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Abstract—Dynamic digital timing analysis aims at substituting
highly accurate but slow analog simulations of digital circuits
with less accurate but fast digital approaches to facilitate tracing
timing relations between individual transitions in a signal trace.
This primarily requires gate delay models, where the input-to-
output delay of a transition also depends on the signal history.
We focus on a recently proposed hybrid delay model for CMOS
multi-input gates, exemplified by a 2-input NOR gate, which is
the only delay model known to us that faithfully captures both
single-input switching (SIS) and multi-input switching (MIS)
effects, also known as “Charlie effects”. Despite its simplicity
as a first-order model, simulations have revealed that suitably
parametrized versions of the model predict the actual delays of
NOR gates accurately. However, the approach considers isolated
gates without their interconnect.

In this work, we augment the existing model and its theoretical
analysis by a first-order interconnect, and conduct a systematic
evaluation of the resulting modeling accuracy: Using SPICE
simulations, we study both SIS and MIS effects on the overall
delay of NOR gates under variation of input driving strength, wire
length, load capacitance and CMOS technology, and compare it
to the predictions of appropriately parametrized versions of our
model. Overall, our results reveal a surprisingly good accuracy
of our fast delay model.

Index Terms—Digital circuit, delay model, dynamic timing
analysis, interconnect

I. INTRODUCTION

Digital timing analysis techniques are essential for modern
circuit design, as they allow to validate large designs, unlike
analog simulations, e.g., using SPICE. Thanks to the elaborate
static timing analysis techniques available for digital timing
analysis, which employ models like CCSM [1] and ECSM [2]
that facilitate an accurate corner case analysis of the delays of
the gates making up a digital circuit, worst-case critical path
delays can be determined accurately and fast.

Still, corner-case delay estimates from static timing analysis
have limitations: they consider signal transitions in isolation,
in the sense that gate and interconnect delays do not take
into account the history of previous transitions. By contrast,
dynamic timing analysis may uncover a circuit’s behavior that
becomes only visible when considering previous signal transi-
tions when computing some transition’s delay. Two examples
where this becomes central are:
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1) Asynchronous digital circuits. Consider the token-passing
ring described and analyzed by Winstanley et al. in [3].
The circuit implements a ring oscillator made-up of stages
consisting of a 2-input Muller C-gate, with its inputs
connected to the previous resp. next stage. The circuit
exhibits two modes of operation, namely, burst behavior
versus evenly spaced output transitions, which can even
switch unpredictably over time. The actual operation
mode depends on the subtle interplay between two effects
that determine the delay of a 2-input Muller C-gate: the
drafting effect, a decrease of the delay happening when an
output transition is close to the previous output transition,
and the Charlie effect, (named after Charles Molnar, who
identified its causes in the 70th of the last century, and
nowadays known as a multiple input switching (MIS)
effect [4]), an increase in the delay happening when the
two inputs are switching (in the same direction) in close
proximity. Consequently, to analyze the overall behavior
of the ring, the timing relation of individual transitions
need to be traced throughout the whole circuit.

2) Spiking neural networks (SNNs). To verify the correct
operation of a delay-encoded inter-neuron link design
in a hardware-implemented SNN [5], the delay between
successive transitions must be tracked when they travel
over the link.

Analog simulations, e.g., using SPICE, are the golden
standard for such dynamic timing analyses. Unfortunately,
however, their simulation times are prohibitively excessive
even for moderately large circuits, as the dimension of the sys-
tem of differential equations that need to be solved numerically
increases with the number of transistors. By constrast, digital
dynamic timing analysis techniques rest on delay models that
provide gate delay estimations on a per-transition basis. If
explicit delay formulas are available, it allows fast correctness
validation and accurate performance and power estimations [6]
of a large circuit even at early stages of the development.

Delay models: The simplest non-trivial delay models that
are suitable for dynamic timing analysis are single-history
delay models, as defined in [7], where the input-to-output delay
δ(T ) of a gate depends only on the previous-output-to-input
delay T . Particularly relevant in this context is the involution
delay model (IDM) proposed in [8], which consists of zero-
time gates that are interconnected by single-input single-output



involution delay channels. Such channels are characterized by
a delay function δ(T ), which is a negative involution, in the
sense that −δ(−δ(T )) = T . The dependence on T captures
the drafting effect introduced in [3].

Unlike all other existing delay models known so far, the
IDM faithfully models glitch propagation in the canonical
short-pulse filtration problem [7]. Moreover, it has been shown
in [9] that one can add “delay noise” to the determinis-
tic delay function δ(T ) without sacrificing faithfulness. As
demonstrated in some follow-up work [10], delay noise can
even be used for incorporating substantial PVT variations and
aging.

The IDM is also accompanied by a publicly available timing
analysis framework (the Involution Tool [11]), which allows
to compare the accuracy of different delay models in digital
timing simulation. In particular, it allows to randomly generate
input traces for a given circuit, and to evaluate the accuracy
of IDM predictions compared to SPICE-generated transition
times and to other digital delay models. An experimental
evaluation of the modeling accuracy of the IDM in [12], [11],
using both measurements and simulations, has revealed very
good results for inverter chains and clock trees, albeit less so
for circuits containing multi-input gates. In the case of the
clock tree, a speedup of a factor of 250 has been obtained
relative to SPICE in terms of simulation running times.

Models capable of capturing MIS effects have been ad-
dressed in the literature before, with approaches ranging from
linear [13] fitting over higher-dimensional macromodels [14]
to recent machine learning methods [15]. The resulting mod-
els are very complex, however, and definitely way beyond
first-order, and thus unsuitable as a basis for fast dynamic
digital timing analysis. One fairly old approach for digital
dynamic timing simulation, which shares some similarities
with the IDM and its multi-input gate extension [16], is IRSIM
[17]. The models used there consider transistors as zero-time
switches, describe the resulting system as an RC network, and
discretize analog switching waveforms using a comparator.
Rather than employing continuous mode switching like the
IDM, however, it utilizes non-continuous mode switching.
Consequently, albeit IRSIM simulation models have been
reported to provide good accuracy overall, they cannot model
MIS effects.

In [16], Ferdowsi et al. introduced a 4-state hybrid first-
order delay model for CMOS circuits, which replaces tran-
sistors by time-varying resistors according to the Shichman-
Hodges transistor model [18]. As exemplified by a CMOS
2-input NOR gate (and similar gates, including NAND and
Muller C-gates), they show that the resulting model faith-
fully captures all MIS effects. The authors also provided
an explicit procedure for model parametrization and simple
analytic formulas for the delay predictions, which can be used
efficiently in digital dynamic timing simulations: By means of
an appropriately extended version of the Involution Tool, they
also showed that appropriately parametrized versions of their
model predict the actual delay of NOR gates implemented in
different CMOS technologies accurately and fast.

One serious limitation of [16] is that the authors have only
considered gates in isolation, i.e., without any interconnect-
ing wires. However, wires can have a substantial effect on
circuit delays in practice: they have non-negligible parasitic
capacitances, resistances, and inductances, which are spatially
distributed and hence change with the wire length. The first
main purpose of this work is to explore the delay modeling
accuracy that is achievable with an augmented version of the
model of [16] that covers both the gate and the interconnect to
the successor gate. Due to lack of space, we restrict our atten-
tion solely to NOR gates; since the modeling approach of [16]
is applicable to other CMOS gates as well, in particular, NAND
gates and Muller C-gates, however, adding an interconnect to
those gates leads to similar results.

In addition, whereas it has been shown in [16] that their
model considerably outperforms the IDM in terms of average
modeling in the case of circuits that also contain multi-input
gates, their experiments ignored the fact that combining single-
history delays with MIS effects results in a delay function
δ(T,∆) that depends on both T and ∆. In particular, in
order to maximize the average modeling accuracy (after all,
very small values of T in a random trace occur rarely), their
model parametrization procedure assumed T →∞. A natural
question is how the prediction accuracy of a so-parametrized
model behaves when both T and ∆ are varied. The second
main goal of the present paper is hence to conduct a refined
experimental evaluation of the modeling accuracy, similar to
[12], for our augmented version of the model of [16].

Detailed contributions:

(1) We augment the model from [16] by an RC (L-type)
interconnect and determine analytic expressions for the
trajectories and the resulting delays. The choice for
an L-type model as opposed to higher-order models is
motivated by the goal of an analytically tractable and
simple-to-compute first order model.

(2) We extend the parametrization procedure from [16] to
also determine the new interconnect-related model param-
eters. Analytic delay formulas again proved instrumental
for developing a sound algorithm here.

(3) We conduct a series of simulations to determine the
accuracy of our augmented model for NOR gates inter-
connected by a wire. In our simulations, we consider two
different CMOS technologies (15 nm and 65 nm), and
vary input driving strength, wire length, load capacitance,
wire resistance, and wire capacitance. Using SPICE sim-
ulations, we determine δ(T,∆) for different values of ∆
and T , and compare those to the predictions of an appro-
priately parametrized version of our generalized model
(determined for T →∞). Overall, our results reveal that
the average accuracy of our model is surprisingly good
(in the % range), and so is the worst-case accuracy, except
for extremely small values of T where δ(T,∆) is small
anyway.

Paper organization: Section II provides a brief overview
of the inner workings of the advanced hybrid delay model
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Fig. 1: CMOS NOR gate.

proposed in [16], and the main analytic results needed for
developing the generalized model presented in Section III.
In Section IV, we provide the results of the evaluation. We
conclude in Section V and outline future research directions.

II. BACKGROUND

Since we generalize the first-order hybrid delay model for
a CMOS NOR gate introduced in [16], we first provide an
overview of its features. Consider the transistor implementa-
tion of a NOR gate in Fig. 1a. Let tA, tB , and tO denote the
points in time when the analog trajectories of input signals A,
B, and the output signal O cross the discretization threshold
voltage Vth = VDD/2, respectively. Varying tA and tB allows
to study the gate delay (tO − tA resp. tO − tB , depending on
the particular output state) over the relative input separation
time ∆ = tB − tA.

The advanced hybrid delay model proposed in [16] is
a generalization of the simple model introduced in [19].
Informally speaking, it replaces the immediate switching-on
of the resistance of the pMOS transistors (see Fig. 1a) by
the time evolution function representing the Shichman-Hodges
transistor model [18], which is given by

Ron
i (t) =

αi

t− ton +Ri; t ≥ ton. (1)

Herein, αi [Ωs] and on-resistance Ri [Ω] are constant slope
parameters of the transistor Ti; ton represents the time when
the respective transistor is switched on. Crucial in this model
is that since the switching-on of the nMOS transistors is
supposed to happen instantaneously, α3 = α4 = 0.

Applying Kirchhoff’s rules to Fig. 1b leads to C dVout

dt =
VDD−Vout

R1(t)+R2(t)
− Vout

R3(t) || R4(t)
, which can be transformed into

the non-homogeneous non-autonomous first-order ODE with
non-constant coefficients

dVout(t)

dt
= − Vout(t)

C Rg(t)
+ U(t), (2)

where 1
Rg(t)

= 1
R1(t)+R2(t)

+ 1
R3(t)

+ 1
R4(t)

and U(t) =
VDD

C(R1(t)+R2(t))
and using the notation R1 = RpA

, R2 = RpB
,

R = (RpA
+RpB

)/2, R3 = RnA
, and R4 = RnB

for the two

nMOS transistors T3 and T4. It is well-known that the general
solution of (2) is

Vout(t) = e−G(t)
[
V0 +

∫ t

0

U(s) eG(s)ds
]
, (3)

where V0 = Vout(0) denotes the initial condition and G(t) =∫ t

0
(C Rg(s))

−1ds. As comprehensively described in [16],
depending on each particular resistor’s mode in each input
state transition, different expressions for Rg(t) and U(t) are
obtained. Denoting I1 =

∫ t

0
ds

R1(s)+R2(s)
, I2 =

∫ t

0
ds

R3(s)
, and

I3 =
∫ t

0
ds

R4(s)
, Table I summarizes them.

In order to prove that the resulting hybrid model faith-
fully captures all MIS effects, the authors derived analytic
expressions for the trajectories of V MS

out (t) for every mode
switch MS ∈ {(i, j) → (k, l) |i, j, k, l ∈ {0, 1}}, and then
determined the MIS delays for arbitrary ∆ = tB − tA by the
following procedure:

• Compute V
(0,0)→(1,0)
out (∆), and use it as the initial value

for obtaining V
(0,1)→(1,1)
out (t); the sought gate delay is the

time until the latter crosses the threshold voltage VDD/2.
• Compute V

(1,1)→(0,1)
out (∆), and use it as the initial value

for obtaining V
(0,1)→(0,0)
out (t); the sought gate delay is the

time until the latter crosses the threshold voltage VDD/2.

Due to some symmetry, it turned out to be sufficient to
derive analytic expressions for the case ∆ ≥ 0 only: the
corresponding formulas for ∆ < 0 can be obtained from
those by exchanging α1 and α2 as well as RnA

and RnB
,

respectively.
Inverting the resulting trajectory formulas finally provided

analytic formulas for the gate delay as functions of ∆ ≥ 0 and
the initial state, which are given in the following Theorem 1.
In the proof of this theorem in [16], the range of ∆ had to be
split into 4 cases; an additional free parameter ϵ = η∆ (for
some suitably chosen η ∈ R) was required to smoothly paste
the different ranges.

Theorem 1 ([16, Thm. 2]). Let V ↑
out(0) and V ↓

out(0) be
the given initial states of respectively V

(1,1)→(0,1)
out and

V
(0,0)→(1,0)
out . Then, for any 0 ≤ ∆ ≤ ∞, the extended delay

functions for falling and rising output transitions of our model
are

δ↓EM,+(∆) =

{
− ℓCRnA

RnB
+∆RnB

RnA
+RnB

+∆ 0 ≤ ∆ < −ℓCRnA

−ℓCRnA ∆ ≥ −ℓCRnA

δ↑EM,+(∆) ≈ 2RC
(
ln(

2VDDγk − 2V ↑
out(0)e

− ∆
CRnB e−

ik
C

VDD
)
)
,

where ℓ = ln
(
VDD/2V ↓

out(0)
)

and Case k ∈ {1, 2, 3, 4} w.r.t.

• Case 1: 0 ≤ ∆ < α2

2R ,
• Case 2: α2

2R ≤ ∆ < α1+2α2

4R ,
• Case 3: α1+2α2

4R ≤ ∆ < α1+α2

2R ,
• Case 4: α1+α2

2R ≤ ∆ < t.



TABLE I: Integrals I1(t), I2(t), I3(t) and U(t) for every possible mode switch; ∆ = tB − tA, and 2R = RpA +RpB .

Mode I1(t) =
∫ t
0

ds
R1(s)+R2(s)

I2(t) =
∫ t
0

ds
R3(s)

I3(t) =
∫ t
0

ds
R4(s)

U(t) = VDD
C(R1(t)+R2(t))

T ↑
− 0

∫ t
0 (1/RnA )ds 0 0

T ↑↑
+ 0

∫ t
0 (1/RnA )ds

∫ t
0 (1/RnB )ds 0

T ↑
+ 0 0

∫ t
0 (1/(RnB )ds 0

T ↑↑
− 0

∫ t
0 (1/RnA )ds

∫ t
0 (1/RnB )ds 0

T ↓
− 0 0

∫ t
0 (1/RnB )ds 0

T ↓↓
+

∫ t
0 (1/(

α1
s+∆

+ α2
s

+ 2R))ds 0 0
VDDt(t+∆)

C(2Rt2+(α1+α2+2∆R)t+α2∆)

T ↓
+ 0

∫ t
0 (1/(RnA )ds 0 0

T ↓↓
−

∫ t
0 (1/(

α1
s

+ α2
s+|∆| + 2R))ds 0 0

VDDt(t+|∆|)
C(2Rt2+(α1+α2+2|∆|R)t+α1|∆|)

Herein,

i1 =
(∆− ϵ)2

2α2
− (∆ + ϵ)2

2(α1 + α2)
+

4ϵ∆

α1 + 2α2
− α1 + α2

8R2
,

i2 =
4R(∆− ϵ)− (α1 + 2α2)

8R2
− (∆ + ϵ)2

2(α1 + α2)
+

4ϵ∆

α1 + 2α2
,

i3 =
4R(∆ + ϵ)− (α1 + 2α2)

8R2
− (∆ + ϵ)2

2(α1 + α2)
,

i4 = − α2

8R2

and

γ1 =
4R2C

α1 + α2
e

α1+α2
4R2C − 4R2C

α2

−
(2R(∆− ϵ)− 4R2C

α2
− 4R(∆− ϵ)− 8R2C

α1 + 2α2

)
e

∆−ϵ
2RC

−
(4R(∆ + ϵ)− 8R2C

α1 + 2α2
− 2R(∆ + ϵ)− 4R2C

α1 + α2

)
e

∆+ϵ
2RC ,

γ2 =
4R2C

α1 + α2
e

α1+α2
4R2C −

(
1− 4R(∆− ϵ)− 8R2C

α1 + 2α2

)
e

∆−ϵ
2RC

−
(4R(∆ + ϵ)− 8R2C

α1 + 2α2
− 2R(∆ + ϵ)− 4R2C

α1 + α2

)
e

∆+ϵ
2RC

+
4R2C

α2

(
e

α2
4R2C − 1

)
,

γ3 =
4R2C

α1 + α2
e

α1+α2
4R2C −

(
1− 2R(∆ + ϵ)− 4R2C

α1 + α2

)
e

∆+ϵ
2RC

+
4R2C

α2

(
e

α2
4R2C − 1

)
,

γ4 =
4R2C

α2

(
e

α2
4R2C − 1

)
.

δ↓EM,−(∆) and δ↑EM,−(∆) can be easily obtained by our
symmetry.

The delay formulas provided by Theorem 1 capture both
multi input switching (MIS) and single input switching (SIS).
For the SIS switching (0, 0) → (1, 0) → (0, 0), for example,
it suffices to replace the initial value V

(1,1)→(1,0)
out (∆) in

V
(1,0)→(0,0)
out (t) by the initial value V

(0,0)→(1,0)
out (∆), which

gives the output voltage at the time the previous switch from
(0, 0) to (1, 0). For verifying the MIS effects, it even suffices
to start with the initial values V ↑

out(0) = 1 resp. V ↓
out(0) = 0

in the case of falling resp. rising input transitions, which
represent the situation where the NOR gate has been initialized
to the state (0, 0) resp. (1, 1) long ago.

In [16], the authors showed how to parametrize their hybrid
model for matching a given circuit, and demonstrated a very
good modeling accuracy for both 15 nm and 65 nm CMOS
technologies by comparing the delay predictions of the hybrid
model δ

↑/↓
EM (∆) with SPICE-generated actual circuit delays

δ
↑/↓
S (∆).

III. ADDING INTERCONNECT MODELING

Since the model of [16] considers a single NOR gate in
isolation, the question arises whether and how much the delay
modeling accuracy suffers when considering gates and inter-
connecting together. Indeed, wires can have a substantial effect
on circuit delays: Actual wires have parasitic capacitances,
resistances, and inductances, which are spatially distributed
and hence change with the wire length. State-of-the-art inter-
connect modeling usually breaks up wires into segments, each
of which is characterized by some lumped model, typically of
Π, T, and RC type [20].

Since our focus is on exploring the modeling accuracy
achievable with first-order hybrid models, we restrict our
attention to the lumped RC model, as shown in Fig. 2.
Although this model is known to be less accurate than e.g.
the Π model in static timing analysis, it is the only one that
can be added to the gate model of [16] without turning it
into a second-order model: Adding a T or Π model would
add another state-holding stage (capacitor) and hence raise the
dimension of the ODE systems to 2.

A. The interconnect-augmented hybrid delay model

Applying Kirchhoff’s rules to the interconnect-augmented
variable resistor model easily lead to the non-homogeneous
ODE

dVout(t)

dt
= − Vout(t)

C Rg(t)(
R5

Rg(t)
+ 1)

+
VDD

C(R1(t) +R2(t))(
R5

Rg(t)
+ 1)

,



VDD

R1

R2

R3 R4
R5 C Vout

Fig. 2: CMOS NOR gate model with the lumped RC interconnect.

which is just (2) with the additional factor f(t) = 1/( R5

Rg(t)
+

1) in all terms except dVout(t)
dt . Since this non-constant factor

f(t) makes the already very challenging derivations leading
to the analytic delay expressions given in Theorem 1 even
worse, if at all tractable, we decided to take the “easy route”
of approximating f(t) by a constant value: A constant value
F for f(t) enables us to efficiently solve the above ODE,
by just replacing C with C

F in (2). In order to reduce the
approximation error, however, we use different values of F
in different scenarios. Note that this “easy route” also works
for augmenting delay models for other gates, including Muller
C-gates.

Recall that in the original hybrid model, each mode switch
enables some specific ODE system, the solution of which gives
the respective trajectory. Fortunately, as can be observed in
Table I, all transitions except (0, 1) → (0, 0) and (1, 0) →
(0, 0) lead to a constant value for Rg(t) a priori. Consequently,
for those six transitions, we can safely substitute f(t) by the
appropriate constant value.

Unfortunately, this is not the case for the transitions
(0, 1) → (0, 0) and (1, 0) → (0, 0), though, so replacing
f(t) by some constant value introduces some approximation
error. Fortunately, the time span during which Rg(t) varies
significantly is very small. Moreover, its variability is not very
large either: In particular, as the switch-on of a transistor is
fast, one may reasonably conjecture that replacing f(t) by
1/( R5

Rgmin
+ 1) should lead to a good approximation; and

indeed, the results of our validation experiments in Section IV
confirm this conjecture. One can infer from Table I that
(0, 1) → (0, 0) resp. (1, 0) → (0, 0) leads to 1/Rg(t) =
1/( α1

t+∆ + α2

t + 2R) resp. = 1/(α1

t + α2

t+∆ + 2R), which
both lead to 1/Rgmin

= 1/(2R). Putting everything together,
Table II summarizes all exact and approximate values of Rg(t)
and F corresponding to each mode switch.

The results of the above discussion are summarized in the
following Corollary 1, which gives the delay predictions of
our generalized advanced model for the case ∆ ≥ 0. As in
the case of Theorem 1, the analogous expressions for δ↓M,−(∆)

and δ↑M,−(∆) can be obtained by exchanging α1 and α2 as
well as RnA

and RnB
, respectively.

Corollary 1. Let V ↑
out(0) and V ↓

out(0) be the given initial
states of respectively V

(1,1)→(0,1)
out and V

(0,0)→(1,0)
out . Then, for

TABLE II: Inputs mode switching and the resulting values for Rg(t)
and the corresponding approximation F for f(t).

MS Rg(t) f(t)

(0, 0) → (1, 0) = RnA =
RnA

R5+RnA

(1, 0) → (1, 1) =
RnA

RnB
RnA

+RnB
=

RnA
RnB

R5(RnA
+RnB

)+RnA
RnB

(0, 0) → (0, 1) = RnB =
RnB

R5+RnB

(0, 1) → (1, 1) =
RnA

RnB
RnA

+RnB
=

RnA
RnB

R5(RnA
+RnB

)+RnA
RnB

(1, 1) → (0, 1) = RnB =
RnB

R5+RnB

(1, 1) → (1, 0) = RnA =
RnA

R5+RnA

(0, 1) → (0, 0) ≈ 2R ≈ 2R
R5+2R

(1, 0) → (0, 0) ≈ 2R ≈ 2R
R5+2R

any 0 ≤ ∆ ≤ ∞, the delay functions for falling and rising
output transitions of our model are

δ↓M,+(∆) =

{
− ℓC2RnA

RnB
+∆RnB

RnA
+RnB

+∆ 0 ≤ ∆ < −ℓC1RnA

−ℓC1RnA ∆ ≥ −ℓC1RnA

δ↑M,+(∆) ≈ 2RC4

(
ln(

2VDDγk − 2V ↑
out(0)e

− ∆
C4RnB e

− ik
C4

VDD
)
)
,

where C1 =
C(R5+RnA

)

RnA
, C2 =

C(R5(RnA
+RnB

)+RnA
RnB )

RnA
RnB

,

C3 =
C(R5+RnB

)

RnB
, and C4 = C(R5+2R)

2R . Besides, γk, and ik
for k ∈ {1, . . . , 4} are as defined in Theorem 1.

A mandatory prerequisite for using our generalized model
and, in particular, for conducting the validation experiments
in Section IV, is a parametrization procedure that allows to
determine suitable model parameters. It will be developed
in Section III-B. Given the additional parameter (R5), the
procedure is considerably more involved than the one used
for the original model in [16].

B. Parametrization procedure

Recall the model’s primary objective, which is capturing the
MIS effects as well as possible. As in [16], our parametrization
procedure aims at matching the characteristic Charlie delay
values δ↓S(−∞), δ↓S(0), δ

↓
S(∞) and the values δ↑S(−∞), δ↑S(0),

and δ↑S(∞) of a real circuit by the corresponding predicted
delay values of our model given in Corollary 1 as closely as
possible.

Whereas just applying the least square fitting approach
advocated in [16] seemed appropriate at the first glance, it
turned out that the additional R5 term considerably changed
the situation. To be more precise, assuming that the on-
resistors of the two nMOS transistors RnA

and RnB
are

roughly be the same, it turns out that δ↓M (∞)

δ↓M (0)
≈ 1+

RnA

2R5+RnA
.

In the case of R5 = 0, which represents the original model,
this translates to δ↓M (∞)

δ↓M (0)
≈ 2. In [16], this was ensured by

choosing a suitable pure delay δmin, also present in the original
IDM, which defers the switching to the new state upon an input
transition. This way, δ↓M (∞)−δmin

δ↓M (0)−δmin
≈ 2 could be enforced.



In the case of R5 ≥ 0, we have this resistor as another
handle on matching a given ratio δ↓M (∞)

δ↓M (0)
, besides δmin. Any

setting of these parameters that satisfies

δ↓S(∞)− δmin

δ↓S(0)− δmin

≈ 1 +
RnA

2R5 +RnA

(4)

is a feasible choice here.
Indeed, contrary to our initial conjecture that the additional

R5 term might make the parametrization of the generalized
model more difficult than the parametrization of the original
model, it turned out that the relation R5 ≈ RnA

2 (
δ↓S(0)−δmin

δ↓S(∞)−δ↓S(0)
−

1) implied by (4) enabled us to completely decouple the
parametrization process for the falling and rising output tran-
sition cases. We therefore arrived at the parametrization pro-
cedure shown in Algorithm 1, where the outer loop searches
for the best value of δmin within some a priori given range
[δ̄min, δ̂min].

Algorithm 1: Parametrization procedure.

Input: Desired load capacitance C, range [δ̄min, δ̂min]
Output: Chosen model parameters

1 w ← a fixed step size;
2 δmin ← δ̄min;
3 while δmin ≤ δ̂min do
4 Simultaneously determine RnA

and RnB
to

respectively match δ↓M,+(∞), δ↓M,+(0), and
δ↓M,−(−∞) with δ↓S(∞)− δmin, δ↓S(0)− δmin,
and δ↓S(∞)− δmin;

5 R5 ← RnA

2 (
δ↓S(0)−δmin

δ↓S(∞)−δ↓S(0)
− 1);

6 Determine the remaining parameters R, α1, α2 and
η, to respectively match δ↑M,+(∞), δ↑M,+(0), and
δ↑M,−(−∞) to δ↑S(∞)− δmin, δ↑S(0)− δmin, and
δ↑S(−∞)− δmin;

7 Store δmin, all the parameters, and the average
relative error obtained;

8 δmin ← δmin + w;

9 Retrieve and return
(δmin, C,RnA

, RnB
, R5, R, α1, α2, η) leading to the

smallest relative error;

IV. EVALUATION OF ACCURACY

We conducted simulations to evaluate the prediction ac-
curacy of our generalized model. As illustrated in Fig. 3,
we instantiated a NOR gate connected to an inverter, acting
as its load, via a controlled wire. The inputs of the NOR
gate are driven by a chain of 4 inverters acting as signal
shaping gates. The chain input is stimulated by a saturated
ramp with a rise/fall time of 0.1 fs, which leads to “natural”
signal waveforms at the chain output.

For every setting, the following steps were performed:
(1) Based on a Verilog description of our CMOS NOR gate

implementation, we used the Cadence tools Genus and

Vout

VA

VB

Fig. 3: Experimental setup.

Innovus (version 19.11) for placing and routing our
design.

(2) Using the extracted parasitic networks from the final
layout, we performed SPICE simulations to determine
δ↑/↓ for different values of T and ∆.

(3) Using the measured delay values δ↓S(∞), δ↓S(0), and
δ↓S(∞) as well as δ↑S(∞), δ↑S(0), and δ↑S(−∞) obtained
for T = ∞ and an estimate1 of the lumped load
capacitance C, we used Algorithm 1 for finding a suitable
parametrization of our model.

(4) Using the equations given in Corollary 1, we computed
the predictions of the parametrized model for different
values of T and ∆, and compared the outcome to the
measured delays.

The different settings used in the evaluation range from
different implementation technologies to varying driving
strengths and load capacitances to different wire lengths, wire
resistances, and wire capacitances. A representative sample of
our results will be presented in the following subsections. Most
of them have been obtained for a CMOS NOR gate from the
15 nm Nangate Open Cell Library featuring FreePDK15TM

FinFET models [21] (VDD = 0.8V). Qualitatively similar
results have been obtained for the UMC 65 nm technology
with VDD = 1.2V supply voltage.

Overall, the accuracy of our generalized model is good. This
is in stark contrast to the original model [16], however, where
it turned out that even the parametrization procedure in step
(3) already failed in most scenarios. This confirms that adding
R5 is really instrumental for modeling interconnected gates.

A. MIS accuracy

1) Wire length: Using the 15 nm technology, we varied
the length of the wire driven by the NOR gate between l =
3 and l = 15 (in micrometer2), i.e., within a factor of 5.
The dashed red curves in Fig. 4 show the resulting delays for
T = ∞ and varying ∆; the case T < ∞ will be considered
in Section IV-B. The blue curve in Fig. 4 depicts the delay
predictions of the model parametrized according to Table III,
which match the real delays well.

2) Wire resistance and capacitance: In order to verify the
ability of our model to adapt to varying parasitic networks,
we artificially changed the resistances and capacitances of the

1Actually, the parametrization procedure can adapt to a large range of values
for C, by scaling the resistors RnA , RnB and R appropriately.

2Note that l is actually the parameter $LENGTH in the command relative-
Place inv1 nor1 -relation R -xOffset $LENGTH -yOffset 0 and hence almost
(i.e., besides vias) the length in µm.
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Fig. 4: SPICE (δ↑/↓S (∆)) and computed (δ↑/↓M (∆)) MIS delays for a 15 nm technology NOR gate for different wire lengths l.

TABLE III: Model parameter values for some wire lengths.

Parameters for l = 3
δmin = 0.66 ps C = 0.9431 fF RnA = 2.0385 kΩ RnB = 1.8505 kΩ R5 = 0.2060 kΩ
R = 1.35796 kΩ α1 = 3.379 · 10−9 Ωs α2 = 1.658 · 10−9 Ωs

Parameters for l = 15
δmin = 0.49 ps C = 1.2831 fF RnA = 2.8275 kΩ RnB = 2.6765 kΩ R5 = 0.4560 kΩ
R = 2.1819 kΩ α1 = 5.799 · 10−9 Ωs α2 = 3.068 · 10−9 Ωs

extracted network for wire length l = 15: In one setting, we
halved all the resistor values, in another setting, we doubled
the values of all capacitors. Fig. 5 shows both the real delays
(dashed red curves) and the predictions of our model (blue
curves) parametrized according to Table IV.

TABLE IV: Model parameter values for different wire resistances
and capacitances.

Parameters for doubling the capacitances
δmin = 0.54 ps C = 0.7831 fF RnA = 7.4575 kΩ RnB = 7.1865 kΩ R5 = 0.6960 kΩ
R = 6.1819 kΩ α1 = 14.629 · 10−9 Ωs α2 = 7.598 · 10−9 Ωs

Parameters for half the resistor values
δmin = 0.48 ps C = 0.7831 fF RnA = 4.8275 kΩ RnB = 4.5965 kΩ R5 = 0.49605 kΩ
R = 3.6819 kΩ α1 = 9.599 · 10−9 Ωs α2 = 5.268 · 10−8 Ωs

3) Input gate driving strength: In two other settings, we
varied the driving strength of the two input inverters in Fig. 3
that drive VA and VB of the 15 nm NOR gate driving a wire
with length l = 15. More specifically, we used both a strong
input inverter (with four parallel pMOS and nMOS transistors)
and a weak input inverter, which was simulated by letting the
input inverters drive three more NOR gates, which resulted
in a fan-out of four. Fig. 6 shows the results for both cases,
which have been obtained using the model parameters given
in Table V.

TABLE V: Model parameter values associated with different input
gate driving strength.

Parameters for weak input
δmin = 0.93 ps C = 0.7831 fF RnA = 5.7795 kΩ RnB = 5.7265 kΩ R5 = 0.9260 kΩ
R = 3.9819 kΩ α1 = 11.129 · 10−9 Ωs α2 = 5.898 · 10−9 Ωs

Parameters for strong input
δmin = 0.45 ps C = 0.7831 fF RnA = 4.637 kΩ RnB = 4.316 kΩ R5 = 0.4160 kΩ
R = 3.5819 kΩ α1 = 9.169 · 10−9 Ωs α2 = 6.248 · 10−8 Ωs

4) Load capacitance: We also varied the load capacitance
of the 15 nm NOR gate with wire lengths l = 3 and l = 15,
by increasing its fan-out: We replaced the single inverter used
in the previous settings by inverters that consist of 2, 4 and 8
parallel pMOS and nMOS transistors. Fig. 7 shows the results,
using the parametrization given in Table VI.

TABLE VI: Model parameter values corresponding to different load
capacitances.

Parameters for Fig. 7a
δmin = 0.61 ps C = 2.065fF RnA = 1.3085 kΩ RnB = 1.2205 kΩ R5 = 0.106 kΩ
R = 0.9579 kΩ α1 = 2.339 · 10−9 Ωs α2 = 1.108 · 10−9 Ωs

Parameters for Fig. 7c
δmin = 0.64 ps C = 6.689 fF RnA = 9.7385 kΩ RnB = 9.4005 kΩ R5 = 0.1059 kΩ
R = 0.8546 kΩ α1 = 2.239 · 10−9 Ωs α2 = 1.158 · 10−9 Ωs

Parameters for Fig. 7e
δmin = 0.47 ps C = 3.652 fF RnA = 1.1422 kΩ RnB = 1.0855 kΩ R5 = 0.2160 kΩ
R = 0.9434 kΩ α1 = 2.059 · 10−9 Ωs α2 = 0.898 · 10−9 Ωs

Parameters for Fig. 7g
δmin = 0.51 ps C = 7.266 fF RnA = 1.1725 kΩ RnB = 1.1365 kΩ R5 = 0.1050 kΩ
R = 1.0259 kΩ α1 = 2.469 · 10−9 Ωs α2 = 1.198 · 10−9 Ωs

B. SIS accuracy

Up to now, we have exclusively focused on evaluating the
modeling accuracy w.r.t. varying ∆ for the case T =∞. Since
the model parametrization is exclusively based on this choice
of delay values, it is essential to also also assess the accuracy
of the resulting model’s predictions for the case of small
previous-output-to-input delays T < ∞. In this subsection,
we will hence vary T while choosing |∆| = ∞, which is
equivalent to the SIS case.

Fig. 8a, Fig. 8b, Fig. 8c, and Fig. 8d compare the real
gate delays (dashed red curve) and the delays predicted by
our model (blue curve) as a function of T , for different wire
lengths, wire capacitances and input driving strengths. The
green curve depicts the absolute prediction error.

Whereas the perfect matching between the real delays and
the model prediction for T = ∞ is not surprising, given that
the parametrization procedure relies on the delay values for
|∆| = ∞, the reasonably small prediction error for small
values of T is remarkable. Significant errors occur only for
extremely small values of T , in particular, for short wires
(l = 3), where the circuit delay is extremely small anyway.

C. Delay accuracy in terms of both T and ∆

Whereas the cases T = ∞ resp. |∆| = ∞ considered in
the two previous subsections are arguably the most relevant
ones for typical signal traces, it is also important to study
the delay prediction accuracy for arbitrary values of T and
∆. To this end, Fig. 9 provides the appropriate 3D diagrams
for the 15 nm NOR with wire length l = 15: Fig. 9a shows
the delay obtained by our model, Fig. 9b provides the results
from SPICE simulations, and Fig. 9c shows the difference. It
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Fig. 5: SPICE (δ↑/↓S (∆)) and computed (δ↑/↓M (∆)) MIS delays for a 15 nm technology NOR gate for wire length l = 15 when the wire
capacitances are doubled (two left figures) resp. the wire resistors are halved (two right figures).
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Fig. 6: SPICE (δ↑/↓S (∆)) and computed (δ↑/↓M (∆)) MIS delays for a 15 nm technology NOR gate for wire length l = 15 with weak input
drivers (two left figures) resp. strong input drivers (two right figures).
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Fig. 7: SPICE (δ↑/↓S (∆)) and computed (δ↑/↓M (∆)) MIS delays for a 15 nm technology NOR gate driving two parallel pMOS and nMOS
transistors (two left figures) and eight parallel pMOS and nMOS transistors (two right figures) for different wire lengths l.

is apparent that the model’s inaccuracy increases substantially
only (i) in the region where T gets close to 0, for any value of
∆, and (ii) in the two “dipped” regions in T direction, for some

value of ±∆ close to 0. Indeed, (i) is confirmed by Fig. 8b,
which reveals a notable relative error already for T ≤ 14 ps for
∆ =∞. Similarly, Fig. 4c shows that the model predictions do
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Fig. 10: SPICE (δ↑/↓S (∆)) and computed (δ↑/↓M (∆)) MIS delays for a 65 nm technology NOR gate with different the wire lengths l ∈ {5, 25}.

not perfectly match the “oscillating” real delays in the range
∆ ∈ [3, 5] ps, for example. The worst-case absolute error in
these regions is 0.567 ps, which occurs for a very small value
of T where the real circuit delay is as low as 2.8 ps. The
overall root-mean-square absolute error is only 0.215 ps.

Accordingly, the worst-case relative error is up to 20%,
which is small given the small circuit delays in the region close
to T = 0 where such errors occur. Overall, the RMS relative
error is 7.6%, which is primarily caused by the moderately
large error throughout region (i). Outside of these regions (i)
and (ii), however, the achieved accuracy is indeed surprisingly
small for a first-order model like ours.

TABLE VII: Model parameter values for different wire lengths in
65 nm technology.

Parameters for l = 5
δmin = 17.3 ps C = 0.9531 fF RnA = 39.410 kΩ RnB = 36.588 kΩ R5 = 5.226 kΩ
R = 4.5879 kΩ α1 = 1.308 · 10−8 Ωs α2 = 8.759 · 10−8 Ωs

Parameters for l = 25
δmin = 18.4 ps C = 0.9531 fF RnA = 59.710 kΩ RnB = 57.288 kΩ R5 = 9.226 kΩ
R = 15.987 kΩ α1 = 8.808 · 10−8 Ωs α2 = 34.589 · 10−8 Ωs

D. Other technologies

To validate that our model achieves comparable modeling
accuracies also in different technologies, we re-run simula-
tions also for a NOR gate in UMC 65 nm technology with
VDD = 1.2V. Since the results are qualitatively similar, we
will present only a small subset of those in this paper. Fig. 10
shows the results for two different wire lengths l ∈ {5, 25},



using the parameters given in Table VII.

V. CONCLUSIONS

We generalized a recently proposed hybrid delay model
for a 2-input NOR gate to accurately predict both SIS and
MIS delays in the presence of interconnecting wires. We
demonstrated its surprising modeling accuracy by means of
simulations performed in a wide range of different settings:
varying wire lengths, resistances/capacitances, input driving
strengths, output load capacitances, and two different CMOS
technologies. Part of our current/future work is devoted to
applying our modeling approach to larger circuits.
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[10] D. Öhlinger and U. Schmid, “A digital delay model supporting large
adversarial delay variations,” 2023, (to appear at DDECS’23).
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