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Abstract—Permutation equivariance (PE) is a property widely
present in mathematics and machine learning. Classic deep
reinforcement learning (DRL) algorithms, such as Deep Q-
Network (DQN), require thoroughly exploring the state space
to achieve optimal performance. For a PE problem such as the
Multi-Armed Bandit (MAB) problem, the PE property helps
reduce the space that needs to be explored. This paper proposes
PEDQN, a PE DRL framework based on DQN by applying a
PE neural network structure. Our MAB experiments show that
PEDQN has clear advantages compared to DQN with a fully
connected network and achieves the same or better performance
than UCB1 when tested in the same environment as the training.

Index Terms—Reinforcement Learning, Deep Reinforcement
Learning, Permutation Equivariance, Multi-Armed Bandit, Q-
Learning, Deep Q-Network

I. INTRODUCTION

Reinforcement learning (RL) is a machine learning para-
digm that trains agents through their interactions with the
environment. Many reinforcement learning problems can be
modeled as a Markov Decision Process (MDP) of an agent
within an environment: starting from an initial state, at each
step, the agent chooses among possible actions, and depending
on the played action and the current state, the environment
transits, stochastically or not, the agent to a new state and
rewards the agent.

Classic RL methods, such as Q-learning that estimates the
reward for each state-action pair, quickly reach their limits in
the presence of a large state or action space since most state-
action pairs remain unobserved during learning. Introducing
a method with inference capabilities like a neural network
(NN) mitigates this problem: Deep reinforcement learning
(DRL) algorithms have successfully used NNs to approximate
policy or value functions, significantly compressing mapping
representation. For example, Deep Q-Network (DQN) is a
“deep” version of Q-learning, and it achieved remarkable
results in complex tasks such as Atari games [1].

Despite the significant space reduction and generalizing
capabilities of DQNs over classical Q-learning, DQN still
requires a thorough exploration of the state and action space
to achieve satisfying performance. The state and action space
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quickly grow exponentially in specific environments with the
problem size. A simple example is the Multi-Armed Bandit
(MAB) problem: over a fine number of rounds, a player can
choose to play one out of n machines in each round. Each
such machine has an apriori unkown, fixed probability to win,
with the reward/loss being communicated to the player at the
end of a round. When adding a new slot machine to a game
of maximum T rounds with n machines, the possible play
sequences pass from nT to (n + 1)T . For example, adding a
machine to n = 9 machines with a time horizon T = 200
increases the state space by 1.4e9 times. This growth speed
may lead to excessive training costs.

However, many multi-agent MDP problems studied in the
literature are inherently symmetric in their state-action space.
For example, in the MAB problem, when the order of the
slot machines changes, the decision of which machine to
play changes accordingly: it should not depend on the ma-
chine’s identifier. Similar symmetries are present in distributed
algorithms for multi-agent systems: often the searched for
solution does or should not depend on the agent’s identifier. In
particular, MAB can be understood as a multi-agent systems
with the machines being the agents and only one agent
being allowed to play at a time. This symmetry has been
studied as permutation equivariance (PE): when the input of a
permutation equivariant function is permuted, then its output
is permuted identically.

In the context of multi-agent RL frameworks, if a strategy,
i.e., the function of choosing actions according to the agent’s
states, is PE, it can potentially be learned from a significantly
reduced dataset: training on one permutation instead of all
possible permutations, diminishes the state-action space by
a factor of n! where n is the number of individuals in the
environment: e.g., for a game with 10 individuals, the state
space becomes 1/3628800 of the original size for a PE agent.

In this work, we propose a variant of a DQN for the MAB
problem that benefits from the PE property: we use a so-called
PE network as the Q-network. Unlike fully connected NNs that
have to learn the PE property by training on permutations of
data, which is costly and non-robust, the PE network is by
design PE.

We identify simple network structures that are PE by
design: (i) networks constructed from individual networks for
each agent, (ii) pooling networks, and (iii) self-attention [2].
These networks can be combined systematically to form more



complex networks that again fulfill the PE property and are
candidate solutions for the MAB problem. We show that
the constructed PE DQNs are robust and accurate solutions,
which we demonstrate on the binary MAB problem, where
the trained PE DQNs outperform a classical DQN and match
the performance of the classical UCB1 algorithm [3].

II. RELATED WORK

In this section, we briefly review the PE neural network
structures proposed in other works as well as current ap-
proaches to applying the DRL method to the MAB problem.

A. Permutation Equivariant Network

Permutation equivariance of a function is a property often
observed in the context of sets and graphs. PE networks
have numerous applications, notably in computer vision. For
example, studies such as [4], [5] and [6] use their networks
for symmetry group image classification, achieving higher
accuracy with less data compared to CNNs, and [7] employs
it for image selection and image deblurring. Due to their
intrinsic properties, PE networks are also well-suited for tasks
involving sets, including anomaly detection [8], point cloud
classification, and segmentation [8], [9]. Similarly, the work
in [10] focuses on permutation invariance (PI) and proposes
a graph convolution method for tasks on the point cloud.
Furthermore, PE networks are finding new applications, such
as in the development of PE neural functionals [11]. Even
if the model’s equivariance does not precisely match the
environment’s symmetry, it has been shown that equivariant
models can still outperform non-equivariant methods [12].

The work in [8] characterized the single-layer NNs that are
PE as precisely those where all the diagonal elements of the
weight matrix are identical, and all the off-diagonal elements
are identical. For n scalar inputs, this reduces the parameter
space from n2 to 2. The work [13] generalizes the method
to higher dimensional PE inputs via the Kronecker product of
the weight matrix. At the same time, [7] generalizes to cases
where elements are also symmetric. In [14], the authors use
multihead attention to construct a “Set Transformer,” which
can also be PE.

Reducing the number of independent weights in an NN layer
by identifying the same weights has also been previously used,
e.g., in convolutional neural networks (CNNs), where a small
kernel is applied to each input neighborhood. Some works
extend the feature to other parts of CNNs and propose group
equivariant CNNs [4], [5], [15], in most cases, rotation and
translation equivariant. This idea of parameter sharing is then
broadly adapted in the design of PE or PI structures: [16] pro-
pose a parameter-sharing scheme of an NN layer equivariant
to given discrete group-actions. Network structures satisfying
higher-order PE for graphs were proposed in [17], [18]. The
work [19] uses a pairwise structure to achieve PE. Lastly,
there is a family of PE networks among CNNs called steerable
CNNs [20], which constrain the convolution kernels. A recent
example is [21], which uses Clifford-steerable kernels to

achieve equivariance of multivector fields in pseudo-Euclidean
spaces.

B. Deep Reinforcement Learning

Deep reinforcement learning gained attention after success-
fully playing Atari games using DQN [1]. Various types of
DRL methods have been proposed, such as asynchronous
advantage actor-critic (A3C) [22] and Proximal Policy Op-
timization (PPO) [23]. Since then, DQNs have been improved
in several aspects, such as Double DQNs [24], prioritized
experience replay [25], and auxiliary networks [26].

Several works have exploited the PE property in DRL. The
most common method of adding PE to DQN is to use group
equivariant CNNs: e.g., [27] uses group-equivariant convolu-
tion to abstract equivariant feature in a Q-network, however the
final layer is not equivaraint by construction. Similarly, [28]
use equivariant convolution to replace convolutional layers in a
Q-network to make it fully group equivariant. For multi-agent
RL, [29] proposes to use weight selection or hypernetworks to
match PE or PI weights. For applications in software-defined
networks, [30] use a network combining PE and PI outputs.
An approach to implement PE RL without PE networks, such
as group equivariant state and action embedding, is followed
in [31].

C. Multi-Armed Bandit

Multi-Armed Bandit (MAB) is a classic, widely-studied
RL problem illustrating the exploration-exploitation dilemma.
Numerous variant of the problem have been studied in liter-
ature. In this work we consider the classical variant with a
single player, finite horizon, n machines, and a fixed winning
probability per machine. Several non-deep learning algorithms
have been applied to address the MAB problem, with promi-
nent ones being Thompson Sampling [32] and UCB1 [3].
The work in [33] uses Q-learning to solve MAB, but instead
of using Q-learning to evaluate actions directly, the Gittins
index is predicted. A deep-learning approach is taken by [34],
who propose a procedure for network learning and study the
balance between exploration and exploitation.

III. PRELIMINARIES

A. Permutation Equivariance (PE)

For an input X = (x1,x2, . . . ,xi, . . . ,xn) ∈ Rn×d with n
components of dimension d, a permutation of X is denoted as
π(X), and the set of possible permutations is denoted as Sn.

Definition III.1 (Permutation equivariant function). A func-
tion f : Rn×d → Rn×d′

is permutation equivariant if:

∀π ∈ Sn,∀X ∈ Rn×d : f(π(X)) = π(f(X)) .

Combining PE functions with corresponding input and out-
put dimensions through composition retains the PE property.

Theorem III.1 (Composition of PE functions). Whenever f :
Rn×d → Rn×d′

, g : Rn×d′ → Rn×d′′
, and h : Rn×d → Rn×d′

are PE functions, so are g ◦ f and f + h.



B. Deep Q-Network

Deep reinforcement learning applies deep neural networks
to traditional RL techniques. One of the pioneering DRL
frameworks is the class of Deep Q-Networks (DQNs) [1].
The approach builds upon Q-learning: The Q-function on the
domain of state-action pairs estimates the expected cumulative
future reward Q(s, a) of choosing action a in state s. In
DQNs, a neural network approximates the Q-function. During
the learning phase, each transition from st to st+1 and its
reward rt form an experience (st, at, st+1, rt, done) where
done ∈ {0, 1} is a Boolean flag denoting if the transition is
terminal (done = 1) or not (done = 0). The target Q-values
Q(st, at) are calculated with the Bellman Equation [1]:

Q(st, at) = rt + (1− done) · γ ·max
a′

Q(st+1, a
′) (1)

where γ is an appropriately chosen discount factor.
During the inference phase, in a given state s, the action

argmaxa Q(s, a) with the maximal Q-value is chosen. The
DQN framework gained widespread attention with its success
in playing various Atari video games at a superhuman level [1].

IV. PERMUTATION EQUIVARIANT DEEP Q-NETWORKS

In deep learning, certain classes of inputs have been shown
to profit from corresponding NN structures. Recurrent Neural
Networks (RNNs) are capable of capturing information in time
series, Convolutional Neural Networks (CNNs) abstract local
patterns, and the attention mechanism in Transformers [35]
is capable of interpreting the relations between input pairs.
By analogy, problems that are inherently PE may profit from
respective networks. In this section, we formulate the MAB
problem as an RL problem to show the potential benefit of PE
RL agents. Then, we study methods to construct PE neural
networks, in particular, obtaining a PE DQN for the MAB
problem.

A. Multi-Armed Bandit as RL Problem

We assume a classical variant with a player facing n
slot machines (one-armed bandits), each machine i ∈ J1, nK
having a fixed unknown probability pi of giving a winning
reward rwin. Players aim to maximize the cumulative reward
from the machine within a fixed (but potentially unknown)
number of rounds. A strategy of a player has to gather
information about the winning probabilities (exploration) and
use the gathered information to generate reward (exploitation).

Stated as an MDP (Fig. 1), we choose some properties of
machines as components of the global state: the number of
rounds machine i was played and how often it returned a
reward up to (and including) round t is recorded in st,i =
(played, rewarded). In particular, s0,i = (0, 0). The global
state at round t is given as st = (st,1, st,2, . . . , st,i, . . . , st,n).
At each round there are n possible actions: one for each ma-
chine i. If the player chooses to play machine i at round t (that
is, at = i), they win with probability pi the reward rt = rwin,
or lose the reward rloss. In both cases, the updated state st+1

is identical to st, except for st+1,i = st,i + (1, 1) in case it
was a win and st+1,i = st,i + (1, 0) in case it was a loss.

Fig. 1: Illustration of the MAB problem as an MDP. Global
states s0, s1, . . . are composed of individual machine states
and changed upon actions and a probabilistic state transition.

A classical DQN approach uses a fully connected network
that takes a flattened state as input and outputs a vector of
Q-values, with components corresponding to the machines.
However, for such a network, a permutation of the machines
is interpreted as a different state. For an MAB instance with n
machines, a fully connected DQN has to discover a state
space n! times more extensive than an agent that considers the
permutations of a state to be identical, potentially shortening
the required learning phase.

B. Permutation Equivariant Networks

Towards networks that are PE by design, we discuss basic
networks with n input and output components before compos-
ing them into more complex solutions.

a) Shared Individual Networks: The most straightfor-
ward PE structure is using a common individual-machine
network for all machines. Each machine-component of the
input X ∈ Rn×d passes through a common NN f : Rd → Rd′

,
and the individual outputs are composed into a global output,
maintaining the initial input order. The network (Fig. 2a) is
PE by design:

PENNind(X) = (f(x1), f(x2), . . . , f(xi), . . . , f(xn)) (2)

While this structure can capture local information from each
individual machine, it lacks a view of the global state.

b) Pooling Network: A pooling network (Fig. 2b) com-
prises two main components: a pooling function Pooling :
Rn×d → Rd, and a subsequent neural network g : Rd → Rd′

.
The choice of pooling function is flexible, with options includ-
ing max-pooling, average-pooling, or sum-pooling. Initially,
the input undergoes pooling before being fed through the neu-
ral network. The resulting network output is then replicated n
times to match the input dimension:

PENNpooling(X) = g(Pooling(X))⊗ 1n (3)

The pooling network is permutation invariant, and thus PE,
since all output components are identical. Pooling networks



(a) Shared Individual Network

(b) Pooling Network

(c) Self-Attention

Fig. 2: Basic PE network structures. Colors indicate the
dependence of outputs on inputs.

are, to some extent, opposite to individual networks: They
provide a global view of the entire input, but the local
information of input individuals is no longer distinguished.

c) Self-Attention: Proposed in [2] to align the input
and output of encoder-decoder models dedicated to machine
translation, the attention mechanism is an essential compo-
nent of the state-of-the-art Transformer architecture [35]. The
work [14] uses multi-head attention modules to build a PE
“Set Transformer.” Self-Attention (Fig. 2c shows a simplified
structure) is PE by design as can be demonstrated by multi-
plying the input with a permutation matrix and observing that
Q, K, and V are permuted accordingly.

d) Activation Function: Most commonly-used activation
functions, such as tanh, ReLU, and ELU, are element-wise,
and are thus PE similar to the individual networks mentioned
earlier. Other non-element-wise functions, like softmax and
maxout, also meet the definition of a PE function. Therefore,
we can use common activation functions with the basic PE
networks discussed before, obtaining more complex PE net-
works (Theorem III.1).

C. Composed Permutation Equivariant Structures

Basic PE structures like the shared individual network lead
to non-accurate Q-value predictions. This is because, accord-
ing to (1), the value Q(st, ai) depends on maxa(Q(st+1, a)).
When calculating Q(st, ai), however, the individual network
does not take into account the states of the machines other
than i. It is thus necessary to combine basic PE structures
into more expressive ones.

According to Theorem III.1 more elaborate PE networks
can be obtained by composing or summing fundamental PE

structures. For example, to integrate the local scope of an
individual network with the global scope of a pooling network,
we can first merge their outputs using addition and then apply
an activation function (σ) to the combined output (Fig. 3):

f(X) = σ(PENNpooling(X) + PENNind(X)) (4)

Fig. 3: Example of a composed PE structure as given in (4).

This “stacking-up” of structures and reduction to a single
output, e.g., by summation can be used to obtain the single-
layer PE network studied in [8]: Indeed, choosing a one-
layer perceptron without bias as a “shared individual network”
structure and another one as a “pooling network”, and then
combining them by summation and a subsequent PE activation
function as in (4), one obtains the network presented in [8] as
a special case.

V. EXPERIMENTS

With the previously discussed method to systematically
construct PE DQNs, we next examine the performance of PE
DQNs as Q-networks compared to vanilla DQNs for solving
the MAB problem.

A. Training and validation setting

We consider the binary MAB problem with n = 10
machines. Rewards are rwin = 1 and rloss = −1. The state
of a machine at time t is composed of how many times this
machine was played, cpt,i, how many times it was winning,
crt,i, and how many rounds are left for the game (horizon),
ht = T − t. We ran two types of experiments: (i) In so-
called single-task experiments, 9 machines have a winning
probability of p = 0.1 and one machine of p = 0.9. The
order of the machines is shuffled before each episode. (ii)
For the so-called generalization-task experiment, the winning
probability pi ∼ Uniform(0, 1) of each machine is randomly
sampled from a uniform distribution before each episode of
the game.

To measure the impact of the network structure on per-
formance, we checked four DQN agents with different Q-
networks: three are PE, and one is a fully connected network.

• PE(Indiv+Pooling) DQN. The PE network of this agent
consists of three layers with similar PE compositions of
different sizes, connected with ELU activation functions
between layers. Each layer is the sum of an individual
network and a pooling network of the same dimension,
both without activation functions or biases. This structure



is akin to the DeepSet layer. The networks in each layer
have dimensions 3×15, 15×15, and 15×1. Mean-pooling
is used as the pooling function.

• PE(Indiv) DQN. This agent uses a network with the
same dimensions as the Ind+Pooling structure but without
the pooling module. It can also be viewed as a fully
connected network where inputs are individual machine-
states and outputs are the corresponding individual Q-
values.

• PE(Att) DQN. Here, the network consists of one layer
of self-attention with dimension d = 3 and dk =
dv = 9, followed by an ELU activation function and
one Individual+Pooling layer similar to those in the
PE(Indiv+Pooling) DQN, with dimensions 9× 1.

• Vanilla DQN. As a benchmark, the vanilla DQN uses a
fully connected network with dimensions 30×150, 150×
150, and 150× 10. The input dimension is the size of a
machine’s state times n, as opposed to a machine’s state
size used for the PE DQNs, since the FCNN cannot take
a matrix as a single input. The sizes of the subsequent
layers are adjusted accordingly.

All these DQNs use the double DQN architecture proposed
in [1], with a separate network to predict the Q(st+1, ai). The
target network is synchronized with the online network with
a fixed frequency (optimized hyperparameter).

The following classic algorithms have been included in the
benchmarks for comparison:

• UCB1. First proposed in [3] for MAB, the upper con-
fidence bound (UCB) algorithm is well studied and has
many variants. The main idea of the UCB algorithms is
choosing the arm with the highest upper bound of the
confidence interval for the arm’s reward. In UCB1, the
bound is calculated as UCB1(st,i) =

crt,i
cpt,i

+ c
√

ln t
cpt,i

,

where c is the exploration constant. We set c = 0.1
√
2

based on hyperparameter optimization (data not shown).
• Thompson Sampling. Thompson Sampling [32] (TS) is

a probabilistic algorithm that balances exploration and
exploitation by sampling from a random distribution of
beliefs of the reward distribution. In the case of binary
MAB, the rewards follow Bernoulli distributions; hence,
the distribution of pi, following Bayes’ rule, is a Beta
distribution with αt,i = crt,i and βt,i = cpt,i − crt,i.

We also include one random choice algorithm and one
oracle algorithm in the comparison to estimate the lower and
upper bounds of performance in the stochastic environment.

• Random Action. This algorithm randomly selects ma-
chines with equal probabilities for each action.

• MinRegret. This algorithm has access to the probabili-
ties p of all machines and systematically chooses to play
the machine with the highest probability.

In evaluating the algorithms, the most critical metric is the
total rewards collected during the game. In single-task experi-
ments, we assess algorithm performance precisely through the
fraction of time the best action is chosen. However, in gener-
alization tasks where probabilities pi are randomly generated,

the advantage of the best arm may not always be evident.
Therefore, we use cumulative reward as the primary metric.
The machines’ winning probabilities influence the possible
cumulative rewards collected in one episode. In order to ensure
fairness across all algorithms, the winning probabilities are
fixed for all algorithms after random initialization in each
game during testing.

Another metric we consider is the differences between Q-
values of different actions at the same state. For a perfect
Q-agent, knowing all the probabilities pi without the need for
exploration, according to the Bellman equation (1), the Q-
value Q(st, at,i) is:

Q(st, at,i) = E(ri) + max
j

E(rj)
1− γht

1− γ
(5)

where ri is the immediate reward of playing machine i and
E(ri) is the expected reward in the total game when playing
machine i. The formula indicates that the Q-function grows
exponentially with respect to the horizon ht (and consequently
with t) given perfect knowledge of pi. Specifically, the gap
between Q-values of two actions at the same state are ap-
proximately constant and bounded above by maxi E(ri) −
minj E(rj). Despite trained Q-values varying due to explo-
ration and uncertainty in practice, the theoretical predictions
still serve as a valuable reference for expected Q-values.

Training and hyper-parameters: Optimized hyper param-
eters are the learning rate η = 0.000005 for PE(Att) DQN
and η = 0.00003 for the other networks, batch size |B| = 1,
discount factor γ = 0.99, and ϵ = 0.1. For each round
number T , the agents are trained for 104 episodes. The online
Q-network and the target Q-network are synchronized every 10
episodes. For the generalization experiments, 10 DQN models
were trained for each method, and the best one was selected
for validation.

B. Single-task experiment

In the initial phase of the single-task experiment, we
evaluate the performance and learning efficiency of DQNs
with different network architectures on a single task. We
set T = 200 for both the training and validation phases. Each
DQN undergoes training for 104 games, and after every 10
games, the agent is tested on 100 episodes of games to record
the average fraction of games choosing the best action. To
mitigate the effects of randomness during training, this process
is repeated 10 times.

The results are smoothed using a sliding window of 5
epochs and presented in Fig. 4. All PE DQNs outperform the
vanilla DQN, with PE(Indiv+Pooling) demonstrating signifi-
cant advantages. It achieves a precision over 0.8 in choosing
the best action in less than 103 episodes and maintains
this performance consistently throughout training, with the
smallest variance among all agents. PE(Indiv) DQN learns
rapidly initially but plateaus early. Due to its structure, PE(Att)
DQN shows considerable variance and requires more training
time but ultimately also outperforms the vanilla DQN.



Fig. 4: The percentage of choosing the best action among n = 10 machines during training smoothed with a sliding window
of 5 episodes, of DQNs. The line and the shaded region represent the mean and 95% confidence interval, respectively.

C. Generalization-task experiment
We tested two aspects of generalization capabilities: (i)

Generalization to different settings (different T ), testing if a
DQN can perform well on games with varying duration T .
(ii) Generalization to unseen states, testing if a DQN can
play effectively on games with states not encountered during
training, assessing adaptability to novel environments.

For that purpose, the DQNs are trained on games with
horizons T = 10a, where a ∈ {10, 11, . . . , 20}, with each
configuration trained for 104 episodes per T . After training,
they are validated on games with round numbers T = 10a,
where a ∈ {5, 6, . . . , 50}. For each DQN, 10 agents are
trained, and the best-performing agent is selected for valida-
tion. The cumulative rewards collected by different algorithms
are presented in Fig. 5. Results are averaged over 100 test
episodes for each round number and normalized between
MinRegret and Random Action.

Fig. 5: Performance on the MAB problem (normalized to
MinRegret and Random Action) with game duration T from
50 to 500. DQNs are trained for T between 100 and 200.

For tasks encountered during training (100 ≤ T ≤ 200),

all PE DQN variants noticeably outperform the Vanilla DQN.
PE(Indiv+Pooling) DQN demonstrates an advantage compared
to Thompson Sampling and matches the performance of UCB1
across most games. Both PE(Indiv) DQN and PE(Att) DQN
show improved performance (within 100 ≤ T ≤ 200) as the
game duration increases, with PE(Att) DQN notably achieving
results comparable to Thompson Sampling, while PE(Indiv)
DQN catches up after T > 160.

For tasks beyond the training range (T < 100 | T > 200),
PE(Indiv+Pooling) DQN maintains its superiority over all
other DQNs. It outperforms Thompson Sampling and matches
the performance of UCB1 in most cases, even when T
reaches 500. On the other hand, PE(Indiv) and PE(Att) demon-
strate less strong generalization outside the training T range.
PE(Indiv) DQN experiences a rapid performance decline as T
decreases to 50, but the decline is less pronounced as T
increases to 500. PE(Att) DQN performs best around T = 200,
with a noticeable decline as T moves away from this value. Its
performance reaches a minimum around T = 400 but remains
superior to Vanilla DQN.

The generalization-task demonstrates that PE DQNs were
able to develop universal strategies across similar task settings
and extend these strategies to unseen scenarios. The degree of
generalizability is specific to the agent’s PE network structure,
with PE(Indiv+Pooling) showing the highest generalizability
and PE(Att) the lowest.

We next take a closer look at the Q-values predicted by
the DQNs. Fig. 6 shows the Q-value predictions and the
differences between the Q-values of different actions and the
minimum predicted Q (Q(st, i) − minj Q(st, j)) in a game
with T = 200. The red dashed lines in 6a and 6b respectively
indicate the Q-values for the best action and the differences of
Q-values between the best and worst machines in an optimal
network, according to (5).

In Fig. 6a, we observed that the PE(Indiv+Pooling) DQN
predicts the Q-values close to optimal, and PE(Indiv) matches
the form globally. The PE(Att) DQN predicts Q-values that
decrease with t, even though the form of the curve is not
perfect. In contrast, the Vanilla DQN’s Q-values deviate sig-



(a)

(b)

Fig. 6: Q-values predicted by different DQNs (6a) and their
differences between options (6b) in a game with T = 200.
Training was performed with T = 10a, where a varied from
10 to 20. The red dotted line indicates the Q-values of best
machine or the difference between the best and the worst
machine for an optimal Q-function as in (5).

nificantly from the reference, with the Q-value curve exhibiting
varied trends. The biases toward specific machines are also sig-
nificant, leading to uneven exploration: the machine with the
highest initial Q-value is explored more initially. We observe
the same pattern of Q-values for some actions towards the end
of the game, suggesting that the FC network approximates the
PE features via learning, although sub-optimal.

In terms of differences (Fig. 6b), all PE agents show
relatively small differences in Q-values of actions, with
PE(Indiv+Pooling) having the differences the closest to the
reference. The difference predicted by PE(Indiv) is the largest
among the PE DQNs, which corresponds to its lack of a
global view of the game: when computing maxa′ Q(st+1, a

′)
during the training phase to obtain target Q(st, ai), PE(Indiv)
can only consider the case where a′ refers to playing itself,
i.e., maxa′ Q(st+1, a

′) = Q(st+1, ai). Consequently, the dif-
ferences between Q-values are larger than the differences of
the immediate rewards. Unlike the PE DQNs, the differences
predicted by Vanilla DQN are more significant, failing to
capture the homogeneity of the inputs.

VI. CONCLUSION

We explored the benefits of directly using permutation
equivariance (PE) in reinforcement learning, which allows us
to significantly reduce the state space, leading to faster learn-
ing and improved performance. We introduced a method to
systematically construct PE DQN architectures and validated
three such architectures for performance. Our experiments
demonstrate that PE DQNs with various network structures
consistently outperform vanilla DQNs in MAB games. They
exhibit superior generalization capabilities and show a strong
correlation in Q-value predictions. Among the PE DQNs
tested, the combination of individual and pooling networks
emerges as the top performer among DQNs and competes
favorably with classical algorithms like UCB1. In future work
we aim to apply these methods to more complex PE games.
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