(τi).

Lemma 1. (Eligible cores)
Let p be a core, and τi be a concrete task, and δ(τi) be

a core configuration from the schedulable subplatforms list.
Let T p be the set of tasks that have already been allocated
to to p, therefore ∀τi′ ∈ T p,D(τi′) ≤ D(τi) as tasks are
evaluated according to their relative deadline.

Core p can be used to schedule a part of τ , if and only
if:

nb p(τi) ≥

D(τi)−
∑

τj∈T p

R(τj) · act(τj)

R(τi)

 > 0 (8)

Proof. Tasks are explored in the order of their relative
deadlines, therefore the task to allocate have always a
deadline greater than the largest deadline already allocated
to the current core. Therefore the processor is locked
from the frame starting time, until the response time of
all already allocated tasks, that is

∑
τj∈T p

R(τj) · act(τj) .

Therefore, the task can only execute into the slack time
D(τi) −

∑
τj∈T p

R(τj) · act(τj) . The ratio expresses the

number of instances of task τ that can be executed without
missing deadlines.

Lemma 1 enables us to verify whether a core can be
eligible to execute a given concrete task. Furthermore,

Lemma 1 is applied to every core to determine its eligibility,
thus constructing the list of eligible cores, denoted as
core list. We then refine the list of eligible cores to select
only the subset of cores that can be effectively locked to a
concrete task instance.

Algorithm 2 computes the maximum number of instances
that can feasibly be allocated to the platform under the
current scheduling configuration. Given a list of eligible
cores and a concrete task as input, the algorithm returns the
maximum number of instances (inst max). It’s important
to note that Algorithm 2 computes candidate cores for
allocation and does not execute the actual allocation. The
main algorithm (Algorithm 1) allocates the desired number
of concrete tasks within the candidate cores defined by this
algorithm.

Algorithm 2 max instances

1: Input: core list, Task : τ Output: candidates,
inst max

2: quit = false; n inst = 0
3: while (not quit) do
4: alloc state = true
5: for (g ∈ ISAs(τ)) do
6: alloc cores[g] = select cores(core list, g, act(τ))
7: If (alloc cores[g] = ∅) then alloc state =

false endif
8: end for
9: if (alloc state) then

10: candidates = add (alloc cores)
11: ∀p ∈ candidates, nb p(τ , p) = nb p(τ , p)− 1
12: n inst += 1
13: else
14: quit = true
15: end if
16: end while
17: return candidate, n inst

Algorithm 2 is iterative. In each iteration, it attempts to
allocate a new task to the list of eligible cores, terminating
when it can no longer allocate any more instances of task
τ to the platform.

During each iteration, the algorithm assesses if it can
add a new task instance to the platform. For each ISA g,
it tries to find the required number of cores having the
same ISA g in δ(τ), within the list of eligible cores. It
is mandatory that at least nb p(τ , p) > 1, i.e., the selected
core can support at least the execution of one instance. This
is achieved by the select core function. Two scenarios
may arise. Firstly, if the returned list is empty (Line 7),
it means that the required number of core to execute the
selected concrete task has not been found, henceforth no
task instance can be further allocated to the platform.
Consequently, the algorithm breaks the iterative process
and returns the allocation as computed in the previous
iteration (Lines 7, 14). Secondly, if the invocation of the
select cores succeeds for all ISAs, then the cores in
alloc cores can support a new instance. Hence, nb(τ , p)
for every core in alloc cores is decremented by 1 (Line
11), as the core will execute a new instance. The number
of instances is then incremented by 1 (Line 12).

The algorithm for computing eligible cores and the
algorithm for computing the maximum number of

7

instances depend on the response time of the given task.
This response time, in turn, depends on both the selected
concrete task and the subplatform on which the task is
to be executed within the core configurations list δall(τ).
Thefore, the concrete task and core configuration selection
is performed according to one of three different policies:
Breadth heuristic: This approach selects the concrete
task and the core configuration that minimizes the WCRT.
This choice improves the temporal allocation of resources
by allowing for the use of the same subset of cores by
different task instances within a single scheduling frame;
Depth heuristic: This approach selects those that reduce
the number of required resources, maximizing spatial
parallelization and enabling multiple tasks to be performed
in parallel; Scarce resources: This approach selects the
ones that minimizes the number of used scarce resources.
The scarcity of a core depends on the number of cores
with the same ISA within the platform. A higher core
ISA count corresponds to lower scarcity. Throught the
simulations, we will now demonstrate that these extreme
choices offer a good performance compromise.

VI. RESULTS AND DISCUSSIONS

In this section, we assess the performance of our
schedulability analysis and allocation strategies in two sets
of expirements.

In the first, we evaluate the algorithms on a large
number of synthetically generated task sets. We compare
the performance of the sub-platform selection algorithm,
comparing Han and Jeffay’s WCRT analysis applied to our
methodology. We assess the average WCRT, the number
of cores. Furthermore, we compare the performance of
the core configuration selection according to the heuristics
presented in the previous section to build the scheduling
configurations. For this second set of experiments, we
consider a hardware platform consisting of 64 DSPs, 32
CPUs, and 32 other types of accelerators. Please note
that as we maximize the platform utilization by generating
the complete Pareto front, the total schedulable workload
utilization is always maximal. Therefore, for the second set
of experiments, we vary single task utilization, but the actual
schedulable workload is always maximized. Consequently,
it will not be used as a metric to evaluate our performance,
as in the classical real-time system literature.

A. Task set generation

The task set generation process takes as input a tag
utilization for each tag on the platform. Initially, we
generate the utilization of the n tasks using the UUniFast-
Discard algorithm for each input utilization (n is set to
4, which is typically the number of specification tasks
in industry [2]). Graph sub-tasks can be executed in
parallel, allowing task utilization to exceed 1. The sum of
every per-tag utilization is constrained by a fixed number
upper-bounded by the number of engines per tag. For
the first set of experiments, we evaluate the performance
of a single specification task, thus setting the input task
specification utilization to 0.5, 1, and 1.5. Each task
comprises a random number of sub-tasks ranging from 10
to 30. We define a probability p to denote the chance of
having an edge between two nodes, and generate the edges
accordingly. We ensure that the graph depth is bounded

by an integer d proportional to the number of sub-tasks
in the task. Additionally, we guarantee that the graph is
weakly connected (i.e., the corresponding undirected graph
is connected); if necessary, we introduce edges between
non-connected portions of the graph. Given a sub-task
node, one of its successors is either an alternative node or
a conditional node with a probability of 0.7. The deadline
of every task is randomly generated from values within
the range [1000, 2000]. The length of each scheduling
frame is defined as the largest deadline. For every sub-task,
we randomly select a tag. Furthermore, for each tag, we
utilize the UUniFAST-Discard algorithm again to generate
individual sub-task utilizations. Hence, the sub-tasks’
utilization can never exceed 1. We multiply the utilization
of each sub-task by the task deadline to derive the vertex
execution time.

B. Simulation results and discussions

The results of the first set of experiments are presented
in Figure 6. Each point represents the average value of 100
executions. We explored various combinations of different
approaches proposed in this paper, each represented by
two letters. If the first letter of the combination is S, it
signifies selecting the core configuration that enables the
shortest WCRT. If the first letter is P, it indicates the core
configuration with the smallest number of cores that allows
a WCRT less than or equal to the task deadline. The second
letter of each approach can be J, representing the Jeffay
WCRT, or H, denoting the Han et al. WCRT.

In Figure 6a, we present the WCRT as a function
of total utilization. The bound by Han et al. allows
for shorter WCRTs than the Jeffay et al. bound across
all combinations. This dominance is also evident when
considering the number of used cores (refer to Figure
6b) for all combinations. The number of used cores is
a crucial parameter when addressing the temporal and
spatial allocation problem, which will be evaluated in the
second set of experiments. The Han et al. bound enables
the selection of fewer schedulable core configurations, as
depicted in Figure 6c. By better identifying interference,
it requires fewer cores for the same level of performance
compared to the Jeffay approach. Consequently, it selects
platforms that likely dominate others, resulting in a smaller
Pareto front. This aspect is critical when exploring optimal
spatial and temporal allocation. The optimality of selecting
the core configuration is not explicitly addressed in this
paper. Han et. al bound performance advantages has a
large cost. The complexity of the Han et al. WCRT is
significantly higher than that of the Jeffay et al. bound.
Achieving the analysis using the Han approach can require
up to ten times the magnitude (See Figure 6d) of time
required for the Jeffay et al. analysis.

The second set of experiments, in which the Pareto front
of scheduling configurations is constructed, is depicted in
Figure 7. This figure illustrates the average number of
tasks per Pareto front as a function of the utilization of
a single task specification for the breadth heuristic, depth
heuristic, and scarce resources approaches, using Han et
al. bound, which dominate Jeffay et al. bound. Please note
that our goal is to schedule the maximum workload on the
platform. The effectively scheduled workload is bigger than
the values indicated on the x-axis, which represent only

8

0.6 0.8 1 1.2 1.4

500

1,000

1,500

2,000

2,500

Total Utilization index

A
ve

ra
ge

W
or

st
-c

as
e

ex
ec

ut
io

n
tim

e

(a) Worst-case response time

0.6 0.8 1 1.2 1.4
0

10

20

30

Total Utilization index

N
um

be
r

of
us

ed
co

re
s

SJ
SH
PJ
PH

(b) number of cores.

0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

Total Utilization index

N
um

be
r

of
co

re
co

nfi
gu

ra
tio

ns

(c) Size of pareto.

0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

·105

Total Utilization index

Sc
he

du
la

bi
lit

y
ra

te

(d) Required anaylsis time.

Fig. 6: Results of the first set of expirements

0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

40

60

80

Total Utilization index

A
ve

ra
ge

nu
m

be
r

of
ta

sk
in

st
an

ce
s breadth

depth
scarce

Fig. 7: Average number of tasks per pareto front

the upper bound of a single task specification’s utilization.
When the workload per task specification is low, the breadth
heuristic outperforms all others. This is because it utilizes
few resources due to the small workload, and it selects
the shortest WCRT thus achieving efficient temporal and
spatial isolation, enabling the execution of more tasks
on average compared to the other approaches. However,
as the workload increases, the depth heuristic slightly
outperforms the breadth approach. The breadth heuristic
typically selects a larger sub-platform to reduce worst-
case response times, thereby significantly reducing spatial
resource partitioning, while the depth approach increase
spatial partitionning by selecting the smallest schedulable
subplatform. In all scenarios, these approaches outperform
the scarce resources approach, which is designed to perform
well in the presence of scarce and efficient resources.
However, since the platform under test does not have scarce
resources, it exhibits poorer performance. It is worth noting
that in scenarios with scarce resources, the scarce resources
approach performs better than both others, although these
results are not included here due to space constraints.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel scheduling approach
tailored to the dynamic nature of BTS real-time software.
It addresses real-time task allocation across heterogeneous
many-core platforms. By leveraging HPC-DAG task
templates and offline scheduling, it enables efficient
processing of diverse user requests within a single
scheduling frame. Our approach simplifies online scheduler
design while ensuring the respect of the timing constraints
of tasks. Through extensive experiments, we validates
the effectiveness of the proposed approaches. As part of
our future work, we aim to relax the constraint that all
instances within the same frame must select the same
alternative. Additionally, we plan to model this problem
as an Integer Linear Program to further leverage an

optimal solution, particularly when dealing with a small
set of tasks. While the problem is inherently complex,
the most time-consuming aspect lies in assessing the sub-
platform size and selecting the best one while respecting
schedulability constraints. Precomputing certain aspects
of the ILP choices can potentially reduce the need for
extensive design space exploration. This work has been
supported in Part by HeRITAGES ANR Project and by
PHC-Tassili program.

REFERENCES

[1] L. Van der Perre, L. Liu, and E. G. Larsson, “Efficient dsp and
circuit architectures for massive mimo: State of the art and future
directions,” IEEE Transactions on Signal Processing, vol. 66.

[2] M. Pelcat, S. Aridhi, J. Piat, and J.-F. Nezan, Physical layer multi-
core prototyping: A dataflow-based approach for LTE eNodeB.
Springer, 2013, vol. 171.

[3] O. Sinnen, Task scheduling for parallel systems. John Wiley &
Sons, 2007, vol. 60.

[4] A. Rădulescu and A. J. Van Gemund, “On the complexity of
list scheduling algorithms for distributed-memory systems,” in 13th
international conference on Supercomputing, 1999.

[5] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese,
“Feasibility analysis in the sporadic dag task model,” in 2013 25th
Euromicro conference on real-time systems.

[6] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks
in multiprocessor systems,” in 2015 27th Euromicro Conference on
Real-Time Systems. IEEE, 2015, pp. 211–221.

[7] H. Zahaf, G. Lipari, M. Bertogna, and P. Boulet, “The parallel multi-
mode digraph task model for energy-aware real-time heterogeneous
multi-core systems,” IEEE Transactions on Computers, vol. 68,
no. 10, pp. 1511–1524, Oct 2019.

[8] H.-E. Zahaf, A.-E.-H. Benyamina, R. Olejnik, and G. Lipari,
“Modeling parallel real-time tasks with di-graphs,” in Proceedings
of the 24th International Conference on Real-Time Networks and
Systems, ser. RTNS ’16. ACM, 2016, pp. 339–348.

[9] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM computing surveys, volume=43,
number=4, year=2011, publisher=ACM New York, NY, USA.

[10] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and
M. Bertogna, “The hpc-dag task model for heterogeneous real-time
systems,” IEEE Transactions on Computers, vol. 70, no. 10, 2021.

[11] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,” Journal of
Systems Architecture, vol. 105, p. 101704, 2020.

[12] N. Tsog, M. Becker, F. Bruhn, M. Behnam, and M. Sjödin, “Static
allocation of parallel tasks to improve schedulability in cpu-gpu
heterogeneous real-time systems,” in IECON 2019 - 45th Annual
Conference of Industrial Electronics Society, vol. 1, pp. 4516–4522.

[13] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, “Energy-
efficient scheduling for moldable real-time tasks on heterogeneous
computing platforms,” Journal of Systems Architecture, vol. 74, 2017.

[14] A. Bertout, J. Goossens, E. Grolleau, R. Jamil, and X. Poczekajlo,
“Workload assignment for global real-time scheduling on unrelated
clustered platforms,” Real-Time Systems, vol. 58, no. 1, 2022.

[15] J. M. Jaffe, “Bounds on the scheduling of typed task systems,” SIAM
Journal on Computing, vol. 9, no. 3, pp. 541–551, 1980.

[16] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, “Response
time bounds for typed dag parallel tasks on heterogeneous multi-
cores,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 11, pp. 2567–2581, 2019.

9

	Introduction
	Related work
	System model
	Hardware platform
	HPC-DAG task model
	Specification task
	Concrete tasks
	Runtime tasks

	Schedulability as a multiobjective optimization problem
	HPC-DAG templates schedulability analysis
	Single task schedulability and execution subset of cores
	Single task worst-case response time
	Task minimal platform

	Task set schedulability
	Computing maximum number of task instances

	Results and discussions
	Task set generation
	Simulation results and discussions

	Conclusions and future work
	References

