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ABSTRACT
One of the key challenges in synthetic biology is devising robust

signaling primitives for engineered microbial consortia. In such

systems, a fundamental signal amplification problem is the majority

consensus problem: given a system with two input species with

initial difference of Δ in population sizes, what is the probability

that the system reaches a state in which only the initial majority

species is present?

In this work, we consider a discrete and stochastic version of

competitive Lotka–Volterra dynamics, a standard model of micro-

bial community dynamics. We identify new threshold properties

for majority consensus under different types of interference com-

petition:

• We show that under so-called self-destructive interference

competition between the two input species, majority consen-

sus can be reached with high probability if the initial differ-

ence satisfies Δ ∈ Ω(log2 𝑛), where𝑛 is the initial population
size. This gives an exponential improvement compared to

the previously known bound of Ω(
√︁
𝑛 log𝑛) by Cho et al.

[Distributed Computing, 2021] given for a special case of

the competitive Lotka–Volterra model. In contrast, we show

that an initial gap of Δ ∈ Ω(
√︁
log𝑛) is necessary.

• On the other hand, we prove that under non-self-destructive
interference competition, an initial gap of Ω(

√
𝑛) is neces-

sary to succeed with high probability and that a Ω(
√︁
𝑛 log𝑛)

gap is sufficient.

This shows a strong qualitative gap between the performance of

self-destructive and non-self-destructive interference competition.

Moreover, we show that if in addition the populations exhibit inter-

ference competition between the individuals of the same species,
then majority consensus cannot always be solved with high proba-

bility, no matter what the difference in the initial population counts.
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computing models.
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1 INTRODUCTION
Synthetic biology is a discipline focusing on the rational engineer-

ing of biological systems [15, 16]. Early results built basic com-

putational modules, such as memory [35], clocks [23, 30], and

sensors [47] in the bacterium Escherichia coli. Recently, synthetic
biologists have started to engineer synthetic consortia consisting

of multiple interacting microbial species that collectively imple-

ment distributed biological circuits [12, 49, 56, 59]. This has lead

the bioengineering community to face a fundamental challenge

of distributed systems: the need for robust coordination primitives
to coordinate the activities of all different microbial populations

comprising the circuit [5, 12, 40, 49].

Synthetic biologists have recognized that (a) such problems are

studied in the field of distributed computing and that (b) the exist-

ing models of distributed computing poorly capture key aspects of

microbial systems [10, 25, 41, 45]. Classical models of distributed

computing ignore even the most elementary ecological processes
that take place in microbial consortia, such as the stochastic repro-

duction and mortality of individual cells and competition between

different species [38, 61].

This limitation holds even for many popular models of dis-

tributed computing explicitly motivated by biological computation,

such as the widely studied population protocol model [1, 8, 9, 11, 28].

Unfortunately, these fundamental ecological processes are (1) in

general unavoidable in synthetic microbial consortia, (2) lead to

stochastic fluctuations in the community size and composition,

which are key drivers of microbial population dynamics [61], and

importantly, (3) dealing with them is one of the main challenges in

engineering microbial consortia [12, 40, 45].

While theoretical foundations of molecular and biological com-

putation have gained increasing attention in recent years [3, 18, 27,

32, 33, 54, 55], there is scarcely any work focusing on the theory

of distributed computing in microbial consortia, despite the fact

that distributed computing has become a fundamental paradigm

in synthetic biology. Here, we initiate the complexity theoretic

https://doi.org/10.1145/3662158.3662823
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study of the computational power of programmable ecological inter-
actions [48] in microbial circuits.

1.1 The problem: majority consensus
Majority consensus is a fundamental problem in distributed com-

puting [2, 8, 20, 21, 28, 29, 31, 53]. In this problem, each node in the

system is given a local input bit, and the task is for each node to

output the input bit given to the majority of the nodes.

Majority consensus has also been identified as a useful signaling

primitive for engineered microbial consortia in theory [19] and

practice [5]. The goal is to design a genetic circuit, where the (gene

expression) state of each cell is determined by the species which

is in the majority [5]. This primitive can be used as a robust dif-

ferential signal amplifier [19] when composing complex circuits

implemented by different populations [56]. However, it remains un-

clear how to efficiently solve this problem in the microbial setting,

where individuals replicate, die, and compete with one another.

The performance of majority consensus protocols is typically

studied as a function of the initial population size 𝑛 and the initial

difference Δ between the counts of the majority and minority in-

put species. In exact majority consensus, the goal is to correctly

compute the majority with probability 1 for any Δ > 0, whereas in

approximate majority consensus, the protocols are allowed to fail

with a probability that depends on 𝑛 and Δ. Typically, the aim is to

obtain protocols that succeed with high probability in 𝑛 for as small

as possible Δ. Intuitively, the smaller Δ a protocol can deal with, the

better the protocol tolerates noise: in the synthetic biology setting,

such protocols are instrumental in amplifying signals produced by

noisy (biological) processes, e.g., microbial subcircuits.

For example, in the stochastic population protocol model [7],

where a random scheduler picks pairs of nodes to interact uni-

formly at random in each time step, both exact [1, 4, 28, 29, 53]

and approximate [8, 22] versions of majority consensus have been

studied. There is a simple (but challenging to analyze) 3-state pro-

tocol [8] that solves approximate majority consensus in 𝑂 (𝑛 log𝑛)
interactions with high probability whenever Δ ∈ Ω(

√
𝑛 · log𝑛).

This protocol can in principle implement a cell cycle switch in cel-

lular populations [17]. In contrast, for exact majority consensus,

it is known that any 𝑂 (1)-state protocol requires Ω(𝑛2) expected
interactions [1], but there is a 𝑂 (log𝑛)-state protocol that solves
the problem in 𝑂 (𝑛 log𝑛) interactions in expectation [28].

1.2 Our focus: from molecular to microbial
computation

The population protocol model captures uncertainty arising from

unpredictable interaction patterns, but it does not capture demo-
graphic noise, i.e., the stochastic fluctuations in the community

composition that arise from the chance events of the underlying

biomolecular [10, 60] and ecological processes [38, 46, 61] taking

place in microbial systems. For small populations, as in the case of

synthetic microbial consortia, demographic noise is known to have

a significant impact on the realized dynamics.

In this work, we take steps towards developing a theory of mi-

crobial computation that investigates the computational power of
ecological interactions. Motivated by the recent experimental [5, 48]

and mathematical modeling work utilizing ecological competitive

mechanisms [6, 19, 50] in the design of distributed majority con-

sensus algorithms in synthetic microbial consortia, we study the

following question at the interface of theoretical computer science

and synthetic ecology:

How does (a) demographic noise and (b) the choice of

engineered, competitive mechanisms impact the per-

formance of microbial majority consensus protocols?

We investigate the majority consensus problem in discrete Lotka–

Volterra models of well-mixed, competitive microbial communities.

These are standard models used in microbiology that explicitly

model the reproductive and competitive dynamics of microbial

species over time [24, 38, 61]. The analysis of stochastic popula-
tion models is considered important but highly challenging in

the biomathematics [13, 36, 44] and statistical physics communi-

ties [26, 43, 52, 57]. Recently, their rigorous analysis has started to

gain interest also in theoretical computer science [6, 19, 22].

We develop new techniques to analyze the behavior of major-

ity consensus dynamics in stochastic, competitive Lotka–Volterra

models, and show that in principle (1) ecological processes can

be algorithmically exploited to obtain robust majority consensus

protocols, and that (2) different ecological mechanisms can have

substantial impact on the performance of microbial protocols.

1.3 The model: stochastic Lotka–Volterra
dynamics

We now introduce the stochastic two-species Lotka–Volterra (LV)

models of competingmicrobial populations. These LVmodels gener-

alize the models of microbial majority consensus previously studied

in the distributed computing community [6, 19]. Lotka–Volterra

dynamics can be derived mechanistically from several different bi-

ological assumptions. Here, we have derived the models assuming

interference competition [39] between the species, as interference

competition can be programmed into synthetic microbial popula-

tions using readily available genetic modules [48].

The Lotka–Volterra models. As typical for non-spatial biological
population models [13, 60], our models are formally represented

as chemical reaction networks [14, 37], assuming unit volume. For

the sake of brevity, we do not give the full general definition of the

chemical reaction network formalism, as we only work with two

basic models. Following the standard reaction kinetics notation, the

Lotka–Volterra model with self-destructive interference competition

is given by

𝑋𝑖
𝛽
−→ 𝑋𝑖 + 𝑋𝑖 𝑋𝑖

𝛿−→ ∅ 𝑋𝑖 + 𝑋1−𝑖
𝛼𝑖−−→ ∅ 𝑋𝑖 + 𝑋𝑖

𝛾𝑖−−→ ∅,
(1)

where 𝑋𝑖 denotes an individual of species 𝑖 ∈ {0, 1}, ∅ denotes the

removal of each reactant species and 𝛼𝑖 , 𝛽, 𝛿,𝛾𝑖 ≥ 0 are constant

rate parameters. We note that here we treat the reactions with

reactants 𝑋0 + 𝑋1 and 𝑋1 + 𝑋0 of different species formally as

different reactions unlike typically in chemical reaction network

formalism – this purely for notational convenience.

Our second model is the Lotka–Volterra model with non-self-
destructive competition given by

𝑋𝑖
𝛽
−→ 𝑋𝑖 +𝑋𝑖 𝑋𝑖

𝛿−→ ∅ 𝑋𝑖 +𝑋1−𝑖
𝛼𝑖−−→ 𝑋𝑖 𝑋𝑖 +𝑋𝑖

𝛾𝑖−−→ 𝑋𝑖 ,

(2)
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for 𝑖 ∈ {0, 1}. We often write 𝛼 = 𝛼0+𝛼1 and𝛾 = 𝛾0+𝛾1. We say that

the system is neutral if both species have identical rate parameters.

Unless otherwise specified, we consider neutral communities. In

both models, the reactions have at most two reactants. We call

reactions with a single reactant individual reactions and reactions

with two reactants pairwise interactions between individuals.

Biological interpretation. We assume a well-mixed setting as en-

countered in a bioreactor, with a growing microbial community

consisting of two populations of different species. We primarily

focus on the early stages of the microbial population dynamics, the

so-called exponential phase of microbial growth, where the popula-

tion size is far from the carrying capacity of the environment (e.g.,

growth is not limited by availability of nutrients or space).

Each individual of input species 𝑖 ∈ {0, 1} reproduces at per-
capita rate 𝛽 ≥ 0 and dies at per-capita rate 𝛿 ≥ 0. In addition to

these reproductive dynamics, we assume that interactions between

individuals happen via interference competition: individuals of

species 𝑖 encounter and individuals of species 1 − 𝑖 at rate 𝛼𝑖 ≥ 0,

and individuals of the same species 𝑖 encounter and kill each other

at rate 𝛾𝑖 ≥ 0. Competition between individuals of different species

is called interspecific, whereas competition between individuals of

the same species is intraspecific.
When species engage in a competitive interaction, the outcome

can be either symmetric (both individuals die) or asymmetric (only

one individual dies). These two cases correspond to the two dif-

ferent models (1) and (2), and they have biologically very distinct

interpretations. The former scenario corresponds to self-destructive
interference (e.g., cells release a bacteriocin via lysis), whereas the

latter scenario corresponds to non-self-destructive interference (e.g.,
cells secrete a bacteriocin or puncture the membrane of other cells

on physical contact). Both types of competition are exhibited by

bacterial species [39]. Non-self-destructive interference can also be

implemented in engineered populations using, e.g., programmable

plasmid conjugation [51], as suggested by Cho et al. [19].

Stochastic kinetics. For both model variants, a configuration is a

vector x = (𝑥0, 𝑥1) ∈ N2
, where 𝑥𝑖 gives the count of species 𝑖 in

the configuration. In a configuration (𝑥0, 𝑥1), the individual birth
reactions of species 𝑖 have propensity 𝛽𝑥𝑖 and individual death

reactions have propensity 𝛿𝑥𝑖 . The propensity of an interspecific

competition reaction is 𝛼𝑥0𝑥1 and the propensity of an intraspecific

competition reaction is 𝛾𝑥𝑖 (𝑥𝑖 − 1)/2. The total propensity of the

configuration (𝑥0, 𝑥1) is given by

𝜑 (𝑥0, 𝑥1) =
∑︁

𝑖∈{0,1}
(𝛼𝑖𝑥0𝑥1 + 𝛽𝑥𝑖 + 𝛿𝑥𝑖 + 𝛾𝑖𝑥𝑖 (𝑥𝑖 − 1)/2) .

Under continuous-time stochastic kinetics, the time until the next

reaction in a configuration x is exponentially distributed with rate

𝜑 (x). Given that the current configuration is x, the probability that

𝑅 is the next reaction is 𝜑𝑅 (x)/𝜑 (x), where 𝜑𝑅 (x) is the propensity
of the reaction (as above).

The stochastic trajectory under stochastic kinetics is given by a

continuous-timeMarkov processX = (X𝑡 )𝑡≥0 on the state spaceN2
,

where 𝑄 (x, y) gives the propensity of the chain from transitioning

from state x to state y. In this work, we primarily focus on the

jump chain S = (S𝑡 )𝑡≥0 of X, which is the discrete-time Markov

chain given by the transition probabilities 𝑃 (x, y) = 𝑄 (x, y)/𝜑 (x)

for 𝜑 (x) > 0. If 𝜑 (x) = 0, then 𝑃 (x, x) = 1 and 𝑃 (x, y) = 0 for 𝑦 ≠ 𝑥 .

Here, S𝑡 represents the counts of both species after 𝑡 ∈ N reactions

have occurred.

Majority consensus. We say that species 𝑖 ∈ {0, 1} in a state S𝑡 =
(𝑥0, 𝑥1) is the majority species if 𝑥𝑖 > 𝑥1−𝑖 holds. In particular, we

say that the majority species in the initial configuration S0 is the
initial majority species. The species who is not the initial majority

species is the initial minority species. We say that a configuration

(𝑥0, 𝑥1) has reached consensus if 𝑥0 = 0 or 𝑥1 = 0. In such a configu-

ration, we say that the species 𝑖 has won if 𝑥𝑖 > 0 and 𝑥1−𝑖 = 0. i.e.,

the species 𝑖 is the majority species in the configuration (𝑥0, 𝑥1).
We define the consensus time of the chain S to be

𝑇 (S) = inf{𝑡 : S𝑡 has reached consensus}

the minimum time until (at least) one of the species goes extinct.

We say that the chain S reaches majority consensus if 𝑇 (S) is finite
and the initial majority species has positive count at time 𝑇 (S). We

define 𝜌 (S) to be the probability that the chain S reaches majority

consensus.

Without loss of generality, we assume throughout that the first

species is the initial majority species, i.e., S0 = (𝑎, 𝑏) for some

𝑎 > 𝑏 > 0. We use 𝑛 = 𝑎 + 𝑏 to denote the size of the total initial

population. For every time step 𝑡 ≥ 0, we define Δ𝑡 = 𝑆𝑡,0 − 𝑆𝑡,1
to be the difference between the counts of the initial majority and

the initial minority species. In particular, Δ0 gives the initial gap

between the initial majority and minority species.

1.4 Our contributions
In this work, we are interested in how the probability 𝜌 (S) of ma-

jority consensus behaves as a function of the initial gap Δ0 under

stochastic kinetics. To this end, we say that Ψ(𝑛) ≥ 0 is a majority
consensus threshold for a Lotka–Volterra model if 𝜌 (S) ≥ 1 − 1/𝑛
if and only if Δ0 ≥ Ψ. We identify the asymptotic (and sometimes

exact) majority consensus thresholds for two-species competitive

Lotka–Volterra systems under different modes of inference com-

petition. Our main results are summarized in Table 1 and are as

follows.

Interspecific competition. In systems with interspecific competition

and no intraspecific competition (i.e., the case 𝛼 > 0 and 𝛾 = 0)

we show the following results. First, for self-destructive interfer-

ence competition, we show that the majority consensus threshold

lies in a polylogarithmic range between Ω
(√︁

log𝑛

)
and 𝑂 (log2 𝑛).

This is an exponential improvement in the previous upper bound

of 𝑂 (
√︁
𝑛 log𝑛) for self-destructive competition shown by Cho et

al. [19] in the special case with 𝛿 = 0 (i.e., a model with no indi-

vidual death reactions). Our result applies to a much larger class

of models: for any choice of 𝛽, 𝛿, 𝛼 > 0, the chain reaches majority

consensus with high probability provided that the gap is Ω(log2 𝑛).
In contrast, we show that if the gap is 𝑜 (

√︁
log𝑛) the chain fails to

reach majority consensus with constant probability.

Second, for non-self-destructive interference competition, we

show that themajority threshold lies in a polynomial range between

Ω(
√
𝑛) and 𝑂 (

√︁
𝑛 log𝑛). This shows an exponential separation be-

tween competitive Lotka–Volterra models with self-destructive and
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Competition Self-destructive Non-self-destructive Reference

Interspecific only Ω(
√︁
log𝑛) — 𝑂 (log2 𝑛) Ω(

√
𝑛) — 𝑂 (

√︁
𝑛 log𝑛) Sec. 5 and Sec. 6

Both inter- and intraspecific ≥ 𝑛 − 1 ≥ 𝑛 − 1 full paper [34]

Intraspecific only ∞ ∞ full paper [34]

Interspecific and 𝛿 = 0 𝑂 (
√︁
𝑛 log𝑛) 𝑂 (

√︁
𝑛 log𝑛) (*) [19] and [6]

No competition (𝛼 = 𝛾 = 0) 𝑛 − 1 𝑛 − 1 [6]

Table 1: Worst-case majority consensus thresholds for different LV models. The first three rows are new results, the last
two results are from prior work. (*) The model of [6] is not strictly a special case of the LV model, as it assumes bounded,
non-mass-action birth rates.

non-self-destructive interspecific interference competition in these

models.

In comparison, recently Andaur et al. [6] gave an upper bound of

𝑂 (
√︁
𝑛 log𝑛) for a slightly different model with resource-consumer

dynamics and interference competition. However, their proof is

only for models without individual death reactions (𝛿 = 0), assumes

bounded non-mass-action growth dynamics, and their analysis only

guarantees majority consensus with probability 1 −𝑂 (1/
√
𝑛) and

not with true high probability (i.e., probability 1 − 1/𝑛𝑐 for any

constant 𝑐 > 0).

Our upper bound holds for any constant 𝛼 > 0 and 𝛽, 𝛿 ≥ 0, i.e.,

our model also allows for individual death reactions. Moreover, we

can show that majority consensus is reached with high probability

provided that the gap is Ω(
√︁
𝑛 log𝑛). Finally, proof technique can

also be applied to the model of Andaur et al. [6] in a straightforward

manner, yielding a stronger probability guarantee for majority con-

sensus also in their model with bounded, non-mass-action growth

rates.

For both self-destructive and non-destructive interspecific com-

petition, we show that consensus is reached within 𝑂 (𝑛) events
both in expectation and with high probability in the absence of

intraspecific competition.

Intraspecific competition. Finally, unlike prior work, we also inves-

tigate majority consensus in systems with intraspecific interference
competition, i.e., competition between the individuals of the same

species. We show that systems with intraspecific competition can

be have fundamentally different behavior in terms of majority con-

sensus. Namely, we show that such majority consensus thresholds

do not always exist.

First, if intraspecific and interspecific competition are equally

strong (𝛼 = 𝛾 ) for self-destructive competition, then the probabil-

ity of majority consensus is equal to the initial proportion of the

majority species. This implies that majority consensus threshold

is at 𝑛 − 1, and that such systems cannot solve majority consensus

with high probability (in the true sense). A similar result holds

for non-self-destructive competition with 𝛾 = 2𝛼 . Second, we also

show that systems with only intraspecific interference competition

have no majority consensus thresholds: given any gap, the chain

fails to reach majority consensus with at least positive constant

probability.

1.5 Technical challenges
For the stochastic LV models without intraspecific competition,

our analysis uses a new technical approach for bounding the noise

arising from individual reactions and asymmetric outcomes of non-

self-destructive competition. We introduce a new “asynchronous,

pseudo-coupling” technique that can be used to bound the be-

haviour of the two-species process before it reaches consensus

using what we call “nice” single-species birth-death chains.

On a high-level, this approach is similar in spirit to the recent

coupling techniques of Andaur et al. [6] and Cho et al. [19], which

couple a two-species chain with easier to analyze single-species

birth-death chains. However, there are key differences, and our

approach is more general.

Limitations of prior coupling approaches. The existing techniques
for microbial majority consensus [6, 19] are closely tailored to

specific model variants they consider. When trying to use these

techniques to the LV models, both of the previously existing cou-

pling techniques critically break when the process is allowed to

have certain stochastic events that may occasionally benefit the

minority species (e.g., individual death reactions of the majority

species decreasing the discrepancy).

Cho et al. [19] use elaborate coupling arguments between several

different chains to first establish a bound on the extinction time,

and then couple the two-species chain to parallel birth-only Yule

processes to bound the probability of reaching majority consensus

using the regularized incomplete beta function. In addition to the

actual coupling argument, the proof critically assumes that no

individual deaths can occur and that competition is self-destructive.

Moreover, the bound obtained with this technique is exponentially

far from the real bound, as we show. The submartingale argument

of Andaur et al. [6] allows for non-self-destructive competition at

the cost of forbidding individual death reactions and losing the

guarantee of true with high probability majority consensus.

Overview of new techniques. We resolve the limitations of prior

techniques by moving from usual Markovian couplings that update

the single-species chain and the two-species chain simultaneously

to a new type of an “asynchronous pseudo-coupling”. That is, our

construction is not strictly speaking a coupling between the two-

species and single-species processes, as the coupled chains are

not updated in lock-step. Despite this complication, we can still

carefully extract useful information about the distribution of events

in the two-species chain using stopping time arguments.
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This is achieved in part by also deriving a much more detailed

accounting of the (demographic) noise arising from birth reactions

of the minority species and death reactions of the majority species.

We abstract the properties of the single-species chain required by

the pseudo-coupling, and providing a more fine-grained analysis

of the distribution of events in the single-species chain.

Furthermore, our technique makes far fewer assumptions about

the structure of the two-species system and properties of the dom-

inating chains. Therefore, we suspect that our approach can be

further extended to analyze more realistic models beyond Lotka–

Volterra dynamics such as models incorporating general unbounded

resource-consumer dynamics (i.e., exploitative competition) in ad-

dition to interference competition. Indeed, our new techniques give

both a simpler analysis and stronger guarantees of the previously

studied microbial majority consensus dynamics [6, 19].

Our approach in a nutshell. Our main conceptual approach is to

analyze the probability of reaching majority consensus 𝜌 (S) by
considering the following random-length sum defined by

𝐹 (S) =
𝑇 (S)∑︁
𝑡=1

𝐹𝑡 , (3)

where 𝐹𝑡 = Δ𝑡−1 − Δ𝑡 . Note that 𝐹𝑡 > 0 if the discrepancy changed

in favor of the initial minority species and 𝐹𝑡 < 0 if the discrepancy

changed in favor of the initial majority species at time step 𝑡 .

The random variable 𝐹 (S) counts how much the initial gap

changes in favor of the initial minority species. This captures the

effects of demographic noise on the difference between the initial

majority and minority species before consensus is reached. Pro-

vided that 𝑇 (S) is finite with probability 1, we have that 𝜌 (S) =

Pr[𝐹 < Δ0] = 1 − Pr[𝐹 ≥ Δ0], that is, we can connect the probabil-

ity of reaching majority consensus with an given initial gap to the

cumulative density function of 𝐹 . Since the random variables 𝑇 (S)
and 𝐹1, . . . , 𝐹𝑇 (S) are dependent, getting a handle on the distribu-

tion of 𝐹 can be non-trivial. Moreover, in general (𝐹𝑡 )𝑡≥0 does not
give a (sub)martingale, so it is not clear if one can easily employ

readily available martingale concentration bounds to analyze the

process.

To bound 𝐹 , we observe that the demographic noise 𝐹 = 𝐹
ind

+
𝐹comp can be divided to two components, where 𝐹

ind
is the noise

arising out of reproductive dynamics (i.e., individual birth and

death reactions) and 𝐹comp is the noise arising from competition

dynamics. This allows us to obtain a much more refined bound on

total noise in the system by studying both components separately,

which previous techniques were unable to do.

Intuitively, under self-destructive competition, there is only noise

from the individual events, which are fairly rare under the mass

action dynamics. This noise turns out to be “polylogarithmic”. On

the other hand, under non-self-destructive competition, there is

additional noise coming from the chance outcomes of the compe-

tition events. We show there are 𝑂 (𝑛) competition events before

extinction. The outcomes of the competition events are (intuitively)

similar to a random walk on the line. The key challenge is that the

events causing different types of noise are interleaved.

1.6 Open problems and future directions
We suspect that the bound of 𝑂 (log2 𝑛) for self-destructive com-

petition is not tight for all parameter ranges (e.g., it clearly is not

tight in the case 𝛽 = 𝛿 = 0). The natural step is to identify the tight

asymptotic majority consensus threshold in the case 𝛼, 𝛽, 𝛿 > 0.

Second, while we focus on Lotka–Volterra models, we believe our

techniques are applicable to a wider variety of stochastic population

models beyond the competitive, two-species Lotka–Volterra model.

We show that in the worst-case, intraspecific competition can

badly hinder the probability of reaching majority consensus. For

example, with self-destructive competition, we identify that the

majority consensus threshold is𝑂 (log2 𝑛) with 𝛼 > 0 and𝛾 = 0 and

𝑛 − 1 when 𝛼 = 𝛾 > 0. An interesting open problem is to identify at

which point does the majority consensus threshold enter a sublinear

or polylogarithmic regime when 𝛼 > 0 is a fixed constant and

𝛾 → 0.

On a conceptual level, our results suggest interesting computa-
tional trade-offs in the design of microbial circuits: majority consen-

sus protocols utilizing self-destructive competition seem to be less

sensitive to demographic noise than protocols based on non-self-

destructive competition. However, the trade-off is that the former

is much more costly at the individual level. From a bioengineering

perspective, it would be interesting to investigate if circuits utiliz-

ing non-self-destructive interference are evolutionarily more stable

than circuits utilizing self-destructive competition.

Finally, one may surmise that the computational trade-offs im-

plied by this work are solely theoretical. For example, idealized

well-mixed, mass action Lotka–Volterra models do not capture the

full range of microbial dynamics. However, such models have been

experimentally observed to provide reasonable approximations in

many situations [24, 38, 42] also in the context of synthetic mi-

crobial consortia [5, 48]. Regardless, future work should further

investigate how relaxing the model assumptions influence the pre-

dicted computational trade-offs and experimentally test this. This

requires developing new proof techniques for dealing with non-

mass action models and/or explicit spatial dynamics.

1.7 Structure of the paper
We start with preliminaries in Section 2. In Section 3, we establish

some useful results regarding the behavior of certain single-species

chains, which we then use to bound the behavior of competitive

two-species Lotka–Volterra chains in Section 4. Section 5 and Sec-

tion 6 give bounds for majority consensus thresholds under self-

destructive and non-self-destructive interference competition.

Full proofs of all results can be found in the full version of this

paper [34].

2 PRELIMINARIES
We use N = {0, 1, . . .} to denote the set of nonnegative integers. For
any 𝑛 > 0, we use log𝑛 for the base-2 logarithm of 𝑛 and ln𝑛 for

the natural logarithm of 𝑛. For any integer 𝑛 > 0, we write 𝐻𝑛 to

denote the 𝑛th Harmonic number given by the sum

∑𝑛
𝑖=1 1/𝑖 , which

is lower-bounded by ln𝑛.

Concentration bounds. A random variable 𝑋 is a Bernoulli random
variable if𝑋 only takes values in {0, 1}. A random variable𝑋 is said
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to be 𝑂 (𝑓 (𝑛)) with high probability if for any fixed constant 𝑘 ≥ 0

there exists a constant 𝐶 (𝑘) such that Pr[𝑋 ≥ 𝐶 (𝑘) 𝑓 (𝑛)] ≤ 1/𝑛𝑘 .
To establish with high probability bounds, we use two standard

results on the concentration of random sums.

Lemma 2.1 (Chernoff bounds). Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛 be the
sum of 𝑛 independent Bernoulli random variables. Then

(1) Pr[𝑋 ≥ (1 + 𝜀) · E[𝑋 ]] ≤ exp

(
−E[𝑋 ] · 𝜀2/(2 + 𝜀)

)
for any

𝜀 > 0, and
(2) Pr[𝑋 ≤ (1− 𝜀) · E[𝑋 ] ≤ exp

(
−E[𝑋 ] · 𝜀2/2

)
for any 0 < 𝜀 <

1.

We will also make use of a special case of Hoeffding’s inequality

for random variables restricted to the range [−1, 1].
Lemma 2.2 (Hoeffding’s ineqality). Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛

be the sum of 𝑛 independent random variables, where 𝑋𝑖 ∈ [−1, 1].
Then for any 𝑡 ≥ 0

Pr [|𝑋 − E[𝑋 ] | ≥ 𝑡] ≤ 2 · exp
(
−2𝑡2

𝑛

)
.

For our lower bounds, we also make use of the following anti-
concentration bound implied by the Central Limit Theorem.

Lemma 2.3. Let 𝜀 ∈ (0, 1) be a constant and 𝑋 be the sum of 𝑛 i.i.d.
random variables 𝑋1, . . . , 𝑋𝑛 with mean 0 and variance 1. Then there
is a constant 𝜃 = 𝜃 (𝜀) > 0 such that for any sufficiently large 𝑛, we
have Pr[𝑋 > 𝜃

√
𝑛] ≥ 𝜀.

Stochastic domination and couplings. Let 𝑋1 and 𝑋2 be two non-

negative random variables. If Pr[𝑋2 ≥ 𝑥] ≥ Pr[𝑋1 ≥ 𝑥] for all 𝑥 ≥
0, then we write 𝑋1 ⪯ 𝑋2 and say that 𝑋2 stochastically dominates
𝑋1. The random variable (𝑋1, 𝑋2) is said to be a coupling of 𝑋1 and

𝑋2 if the distribution of 𝑋𝑖 is the same as the distribution 𝑋𝑖 , that

is, Pr[𝑋𝑖 ≥ 𝑥] = Pr[𝑋𝑖 ≥ 𝑥] for any 𝑥 ≥ 0. We make use of the

following simple lemma.

Lemma 2.4. Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛 be a sum of (not necessarily
independent) Bernoulli random variables and 𝑌 = 𝑌1 + · · · + 𝑌𝑛 be a
sum of independent Bernoulli random variables.

(1) If Pr[𝑋𝑖 = 1 | 𝑋1, . . . , 𝑋𝑖−1] ≤ Pr[𝑌𝑖 = 1] for each 1 ≤ 𝑖 ≤ 𝑛,
then 𝑋 ⪯ 𝑌 .

(2) If Pr[𝑋𝑖 = 1 | 𝑋1, . . . , 𝑋𝑖−1] ≥ Pr[𝑌𝑖 = 1] for each 1 ≤ 𝑖 ≤ 𝑛,
then 𝑌 ⪯ 𝑋 .

3 BOUNDS FOR NICE SINGLE-SPECIES
CHAINS

Let 𝑝, 𝑞 : N → [0, 1] such that 𝑝 (𝑛) + 𝑞(𝑛) ≤ 1 for all 𝑛 ≥ 0. The

birth-death chain defined by 𝑝 and 𝑞 is the discrete-time Markov

chain 𝑁 = (𝑁𝑡 )𝑡 ∈N on the state space N, where in each step the

chain goes from state 𝑛 to 𝑛 + 1 with birth probability 𝑝 (𝑛), to
state 𝑛 − 1 with death probability 𝑞(𝑛). The probability ℎ(𝑛) =

1 − 𝑝 (𝑛) − 𝑞(𝑛) is the holding probability of the chain in state 𝑛. A

state 𝑥 is absorbing if 𝑝 (𝑥) = 𝑞(𝑥) = 0.

We assume that 𝑝 (𝑛) > 0 and 𝑞(𝑛) > 0 for all 𝑛 > 0 and 𝑝 (0) =
𝑞(0) = 0 so that 0 is the unique absorbing state. The absorption time
or extinction time of a chain 𝑁 is 𝐸 (𝑁 ) = min{𝑡 : 𝑁𝑡 = 0}, that is,
the minimum time until the chain reaches the unique absorbing

state. We say the chain is nice if there exist constants𝐶, 𝐷 > 0 such

that 𝑝 (𝑛) ≤ 𝐶/𝑛 and 𝑞(𝑛) ≥ 𝐷 for all 𝑛 > 0.

Bounds on number of births for nice chains. For any nice chain

started, we will bound the extinction time 𝐸 (𝑁 ) of a chain and

the number 𝐵(𝑁 ) of birth events that occur before extinction. We

assume throughout that 𝑁0 = 𝑛, and with a slight abuse of notation,

we write 𝐸 (𝑁 ) = 𝐸 (𝑛) and 𝐵(𝑁 ) = 𝐵(𝑛) for such a chain 𝑁 . We

first asymptotically bound the extinction time. The lower bound

follows immediately from the fact that the chain needs to decrement

at least 𝑛 times to reach state 0. For the upper bound, the result

follows from a known result for the absorption time of discrete-time

birth-death processes; see [58, Theorem 3.1] and [6, Lemma 3].

Lemma 3.1. For any nice chain started in state 𝑛, its expected
extinction time is E[𝐸 (𝑛)] = Θ(𝑛).

Equipped with the above lemma, we can bound the number of

birth events before extinction.

Lemma 3.2. For any nice chain, the expected number of births
satisfies E[𝐵(𝑛)] ∈ 𝑂 (log𝑛).

With the bound on expected number of births, some calculations

and the application of Markov’s inequality and Chernoff bounds

yield the following claims for all sufficiently large 𝑛.

Lemma 3.3. Let 𝑘 > 0. For any nice chain, there exists a𝐶 (𝑘) such
that Pr[𝐵(𝑛) ≥ 𝐶 (𝑘) · log2 𝑛] ≤ 1/𝑛𝑘 .

Lemma 3.4. Let 𝑘 > 0. For any nice chain, there exists a 𝜃 (𝑘) such
that Pr[𝐸 (𝑛) ≥ 𝜃 (𝑘) · 𝑛] ≤ 1/𝑛𝑘 .

4 DOMINATING CHAINS FOR
LOTKA–VOLTERRA SYSTEMS

We now introduce a “pseudo-coupling” of single-species birth death

chains and two-species Lotka–Volterra chains that can be used to

over-approximate the consensus time and the number of “bad” indi-

vidual events that can decrease the gap. Unlike previous “dominat-

ing chain” approaches [6, 19], which consider restricted choices of

rate parameters, our approach works with any choice of positive

parameters 𝛽 , 𝛿 , 𝛼0, and 𝛼1. In particular, we allow individual death

reactions with 𝛿 > 0 and do not assume symmetric interference

competition, i.e., 𝛼0 ≠ 𝛼1 is possible. The condition for the domi-

nating chain is also simpler; this comes with the cost that we do

not get a coupling in the strict sense.

4.1 The chain domination lemma
Let S = (S𝑡 )𝑡≥0 be a two-species chain. We say that an event at

time step 𝑡 is bad if it decreases the gap between the minimum and

maximum species, i.e., if Δ𝑡+1 = Δ𝑡 −1 holds conditioned on that the
minimum species has positive count. Let 𝑃 (𝑎, 𝑏) be the probability
that the chain S in state (𝑎, 𝑏) has a bad non-competitive reaction.
We say that an event at time step 𝑡 is good if the species with the

smaller count decreases in count. Let 𝑄 (𝑎, 𝑏) be the probability

that the chain S in state (𝑎, 𝑏) has a good reaction. Note that the

probability of bad competitive events is 1 − 𝑃 (𝑎, 𝑏) −𝑄 (𝑎, 𝑏).
Let 𝑁 = (𝑁𝑡 )𝑡≥0 be a single-species birth-death chain defined by

birth function 𝑝 and death function 𝑞. We say that 𝑁 is a dominating
chain for S if for any 𝑎, 𝑏 ≥ 0 we have

(D1) 𝑃 (𝑎, 𝑏) ≤ 𝑝 (min{𝑎, 𝑏}), and
(D2) 𝑄 (𝑎, 𝑏) ≥ 𝑞(min{𝑎, 𝑏}).
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Lemma 4.1 (Chain domination lemma). Suppose the single-
species chain 𝑁 = (𝑁𝑡 )𝑡≥0 is a dominating chain for the two-species
chain S = (S𝑡 )𝑡≥0. If 𝑁0 ≥ min S0, then

(a) 𝑇 (S) ⪯ 𝐸 (𝑁 ), and
(b) 𝐽 (S) ⪯ 𝐵(𝑁 ),

where 𝑇 (S) is the consensus time of S, 𝐽 (S) the number of bad non-
competitive reactions in the chain S, 𝐸 (𝑁 ) is the extinction time of 𝑁 ,
and 𝐵(𝑁 ) the total number of births in the chain 𝑁 .

To prove the lemma, we construct a Markov chain (̂S, 𝑁 ) on the

state space N2 × N. Strictly speaking, this will not be a coupling
of S and 𝑁 , as only the marginal distribution of 𝑁 will equal the

distribution of 𝑁 . However, for each 𝑡 ≥ 0, we show how to extract

random variables from Ŝ whose marginal distribution equals that

of S𝑡 almost surely (i.e., with probability 1) for every 𝑡 ≥ 0.

The pseudo-coupling. We construct the Markov chain (̂S, 𝑁 ) as
follows. We set Ŝ0 = S0 and 𝑁0 = 𝑁0 ≥ min S0. Let (𝜉𝑡 )𝑡≥0 be a
sequence of i.i.d. random variables distributed uniformly at random

in the unit interval [0, 1). We determine the state of the chain for

step 𝑡 + 1 inductively:

(1) Let 𝑁𝑡 =𝑚. We set 𝑁𝑡+1 as follows:
(a) If 𝜉𝑡 ∈ [0, 𝑝 (𝑚)), then set 𝑁𝑡+1 = 𝑁𝑡 + 1 =𝑚 + 1.

(b) If 𝜉𝑡 ∈ [1 − 𝑞(𝑚), 1), then set 𝑁𝑡+1 = 𝑁𝑡 − 1 =𝑚 − 1.

(c) Otherwise, set 𝑁𝑡+1 = 𝑁𝑡 . (A holding step occurs.)

(2) Let S𝑡 = (𝑎, 𝑏). If min Ŝ𝑡 ≠ 𝑁𝑡 , we set Ŝ𝑡+1 = Ŝ𝑡 . Otherwise,
we set Ŝ𝑡+1 as follows:

(a) If 𝜉𝑡 ∈ [0, 𝑃 (𝑎, 𝑏)), then sample Ŝ𝑡+1 conditioned on the

event that Ŝ𝑡 = (𝑎, 𝑏) and the 𝑡 th event is a bad non-

competitive event.

(b) If 𝜉𝑡 ∈ [1 − 𝑄 (𝑎, 𝑏), 1), then sample S𝑡+1 conditioned on

the event that S𝑡 = (𝑎, 𝑏) and that the 𝑡 th event is a good

competitive interaction.

(c) Otherwise, if 𝜉𝑡 ∈ [𝑃 (𝑎, 𝑏), 1 −𝑄 (𝑎, 𝑏)), then sample S𝑡+1
conditioned on the event that S𝑡 = (𝑎, 𝑏) and that the

𝑡 th event is not a good competitive interaction or a bad

non-competitive event.

One easily checks that, by construction, themarginal distribution

of 𝑁𝑡 is equal to the distribution 𝑁𝑡 . Moreover, Ŝ𝑡+1 ≠ Ŝ𝑡+1 can
hold only for steps, where Ŝ𝑡 = 𝑁𝑡 . So Ŝ𝑡 does not necessarily have

the same marginal distribution as S𝑡 . For any 𝑡 ≥ 0, define 𝐽𝑡 (𝑆) to
be the number of bad non-competitive events that have occurred in

Ŝ by time 𝑡 and 𝐵𝑡 (𝑁 ) to be the number of birth events that have

occurred in 𝑁 by time 𝑡 .

We say that an event occurs almost surely if it happens with

probability 1. For example, we say that 𝑁 goes extinct almost surely

if the extinction time of 𝑁 is finite with probability 1.

Lemma 4.2. Ifmin Ŝ0 = 𝑁0, thenmin Ŝ𝑡 ≤ 𝑁𝑡 and 𝐽𝑡 (̂S) ≤ 𝐵𝑡 (𝑁 )
almost surely for all 𝑡 ≥ 0.

Proof. We proceed by induction on 𝑡 ≥ 0. The base case 𝑡 = 0

is trivial. For the induction step, suppose min Ŝ𝑡 ≤ 𝑁𝑡 and 𝐽𝑡 (̂S) ≤

𝐵𝑡 (𝑁 ) almost surely. By the law of total probability, we have

Pr[min Ŝ𝑡+1 ≤ 𝑁𝑡+1] =

Pr[min Ŝ𝑡+1 ≤ 𝑁𝑡+1 | min Ŝ𝑡 = 𝑁𝑡 ] · Pr[min Ŝ𝑡 = 𝑁𝑡 ]+

Pr[min Ŝ𝑡+1 ≤ 𝑁𝑡+1 | min Ŝ𝑡 < 𝑁𝑡 ] · Pr[min Ŝ𝑡 < 𝑁𝑡 ] .

The conditionmin Ŝ𝑡 < 𝑁𝑡 impliesmin Ŝ𝑡+1 ≤ 𝑁𝑡+1 since Ŝ𝑡+1 = Ŝ𝑡
and 𝑁𝑡+1 ≤ 𝑁𝑡 − 1 by the transition probabilities of (̂S, 𝑁 ), as given
by rules (1) and (2). Formin Ŝ𝑡 = 𝑁𝑡 , writing𝑁𝑡 =𝑚 and 𝑆𝑡 = (𝑎, 𝑏),
we distinguish three cases via the law of total probability:

(1) 𝜉𝑡 ∈ [0, 𝑃 (𝑎, 𝑏))
(2) 𝜉𝑡 ∈ [1 − 𝑞(𝑚), 1)
(3) 𝜉𝑡 ∈ [𝑃 (𝑎, 𝑏), 1 − 𝑞(𝑚)).

In case (1), by property (D1) of dominating chains, we have 𝜉𝑡 ≤
𝑃 (𝑎, 𝑏) ≤ 𝑝 (𝑚). Therefore, by rule (1a) we have 𝑁𝑡+1 = 𝑁𝑡 + 1 and

min Ŝ𝑡+1 ≤ min Ŝ𝑡 + 1 by rule (2a). Combining these inequalities

implies min Ŝ𝑡+1 ≤ 𝑁𝑡+1. In case (2), since 𝜉𝑡 ≥ 1 − 𝑞(𝑚) ≥ 1 −
𝑄 (𝑎, 𝑏) by (D2), we have 𝑁𝑡+1 = 𝑁𝑡 − 1 by rule (1b) and min Ŝ𝑡+1 =
min Ŝ𝑡 − 1 by rule (2b). In case (3), we have 𝜉𝑡 ∈ [𝑃 (𝑎, 𝑏), 1 −
𝑞(𝑚)) ⊆ [𝑝 (𝑚), 1 − 𝑄 (𝑎, 𝑏)). Thus 𝑁𝑡+1 ≥ 𝑁𝑡 and min Ŝ𝑡+1 ≤
min Ŝ𝑡 . Therefore, in all cases, the probability of min Ŝ𝑡+1 ≤ 𝑁𝑡+1
is equal to 1. This shows the first inequality.

For the second inequality, we proceed in a similar manner and

note that a bad non-competitive event can occur in Ŝ only in the case
(1). But then by rule (1a) and (2a) we get that 𝐽𝑡+1 (̂S) = 𝐽𝑡 (̂S) + 1 ≤
𝐵𝑡 (𝑁 ) + 1 = 𝐵𝑡+1 (𝑁 ). This completes the induction. □

For every positive integer 𝑘 , define the random time 𝜏 (𝑘) as the
𝑘th smallest time 𝑡 such that min Ŝ𝑡 = 𝑁𝑡 . This is a stopping time

of the Markov chain (̂S, 𝑁 ) [14, Chapter 2, Definition 7.1].

Lemma 4.3. Suppose Ŝ0 = S0 and min Ŝ0 = 𝑁0. If 𝑁 goes extinct
almost surely, then 𝜏 (𝑘 + 1) < ∞ almost surely and the marginal
distribution of Ŝ𝜏 (𝑘+1) equals the distribution of S𝑘 for every 𝑘 ≥ 0.

Proof. We proceed by induction on 𝑘 . For the base case, by

the hypothesis on the initial states, we have 𝜏 (1) = 0 < ∞ and

Ŝ𝜏 (1) = Ŝ0 = S0. This proves the base case.
For the induction step, assume that𝑘 ≥ 1 and that Ŝ𝜏 (𝑘 ) and S𝑘−1

are equally distributed. By the strong Markov property [14, Chap-

ter 2, Theorem 7.1], the process (̂S𝜏 (𝑘 )+𝑡 , 𝑁𝜏 (𝑘 )+𝑡 )𝑡≥0 is a Markov

chain with the same transition probabilities as (̂S, 𝑁 ). By definition

of 𝜏 (𝑘), we have min Ŝ𝜏 (𝑘 ) = 𝑁𝜏 (𝑘 ) . By the definition of the transi-

tion probabilities of (̂S, 𝑁 ) for this case, the states Ŝ𝜏 (𝑘 )+1 and S𝑘+1
are equally distributed. We have that

Ŝ𝜏 (𝑘 )+𝑡 = Ŝ𝜏 (𝑘 )+1 for all 1 ≤ 𝑡 < 𝜏 (𝑘 + 1) − 𝜏 (𝑘) + 1 (4)

almost surely by the definition of 𝜏 (𝑘+1) and the transition probabil-
ities of (̂S, 𝑁 ). In particular, if 𝜏 (𝑘 + 1) < ∞, we deduce that Ŝ𝜏 (𝑘+1)
has the same distribution as Ŝ𝜏 (𝑘 )+1, which, in turn, has the same

distribution as S𝑘 . It remains to prove that 𝜏 (𝑘 + 1) < ∞ almost

surely. By Lemma 4.2 and (4),

min Ŝ𝜏 (𝑘 )+1 < 𝑁𝜏 (𝑘 )+𝑡 for all 1 ≤ 𝑡 < 𝜏 (𝑘 + 1) − 𝜏 (𝑘) + 1. (5)

Since 𝑁 goes extinct almost surely, we have 𝑁𝑡 → 0 almost surely.

Since𝑁𝑡 and𝑁𝑡 are equally distributed, lim𝑡→∞ 𝑁𝜏 (𝑘 )+𝑡 = 0 almost
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surely. Thus, there exists some 𝑡 ≥ 1 such that min Ŝ𝜏 (𝑘 )+1 ≥
𝑁𝜏 (𝑘 )+𝑡 almost surely, asmin Ŝ𝜏 (𝑘 )+1 ≥ 0. This contradicts Pr[𝜏 (𝑘+
1) = ∞] > 0, so this probability is hence zero and so Pr[𝜏 (𝑘 + 1) <
∞] = 1. □

Proof of the chain domination lemma (Lemma 4.1). We are now

ready to give the proof of the chain domination lemma. For the

first claim, observe that by Lemma 4.3, the marginal distribution of

(𝑆𝜏 (𝑘+1) )𝑘≥0 has equal distribution with the chain (𝑆𝑘 )𝑘≥0 almost

surely. In particular, since 𝜏 (𝑘 + 1) ≥ 𝑘 always and the minimum

cannot increase after hitting 0, we have that

Pr[min S𝑘 > 0] = Pr[min Ŝ𝜏 (𝑘+1)+1 > 0]

≤ Pr[min Ŝ𝑘 > 0] ≤ Pr[𝑁𝑘 > 0],

as by Lemma 4.2 the event min 𝑆𝑘 ≤ 𝑁𝑘 holds almost surely. This

implies that 𝑇 (̂S) ≤ 𝐸 (𝑁 ) almost surely. Therefore, for the con-

sensus time, we get that 𝑇 (S) is stochastically dominated by 𝐸 (𝑁 ),
as

Pr[𝑇 (S) > 𝑘] ≤ Pr[𝑇 (̂S) > 𝑘] = Pr[𝐸 (𝑁 ) ≥ 𝑇 (Ŝ) > 𝑘]

≤ Pr[𝐸 (𝑁 ) > 𝑘] = Pr[𝐸 (𝑁 ) > 𝑘] .
This establishes the first claim (a) that 𝑇 (S) ⪯ 𝐸 (𝑁 ).

The next step is to show the second claim, i.e., 𝐽 (S) ⪯ 𝐵(𝑁 ),
where 𝐽 (S) is the number of bad non-competitive reactions that

occur in S and 𝐵(𝑁 ) is the number of births that occur in chain 𝑁 .

By Lemma 4.2 and Lemma 4.3, we have for any 𝑘, 𝑥 ≥ 0 that

Pr[𝐽𝑘 (S) > 𝑥] = Pr[𝐽𝜏 (𝑘+1) (̂S) > 𝑥]

≤ Pr[𝐵𝜏 (𝑘+1) (𝑁 ) ≥ 𝐽𝜏 (𝑘+1) (̂S) > 𝑥]

≤ Pr[𝜏 (𝑘+1) (𝑁 ) > 𝑥] ≤ Pr[𝐵(𝑁 ) > 𝑥]
= Pr[𝐵(𝑁 ) > 𝑥] .

That is, for any 𝑘 ≥ 0, we have 𝐽𝑘 (S) ⪯ 𝐵(𝑁 ) and so 𝐽 (S) =

sup{𝐽𝑘 (S) : 𝑘 ≥ 0} ⪯ 𝐵(𝑁 ).

4.2 Constructing a dominating chain for
competitive Lotka–Volterra systems

Let be a two-species Lotka–Volterra chain S with 𝛾 = 0 and 𝛼min =

min{𝛼0, 𝛼1} > 0. We will now define a nice birth-death chain 𝑁

that is a dominating chain for S. By the chain domination lemma

and results for nice chains given in Section 3, this implies that the

consensus time of S is𝑂 (𝑛) in expectation and with high probability
and that the number of bad non-competitive events is 𝑂 (log𝑛) in
expectation and 𝑂 (log2 𝑛) with high probability. Let 𝜗 = 𝛽 + 𝛿 ,
𝛼 = 𝛼0 + 𝛼1. Define the birth probability function 𝑝 and death

probability function 𝑞 as

𝑝 (𝑚) = 𝜗

𝛼𝑚 + 𝜗 and 𝑞(𝑚) = 𝛼min

𝛼 + 2𝜗

for all𝑚 > 0 and 𝑝 (0) = 𝑞(0) = 0. Since 𝑝 attains its maximum at

𝑝 (1), we have that 𝑝 (𝑚) + 𝑞(𝑚) ≤ 𝑝 (1) + 𝑞(𝑚) ≤ 1 for all𝑚 ≥ 0.

Let (𝑁𝑡 )𝑡≥0 be the birth-death chain defined by 𝑝 and 𝑞 and fix

𝑁0 ≥ min S0. Since 𝑝 ∈ 𝑂 (1/𝑚) and 𝑞(𝑚) is a positive constant for
𝑚 > 0, the chain is nice.

Lemma 4.4. The nice birth-death chain 𝑁 defined by 𝑝 and 𝑞 is a
dominating chain for S.

The following is a straightforward consequence of the chain

domination lemma (Lemma 4.1), Lemma 4.4, and the results given

in Section 3.

Theorem 4.5. Let S be a Lotka–Volterra system with 𝛼min > 0

and 𝛾 = 0 and an initial population of size 𝑛 > 0. The consensus time
𝑇 (S) and the number 𝐽 (S) of bad non-competitive events satisfy

(a) E[𝑇 (S)] ∈ 𝑂 (𝑛) and 𝑇 (S) ∈ 𝑂 (𝑛) with high probability, and
(b) E[𝐽 (S)] ∈ 𝑂 (log𝑛) and 𝐽 (S) ∈ 𝑂 (log2 𝑛) with high probabil-

ity.

Proof. By construction, 𝑁 is a nice birth-death chain and a

dominating chain for the two-species chain S. Set 𝑁0 = 𝑛. By

Lemma 4.1, we have that𝑇 (S) ⪯ 𝐸 (𝑁 ) and 𝐽 (S) ⪯ 𝐵(𝑁 ). The claim
(a) follows now from the fact that 𝐸 (𝑁 ) ∈ Θ(𝑛) in expectation and

with high probability by Lemma 3.1 and Lemma 3.4. The claim (b)

follows from Lemma 3.2 and Lemma 3.3. □

5 LOTKA–VOLTERRA SYSTEMS WITH
SELF-DESTRUCTIVE COMPETITION

In this section, we show that the threshold for high probability ma-

jority consensus lies between Ω(
√︁
log𝑛) and 𝑂 (log2 𝑛) for neutral

Lotka–Volterra systems with self-destructive interspecific competi-

tion and no intraspecific competition as given by Eq. (1) with 𝛼 > 0,

𝛽, 𝛿 ≥ 0 and 𝛾 = 0.

Demographic noise under self-destructive competition. Under self-
destructive competition, competitive events cannot change the

difference between the two species. Thus, only demographic noise

from the individual birth and death reactions play a role. Let 𝐼 (S)
denote the total number of such events before the chain reaches

consensus by time 𝑇 (S). Let 𝐹𝑡 = Δ𝑡−1 − Δ𝑡 . Recall from Eq. (3)

that the probability of reaching majority consensus is given by

𝜌 (S) = 1 − Pr[𝐹 ≤ Δ0], where

𝐹 =

𝑇 (S)∑︁
𝑡=1

𝐹𝑡 =

𝐼 (S)∑︁
𝑘=1

𝐹𝑡 (𝑘 ) (6)

and 𝑡 (𝑘) is the time when the 𝑘th non-competitive event occurs.

The equality follows from the fact that competitive reactions cannot

change the gap under self-destructive competition and for any time

step 𝑡 for which a competitive interaction occurs we have 𝐹𝑡 = 0.

5.1 Upper bound for self-destructive
competition

Theorem 5.1. Let 𝑘 ≥ 0 be a constant. Suppose S is a Lotka–
Volterra system with self-destructive competition and 𝑛 = S0 + S1.
There is a constant 𝐶 (𝑘) such that if Δ0 > 𝐶 (𝑘) log2 𝑛, then

𝜌 (S) ≥ 1 − 1/𝑛𝑘 .

Proof. By Theorem 4.5, the consensus time 𝑇 (S) is finite with
probability one. From Eq. (6) we have that the probability of reach-

ing majority consensus is given by 𝜌 (S) = 1 − Pr[𝐹 ≤ Δ0]. Now

1 − 𝜌 (S) = Pr[𝐹 ≥ Δ0] ≤ Pr[𝐽 (S) ≥ Δ0] ≤ 1/𝑛𝑘 ,

whenever Δ0 ≥ 𝐶 (𝑘) log2 𝑛, where 𝐶 (𝑘) is the constant given by

Theorem 4.5. This is because the 𝐽 (S) non-competitive reactions
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that reduce the gap between (current) minority andmajority species

will not exceed Δ0 with high probability. □

5.2 Lower bound for self-destructive
competition

We now show that with self-destructive competition, a Lotka–

Volterra system S can fail to reach majority consensus with constant

probability if the initial gap is 𝑜 (
√︁
log𝑛). The idea is to show that

when the gap is this small, with at least constant probability, the

noise from the individual events will bring the chain into a state

(𝑎, 𝑎), for some 𝑎 > 0, where both species have equal counts. From

such a state, a system with identical species (i.e., equal rate pa-

rameters), both species have equal probability of winning majority

consensus (i.e., going extinct last). The next lemma expresses this

observation more formally.

Lemma 5.2. For a Lotka–Volterra system S with identical species,

1 − 𝜌 (S) ≥ 1

2

· Pr[Δ𝑡 = 0 for some 𝑡 < 𝑇 (S)] .

The next lemma applies to Lotka–Volterra systems with self-

destructive and non-self-destructive competition and establishes a

lower bound on the number 𝐼 (S) of individual events.

Lemma 5.3. Let 𝜗 = 𝛽 + 𝛿 , 𝛼 > 0 and 𝛾 = 0. If 𝜗 > 0, then there
exist constants 𝑓 , 𝑔 > 0 such that 𝐼 (S) ≥ 𝑓 log𝑚 with probability at
least 1 − 1/𝑚𝑔 , where𝑚 is the initial count of the minority species.

We are now ready to prove that if the initial gap Δ0 ∈ 𝑜 (
√︁
log𝑛),

then Lotka–Volterra systemswith self-destructive interspecific com-

petition can fail to reach majority consensus with constant positive

probability.

Theorem 5.4. Suppose S is a neutral Lotka–Volterra system with
𝛽 = 𝛿 , self-destructive competition 𝛼 > 0, and 𝛾 = 0. Let 𝜀 > 0 be a
constant. Then there exists a constant𝜙 > 0 such that ifΔ0 ≤ 𝜙

√︁
log𝑛,

then 𝜌 (S) ≤ 1/2 + 𝜀 for all sufficiently large 𝑛.

Proof. Let S0 = (𝑚′,𝑚) be the initial state of the Lotka–Volterra
chain, where𝑚′ ≥ 𝑚 > 0 and𝑚′ ≤ 𝑚 + 𝜙

√︁
log𝑛 so that the initial

gap is Δ0 ≤ 𝜙
√︁
log𝑚. By Lemma 5.3, there is a constant 𝑓 > 0

such that there are 𝐼 (S) ≥ 𝐾 = 𝑓 ln𝑚 individual events before the

chain reaches consensus with probability at least 1− 1/𝑚𝑔 . Let 𝑡 (𝑘)
be the time exactly 𝑘 > 0 individual events have happened. As

before, the probability of reaching majority consensus is given by

𝜌 (S) = 1 − Pr[𝐹 ≥ Δ0], where

𝐹 =

𝑇 (S)∑︁
𝑡=1

𝐹𝑡 =

𝐼 (S)∑︁
𝑘=1

𝐹𝑡 (𝑘 ) ,

as competitive reactions do not lead to a change in the gap under

self-destructive competition. For 1 ≤ 𝑘 ≤ 𝐾 , let 𝑋𝑘 = 𝐹𝑡 (𝑘 ) con-
ditioned on the event that 𝐼 (S) ≥ 𝐾 . By assumption 𝛽 = 𝛿 , so we

have

Pr[𝑋𝑘 = 1 | S𝑡 (𝑘 ) = (𝑎, 𝑏)] = 𝛿𝑎 + 𝛽𝑏
(𝛽 + 𝛿) (𝑎 + 𝑏) =

1

2

=
𝛽𝑎 + 𝛿𝑏

(𝛽 + 𝛿) (𝑎 + 𝑏)
= Pr[𝑋𝑘 = −1 | S𝑡 (𝑘 ) = (𝑎, 𝑏)] .

Thus, conditioned on 𝐼 (S) ≥ 𝐾 , the random variables𝑋1, . . . , 𝑋𝐾 are

(conditionally) independent. Moreover, they have mean E[𝑋𝑘 ] = 0

and variance Var[𝑋𝑘 ] = 1. Let 𝑋 = 𝑋1 + · · · + 𝑋𝐾 . By Lemma 2.3,

for any constant 𝜀 > 0, we can choose a constant 𝜃 > 0 such that

Pr[𝑋 > 𝜃
√
𝐾 | 𝐼 (S) ≥ 𝐾] ≥ 1 − 𝜀/2

for all sufficiently large 𝐾 . Set 𝜙 = 3𝜃
√︁
𝑓 . For large enough 𝑛, we

have 𝑛 ≤ 3𝑚 and hence 𝜙
√︁
log𝑛 ≤ 𝜃

√
𝐾 . Conditioned on the event

𝐼 (S) ≥ 𝐾 , we have that with probability 1−𝜀/2 the two-species chain
reaches some state (𝑎, 𝑎), where 𝑎 > 0. From this point onward, by

Lemma 5.2, the probability that the majority species not winning is

at least 1/2, as the system is neutral. Therefore, when 𝑛, and thus𝑚,

is sufficiently large, the probability to reach majority consensus is

at most

𝜌 (S) ≤ Pr[𝐼 (S) < 𝐾] + Pr[𝑋 ≤ 𝜃
√
𝐾 | 𝐼 (S) ≥ 𝐾] + 1/2

≤ 1/𝑚𝑔 + 𝜀/2 + 1/2 ≤ 1/2 + 𝜀. □

6 LOTKA–VOLTERRA SYSTEMS WITH
NON-SELF-DESTRUCTIVE COMPETITION

In this section, we show that the threshold for high probability

majority consensus lies between Ω(
√
𝑛) and𝑂 (

√︁
𝑛 log𝑛) for Lotka–

Volterra systemswith non-self-destructive interspecific competition

and no intraspecific competition. That is, we consider the model

given by the reactions

𝑋𝑖
𝛽
−→ 𝑋𝑖 + 𝑋𝑖 𝑋𝑖

𝛿−→ ∅ 𝑋𝑖 + 𝑋1−𝑖
𝛼𝑖−−→ 𝑋𝑖 ,

where 𝛼𝑖 , > 0, 𝛽, 𝛿 ≥ 0 and 𝑖 ∈ {0, 1}. For the upper bound, we

allow for non-symmetric competition 𝛼0 ≠ 𝛼1. That is, the minority

species can be a better competitor than the majority species.

Unlike in the previous section with self-destructive competition,

when we have non-self-destructive competition, also the competi-

tion events give arise to noise which influences the gap between the

two species. In particular, there will be Θ(𝑚) competition events

in a system with initial minority of size𝑚, so the noise term 𝐹 will

essentially be Ω(
√
𝑚) and at most 𝑂 (

√︁
𝑚 log𝑚) as we will see.

6.1 Upper bound
Theorem 6.1. Suppose S is a Lotka–Volterra system with non-self-

destructive interspecific competition and S0+S1 = 𝑛. For any constant
𝑘 ≥ 0, there is a constant 𝜃 (𝑘) such that if Δ0 > 𝜃 (𝑘) ·

√︁
𝑛 log𝑛, then

𝜌 (S) ≥ 1 − 1/𝑛𝑘 .

Proof. Let 𝐼 (S) be the number of individual events before the

chain reaches consensus and 𝐾 (S) be the number of competitive

events before the chain reaches consensus. Clearly, 𝑇 (S) = 𝐼 (S) +
𝐾 (S). Now

𝐹 =

𝑇 (S)∑︁
𝑡=1

𝐹𝑡 = 𝑋 + 𝑌, where 𝑋 =

𝐼 (S)∑︁
𝑖=1

𝑋𝑖 and 𝑌 =

𝐾 (S)∑︁
𝑖=1

𝑌𝑖 ,

where 𝐹 and 𝐹𝑡 are defined as before in Eq. (3), and 𝑋𝑖 is the out-

come of the 𝑖th non-competitive event and 𝑌𝑖 the outcome of the

𝑖th competitive event. That is, 𝑋𝑖 = 1 if the gap between the ini-

tial minority and majority species decreases during the 𝑖th non-

competitive event before the chain reaches consensus, and 𝑋𝑖 = −1
otherwise. Similarly, 𝑌𝑖 = 1 if the gap between the initial minority
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and majority species decreases during the 𝑖th competitive event

before the chain reaches consensus, and 𝑌𝑖 = −1 otherwise.
Recall that, as before, the probability of majority consensus is

𝜌 (S) = Pr[𝐹 < Δ0]. By Theorem 4.5(b), we have that Pr[𝐽 (S) >

𝜃
√︁
𝑛 log𝑛] ≤ Pr[𝐽 (S) > 𝜃 log2 𝑛] ≤ 1/𝑛𝑘+1 for some constant

𝜃 > 0. That is, there are with high probability 𝑂 (log2 𝑛) events
that decrease the gap between the (current) majority and minority

species before the chain reaches consensus.

We now show that 𝑌 is 𝑂 (
√︁
𝑛 log𝑛) with high probability. By

Theorem 4.5(a), we have that Pr[𝐾 (S) ≥ 𝑐𝑛] ≤ Pr[𝑇 (S) ≥ 𝑐𝑛] ≤
1/𝑛𝑘+1 for some constant 𝑐 > 0 and all sufficiently large 𝑛. Condi-

tioned on the event𝐾 (S) = ℓ , the sum𝑌 is a sum of ℓ (conditionally)

independent random variables taking values between [−1, 1]. Thus,
by the law of total probability and applying Hoeffding’s inequality

with 𝑡 =
√︁
(𝑘 + 1)𝑐𝑛 ln𝑛, we get

Pr[𝑌 ≥ 𝑡] =
∞∑︁
ℓ=0

Pr[𝐾 (S) = ℓ] · Pr[𝑌 ≥ 𝑡 | 𝐾 (S) = ℓ]

≤
𝑐𝑛∑︁
ℓ=𝑡

Pr[𝐾 (S) = ℓ] · Pr[𝑌 ≥ 𝑡 | 𝐾 (S) = ℓ]

+
∑︁
ℓ>𝑐𝑛

Pr[𝐾 (S) = ℓ]

≤ 2 ·
𝑐𝑛∑︁
ℓ=𝑡

Pr[𝐾 (S) = ℓ] · exp
(
−2𝑡2

ℓ

)
+ Pr[𝐾 (S) > 𝑐𝑛]

≤ 2𝑐𝑛 · exp
(
−2𝑡2

𝑐𝑛

)
+ 1/𝑛𝑘+1

≤ 2𝑐

𝑛2𝑘+1
+ 1/𝑛𝑘+1 ≤ 2/𝑛𝑘+1

for all sufficiently large 𝑛. Note that 𝑡 + 𝜃
√︁
𝑛 log𝑛 ≤ 𝜃 (𝑘) ·

√︁
𝑛 log𝑛

holds for some sufficiently large constant 𝜃 (𝑘) ≥ 𝜃 ′ depending
only on 𝑘 . Therefore, if Δ0 ≥ 𝜃 (𝑘)

√︁
𝑛 log𝑛, then

1 − 𝜌 (S) = Pr[𝐹 ≥ Δ0] ≤ Pr[𝐽 (S) + 𝑌 ≥ Δ0]

≤ Pr[𝐽 (S) ≥ 𝜃 ·
√︁
𝑛 log𝑛] + Pr[𝑌 ≥ 𝑡] ≤ 3/𝑛𝑘+1 ≤ 1/𝑛𝑘

for all sufficiently large 𝑛, proving the claim. □

6.2 Lower bound
Theorem 6.2. Let 𝜀 > 0 be a constant. Suppose S is a neutral

Lotka–Volterra system with 𝛽 = 𝛿 , non-self-destructive competition
and 𝛾 = 0. Then there exists a constant 𝜙 > 0 such that if Δ0 ≤ 𝜙

√
𝑛,

then then 𝜌 (S) ≤ 1/2 + 𝜀 for all sufficiently large 𝑛 > 0.

Proof. Suppose S0 = (𝑚 + Δ0,𝑚) is the initial state of the chain
S with𝑚 > 0 and Δ0 ≤ 𝜙

√
𝑚, where 𝜙 > 0 is a constant we fix later.

Now the total initial population size is 𝑛 = 2𝑚 + Δ0 ∈ Θ(𝑚) and
the initial gap is Δ0 ∈ 𝑂 (

√
𝑛).

Let 𝑋1, . . . , 𝑋𝑚 denote the outcomes of the first𝑚 events, where

𝑋𝑖 = −1 if Δ𝑖 decreases in the event and 𝑋𝑖 = 1 otherwise. By

definition, the random variables are independent and identically

distributed: Pr[𝑋𝑖 = 1] = 1/2 = Pr[𝑋𝑖 = −1] since the competition

rates satisfy 𝛼0 = 𝛼1 > 0, as the system is neutral (i.e., the species

have identical rate parameters) and 𝛽 = 𝛿 . Thus, for each 1 ≤ 𝑖 ≤ 𝑚,

we have E[𝑋𝑖 ] = 0 and Var[𝑋𝑖 ] = 1. Letting 𝑋 = 𝑋1 + · · · +𝑋𝑚 and

applying Lemma 2.3, we get

Pr[𝑋 ≥ Δ0] = Pr[𝑋 ≥ 𝜃
√
𝑚] ≥ 1 − 𝜀

Thus, before reaching consensus, the chain reaches some state (𝑎, 𝑎),
where 𝑎 > 0, with probability at least 1− 𝜀. From this point onward,

by Lemma 5.2, the probability that the majority species losing is at

least 1/2, as the species have identical birth, death and competition

rates. Therefore, when 𝑚 is sufficiently large, the probability to

reach majority consensus is at most

𝜌 (S) ≤ Pr[𝑋 < 𝜃
√
𝑚] + 1/2 ≤ 1/2 + 𝜀. □
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