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Abstract

Locality is a fundamental feature of many physical time evolutions. Assumptions on locality and
related structural properties also underlie recently proposed procedures for learning an unknown Hamil-
tonian from access to the induced time evolution. However, no protocols to rigorously test whether
an unknown Hamiltonian is in fact local were known. We investigate Hamiltonian locality testing as a
property testing problem, where the task is to determine whether an unknown n-qubit Hamiltonian H is
k-local or ε-far from all k-local Hamiltonians, given access to the time evolution along H. First, we em-
phasize the importance of the chosen distance measure: With respect to the operator norm, a worst-case
distance measure, incoherent quantum locality testers require Ω̃(2n) many time evolution queries and
an expected total evolution time of Ω̃(2n/ε), and even coherent testers need Ω(2n/2) many queries and
Ω(2n/2/ε) total evolution time. In contrast, when distances are measured according to the normalized
Frobenius norm, corresponding to an average-case distance, we give a computationally efficient incoherent
Hamiltonian locality testing algorithm with query complexity O(1/ε4) and total evolution time O(1/ε3),
based on randomized measurements. In fact, our procedure can be used to simultaneously test a wide
class of Hamiltonian properties beyond locality. Finally, we prove that learning a general Hamiltonian
remains exponentially hard with this average-case distance, thereby establishing an exponential sepa-
ration between Hamiltonian testing and learning. Our work initiates the study of property testing for
quantum Hamiltonians, demonstrating that a broad class of Hamiltonian properties is efficiently testable
even with limited quantum capabilities, and positioning Hamiltonian testing as an independent area of
research alongside Hamiltonian learning.

1 Introduction

Time evolution of a quantum system according to the unitary group generated by some self-adjoint Hamilto-
nian is a crucial ingredient to quantum physics, going back to the early days of quantum mechanics [Sch26a;
Sch26b; Sto32]. This makes extracting information about an unknown Hamiltonian from access to the cor-
responding time evolution a central task when it comes to understanding fundamental processes in physics.
Moreover, given recent progress in experimental implementations of early quantum devices, the same task
also gains technological relevance, for instance for benchmarking applications in quantum simulation and
quantum computing.

In many physically relevant quantum systems, the Hamiltonian describing the time evolution is not an
arbitrary self-adjoint operator but has additional structure. In particular, as physical processes often arise
from local interactions, k-local Hamiltonians – Hamiltonians that can be written as a sum of terms that
act non-trivially only on k out of the overall n many subsystems, often with k = O(log(n)) or k = O(1) –
play an important role in modeling real-world systems. Additionally, some proposed quantum computing
architectures also come with natural locality constraints, and are thus naturally described by (possibly even
geometrically) local Hamiltonians. In addition to fundamental and practical relevance, locality also carries
theoretical importance. For instance, a majority of recent works establishing rigorous guarantees for learning
an unknown Hamiltonian from either its Gibbs state or from access to its time evolution (see Section 1.3
for an overview) relies on structural assumptions on the Hamiltonian that in particular require locality,

1

ar
X

iv
:2

40
3.

02
96

8v
2 

 [
qu

an
t-

ph
] 

 9
 A

pr
 2

02
4



such as having a bounded-degree interaction graph. However, no protocols for testing whether an unknown
Hamiltonian satisfies such assumptions were known.

In this work, we investigate the tasks of testing locality and more general properties of an unknown
Hamiltonian in the framework of property testing. Concretely, given access to the time evolution according
to an unknown HamiltonianH, we aim to determine whetherH is k-local or far from all k-local Hamiltonians.
In fact, versions of this Hamiltonian locality testing task have already been proposed as interesting problems,
albeit not studied, in [MW16; SY23]. We demonstrate that the feasibility of Hamiltonian locality testing
crucially relies on how distances between Hamiltonians are measured. On the one hand, we establish hardness
of locality testing with the distance measured by the operator norm. On the other hand, for the normalized
Frobenius norm as distance measure, we give an efficient Hamiltonican locality tester. In fact, we show that
our algorithm can be modified to efficiently test for a variety of Hamiltonian properties, specified by subsets
of all possible Pauli strings. Finally, we highlight a crucial difference between Hamiltonian testing and
learning: While we achieve efficient Hamiltonian property testing with respect to the normalized Frobenius
norm, we show hardness of learning an arbitrary Hamiltonian with the same notion of distance.

1.1 Problem statement: Hamiltonian locality testing

Throughout, we consider the Pauli expansion H =
∑
P∈Pn

αPP of an n-qubit Hamiltonian H, where Pn =
{I, X, Y, Z}⊗n is the set of n-qubit Paulis and where the αP = Tr[HP ]/2n are the (real) Pauli basis coefficients
of H. We call the Hamiltonian H k-local if αP = 0 holds for all P ∈ Pn with |P | > k. Here, |P | denotes the
weight of a Pauli string P , that is, the number of non-identity tensor factors in P . We phrase the problem
of testing whether an unknown Hamiltonian is (at most) k-local as a property testing problem:

Definition 1.1 (Hamiltonian locality testing). Given a locality parameter 1 ≤ k ≤ n, a norm |||·|||, and
an accuracy parameter ε ∈ (0, 1), the Hamiltonian k-locality testing problem, denoted as T loc

|||·|||(ε), is the
following task: Given access to the time evolution according to an unknown Hamiltonian H, decide, with
success probability ≥ 2/3, whether

(i) H is k-local, or

(ii) H is ε-far from being k-local, that is,
∣∣∣∣∣∣∣∣∣H − H̃∣∣∣∣∣∣∣∣∣ ≥ ε for all k-local Hamiltonians H̃.

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

Here, we can use different norms |||·||| to measure the distance between two Hamiltonians. Motivated by
operational interpretations as worst-case and average-case notions of distance, respectively, we focus on the
Schatten ∞-norm ∥·∥∞ (aka operator norm) and the normalized Schatten 2-norm 1√

2n
∥·∥2 (aka normalized

Frobenius norm).
In this work, we study how easy or hard it is to achieve Hamiltonian locality testing w.r.t. these different

norms. On the one hand, we consider incoherent quantum algorithms, which can only perform measurements
on single copies of time-evolved states, and which cannot interleave Hamiltonian time evolution with control
operations. Here, we do, however, allow for adaptively chosen input states and measurements in the different
experiments performed for testing. On the other hand, we also consider more general coherent quantum
algorithms, describing the most general quantum experiments that can be performed when given access to
an unknown Hamiltonian time evolution. Additionally, we may restrict the algorithms to have access to no
or only few auxiliary qubits. See Section 2.4 for a detailed discussion of the kinds of quantum protocols that
we consider. Our negative results cover both the incoherent and the coherent case. Our positive results are
phrased in the framework of simple incoherent quantum testing algorithms. As such, they serve as examples
of the power of simple-to-implement protocols for testing properties of a Hamiltonian, which may be feasible
in short- or mid-term quantum devices.

1.2 Main results

An immediate approach towards solving the testing problem from Definition 1.1 is to (approximately) learn
the unknown Hamiltonian to a sufficient accuracy and to then decide based on whether the learned hypoth-
esis Hamiltonian has the desired property or not. Given that the unknown Hamiltonian H can be arbitrary,
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instantiating this approach requires Hamiltonian learning protocols that work without any structural as-
sumptions. Such procedures were recently proposed in [Car23; CW23]. However, as we discuss in more
detail in Section 4.1, the naive “testing via learning” strategy with the protocols of [Car23; CW23] has an
undesirable feature: When working with any norm except for the ℓ∞-norm on the coefficient vector (αP )P ,
∥·∥Pauli,∞, it uses a number of queries to the unknown Hamiltonian and a total evolution time that both
scale exponentially in n. This raises the question:

For which norms is it possible to efficiently test Hamiltonian locality?

We provide the first rigorous answers to this question In our first result, we show that the locality testing
task is hard with the Schatten ∞-norm:

Theorem 1.2 (Hardness of Hamiltonian locality testing w.r.t. the operator norm – Informal). For k ≤ Õ(n),
any ancilla-free, incoherent, adaptive quantum algorithm that solves the k-locality testing problem T loc

∥·∥∞
(ε),

even only under the additional promise that the unknown Hamiltonian H satisfies Tr[H] = 0 and ∥H∥∞ ≤ 1,

has to make at least N ≥ Ω̃ (2n) queries to the unknown Hamiltonian and has to use an expected total
evolution time of at least E[T ] ≥ Ω̃

(
2n

ε

)
. Even any coherent quantum algorithm achieving the same has to

make at least N ≥ Ω
(
2n/2

)
many queries and has to use a total evolution time of at least T ≥ Ω

(
2n/2

ε

)
.

Here and throughout, we use Ω̃ to hide factors that are polylogarithmic in the leading order term.
Theorem 1.2 says that testing k-locality is not possibly query-efficiently or with efficient evolution time when
using the Schatten∞-norm as a distance measure. In fact, we show this for all Schatten p-norms, p ≥ 1. With
our next result, we demonstrate that this changes significantly when considering the normalized Schatten
2-norm instead. Then, we can achieve efficiency in terms of the number of queries, the total evolution time,
and even with respect to the classical post-processing time. In particular, we give a procedure that tests
whether an unknown Hamiltonian is k-local and that achieves this with a polynomial number of queries, a
polynomial overall evolution time, and with polynomial classical post-processing time.

Theorem 1.3 (Efficient Hamiltonian locality testing w.r.t. normalized Frobenius norm – Informal). Let
k ≤ Õ(n). When promised that the unknown Hamiltonian H satisfies Tr[H] = 0 and ∥H∥∞ ≤ 1, there is an
ancilla-free, incoherent, non-adaptive quantum algorithm that solves the Hamiltonian k-locality testing prob-
lem T loc

1√
2n
∥·∥2

(ε) using O
(
ε−4
)
many queries to the unknown Hamiltonian, a total evolution time of O

(
ε−3
)
,

and a classical post-processing time of O
(
nk+3

ε4

)
. Moreover, the testing algorithm uses only stabilizer states

as inputs and stabilizer basis measurements at the output.

In fact, while we state Theorem 1.3 in terms of locality testing, our procedure allows us to establish a
more general Hamiltonian property testing result. In particular, we show: Let S ⊂ Pn be a subset with
|S| ≤ O(poly(n)), let ε ≥ Ω(1/poly(n)). Then, we can efficiently test, even tolerantly, whether H consists
only of Pauli terms in S or whether H is ε-far w.r.t. 1√

2n
∥·∥2 from the set of all such Hamiltonians. More

precisely, we can do so with O
(
1/ε4

)
≤ O(poly(n)) many queries to H, with a total evolution time of

O
(
1/ε3

)
≤ O(poly(n)), and with a classical post-processing time of O

(
n2|S|/ε4

)
≤ O(poly(n)). Again, this

testing procedure uses only stabilizer state inputs and stabilizer basis measurements at the output, both of
which are efficiently implementable. Thus, by choosing a suitable set S, we can for example test whether
an unknown Hamiltonian is exactly k-local, (at most or exactly) geometrically k-local, or whether it has a
desired interaction graph.

Our algorithm achieving the guarantees in Theorem 1.3 and its extended version to more general Hamil-
tonian properties, specified by some subset S, are novel additions to the randomized measurement framework
[Elb+22]. In particular, we inherit the “measure first, ask questions later” feature. That is, the data in our
testing algorithm can be collected even without knowing the Hamiltonian property that is to be tested as
long as an a priori bound on its size and the desired accuracy are known in advance; and once collected the
data can be used to test multiple properties simultaneously. This then allows us to test properties such as
whether a Hamiltonian has a sparse Pauli basis expansion or whether it is a low-intersection Hamiltonian.

In our final result, we highlight a large separation between Hamiltonian testing and learning. On the
one hand, we have shown that normalizing the Frobenius norm makes it possible to efficiently test arbitrary
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Hamiltonian properties. On the other hand, even after normalizing the distance measure, learning a general
Hamiltonian from time evolution access remains hard:

Theorem 1.4 (Hardness of Hamiltonian learning w.r.t. normalized Frobenius norm – Informal). Any (even
coherent) quantum algorithm with a constant number of auxiliary qubits that, when given time evolution
access to an arbitrary n-qubit Hamiltonian H, promised to satisfy Tr[H] = 0 and ∥H∥∞ ≤ 1, with success

probability ≥ 2/3, outputs (the classical description of) a Hamiltonian Ĥ such that 1√
2n

∥∥∥H − Ĥ∥∥∥
2
≤ ε has

to make at least Ω̃
(
22n
)
many queries to H. Any non-adaptive incoherent quantum algorithm achieving the

same without auxiliary qubits has to use a total evolution time of at least Ω̃
(

22n

ε

)
.

Juxtaposing Theorem 1.3, and its extension to general properties, with Theorem 1.4, we see that the
naive “testing via learning” approach fails for Hamiltonian property testing if we do not have prior promises
on the structure of the unknown Hamiltonian. In fact, Hamiltonian locality testing, and even more general
Hamiltonian property testing, is significantly easier than the infeasible task of general Hamiltonian learning,
but requires approaches tailored specifically to testing.

1.3 Related work

Classical and quantum property testing. Since its origins [BLR93; RS96; GGR98], property testing
has evolved into an important area of theoretical computer science, with connections to, among others,
learning theory and probabilistically checkable proofs [Ron08; Gol17; BY22]. Among the plethora of classical
property tasks, those of low-degree testing [Alo+03] and junta testing [Fis+04; Bla09] can be viewed as
counterparts of quantum Hamiltonian locality testing. Similarly, testing for Fourier sparsity of a Boolean
function [Gop+11] can be viewed as a classical version of testing whether a Hamiltonian has a sparse Pauli
basis expansion. More recently, the field of quantum property testing [MW16] has emerged. It includes a
long line of works on testing properties of classical objects from quantum data access [Deu85; DJ92; Sim97;
AS07; Buh+08; Cha+10; ACL11; BHH11; HA11; AA18; Amb+; GL20]; investigations into testing properties
of quantum states [HM13; OW15; HLM; Car+17; BO20; GNW21; SW22; Gre+23]; proofs of proximity for
unitary properties [Dal+22]; unitary and channel versions of junta testing [CNY23; BY23]; unitary property
testing more broadly [LW22; SY23]; and Hamiltonian symmetry testing [LW22].

Hamiltonian learning. One way to infer properties of a Hamiltonian clearly is to learn the coefficients
of the Hamiltonian. There has been a lot of work on this topic, hence the references below should not be
understood as a complete review of the field. For our purposes, there are two approaches to Hamiltonian
learning. In the first, one has access to the unitary dynamics of the Hamiltonian of interest [SLP11; BAL19;
Zub+21; HKT22; Wil+22; Yu+23; Car23; DOS23; Hua+23; CW23; Li+23; Möb+23; Sti+24; GCC24]. We
are allowed to prepare appropriate initial states, choose how long the system should evolve, and perform
measurements of our choosing afterwards. In the second, our aim is to learn the Hamiltonian from copies of
Gibbs states, i.e., thermal equilibrium states [Ans+21; HKT22; RS23; Ono+23; Bak+23; GCC24]. For these
algorithms to be efficient, it is usually assumed that the Hamiltonian to be learned is local. Our results can
therefore be seen as complementary to the above protocols for Hamiltonian learning: we first determine the
locality of the Hamiltonian using our results and then run an appropriate learning protocol.

Coherent vs. incoherent quantum learning. Quantum-enhanced learning algorithms can use advanced
quantum processing, such as multi-copy measurements and coherent long-time evolutions with interleaving
control operations, to achieve a quantum advantage over conventional algorithms. Recent work has in-
vestigated such advantages in learning and testing quantum states [BCL20; HKP21; Che+22; Hua+22;
Aru+23; Che+23b; Faw+23a] as well as unitaries and quantum channels [ACQ22; Che+22; Hua+22; Car23;
Che+23a; Ouf23; FOS23; Faw+23b], and in learning Hamiltonians [Hua+23; Li+23]. Our lower bounds
constitute an addition to the toolkit developed in these prior works. Notably, the algorithms achieving our
upper bounds use only simple quantum processing as is common in the randomized measurement paradigm
[HKP20; Elb+22].
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1.4 Techniques and proof overview

Let d = 2n be the dimension of an n-qubit system.

Hamiltonian locality testing lower bound. To prove the first Hamiltonian locality testing lower bound
of Theorem 1.2, we identify an underlying Hamiltonian many-vs-one distinguishing problem that can be
solved with high success probability by any successful locality tester, and then establish lower bounds for
this distinguishing task. Concretely, we consider the following task: Given access to the time evolution along
a Hamiltonian H that is promised to satisfy either (i) H = 0 or (ii) H = ε(V |0⟩⟨0|V † − I/d), where V is a
Haar-random n-qubit unitary, decide whether (i) or (ii) is the case.

We show that Hamiltonian locality testing indeed suffices to solve this distinguishing problem via a
concentration of measure argument. Namely, using the concentration of a Lipschitz function of Haar-random
unitaries around its mean [MM13], we show that ε(V |0⟩⟨0|V † − I/d) with Haar-random V is (ε/2)-far
w.r.t. ∥·∥∞ from any fixed, traceless Hamiltonian K with ∥K∥∞ ≤ 1 with probability ≥ 1 − exp(Ω(2n)).
As the set of k-local Hamiltonians admits an ∥·∥∞-covering net Hε whose size satisfies log|Hε| ≤ min{(k +
1)(3n)k, 4n}, a union bound now implies that ε(V |0⟩⟨0|V † − I/d) with Haar-random V is simultaneously
(ε/4)-far, again w.r.t. ∥·∥∞, from all k-local Hamiltonians with high probability. Therefore, any high-
probability algorithm for testing Hamiltonian k-locality to accuracy ε/4 in the operator norm also manages
to distinguish between (i) H = 0 and (ii) H = ε(V |0⟩⟨0|V † − I/d) with Haar-random V with high success
probability. In particular, any lower bound for this distinguishing task immediately implies a lower bound
for Hamiltonian locality testing.

To establish such a lower bound, we follow [Faw+23b]. To explain the proof of the lower bound, we
use the learning tree representation of [Che+22]. That is, we think of the possible outcomes of an adaptive
distinguishing algorithm as leaves in a tree, where the observed measurement outcomes in each round deter-
mine how the learner moves from the root to a leaf. Viewed this way, Le Cam’s two-point method implies
that solving the distinguishing task with constant success probability requires the leaf distributions induced
by the different hypothesis Hamiltonians to have at least a constant total variation (TV) distance. For
technical reasons, we in fact consider a slightly different test: Distinguish between the channels (i) Ut = id
or (ii) Ut(·) = α id(·) + (1 − α)e−itH(·)eitH for a random H as above. We show that as long as α ≤ 1

10N ,
the leaf distributions induced by these two different hypotheses still have at least a constant TV distance.
Next, we use Pinsker’s inequality to upper bound (the square of) this TV distance by the Kullback Leibler
(KL) divergence, as the KL divergence is more amenable to decoupling the dependence between the random
observations at different steps. Taking a mixture of the identity channel and the time evolution under the
alternate hypothesis as in (ii) is important to make a second order Taylor expansion of the logarithm function
that occurs in the KL divergence possible. However, this alone is not sufficient since the (expected) second
order term in this expansion can diverge if the input states and measurement projectors are orthogonal. To
address this issue, at each step k ∈ [N ], we distinguish between two types of paths of length k: those for
which the overlap between the input state and the measurement operator (corresponding to the final node in
the path) is too small, and those for which the overlap is not. When the overlap is too small, we use a simple
lower bound on Born’s probability under Ut(·) = α id(·) + (1 − α)e−itH(·)eitH in terms of the probability
under Ut = id (here again taking the mixture proves to be essential). When the overlap is not too small, we
can Taylor expand the logarithm to second order and control the resulting term using Weingarten calculus.

Overall, we achieve a TV distance upper bound of
∑N
k=1O

(
log(N)
d · E[min(1, εtk)]

)
, which when compared

to the constant lower bound implies the claimed bounds on N , the number of queries, and on E[
∑N
k=1 tk],

the expected total evolution time.

Hamiltonian locality testing upper bound – Commuting case. For clarity of exposition, we begin
with a simpler setting, focusing on commuting Hamiltonians consisting of terms from {I, X}⊗n. That is, we
assume that we can expand the Hamiltonian as H =

∑
P∈{I,X}⊗n αPP . Our concrete task under considera-

tion thus becomes: Given access to the time evolution along an unknown Hamiltonian H =
∑
P∈{I,X}⊗n αPP

with Tr[H] = 0 and ∥H∥∞ ≤ 1, decide, with success probability ≥ 2/3, whether H is k-local or ε-far from
k-local in normalized Schatten 2-norm distance. The underlying idea for locality testing in this special case
will carry over to the general setting.
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Our algorithm for solving this property testing problem is as follows: We prepare the state |0⟩⟨0| and
let it evolve under the unknown Hamiltonian for time t = O(ε). At the end of this evolution, we perform
a measurement in the computational basis {|i⟩⟨i|}i∈{0,1}n . We repeat this procedure N = O(1/poly(ε))
times. If at least one of the N rounds produces an n-bit string with at least k+1 non-zero entries, i.e., with
Hamming weight ≥ k+1, as measurement outcome, we conclude that the Hamiltonian H is ε-far from being
k-local. Otherwise, we claim that H is k-local.

The proof of correctness for this algorithm has the following structure. Observe that |j⟩ = Xj |0⟩ for any
j ∈ {0, 1}n and that Ut = eitH ≈ I+itH holds for short times t. Here, we write Xj to mean Xj1 ⊗ . . .⊗Xjn ,
where X0 = I. Consequently, we have ⟨j|Ut |0⟩ ≈ δj,0 + itαXj for all j ∈ {0, 1}n. In particular, for any n-bit
string j with weight |j| > 0,

| ⟨j|Ut |0⟩ |2 ≈ t2|αXj |2 .

If H is indeed k-local, then αXj = 0 holds whenever |j| > k, and we find that∑
j:|j|>k

| ⟨j|Ut |0⟩ |2 ≈ 0 ,

so the probability that the algorithm falsely claims that H is far from k-local when it is indeed k-local is
approximately zero.

Conversely, if the Hamiltonian H is ε-far from any k-local Hamiltonian in normalized Schatten 2-norm,
this means that

∑
j:|j|>k |αXj |2 ≥ ε2 because of Parseval. We infer that∑

j:|j|>k

| ⟨j|Ut |0⟩ |2 ⪆ t2ε2 .

Note that we have to choose t small enough for the approximation to be correct. By repeating the algorithm
O(t−2ε−2) = O(ε−4) many times, we can increase the probability of the algorithm to be correct to a constant.
To make the above reasoning precise, we use the Taylor expansion of eitH in order to bound the error in the
approximation eitH ≈ I+ itH.

Hamiltonian locality testing upper bound – General case. In the case of a general Hamiltonian H,
we can no longer limit ourselves to preparing and measuring in the computational basis. Instead, we need
to prepare and measure in several different bases. A convenient choice are some d + 1 mututally unbiased
bases (MUBs) Bi, which are known to exist in our case since d = 2n is a prime power [WF89]. We write

Bi = {|ϕi,j⟩}j∈{1,...,d}, 1 ≤ i ≤ d+ 1 .

MUBs are known to be particularly suited for determining the state of a quantum system [WF89]. Moreover,
MUBs were used for Pauli channel learning [FW20]. They can be explicitly constructed from covering the
Pauli group with d + 1 stabilizer groups that only have the identity element in common but are otherwise
disjoint.

Motivated by our previous discussion, we consider for a Pauli operator P with weight |P | the overlap
| ⟨ϕi,ℓ|P |ϕi,j⟩ | and find that it is either 0 or 1. This motivates the following algorithm: We choose (i, j) ∈
[d] × [d + 1] uniformly at random and prepare the state |ϕi,j⟩⟨ϕi,j |. We let it evolve under the unknown
Hamiltonian for time t = O(ε). At the end of this evolution, we perform a measurement in the basis Bi.
We repeat this procedure N = O(1/poly(ε)) times. If at least one of the N rounds produces an output ℓ
such that all Pauli strings P with |P | ≤ k satisfy | ⟨ϕi,ℓ|P |ϕi,j⟩ | = 0 – which we denote by |ϕi,ℓ⟩ ≁k |ϕi,j⟩,
meaning that we detected a non-locality –, then we conclude that the Hamiltonian is ε-far from being local.
Otherwise, we claim that H is k-local.

By construction, if |ϕi,ℓ⟩ ≁k |ϕi,j⟩, then | ⟨ϕi,ℓ|Hm |ϕi,j⟩ | = 0 for m ∈ {0, 1}. Using eitH ≈ I + itH, we
find that if the Hamiltonian is k-local, then in any single round, the probability of our procedure falsely
detecting a non-locality is

P (|ϕi,ℓ⟩ ≁k |ϕi,j⟩) =
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21 ({|ϕi,ℓ⟩ ≁k |ϕi,j⟩}) ≈ 0 .
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If the Hamiltonian is ϵ-far from being k-local, we can use the fact that d + 1 MUBs in dimension d form a
2-design [KR05] to infer the following upper bound on the probability of not detecting the non-locality in
any single round:

P (|ϕi,ℓ⟩ ∼k |ϕi,j⟩) ≤
∑

P :|P |≤k

d

d(d+ 1)
+

∑
P :|P |≤k

∣∣Tr (P eitH)∣∣2
d(d+ 1)

. (1)

We use eitH ≈ I + itH to conclude Tr
(
P eitH

)
≈ itdαP if P ̸= I. Furthermore, expanding eitH to second

order, we can approximate

|Tr
(
eitH

)
|2 ≈ d2 − d2t2

∑
P

|αP |2 .

Combining this withH being ε-far from k-local in normalized Frobenius norm, which means
∑
P :|P |>k |αP |2 ≥

ε2, the second term in Equation (1) can be upper bounded by 1− t2ε2. The first term can be seen to quickly
approach 0 as n grows. Hence,

P (|ϕi,ℓ⟩ ∼k |ϕi,j⟩) ⪅ 1− t2ε2

2
.

Note that we again have to choose t small enough for the approximation to be correct. By repeating the
algorithm N = O(t−2ε−2) = O(ε−4) many times, we reduce the error probability to a small enough constant.
Again, we use the Taylor expansion of eitH to make the above reasoning precise. Choosing t = O(ε) lets us
control the higher order terms appearing in this expansion.

Hamiltonian learning lower bound. Similarly to the reasoning behind Theorem 1.2, we follow [Fla+12;
Haa+17; BCL20; LN22; FOS23; Ouf23] and begin by identifying a distinguishing problem, whose existence
we guarantee through a probabilistic argument, and that any successful general Hamiltonian learner can
solve. We then establish lower bounds for that distinguishing task through information-theoretic arguments.

To set up our distinguishing problem, let O = diag(+1, . . . ,+1,−1, . . . ,−1) be the diagonal 2n×2n matrix
with half of the diagonal entries equal to +1 and the other half equal to −1. We consider Hamiltonians
H of the form H = εUOU†, where U is a Haar-random n-qubit unitary. Using well known expressions for
the first and second moments of the Haar measure, we show that the expected square of the normalized
Frobenius distance between two such Hamiltonians satisfies EU,V∼Haarn [

1
2n ∥HU −HV ∥22] = 2ε2, and that

the second moment of this quantity is bounded as EU,V∼Haarn [
1

22n ∥HU −HV ∥42] ≤ 6ε2. Hölder’s inequality
then implies that the expected normalized Frobenius distance satisfies EU,V∼Haarn [

1√
2n
∥HU −HV ∥2] > 1.1ε.

Combining this with a Lipschitz concentration argument, we conclude that 1√
2n
∥HU −HV ∥2 > ε holds with

probability ≥ 1− exp(Ω(22n)). Therefore, by a union bound, there exists a set of M = exp(Ω(4n)) unitaries
Ux, 1 ≤ x ≤ M , such that the Hamiltonians Hx = εUxOU

†
x are pairwise ε-far apart w.r.t. 1√

2n
∥·∥2.

In particular, any algorithm that can learn an unknown Hamiltonian to average-case accuracy ε is able
to distinguish between these M candidate Hamiltonians. Via Fano’s inequality, this implies the mutual
information lower bound I(X : Y ) ≥ Ω(logM) ≥ Ω(4n), where X ∼ Uniform([M ]) and where the random
variable Y describes the outcomes observed by the learner.

We then provide complementary mutual information upper bounds for two different scenarios. First,
we consider procedures that use at most naux many auxiliary qubits. Then, the overall dimension of the
Hilbert space encompassing all quantum systems throughout the N queries restricts the mutual information
as I(X : Y ) ≤ O(N · (n + naux)). Comparing this with the previous mutual information lower bound, we
conclude that any such learner has to query the Hamiltonian time evolution at least N ≥ Ω(4n/(n+ naux))
many times. Note that this bound applies even to coherent learning algorithms, as long as the size of their
auxiliary register is limited.

Second, for incoherent learners that use neither an auxiliary system nor adaptivity in their choice of
experiments, we decompose the overall mutual information as I(X : Y ) =

∑N
ℓ=1 I(X : Yℓ), where the

random variable Yℓ describes the measurement outcome that the learner observes in the ℓth experiment.
That is, we have P[Yℓ = yℓ|X = x] = λyℓ

〈
ϕℓyℓ
∣∣ e−itℓHxρℓe

itℓHx
∣∣ϕℓyℓ〉, where tℓ is the evolution time, ρℓ is

the input state, and the measurement is described by {λyℓ
∣∣ϕℓyℓ〉〈ϕℓyℓ ∣∣}yℓ . Using that H2

x = ε2I and therefore

eitHx = cos(tε)I + i sin(tε)UxOU
†
x, we show via a careful analysis that I(X : Yℓ) ≤ Õ(tℓε) and hence we

obtain I(X : Y ) ≤ O(ε
∑N
ℓ=1 tℓ +

√
poly(2n)/M). Comparing this to our Fano-based mutual information
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lower bound of I(X : Y ) ≥ Ω(4n) and recalling that M is doubly exponential in n, we obtain the lower
bounds on the total evolution time and the query complexity stated in Theorem 1.4.

1.5 Directions for future work

Motivated by the question of how to test whether an unknown Hamiltonian is k-local, we proposed a
framework for Hamiltonian property testing. Here, we considered different ways of measuring distances
between Hamiltonians. With worst-case distance measures, exemplified by the operator norm, we showed
that exponentially many queries as well as exponentially long time are required to solve the locality testing
problem. In contrast, for the normalized Frobenius norm, leading to an average-case notion of distance,
we gave a broadly applicable Hamiltonian testing algorithm that uses only single-copy measurements on
short-time evolutions of certain randomized input states, and that is resource-efficient w.r.t. the number of
queries, total evolution time, and computation time involved. Finally, still in the regime of average-case
distances, we showed that learning is exponentially harder than testing.

There are several promising ways of extending our Hamiltonian property testing framework, for instance
by changing the notions of distance and access. First, one may consider other physically motivated notions of
distance, such as quantum Wasserstein distances [De +21] or distances relative to (some distribution over)
a set of input states and a set of output observables of interest. The former would lead to Hamiltonian
testing (and learning) that takes an underlying locality structure into account, wheres the latter would
be reminiscent of classical shadows [HKP20; HCP23] and shadow tomography [Aar20; BO21]. Second,
one may change the form of access to the unknown Hamiltonian from time evolution access to access to
copies of a Gibbs state, an access model already well studied in Hamiltonian learning (compare Section 1.3).
Also, exploring the possibility for quantitative improvements in our bounds seems important. For instance,
coherent quantum algorithms may be able to achieve Heisenberg-limited scaling for testing, as they already
have for Hamiltonian learning [Hua+23; Li+23] and unitary tomography [Haa+23; Zha+23]. Finally, we
highlight another possible extension to the Hamiltonian testing framework proposed here: Whereas we focus
on Hamiltonian testing, more general property testing questions for GKLS generators [Lin76; GKS76] from
access to the generated quantum dynamical semigroups could be of interest.

Note added. After the first version of our work appeared on the arXiv, Francisco Escudero Gutiérrez
shared with us his approach to tolerant Hamiltonian property testing and to local Hamiltonian learning
based on entangled inputs [Esc24]. We are grateful for this exchange, which motivated us to improve upon
the first version of our work, tightening the analysis underlying our upper bounds to remove the n-dependence
in the total evolution time and number of experiments as well as to achieve a tolerant version of our tester.

2 Preliminaries

2.1 Notation and basic definitions

Let log denote the natural logarithm and log2 the logarithm to base 2. For compactness, for n ∈ N we will
abbreviate [n] := {1, . . . , n}. We write 1(X ) for the indicator function on the set or event X . For a complex
number z ∈ C, we will denote by ℜ(z) its real part and ℑ(z) its imaginary part.

We will make extensive use of the Schatten p-norms ∥ · ∥p, for p ∈ N ∪ {∞}. They are defined for any
n×m matrix X as

∥X∥p := Tr[|X|p]
1
p = Tr[(

√
X†X)p]

1
p .

Here, X† is the Hermitian conjugate of X. The case p = ∞ is the operator norm of X. The Schatten
2-norm is also known as the Frobenius norm, whereas the Schatten 1-norm also goes by the names of trace
or nuclear norm. Here, we can employ different measures of distance between Hamiltonians. Moreover, we

consider the normalized Schatten p-norms 1
2n/p ∥H∥p. And finally, we use ∥H∥Pauli,p ≡

(∑
P∈Pn

|αP |p
)1/p

to

denote the norm induced by the ℓp-norm of the coefficient vector of H. Note that 1√
2n
∥H∥2 = ∥H∥Pauli,2 by

Parseval’s identity.
Depending on context, we will mean by a quantum state either a unit vector |ψ⟩ ∈ Cd for some appropriate

dimension d ∈ N or a density matrix ρ, i.e., a positive-semidefinite d× d matrix of unit trace. A linear map
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N from d1×d1 to d2×d2 matrices will be called positive if it maps positive-semidefinite matrices to positive-
semidefinite matrices. Moreover, it will be called completely positive if N ⊗ idn is positive for all n, where
idn is the identity map on an additional n-dimensional system. If a completely positive map is in addition
trace-preserving, we will call it a quantum channel. For general background on quantum information theory,
we refer the reader to a textbook such as [Wat18].

Finally, we will need some objects from classical information theory. Given two probability distributions
P , Q on a finite alphabet Y, their total variation distance is

TV(P,Q) :=
1

2

∑
y∈Y
|P (y)−Q(y)| .

Their Kullback-Leibler divergence is

KL(P∥Q) :=
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
if suppP ⊆ suppQ, where we define 0 log 0 := 1, and +∞ otherwise.

Given two random variablesX, Y on finite alphabets X , Y, respectively, and joint probability distribution
PXY on X × Y with marginals PX on X and PY on Y, their mutual information is

I(X : Y ) := KL(PXY ∥PX ⊗ PY ) .

2.2 Mutually unbiased bases of stabilizer states

We define the Pauli matrices in the standard way

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The set of n-strings formed by the Pauli operators together with the identity matrix will be written as
Pn = {I, X, Y, Z}⊗n. Note that unlike the set

{
eiθπ/2σ1 ⊗ · · · ⊗ σn

∣∣ θ = 0, 1, 2, 3, σi ∈ {I, X, Y, Z}
}
, which

is the Pauli group, the set Pn is not a group. We will also need the quotient group of the Pauli group with
its centralizer. We will write this Abelian group as

Pn =
{
eiθπ/2σ1 ⊗ · · · ⊗ σn

∣∣ θ = 0, 1, 2, 3, σi ∈ {I, X, Y, Z}
}
/{±1,±i} .

There is a bijection between elements in Pn and elements in Pn, and we will write P (g) for the element in
Pn corresponding to g ∈ Pn.

We will make extensive use of the following known two lemmas, see e.g. [Ban+02; FW20; FOS23].

Lemma 2.1. Pn can be covered by d+ 1 stabilizer groups G1, . . . , Gd+1 satisfying for all i ̸= j:

• |Gi| = d,

• CGi
= Gi,

• Gi ∩Gj = {I}.

Here, CGi
= {g ∈ Pn : [P (g), P (h)] = 0 ∀h ∈ Gi}. It can be thought of as the centralizer of Gi in the Pauli

group, where we are only interested in elements with a fixed choice of sign.

From these stabilizer groups, we can construct sets of pure states: However, let us first note that {P (g) :
g ∈ Gi} are not groups. We can, however, turn them into groups: there are signs ζi,g ∈ {±1} such that
{ζi,gP (g) : g ∈ Gi} is an Abelian group, the stabilizer group. There are two ways to see this. Either, we
start with a set of generators for Gi and keep track of the signs when multiplying the corresponding P (g) in
order to generate the group. Alternatively, we choose a common eigenstate |φ⟩ of all the P (g), g ∈ Gi, which
exists since all the P (g) commute and define P (g) |φ⟩ = ζi,g |φ⟩. In this case, {S(g) := ζi,gP (g) : g ∈ Gi}
will be a stabilizer group for |φ⟩.
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Lemma 2.2. Let G ∈ {G1, . . . , Gd+1}. The set MG = {Mr
G = 1

d

∑
g∈G(−1)p◦rS(p)}r∈AG

forms an or-
thonormal basis consisting of rank-1 stabilizer states.

Here we use the notation AG = Pn/G and p ◦ r = 0 if P (p)P (r) = P (r)P (p) and p ◦ r = 1 if P (p)P (r) =
−P (r)P (p) (note that we could have put arbitrary signs in front of the P (p), P (r) without changing the
value of p ◦ r). To not overload the notation, we define AGi = {rij}dj=1 and introduce the notation

|ϕi,j⟩⟨ϕi,j | =M
rij
Gi

=
1

d

∑
p∈Gi

(−1)p◦r
i
jS(p) (2)

Now we have d+1 mutually unbiased bases (MUBs) Bi = {|ϕi,j⟩}dj=1 for i = 1, . . . , d+1. We will use the fact
that MUBs of stabilizer states form a 2-design. 2-designs were used for the problem of testing the mixedness
of states by [Yu21]. Stabilizer states and measurements were used for the problem of Pauli channel learning
by [FW20].

Proposition 2.3 (Pauli group, MUB and 2-design). The bases
{
Bi = {|ϕi,j⟩}dj=1

}d+1

i=1
form an MUB and a

2-design. That is:

1

d(d+ 1)

d+1∑
i=1

d∑
j=1

|ϕi,j⟩⟨ϕi,j | ⊗ |ϕi,j⟩⟨ϕi,j | =
I+ F

d(d+ 1)

where F =
∑
x,y |xy⟩ ⟨yx| is the flip operator.

Proof. One way to see this is to apply [KR05, Theorem 1]. We only need to prove that:∑
i,j

1

d(d+ 1)

∑
k,ℓ

1

d(d+ 1)
|⟨ϕi,j |ϕk,ℓ⟩|4 =

∫
Haar

|⟨0|ϕ⟩|4dϕ =
2

d(d+ 1)
.

This identity can be checked easily since |⟨ϕi,j |ϕk,ℓ⟩| = 1√
d
if i ̸= k and |⟨ϕi,j |ϕi,ℓ⟩| = 1({j = l}). Indeed, we

can check |⟨ϕi,j |ϕk,ℓ⟩| = 1√
d
if i ̸= k:

|⟨ϕi,j |ϕk,ℓ⟩|2 = Tr (|ϕi,j⟩⟨ϕi,j | |ϕk,ℓ⟩⟨ϕk,ℓ|)

= Tr

1

d

∑
p∈Gi

(−1)p◦r
i
jS(p) · 1

d

∑
p′∈Gk

(−1)p
′◦rkl S(p′)


=

1

d

∑
p∈Gi∩Gk

(−1)p◦r
i
j (−1)p◦r

k
l =

1

d

since Gi ∩Gk = {I}. Alternatively, we could have argued using [KR05, Theorem 3].

Finally, the operation p ◦ q has a nice property that we’ll need later, which has already been used, for
example, in [FW20; FOS23].

Lemma 2.4. Let q ∈ Pn and let G be any subgroup of Pn. Then

1

|G|
∑
g∈G

(−1)p◦q = 1(q ∈ CG).

2.3 Problem statement: Hamiltonian property testing

We consider n-qubit HamiltoniansH expanded in the Pauli basis,H =
∑
P∈Pn

αPP , with Pn = {I, X, Y, Z}⊗n
the set of n-qubit Paulis and with (real) coefficients αP = Tr[HP ]/2n. Throughout this work, the Hamiltonian
properties of interest are characterized by a subset S ⊆ Pn, and we say that H has property ΠS , write
H ∈ ΠS , if αP = 0 for all P ̸∈ S. For instance, the property of being (at most) k-local is characterized by
the subset Sk−loc = {P ∈ Pn : |P | ≤ k}, where we use |P | to denote the weight of P , that is, the number
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of non-identity tensor factors. Other examples of properties that our framework encompasses are geometric
locality or having a given interaction graph.

We now define Hamiltonian property testing of ΠS as the task of deciding, given access to the time
evolution according to an unknown Hamiltonian H, whether H has property ΠS or whether H is far from
all Hamiltonians that have property ΠS .

Problem 2.5 (Hamiltonian property testing). Given a property ΠS associated to a subset S ⊆ Pn, a norm
|||·|||, and an accuracy parameter ε ∈ (0, 1), we denote by T ΠS

|||·||| (ε) the following Hamiltonian property testing

problem: Given access to the time evolution according to an unknown Hamiltonian H, decide, with success
probability ≥ 2/3, whether

(i) H has property ΠS, that is, H ∈ ΠS, or

(ii) H is ε-far from having property ΠS, that is, ∀H̃ ∈ ΠS:
∣∣∣∣∣∣∣∣∣H − H̃∣∣∣∣∣∣∣∣∣ ≥ ε .

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

Remark 2.6. A short discussion of the physical interpretation for the different norms used above is in
order. Among the Schatten p-norms, we highlight the Schatten ∞-norm (aka operator norm) as a worst-case
distance. Namely, in Appendix A.1, we show that, at least for short evolution times, the Hamiltonian distance∥∥∥H − H̃∥∥∥

∞
is tightly related to, among others, the worst-case output fidelity max|ψ⟩|⟨ψ| e−itHeitH̃ |ψ⟩|2 and

the diamond norm distance between the unitary time evolution channels e−itH(·)eitH and e−itH̃(·)eitH̃ .
Second, to illustrate the relevance of the normalization factor in normalized Schatten p-norms, we single

out the normalized Frobenius norm and interpret it as an average-case distance measure. Here, we demon-

strate in Appendix A.2 that 1√
2n

∥∥∥H − H̃∥∥∥
2
is, again for short times, connected to the average output fidelity

E|ψ⟩∼Haarn

[
|⟨ψ| e−itHeitH̃ |ψ⟩|2

]
, the normalized Frobenius norm distance between the time evolutions e−itH

and e−itH̃ , and other average-case distance measures.
Finally, the norms ∥·∥Pauli,p, in particular for p = 2,∞, have featured in recent work on Hamiltonian

learning, see Section 1.3. They make intuitive sense for learning and testing tasks in which the interest is in
estimating or validating properties of interaction strength parameters in a Hamiltonian.

The central goal of this work is to understand how easy or hard this Hamiltonian property testing problem
is. More specifically, we are interested in the number of queries to the time evolution as well as in the total
evolution time necessary and sufficient to solve the testing task. Additionally, we consider whether one can
successfully approach Hamiltonian testing via Hamiltonian learning.

2.4 Types of strategies for Hamiltonian property testing

In order to solve the Hamiltonian property testing problem, we consider several different scenarios, depending
on what kind of access to the quantum system and how many additional resources we grant the tester.

Incoherent strategies. We start by presenting incoherent strategies. That is, the tester can use the
quantum system only once per step. Therefore, in round k of the overall procedure, the tester can prepare a
quantum state ρk, let the time evolution Ut(·) = e−itH(·)eitH run for a chosen time tk, and finally perform a

measurementMk =
{
λ
(k)
i

∣∣∣ϕ(k)i

〉〈
ϕ
(k)
i

∣∣∣}
i∈Ik

, where Ik is a set of measurement outcomes. Note that we could

have taken a general positive operator-valued measure (POVM) here, but that without loss of generality,
we can assume the POVM to consist of rank-one elements. If the input state, the duration of the time
evolution, and the choice of measurement are allowed to depend on the outcomes of previous measurements,
the incoherent strategy is adaptive, otherwise it is non-adaptive. We can also add ancilla qubits to the strategy
by preparing the input state ρk on a (d × daux)-dimensional system instead of restricting to dimension d,
subsequently letting the time evolution act as Utk ⊗ id, where the identity acts on the ancilla qubits, and
finally measuring both systems withMk. If we add the ancilla, we call the strategy ancilla-assisted, otherwise
we will speak of ancilla-free strategies. If we allow an ancilla but require it to be of constant dimension, we
speak of a bounded-ancilla strategy. See Figure 1 for an illustration of non-adaptive strategies and Figure 2
for an illustration of adaptive strategies.
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i1

i2

iN

ρ1

Ut1
M1

ρ2

Ut2
M2

...

ρN

UtN
MN

output

Figure 1: Illustration of a non-adaptive incoherent strategy for learning/testing properties of a Hamiltonian
H from its time evolution channel Ut(·) = e−itH(·)eitH . It is called ancilla-free if the auxiliary systems
have dimension 1, otherwise it is called ancilla-assisted. The classical computer processes the observations
(i1, . . . , iN ) to distinguish between two hypotheses H0/H1 (in testing) or to produce an approximate Hamil-
tonian Ĥ (in learning).
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i1

i2

iN

i1

ρ1

Ut1
M1

ρi12

Ut2
Mi1

2

i1, . . . , iN−1

ρi<N

N

UtN
Mi<N

N

output

Figure 2: Illustration of an adaptive incoherent strategy for learning properties of a Hamiltonian H from its
time evolution channel Ut(·) = e−itH(·)eitH . It is called ancilla-free if the auxiliary systems have dimension
1, otherwise it is called ancilla-assisted. The classical computer processes the observations (i1, . . . , iN ) to
distinguish between two hypotheses H0/H1 (in testing) or to produce an approximate Hamiltonian Ĥ (in
learning).
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. . .

. . .

ρ

Ut1
N1 NN−1

UtN
M output

Figure 3: Illustration of a coherent strategy for learning properties of a HamiltonianH from its time evolution
channel Ut(·) = e−itH(·)eitH . The classical computer processes the observation i to distinguish between two
hypotheses H0/H1 (in testing) or to produce an approximate Hamiltonian Ĥ (in learning).

Coherent strategies. The second type of strategies are the coherent strategies. Here, the tester is allowed
to access the time-evolution multiple times before measuring, possibly interleaving these time evolutions with
the application of quantum channels. Thus, the tester will prepare an initial quantum state ρ on a (d×daux)-
dimensional quantum system and then choose times t1, . . . , tN and quantum channels N1, . . . ,NN−1 acting
on quantum systems of dimension d× daux such that the output state before the measurement is

ρoutput = [UtN ⊗ id] ◦ NN−1 ◦ [UtN−1
⊗ id] ◦ . . . ◦ N1 ◦ [Ut1 ⊗ id](ρ) ,

where the identities act on the ancilla qubits. Finally, the tester measures ρoutput using a POVM acting
on (d × daux)-dimensional quantum systems. If daux > 1, we will say that the strategy is ancilla-assisted,
otherwise that it is ancilla-free. If the ancilla has dimension bounded by constN ·dN−1, we speak of a bounded-
ancilla strategy. Here, the dimension bound for the ancilla register is chosen such that the bounded-ancilla
coherent setting generalizes the bounded-ancilla incoherent one. See Figure 3 for an illustration.

3 Lower bounds for Hamiltonian locality testing

In this section, we will give lower bounds for the Hamiltonian locality testing problem, thereby proving The-
orem 1.2. We will first consider lower bounds for incoherent testing strategies in Section 3.1. Subsequently,
we consider the more general coherent strategies in Section 3.2, for which we can only give weaker bounds.

3.1 Incoherent setting

In this section, we will prove the following hardness result for Hamiltonian locality testing with respect to
unnormalized Schatten norms:

Theorem 3.1. Let n ≥ Ω(1), k ≤ O
(

n
log(n)

)
and p ≥ 1. Suppose that N ≤ exp(O(n))/εO(1). The

problem T loc
∥·∥p(ε), even under the additional promise that the unknown Hamiltonian H satisfies Tr[H] = 0

and ∥H∥∞ ≤ 1, requires an expected total evolution time of E
[∑N

k=1 tk

]
= Ω

(
2n

ε(n−log ε)

)
and a total number

of independent experiments N = Ω
(
2n

n

)
in the adaptive ancilla-free incoherent setting.

In order to prove Theorem 3.1, we will consider the following test:

H0 : Ut(ρ) = id(ρ) = e−it·0ρeit·0 vs H1 : Ut(ρ) = e−itHρeitH (3)

where H = η(|v⟩⟨v| − I/d) for η > 0 and |v⟩ = V |0⟩ , V ∼ Haar(d). We will need a couple of lemmas to
determine the relation of this toy problem of distinguishing these two time evolutions to the problem T loc

∥·∥p(ε)

that we care about.
First, we show the that the operator norm between H and any fixed traceless Hamiltonian (of bounded

operator norm) is bounded below with high probability.
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Lemma 3.2. Let d ≥ 4, H = η(|v⟩⟨v| − I/d) for η > 0 and |v⟩ = V |0⟩ , V ∼ Haar(d) and let K be a fixed
traceless Hamiltonian such that ∥K∥∞ ≤ 1. We have that

P
(
∥H −K∥∞ ≤

η

2

)
≤ exp

(
− d

1728

)
.

Proof. Consider the function:

f(V ) = ⟨v|K |v⟩ = ⟨0|V †KV |0⟩ .

We have E [f(V )] = TrK
d = 0. Moreover f is 2-Lipschitz with respect to the Euclidean norm. Indeed, let U

and V be two unitaries and |u⟩ = U |0⟩ , |v⟩ = V |0⟩. We can first use the triangle inequality and then the
Cauchy-Schwarz inequality to show that:

|f(U)− f(V )| = | ⟨u|K |u⟩ − ⟨v|K |v⟩ |
≤ | ⟨u− v|K |u⟩ |+ | ⟨v|K |u− v⟩ |
≤ |⟨u− v|u− v⟩|1/2| ⟨u|K2 |u⟩ |1/2 + |⟨u− v|u− v⟩|1/2| ⟨v|K2 |v⟩ |1/2

≤ 2| ⟨0| (U − V )†(U − V ) |0⟩ |1/2∥K2∥1/2∞
≤ 2∥U − V ∥2∥K∥∞.

Hence f concentrates around its mean [MM13, Corollary 17], for all s > 0:

P (f(V )− E [f(V )] ≥ s) = P (f(V ) ≥ s) ≤ exp

(
− ds2

48∥K∥2∞

)
Therefore using ⟨v| (H −K) |v⟩ ≤ ∥H −K∥∞ and ∥H∥∞ ≤ η:

P
(
∥H −K∥∞ ≤

η

2

)
≤ P

(
⟨v| (H −K) |v⟩ ≤ η

2

)
1

({
∥K∥∞ ≤

3η

2

})
= P

((
1− 1

d

)
η − f(V ) ≤ η

2

)
1

({
∥K∥∞ ≤

3η

2

})
= P

(
f(V ) ≥

(
1

2
− 1

d

)
η

)
1

({
∥K∥∞ ≤

3η

2

})
≤ exp

(
− dη2

768∥K∥2∞

)
1

({
∥K∥∞ ≤

3η

2

})
≤ exp

(
− d

1728

)
.

Here, we used 1/d ≤ 1/4 in the second to last inequality.

Lemma 3.3. Let n ≥ 2, k ≤ O
(

n
log(n)

)
and H = η(|v⟩⟨v| − I/d) for η > 0 and |v⟩ = V |0⟩ , V ∼ Haar(d).

Then, H is (η/4)-far (in the operator norm) from all k-local traceless Hamiltonians of operator norm at
most 1 with high probability.

Remark 3.4. Since for any p ≥ 1 and any Hermitian operator X we have ∥X∥p ≥ ∥X∥∞, the (random)
Hamiltonian H is (η/4)-far in the p-norm from all k-local traceless Hamiltonians of operator norm at most
1. Therefore, we can focus on the case p =∞.

Proof of Lemma 3.3. We shall take Hε an ε-net in the space of k-local Hamiltonians for the ∞-norm at
the level of the coefficients. For each K =

∑
P∈Pn:|P |≤k αPP ∈ ΠSk−loc

such that ∥K∥∞ ≤ 1 we have

∥α∥∞ = maxP |αP | = maxP
Tr(PK)

d ≤ maxP
Tr(|P |)∥K∥∞

d ≤ 1. For k-local Hamiltonians, many entries of α
will be zero, namely all the ones that correspond to P such that |P | > k. In this case, we can construct

an ε-net on the non-zero entries of cardinality at most |Hε| ≤ (1/ε)Nk where Nk =
∑k
s=0

(
n
s

)
3s. Now if
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K =
∑
P∈Pn:|P |≤k αPP ∈ ΠSk−loc

, then we can find a similar element K̃ =
∑
P∈Pn:|P |≤k α̃PP ∈ Lk in our

ε-net such that for all |P | ≤ k we have |αP − α̃P | ≤ ε. Thus,

∥K − K̃∥∞ ≤ ∥K − K̃∥2 ≤
√
dε2Nk ≤

η

4

for ε = η/(4
√
dNk). Now we apply the union bound and Lemma 3.2 to bound

PV∼Haar(d)

(
∃K ∈ ΠSk−loc

: ∥H −K∥∞ ≤
η

4

)
≤ PV∼Haar(d)

(
∃K ∈ Hε : ∥H −K∥∞ ≤

η

2

)
≤
∑
K∈Hε

PV∼Haar(d)

(
∥H −K∥∞ ≤

η

2

)
≤ |Hε| exp

(
− d

1728

)
=

(
1

ε

)Nk

exp

(
− d

1728

)
=

(
4
√
dNk
η

)Nk

exp

(
− d

1728

)
.

Moreover, as k ≤ n/2, we have the following simple upper bound on Nk:

Nk =

k∑
s=0

(
n

s

)
3s ≤ min

(
(k + 1)

(
n

k

)
3k, 4n

)
≤ min

(
(k + 1)(3n)k, 4n

)
.

Hence, (
4
√
dNk
η

)Nk

exp

(
− d

1728

)
≤ exp

(
(k + 1)(3n)k log

(
23n

η

)
− 2n

1728

)
≤ exp (−Ω(d))

if n2(3n)k ≤ c · 2n for a small constant c. This is valid, for instance, as long as k ≤ O
(

n
log(n)

)
. Therefore,

with high probability, H = η(|v⟩⟨v|−I/d) is not (η/4)-close to any k-local Hamiltonian if k ≤ O
(

n
log(n)

)
.

Now we proceed to prove Theorem 3.1. Our proof strategy is inspired by [Faw+23b].

Proof of Theorem 3.1. Let H = η(|v⟩⟨v| − I/d), Uv,t = e−iηt·|v⟩⟨v| and let Uv,t be the unitary channel:

Uv,t(ρ) = e−iηt·(|v⟩⟨v|−I/d)ρeiηt·(|v⟩⟨v|−I/d) = e−iηt·|v⟩⟨v|ρeiηt·|v⟩⟨v| = Uv,tρU
†
v,t.

A 1/3-correct algorithm should distinguish between the identity channel and Uv,t with at least a probability
2/3 of success. In the incoherent setting, the tester can only choose an input ρk at each step k, the time

evolution tk and perform a measurement using the POVM Mk = {λ(k)i

∣∣∣ϕ(k)i

〉〈
ϕ
(k)
i

∣∣∣}i∈Ik on the output

quantum state Utk(ρk). These choices can depend on the previous observations, that is, the algorithm can
be adaptive. Let I≤N = (I1, . . . , IN ) be the observations of this algorithm where N is a sufficient number of
independent experiments to decide correctly with a probability at least 2/3.
Let P (resp Q) be the distribution of (I1, . . . , IN ) under the null hypothesis H0 (H = 0) and the alternate
hypothesis H1 (H = η(|v⟩⟨v| − I/d)). The distribution of (I1, . . . , IN ) under H0 is:

P :=

{
N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉}
i1,...,iN

.

Moreover, the distribution of (I1, . . . , IN ) under H1 and conditioned on the choice of unitary V is:

QV :=

{
N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣Uv,tkρkU†v,tk ∣∣∣ϕ(k)ik

〉}
i1,...,iN

. (4)
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Let E be the event that η(V |0⟩⟨0|V † − I/d) is not (η/4)-close to any k-local Hamiltonian. By Lemma 3.3,
we have P (E) ≥ 1 − exp(−Ω(d)). Under this event, every correct algorithm should be able to distinguish
between P and QV so we can apply Le Cam’s method [Le 73].

For technical reasons, we will use instead of QV the following parameterized distribution for α ∈ [0, 1]:

QαV :=

{
N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉}
i1,...,iN

.

So we need to generalize Le Cam’s inequality for small α:

Lemma 3.5 (Generalized Le Cam). Let n ≥ Ω(1). Let k ≤ O
(

n
log(n)

)
. We have for α ≤ 1

10N :

EV∼Haar(d) [TV(P,QαV )] ≥
1

18
.

Proof. The proof can be found in Lemma C.1.

Hence, as long as α ≤ 1
10N we can use QαV instead of QV and have a similar Le Cam separation (albeit

with a worse constant). From now on we will set α = 1
10N . The next step is to use Pinsker’s inequality to

move from the TV distance to the KL divergence, which is more suitable for studying the adaptive incoherent
setting. By Jensen’s and Pinsker’s inequalities we have:

2

182
≤ 2EV∼Haar(d) [TV(P,QαV )]

2 ≤ 2EV∼Haar(d)

[
TV(P,QαV )

2
]
≤ EV∼Haar(d) [KL(P∥QαV )] .

The KL divergence can be expressed as follows:

KL(P∥QαV ) = Ei∼P (− log)

(
QαV (i)

P (i)

)

= Ei∼P (− log)

 N∏
k=1


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


= Ei∼P
N∑
k=1

(− log)

α+ (1− α)

〈
ϕ
(k)
ik

∣∣∣Uv,tkρkU†v,tk ∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
 .

Now, we will use a cut on i ∼ P as in [Faw+23b]. Note that here, since we do not have the freedom to
choose a non-unitary channel, we choose α = 1

10N rather than α = 1
2 as in [Faw+23b]. This comes with the

cost of an additional logarithmic factor in the lower bound.

For k ∈ [N ] and i≤k = (i1, . . . , ik), define the event G(k, i≤k) =
{〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
≤ (1−cos(ηtk))

d2

}
. We can

distinguish whether the event G is satisfied or not:

EV∼Haar(d) KL(P∥QαV )

=

N∑
k=1

EV∼Haar(d)Ei≤k
(1(G(k, i≤k)) + 1(Gc(k, i≤k)))(− log)


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
 .

Let us first analyze the setting when the event G holds. Fix k ∈ [N ], observe that we have the inequality:

(− log)


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


= (− log)

α+ (1− α)

〈
ϕ
(k)
ik

∣∣∣Uv,tkρkU†v,tk ∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
 ≤ log

(
1

α

)

17



The last inequality follows from the monotonicity of the logarithm. Then we can control the expectation
under the event G as follows:

EV∼Haar(d)Ei≤k
1(G(k, i≤k))(− log)


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ EV∼Haar(d)Ei≤k
1(G(k, i≤k)) log

(
1

α

)
= EV∼Haar(d)Ei≤k−1

∑
ik

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
1(G(k, i≤k)) log

(
1

α

)
≤ EV∼Haar(d)Ei≤k−1

∑
ik

λ
(k)
ik

(
(1− cos(ηtk))

d2

)
1(G(t, i≤k)) log

(
1

α

)
≤ EV∼Haar(d)Ei≤k−1

∑
ik

λ
(k)
ik

(
(1− cos(ηtk))

d2

)
log

(
1

α

)
=

log(10N)

d
Ei≤k−1

(1− cos(ηtk)) (5)

where we used in the second inequality the fact that under G we have
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
≤ (1−cos(ηtk))

d2 and in

the last equality the fact
∑
ik
λ
(k)
ik

= d which is an implication of the fact thatMk = {λ(k)i

∣∣∣ϕ(k)i

〉〈
ϕ
(k)
i

∣∣∣}i∈Ik
is a POVM. Next, under Gc(t, i≤k), we will use instead the following inequality valid for all x ∈

[
1

10N ,+∞
)
:

(− log)(x) ≤ −(x− 1) + 2 log(10N)(x− 1)2. (6)

A simple proof can be found in Lemma C.2.
We apply the inequality (6) for

x =

〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 = α+ (1− α)

〈
ϕ
(k)
ik

∣∣∣UvρkU†v ∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 ≥ 1

10N
.

Let Mv,tk = I − Uv,tk = −(e−iηtk − 1) |v⟩⟨v| and Sv,tk = I − 1
2Mv,tk . The first term of the upper bound of

Inequality (6) is

−(x− 1) = 1−

〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
= (1− α)

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 + (1− α)

〈
ϕ
(k)
ik

∣∣∣Sv,tkρkM†v,tk ∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
= 2(1− α)ℜ

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 , (7)

and by using first the inequality (x + y)2 ≤ 2(x2 + y2) and then the Cauchy Schwartz inequality applied

for the vectors
√
ρk

∣∣∣ϕ(k)ik

〉
and
√
ρkM

†
v,tk

∣∣∣ϕ(k)ik

〉
, we can upper bound the second term of Inequality (6) as
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follows:

(x− 1)2 =


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 − 1

2

= (1− α)2
2ℜ

〈
ϕ
(k)
ik

∣∣∣Mv,tkρk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 −

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

≤ 8(1− α)2

∣∣∣〈ϕ(k)ik

∣∣∣Mv,tkρk

∣∣∣ϕ(k)ik

〉∣∣∣〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

+ 2(1− α)2

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

≤ 8(1− α)2

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
+ 2(1− α)2


〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

. (8)

Let us compute the expectation of Equation (7). Let M,S such that Mv,tk = VMV † and Sv,tk = V SV †.
Concretely

M =


1− e−iηtk 0

0 0d−1

 and S =


1
2 + e−iηtk

2 0

0 Id−1

 .

Note that Tr(M) = (1 − e−iηtk), Tr(S) = d − 1
2 + e−iηtk

2 , Tr(MS†) = i sin(ηtk), Tr(MS) = 1−e−2iηtk

2 and
MM† =M +M† =M†M . We have

ℜ(Tr(M)Tr(S)) = ℜ
(
(1− e−iηtk)

(
d− 1

2
+

e−iηtk

2

))
= (1− cos(ηtk))

(
d− 1

2
+

cos(ηtk)

2

)
+

1

2
sin2(ηtk)

≤ (1− cos(ηtk))d+
1

2
sin2(ηtk) .

Moreover,
ℜ(Tr(M)Tr(S)) ≥ −1/2 sin2(ηtk) .

Hence,

|ℜ(Tr(M)Tr(S))| ≤ (1− cos(ηtk))d+
1

2
sin2(ηtk) .
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So we have by Weingarten calculus [CŚ06] (see Appendix D for the most important facts used here):∣∣∣∣∣∣EV∼Haar(d)

ℜ
〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
∣∣∣∣∣∣

=

∣∣∣∣∣∣
ℜEV∼Haar(d)

(〈
ϕ
(k)
ik

∣∣∣VMV †ρkV S
†V †

∣∣∣ϕ(k)ik

〉)
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
∣∣∣∣∣∣

=

∣∣∣∣∣∣
ℜ
∑
α,β∈S2

Wg(αβ, d)Trα(M,S†)Trβ(12)(ρk,
∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣)〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
∣∣∣∣∣∣

=

∣∣∣∣∣∣
ℜ
(
dTr(MS†) + dTr(M)Tr(S)

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
− Tr(MS†)

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
− Tr(M)Tr(S†)

)
d(d2 − 1)

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
∣∣∣∣∣∣ (9)

=

∣∣∣∣∣∣ 1〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
ℜ(Tr(M)Tr(S))(d

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
− 1)

d(d2 − 1)

∣∣∣∣∣∣
≤ 1

d(d2 − 1)
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 ([(1− cos(ηtk))d+
1

2
sin2(ηtk)

]
(d
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
+ 1)

)

≤ O

 (1− cos(ηtk))

d
+

(1− cos(ηtk))

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 +
sin2(ηtk)

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
 .

Recall the notation Ei≤t(X(i1, . . . , it)) =
∑
i1,...,it

∏t
k=1 λ

(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
X(i1, . . . , it). If we take the

expectation Ei≤t under the event Gc(t, i≤k), we obtain

EV∼Haar(d)Ei≤k
1(Gc(k, ik))

ℜ
〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ Ei≤k
1(Gc(k, ik))

∣∣∣∣∣∣EV∼Haar(d)

ℜ
〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
∣∣∣∣∣∣

≤ Ei≤k
1(Gc(k, ik))O

 (1− cos(ηtk))

d
+

(1− cos(ηtk) + sin2(ηtk))

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ Ei≤k
O

 (1− cos(ηtk))

d
+

(1− cos(ηtk) + sin2(ηtk))

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


= Ei≤k−1
O
(
(1− cos(ηtk))

d

)
+ Ei≤k−1

∑
ik

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
· O

 (1− cos(ηtk) + sin2(ηtk))

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


= Ei≤k−1
O
(
(1− cos(ηtk) + sin2(ηtk))

d

)
(10)
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where we use
∑
ik
λ
(k)
ik

= d. We move to the expectation Ei≤k
of the first term of Equation (8), it is non

negative so we can safely remove the condition 1(Gc(k, ik)):

EV Ei≤k
1(Gc(k, ik))

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 ≤ EV Ei≤k

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
= EV Ei≤k−1

∑
ik

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
= Ei≤k−1

EV Tr(Mv,tkρkM
†
v,tk

) = Ei≤k−1
EV Tr((Mv,tk +M†v,tk)ρk)

= Ei≤k−1

2(1− cos(ηtk))

d
(11)

because EVMv,tk = (1−e−iηtk )
d I.

Concerning the expectation of the second term of Equation (8), we apply again the Weingarten calculus
(Lemma D.1) to have:

EV∼Haar(d)


〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

=
EV∼Haar(d)

〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2
=

EV∼Haar(d)Tr(
∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣VMV †ρkVM
†V †

∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣VMV †ρkVM
†V †)〈

ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2
=

1〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2 ∑
α,β∈S4

Wg(βα−1, d)Trβ−1(M,M†,M,M†)Trαγ(ρk,
∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣ , ρk, ∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣).
Note that

Trαγ

[
ρk,
∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣ , ρk, ∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣] ∈ {1,Tr(ρ2k),〈ϕ(k)ik

∣∣∣ ρ2k ∣∣∣ϕ(k)ik

〉
,
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
,
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2}
,

Tr(ρ2k) ≤ 1 and
〈
ϕ
(k)
ik

∣∣∣ ρ2k ∣∣∣ϕ(k)ik

〉
≤
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
≤ 1. Moreover, it is clear that since Tr[M ]Tr[M†] =

Tr[MM†], we have |Trβ(M,M†,M,M†)| ≤ O((1−cos(ηtk))2). In the case β is a 4 cycle we have Tr(MM†MM†) =
Tr(MMM†M†) = Tr((M+M†)2) = 4(1−cos(ηtk))2. Also, we know that for all (α, β) ∈ S2

4: |Wg(βα−1, d)| ≤
10
d4 [CŚ06] for d ≥ 4, so

|Wg(βα−1, d)Trβ−1(M,M†,M,M†)Trαγ(
∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣ , ρk, ∣∣∣ϕ(k)ik

〉〈
ϕ
(k)
ik

∣∣∣ , ρk)| ≤ O( (1− cos(ηtk))
2

d4

)
.

Therefore we have:

EV∼Haar(d)


〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

≤ O

 (1− cos(ηtk))
2

d4
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2
 .
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Now if we take the expectation Ei≤k
under the event Gc(k, i≤k) =

{〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
> (1−cos(ηtk))

d2

}
, we

obtain:

Ei≤k
EV∼Haar(d)1(Gc(k, i≤k))


〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

≤ Ei≤k
1(Gc(k, i≤k))O

 (1− cos(ηtk))
2

d4
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 · 1〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ Ei≤k
1(Gc(k, i≤k))O

 (1− cos(ηtk))
2

d4
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉 · d2

(1− cos(ηtk))


= Ei≤k−1

∑
ik

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
1(Gc(k, i≤k))O

 (1− cos(ηtk))

d2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ Ei≤k−1

∑
ik

λ
(k)
ik
O
(
(1− cos(ηtk))

d2

)
= Ei≤k−1

O
(
d(1− cos(ηtk))

d2

)
= Ei≤k−1

O
(
(1− cos(ηtk))

d

)
(12)

where we use
∑
ik
λ
(k)
ik

= d. By adding up Equations (10), (11) and (12), we obtain:

Ei≤k
EV∼Haar(d)1(Gc(k, i≤k))(− log)


〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤ Ei≤k
EV∼Haar(d)1(Gc(k, i≤k))

2(1− α)ℜ(
〈
ϕ
(k)
ik

∣∣∣Mv,tkρkS
†
v,tk

∣∣∣ϕ(k)ik

〉
)〈

ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


+ Ei≤k
EV∼Haar(d)1(Gc(k, i≤k))

4 log(10N)(1− α)2
〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉2
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉2


+ Ei≤k
EV∼Haar(d)1(Gc(k, i≤k))16 log(10N)(1− α)2


〈
ϕ
(k)
ik

∣∣∣Mv,tkρkM
†
v,tk

∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
2

= Ei≤k−1
O
(
log(N)(1− cos(ηtk) + sin2(ηtk))

d

)
.

22



Therefore using this upper bound and the upper bound in Equation (5) we get an upper bound on the
expected KL divergence:

EV∼Haar(d) KL(P∥QαV )

=

N∑
k=1

Ei≤k
EV∼Haar(d)(1(G(t, i≤k)) + 1(Gc(k, i≤k)))(− log)


〈
ϕ
(k)
ik

∣∣∣Utk(ρk) ∣∣∣ϕ(k)ik

〉
〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉


≤
N∑
k=1

Ei≤k−1
O
(
log(N)(1− cos(ηtk))

d

)
+ Ei≤k−1

O
(
log(N)(1− cos(ηtk) + sin2(ηtk))

d

)

=

N∑
k=1

Ei≤k−1
O
(
log(N)(1− cos(ηtk) + sin2(ηtk))

d

)

≤
N∑
k=1

Ei≤k−1
O
(
log(N)min(1, ηtk)

d

)
where we used 1−cos(x) ≤ min(1, x) and sin2(x) ≤ min(1, x) for x ≥ 0. Finally since EV∼Haar(d) KL(P∥QαV ) ≥
2

182 we deduce that:

N∑
k=1

Ei≤k−1
min(1, ηtk) = Ω

(
d

log(N)

)
.

In particular, we have N log(N) ≥ Ω (d) which implies that:

N = Ω

(
d

log(d)

)
.

Finally, the expected total evolution time is lower bounded as follows:

E

[
N∑
k=1

tk

]
= Ω

(
d

η log(N)

)
.

We can set ε = η/4 and use our assumption that N ≤ exp(O(n))/εO(1) to get the claimed expected total
evolution time lower bound.

3.2 Coherent setting

In section, we will prove another hardness result in the more general coherent setting. However, we will pay
for the greater generality with slightly weaker bounds.

Theorem 3.6. Let n ≥ 2, k ≤ O
(

n
log(n)

)
, and p ≥ 1. The problem T loc

∥·∥p(η), even under the additional

promise that the unknown Hamiltonian H satisfies Tr[H] = 0 and ∥H∥∞ ≤ 1, requires a total evolution time

of
∑N
k=1 tk = Ω

(
2n/2

ε

)
and a total number of independent experiments N = Ω

(
2n/2

)
in the ancilla-assisted

coherent setting.

In order to prove Theorem 3.6, we will again consider the following test:

H0 : Ut(ρ) = id(ρ) = e−it·0ρeit·0 vs H1 : Ut(ρ) = e−itHρeitH (13)

where H = η(|v⟩⟨v| − I/d) for η > 0 and |v⟩ = V |0⟩ , V ∼ Haar(d).

Proof of Theorem 3.6. We use here the construction from Lemma 3.3. Let H = η(|v⟩⟨v| − I/d) for η > 0
and |v⟩ = V |0⟩ , V ∼ Haar(d). H is (η/4)-far (in the operator norm) from any k-local trace-less Hamiltonian
of unit operator norm with high probability. Let E be the event that H is (η/4)-far (in the operator norm,
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which we can again focus on as discussed in Remark 3.4) from any k-local trace-less Hamiltonian of unit
operator norm. We have by Lemma 3.3:

PV∼Haar(d) [Ec] ≤ exp (−Ω(d)) .

In the sequential setting the tester can choose times t1, . . . , tN and any (d × daux)-dimensional operations
N1, . . . ,NN−1, a (d× daux)-dimensional input state ρ and a (d× daux)-dimensional measurement deviceM.
Under the null hypothesis H0, the map Ut is always the identity so the output state (before the measurement)
is:

ρoutput0 (ρ) = NN−1 ◦ · · · ◦ N2 ◦ N1(ρ).

In contrast, under the alternate hypothesis H1, the map Ut is close to the identity and the output state
(before the measurement) is:

ρoutput1 (ρ) = [UtN ⊗ id] ◦ NN−1 ◦ [UtN−1
⊗ id] ◦ · · · ◦ N2 ◦ [Ut2 ⊗ id] ◦ N1 ◦ [Ut1 ⊗ id](ρ).

We will often drop the argument ρ for readability if it is not explicitly needed. On the one hand, using the
correctness of the algorithm and the data processing inequality applied on the 1-norm we have:∥∥ρoutput0 − EV∼Haar(d)|E

[
ρoutput1

]∥∥
1
≥ 2TV(Bern(1/3)∥Bern(2/3)) = 2

3
.

On the other hand, we have by the triangle inequality∥∥EV∼Haar(d)

[
ρoutput1

]
− EV∼Haar(d)|E

[
ρoutput1

]∥∥
1

=
1

P (E)
∥∥P (E)EV∼Haar(d)

[
ρoutput1

]
− EV∼Haar(d)

[
ρoutput1 1({E})

]∥∥
1

=
1

P (E)
∥∥P (E)EV∼Haar(d)

[
ρoutput1 1({Ec})

]
− P (Ec)EV∼Haar(d)

[
ρoutput1 1({E})

]∥∥
1

≤
∥∥EV∼Haar(d)

[
ρoutput1 1({Ec})

]∥∥
1
+

P (Ec)
P (E)

∥∥EV∼Haar(d)

[
ρoutput1 1({E})

]∥∥
1

≤ P (Ec) + P (Ec)
P (E)

P (E)

≤ 2 exp (−Ω(d))

hence for d = Ω(1), by the triangle inequality:∥∥ρoutput0 − EV∼Haar(d)

[
ρoutput1

]∥∥
1

≥
∥∥ρoutput0 − EV∼Haar(d)|E

[
ρoutput1

]∥∥
1
−
∥∥EV∼Haar(d)

[
ρoutput1

]
− EV∼Haar(d)|E

[
ρoutput1

]∥∥
1

≥ 2

3
− 2 exp (−Ω(d)) ≥ 1

3
.

Writing the input state as ρ =
∑
i λi |ϕi⟩⟨ϕi|, e.g., using its spectral decomposition, the triangle equality

implies: ∑
i

λi
∥∥ρoutput0 (|ϕi⟩⟨ϕi|)− EV∼Haar(d)

[
ρoutput1 (|ϕi⟩⟨ϕi|)

]∥∥
1
≥ 1

3
.

So there is a unit vector |ϕ⟩ = |ϕi⟩ such that:∥∥ρoutput0 (|ϕ⟩⟨ϕ|)− EV∼Haar(d)

[
ρoutput1 (|ϕ⟩⟨ϕ|)

]∥∥
1
≥ 1

3
.
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We use the notation Ut = e−itH and the following Kraus representation of each channelNt(ρ) =
∑
ki
AkiρA

†
ki
.

Moreover, we will use the following shorthand notations for ℓ, m ∈ N, ℓ ≤ m:

→∏
i=ℓ::m

Xi := XℓXℓ+1 . . . Xm,

←∏
i=ℓ::m

Xi := XmXm−1 . . . Xℓ.

So we can write:

ρoutput0 (|ϕ⟩⟨ϕ|) =
∑

k1,...,kN−1

( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

A†ki

)

ρoutput1 (|ϕ⟩⟨ϕ|) =
∑

k1,...,kN−1

(UtN ⊗ I)

( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)
(UtN ⊗ I)†

Hence, the triangle inequality implies∥∥EV∼Haar(d)

[
ρoutput1 (|ϕ⟩⟨ϕ|)

]
− ρoutput0 (|ϕ⟩⟨ϕ|)

∥∥
1

≤ EV
∑

k1,...,kN−1

∥∥∥∥∥(UtN ⊗ I)

( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)
(UtN ⊗ I)†

−

( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

A†ki

)∥∥∥∥∥
1

.

We can write the latter difference of states as a telescopic sum. A subsequent application of the triangle
inequality yields:

EV
∑

k1,...,kN−1

∥∥∥∥∥(UtN ⊗ I)

( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)
(UtN ⊗ I)†

−

( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

A†ki

)∥∥∥∥∥
1

≤ EV
N∑
s=1

∑
k1,...,kN−1

∥∥∥∥∥
( ←∏
s::N−1

(Uti+1 ⊗ I)Aki

)
[(Uts − I)⊗ I]

( ←∏
i=1::s−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)∥∥∥
1

(A)

+ EV
N∑
s=1

∑
k1,...,kN−1

∥∥∥∥∥
( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::s−1

A†ki

)
[(Uts − I)⊗ I]†

( →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

)∥∥∥∥∥
1

(B)
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On the one hand, using Ut − I = (e−iηt − 1) |v⟩⟨v| we have∥∥∥∥∥
( ←∏
s::N−1

(Uti+1 ⊗ I)Aki

)
[(Uts − I)⊗ I]

( ←∏
i=1::s−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)∥∥∥∥∥
1

= |e−iηts − 1|

∥∥∥∥∥
( ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

)
(|v⟩⟨v| ⊗ I)

( ←∏
i=1::s−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)∥∥∥∥∥
1

≤ |e−iηts − 1|

√√√√⟨ϕ|( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩

√√√√⟨ϕ|[ →∏
i=1::s−1

A†ki

]
[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(U
†
ti+1
⊗ I)

][ ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩

where we used the Cauchy-Schwarz inequality. Again, by using the Cauchy-Schwarz inequality for the sums
over k1, . . . , kN−1 and EV as well as using the Kraus identities

∑
ki
Aki
†Aki = I in the last line we obtain:

(A)

=

N∑
s=1

EV
∑

k1,...,kN−1

∥∥∥∥∥
( ←∏
s::N−1

(Uti+1 ⊗ I)Aki

)
[(Uts − I)⊗ I]

( ←∏
i=1::s−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)∥∥∥∥∥
1

≤
N∑
s=1

EV
∑

k1,...,kN−1

|e−iηts − 1|

√√√√⟨ϕ|( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩

√√√√⟨ϕ|[ →∏
i=1::s−1

A†ki

]
[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(U
†
ti+1
⊗ I)

][ ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩

≤
N∑
s=1

|e−iηts − 1|

√√√√EV
∑

k1,...,kN−1

⟨ϕ|

( →∏
i=1::N−1

(U†ti ⊗ I)A†ki

)( ←∏
i=1::N−1

Aki(Uti ⊗ I)

)
|ϕ⟩

(
EV

∑
k1,...,kN−1

⟨ϕ|

[ →∏
i=1::s−1

A†ki

]
[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(U
†
ti+1
⊗ I)

][ ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩

) 1
2

=

N∑
s=1

|e−iηts − 1|
√

1

d

as EV∼Haar(d) [|v⟩⟨v|] = EV∼Haar(d)

[
V |0⟩⟨0|V †

]
= Tr(|0⟩⟨0|)I

d = I
d . On the other hand, using Ut − I =

(e−iηt − 1) |v⟩⟨v| and the Cauchy-Schwarz inequality we have∥∥∥∥∥
( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::s−1

A†ki

)
[(Uts − I)⊗ I]†

( →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

)∥∥∥∥∥
1

= |eiηts − 1|

∥∥∥∥∥
( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::s−1

A†ki

)
[|v⟩⟨v| ⊗ I]

( →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

)∥∥∥∥∥
1

≤ |eiηts − 1|

√√√√⟨ϕ|( →∏
i=1::s−1

A†ki

)( ←∏
i=1::s−1

A†ki

)
|ϕ⟩

√√√√⟨ϕ|[ →∏
i=1::s−1

A†ki

]
[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

][ ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩.
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Hence by using the Cauchy-Schwarz inequality for the sums over k1, . . . , kN−1 and the expectation EV and
by using the Kraus identities

∑
ki
A†kiAki = I in the last line we obtain:

(B)

=

N∑
s=1

EV
∑

k1,...,kN−1

∥∥∥∥∥
( ←∏
i=1::N−1

Aki

)
|ϕ⟩⟨ϕ|

( →∏
i=1::s−1

A†ki

)
[(Uts − I)⊗ I]†

( →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

)∥∥∥∥∥
1

≤
N∑
s=1

EV
∑

k1,...,kN−1

|eiηts − 1|

√√√√⟨ϕ|( →∏
i=1::s−1

A†ki

)( ←∏
i=1::s−1

A†ki

)
|ϕ⟩

√√√√⟨ϕ|[ →∏
i=1::s−1

A†ki

]
[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(Uti+1 ⊗ I)†
][ ←∏

i=s::N−1
(Uti+1 ⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩

≤
N∑
s=1

|eiηts − 1|

√√√√EV
∑

k1,...,kN−1

⟨ϕ|

( →∏
i=1::s−1

A†ki

)( ←∏
i=1::s−1

A†ki

)
|ϕ⟩

(
EV

∑
k1,...,kN−1

⟨ϕ|

[ →∏
i=1::s−1

A†ki

]

[|v⟩⟨v| ⊗ I]

[ →∏
i=s::N−1

A†ki(Uti+1
⊗ I)†

][ ←∏
i=s::N−1

(Uti+1
⊗ I)Aki

]
[|v⟩⟨v| ⊗ I]

[ ←∏
i=1::s−1

A†ki

]
|ϕ⟩

) 1
2

=

N∑
s=1

|eiηts − 1|
√

1

d
.

Therefore, using |eiηt−1| =
√
(cos(ηt)− 1)2 + sin2(ηt) =

√
2(1− cos(ηt)) ≤ min{

√
2,
√

2(ηt)2} = min{
√
2,
√
2ηt},

we get the following upper bound:∥∥EV∼Haar(d)

[
ρoutput1 (|ϕ⟩⟨ϕ|)

]
− ρoutput0 (|ϕ⟩⟨ϕ|)

∥∥
1
≤ (A) + (B)

≤ 2

N∑
s=1

|eiηts − 1|
√

1

d

≤ 2√
d

N∑
s=1

min{2,
√
2ηts}

Finally, as
∥∥EV∼Haar(d)

[
ρoutput1 (|ϕ⟩⟨ϕ|)

]
− ρoutput0 (|ϕ⟩⟨ϕ|)

∥∥
1
≥ 1

3 , we deduce that

N∑
k=1

tk ≥
√
d

6
√
2η

and

N ≥
√
d

6
√
2
.

We can set ε = η/4 to finish the proof.

4 Upper bounds for Hamiltonian property testing

4.1 Upper bounds inherited from Hamiltonian learning

Before presenting our Hamiltonian property testing results, we discuss what the Hamiltonian learning results
of [Car23; CW23] imply for testing. To the best of our knowledge, these are currently the only Hamiltonian
learning algorithms from dynamics that work for arbitrary Hamiltonians without locality assumptions, and
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thus the only ones immediately applicable to our locality testing scenario. Analyzing their performance
as testers will further highlight the importance of the chosen norms and in particular demonstrate that a
different approach is needed when taking the normalized Frobenius norm as distance measure.

[Car23; CW23] gave two different approaches – the former based on Pauli shadow tomography methods
applied to the Choi state of the forward short-time evolution in combination with Chebyshev interpola-
tion for polynomial derivative estimation, the latter using forward and backward short-time evolution and
block-encodings to create pseudo-Choi states as well as (classical) shadow tomography tools – for learn-
ing an unknown Hamiltonian from query access. For our purposes, it is important to carefully consider
the performance measure in their learning task. Namely, the procedures of both papers produce ∥·∥Pauli,p
approximations to the coefficient vector of an arbitrary unknown Hamiltonian. Concretely, [Car23, Theo-
rem 1.3] achieves this for p = ∞. That is, their Hamiltonian learning algorithm produces estimates α̂P ,
P ∈ {I, X, Y, Z}⊗n \ {I⊗n}, that satisfy |α̂P − αP | ≤ ε simultaneously for all P ∈ {I, X, Y, Z}⊗n \ {I⊗n},
using Õ

(
n∥H∥4∞
ε4

)
queries to the Hamiltonian evolution, each for short time t = Õ

(
1

∥H∥∞

)
, thus leading to

a total evolution time of Õ
(
n∥H∥3∞
ε4

)
. The guarantees in [CW23] are phrased for p = 2 and use a number of

queries to the Hamiltonian evolution that scales linearly with the number of Pauli terms in the Hamiltonian.
While not discussed explicitly in [CW23], this direct dependence on the number of terms can be removed
when focusing on p =∞.

As learning is a more demanding task than testing, the results of [Car23; CW23] immediately imply
(even tolerant) Hamiltonian locality testers with the same query complexities and total evolution times as
their learning procedures. However, there is an important caveat: This works only for the norm ∥·∥Pauli,∞.
When trying to solve a Hamiltonian property testing problem w.r.t. ∥·∥Pauli,p for any 1 ≤ p < ∞, the only
bounds that can be obtained immediately from [Car23; CW23] (via Hölder’s inequality) scale exponentially
in n. This complication arises because in our testing task we do not want to make any assumptions on
the unknown Hamiltonian, in particular it can have exponentially many Pauli terms. When considering
unnormalized Schatten p-norms ∥·∥p on the level of the Hamiltonians, the situation is similarly bad if not
worse, since naive attempts at controlling a ∥·∥p-difference even via the ∥·∥Pauli,1-difference incur an additional

exponential overhead due to ∥P∥p = 2n/p for all n-qubit Pauli strings P . Even normalizing the Schatten

p-norms does not resolve this issue. For instance, by Parseval’s identity, 1√
2n
∥·∥2 = ∥·∥Pauli,2, but we have

observed above that the complexities of [Car23; CW23] scale exponentially for the case of ∥·∥Pauli,2 and
arbitrary unknown Hamiltonians with potentially exponentially many terms.

In summary, while the results of [Car23; CW23] can in principle be used for Hamiltonian property testing,
and even for the tolerant version thereof, they suffer from exponential query complexities and total evolution
times for any of our norms of interest except for the weakest, ∥·∥Pauli,∞. In particular, they do not give

rise to query-efficient solutions for the operationally relevant norms ∥·∥∞ and 1√
2n
∥·∥2. Additionally, their

methods require potentially challenging-to-implement quantum capabilities (such as maximally entangled
input states, access to both forward and backward time evolution, and/or entangled multi-copy measurements
for shadows). Finally, neither of the two approaches achieves computational efficiency, even for ∥·∥Pauli,∞.
Thus, while relevant for Hamiltonian learning, we consider [Car23; CW23] insufficient for our Hamiltonian
testing purposes and thus develop a new procedure that is tailored to the testing task at hand.

4.2 Upper bounds in the randomized measurement framework

In this section, we will prove a general theorem that shows that efficient property testing is possible with
respect to the normalized Schatten-2 norm, from which Theorem 1.3 follows as a special case.

Definition 4.1 (Relation between states according to a property). Let |ϕ⟩ and |ψ⟩ be two unit vectors and
S ⊂ Pn. We say that |ϕ⟩ and |ψ⟩ are equivalent under the property S if they are equal or |ψ⟩ can be obtained
from |ϕ⟩ by applying a Pauli operator in S. We denote this relation by ∼S and its negation as ≁S. Formally,

|ϕ⟩ ∼S |ψ⟩ ⇔ ∃θ ∈ [0, 2π), ∃P ∈ S ∪ {I} : P |ϕ⟩ = eiθ |ψ⟩
⇔ ∃P ∈ S ∪ {I} : | ⟨ϕ|P |ψ⟩ | = 1.

If |ϕ⟩ ≁S |ψ⟩, we say that a violation of the property S is detected by the pair of unit vectors (|ϕ⟩ , |ψ⟩).
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Algorithm 1: Testing Properties for Hamiltonian Evolutions

Input : A Hamiltonian H, a property ΠS , and an accuracy parameter ε ∈ (0, 1)
Output: The null hypothesis H0 or the alternate hypothesis H1

1 t← ε
6 ;

2 N ←
⌈
2 log(3)
t2ε2

⌉
;

3 for s← 1 to N do
4 Sample is ∼ Uniform[d], js ∼ Uniform[d+ 1];
5 Input state : ρs = |ϕis,js⟩⟨ϕis,js |;
6 Evolve under H for time t;
7 Measurement : Ms = {|ϕis,ℓ⟩⟨ϕis,ℓ|}ℓ and observe ℓs ←Ms(Ut(ρs));
8 if |ϕis,js⟩ ≁S |ϕis,ℓs⟩ then
9 return H1 and stop

10 end

11 end
12 return H0

With this definition in place, we can give the algorithm for testing the property ΠS as Algorithm 1. Recall
that the |ϕi,j⟩⟨ϕi,j | are the MUBs constructed from stabilizer states defined in Equation (2). In Algorithm 1,
the Hamiltonian is given as a black box that, given a time, runs the time evolution under the Hamiltonian
for each input state provided and allows for any measurement at the end. The property ΠS is given as a list
of strings specifying the Pauli operators in S.

Theorem 4.2. Let S ⊂ Pn such that |S ∪ {I}| ≤ (2n+1)ε4

144 , and let ε ∈ (0, 1). Suppose that the Hamiltonian
H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1. Algorithm 1 tests whether H ∈ ΠS or 1√

2n
∥H − K∥2 > ε for all

Hamiltonians K ∈ ΠS with probability at least 2/3 using a total evolution time O
(

1
ε3

)
, a total number of

independent experiments N = O
(

1
ε4

)
, and a total classical processing time O

(
n2|S∪{I}|

ε4

)
. Each experiment

uses efficiently implementable states and measurements.

In fact, as we argue in the proof of Theorem 4.2, the procedure uses only stabilizer state inputs and
stabilizer basis measurements. Each of these can be realized with Clifford circuits and thus with at most
O( n2

logn ) many Hadamard, phase, and controlled-NOT gates [AG04]. Thus, Algorithm 1 is efficient in terms
of the number of experiments, the total evolution time, and the classical and quantum processing time.

Testing locality corresponds to the property ΠSk−local
, where Sk−local = {P ∈ Pn : |P | ≤ k} satisfies

|S| =
∑k
s=0

(
n
s

)
3s ≤ (3n)k+1. For this special case, we obtain:

Corollary 4.3 (Testing locality). Let n ≥ 2 and ε > 0 be such that (3n)k+1 ≤ (2n+1)ε4

144 . Suppose that the
Hamiltonian H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1. Algorithm 1, when given the property S = Sk−loc, tests
whether H is k-local or 1√

d
∥H −Hlocal∥2 > ε for all k-local Hamiltonians Hlocal with probability at least 2/3

using a total evolution time O
(

1
ε3

)
, a total number of independent experiments N = O

(
1
ε4

)
, and a total

classical processing time O
(

(3n)k+3

ε4

)
.

Remark 4.4 (Testing many properties). In situations where we are interested in testing many properties
at once or we are not confident about the exact property we want to test during the data acquisition phase,
we should find a way to perform the Hamiltonian property testing with an arbitrarily small error probability.
It turns out that changing the data processing (statistic/estimator) part of Algorithm 1 slightly solves this
issue. Concretely, using the concentration of an estimator that compares the empirical number of violations,
i.e., counting how many outcomes are measured such that |ϕis,js⟩ ≁S |ϕis,ℓs⟩, with a threshold, we are able
to achieve an error probability δ with a complexity that scales as log(1/δ). Via a union bound and setting
δ 7→ δ/M , this allows us to test many properties at once with only an overhead that is logarithmic in M ,
number of properties. See Appendix B.1 for details.
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Remark 4.5 (Assumption on the set S). The assumption on the set S— |S ∪ {I}| ≤ (2n+1)ε4

144 —for which
we can prove a rigorous guarantee on the complexity of Algorithm 1 limits the range of properties we can test.
If we are only interested in having efficient tests and thus |S| ≤ O(poly(n)), this assumption should always
be satisfied. Nonetheless, we are able to extend the result of Theorem 4.2 to any set S using an additional

number naux of ancilla qubits, where naux =
⌈
log2

(
144·|S∪{I}|

2nε4

)⌉
. See Appendix B.2 for details.

Remark 4.6 (Tolerant testing). In Theorem 4.2, the null hypothesis is that the unknown Hamiltonian H
is itself an element of ΠS. In the spirit of tolerant property testing [PRR06], one may aim to weaken this
to H merely being close to the set ΠS. In Appendix B.3, we extend our result to this tolerant Hamiltonian
property testing scenario.

Remark 4.7 (Assumption of independent and identically distributed (i.i.d.) input). We assumed that the
tester runs N i.i.d. unitary evolutions in order to decide the correct hypothesis. Note that the proof works
even if the unitary evolutions U1, . . . ,UN are not identical, i.e., the Hamiltonians may be different as long as
they remain in the same hypothesis class. However, the assumption of independence is crucial for the proof.
Moreover, the naive application of the de Finetti theorem (on the Choi state, as in [Faw+24]) would require
an overhead in the copy complexity that is exponential in the number of qubits.

Remark 4.8 (Implications for testing w.r.t. other norms). Theorem 4.2 is phrased in terms of 1√
2n
∥·∥2.

Recalling that 1√
2n
∥·∥2 = ∥·∥Pauli,2 as well as the monotonicity ∥·∥Pauli,p ≤ ∥·∥Pauli,q for 1 ≤ q ≤ p ≤ ∞,

we immediately see that the results of Theorem 4.2 also apply to Hamiltonian property testing with ∥·∥Pauli,p
for any p ≥ 2 as distance measure. Similarly, as the normalized Schatten p-norms satisfy the monotonicity
property 1

2n/p ∥·∥p ≤
1

2n/q ∥·∥q for 1 ≤ p ≤ q ≤ ∞, the results of Theorem 4.2 immediately carry over to

testing w.r.t. 1
2n/p ∥·∥p for any 1 ≤ p ≤ 2.

Proof of Theorem 4.2. We need to show that the error probability under the null and alternate hypotheses
is at most 1/3.

Error probability under the alternate hypothesis. Here we suppose that H is ε-far from ΠS . Let
i = (i1, . . . , iN ), j = (j1, . . . , jN ) and ℓ = (ℓ1, . . . , ℓN ). The error probability is

Ei,j,ℓ [PH1 [|ϕi1,ℓ1⟩ ∼S |ϕi1,j1⟩ , · · · , |ϕiN ,ℓN ⟩ ∼S |ϕiN ,jN ⟩]] = Ei1,j1,ℓ1 [P (|ϕi1,ℓ1⟩ ∼S |ϕi1,j1⟩)]
N
.

We have

Ei,j,ℓ [P (|ϕi,ℓ⟩ ∼S |ϕi,j⟩)] =
1

d(d+ 1)

∑
i,j,ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21 ({|ϕi,ℓ⟩ ∼S |ϕi,j⟩})

=
1

d(d+ 1)

∑
i,j,ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21
({
∃θ, ∃P ∈ S ∪ {I} : eiθ |ϕi,ℓ⟩ = P |ϕi,j⟩

})
≤ 1

d(d+ 1)

∑
P∈S∪{I}

∑
i,j

| ⟨ϕi,j |P eitH |ϕi,j⟩ |2
∑
ℓ

1
({
∃θ : eiθ |ϕi,ℓ⟩ = P |ϕi,j⟩

})
(a)

≤ 1

d(d+ 1)

∑
P∈S∪{I}

∑
i,j

| ⟨ϕi,j |P eitH |ϕi,j⟩ |2

(b)
=

∑
P∈S∪{I}

Tr
(
P eitHe−itHP †

)
+
∣∣Tr (P eitH)∣∣2

d(d+ 1)

(c)
=

∑
P∈S∪{I}

d

d(d+ 1)
+

∑
P∈S∪{I}

1

d(d+ 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

where we used in (a) that
∑
ℓ 1
({
∃θ : eiθ |ϕi,ℓ⟩ = P |ϕi,j⟩

})
≤ 1 because, if we have θ1, ℓ1, θ2, ℓ2 such that

eiθ1 |ϕi,ℓ1⟩ = P |ϕi,j⟩ = eiθ2 |ϕi,ℓ2⟩, then |⟨ϕi,ℓ1 |ϕi,ℓ2⟩| = 1, but {|ϕi,ℓ⟩}i is an orthonormal basis, so ℓ1 = ℓ2.
In (b), we used the fact that {|ϕi,j⟩}i,j forms a 2-design.

30



The first term of (c) can be computed exactly:∑
P∈S∪{I}

d

d(d+ 1)
=
|S ∪ {I}|
d+ 1

.

For the second term of (c), we deal first with the case P = I:

1

d(d+ 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

=
1

d(d+ 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(Hm)

∣∣∣∣∣∣
2

≤ 1

d(d+ 1)

∣∣∣∣∣∣d− t2

2
Tr(H2) +

∑
m≥3

(it)m

m!
Tr(Hm)

∣∣∣∣∣∣
2

≤ 1

d(d+ 1)

(
d2 − dt2Tr(H2) + 4d2t4

)
=

1

(d+ 1)

(
d− t2d

∑
P

|αP |2 + 4dt4

)
.

In the third step, we evaluated the squared absolute value |z|2 = z̄z and bound the higher order terms, using
that |Tr(Hm)| ≤ d∥H∥m∞ ≤ d and

∑
m≥4

tm

m!Tr(H
m) ≤ 0.06 · dt4 since t ≤ 1. Note that third order terms

vanish.
For the other cases in (c):

∑
P∈S\{I}

1

d(d+ 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

=
1

d(d+ 1)

∑
P∈S\{I}

∣∣∣∣∣∣(it)dαP +
∑
m≥2

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

=
∑

P∈S\{I}

|(it)dαP |2

d(d+ 1)
+

1

d(d+ 1)

∑
P∈S\{I}

∣∣∣∣∣∣
∑
m≥2

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

+ 2ℜ
∑

P∈S\{I}

itdαP
d(d+ 1)

∑
m≥2

(−it)m

m!
Tr(PHm)

≤
∑

P∈S\{I}

|(it)dαP |2

d(d+ 1)
+

1

d(d+ 1)

∑
P

∣∣∣∣∣∣
∑
m≥2

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

+
2td

d(d+ 1)

∑
m≥3

tm

m!

∑
P∈S\{I}

|αP | · |Tr(PHm)|

≤
∑

P∈S\{I}

dt2α2
P

d+ 1
+

1

d(d+ 1)

∑
P,m,m′≥2

(it)m(−it)m′

m!m′!
Tr(PHm)Tr(PHm′

) +
2t

d+ 1

∑
m≥3

tm

m!

√∑
P

α2
P

∑
P

|Tr(PHm)|2

≤ d

d+ 1
t2

∑
P∈S\{I}

α2
P +

1

d+ 1

∑
m,m′≥2

(it)m(−it)m′

m!m′!
Tr(HmHm′

) +
2t

d+ 1

∑
m≥3

tm

m!

√
dTr(HmHm)

≤ d

d+ 1
t2

∑
P∈S\{I}

α2
P +

1

d+ 1

∑
m,m′≥2

tm

m!
· t
m′

m′!
· d+ 2t

d+ 1
· t3 ·

√
d · d

≤ d

d+ 1
t2

 ∑
P∈S\{I}

α2
P

+ 3t4 ,

where we use
∑
P α

2
P ≤ 1, 1

d

∑
P Tr(PA)Tr(PB) = Tr(AB), |Tr(Hm)| ≤ d∥H∥m∞ ≤ d,

∑
m≥2

tm

m! = et−1−t ≤
t2 and

∑
m≥3

tm

m! = et − 1− t− t2

2 ≤ t
3.
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Therefore

Ei,j,ℓ [P (|ϕi,ℓ⟩ ∼S |ϕi,j⟩)] =
|S ∪ {I}|
d+ 1

+
∑

P∈S∪{I}

1

d(d+ 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

≤ |S ∪ {I}|
d+ 1

+
1

d+ 1

(
d− t2d

∑
P /∈S

|αP |2 + 7dt4

)

≤ 1− t2ε2 + |S ∪ {I}|
d+ 1

+ 7t4 (14)

≤ 1− t2ε2

2

where we used

• For all K ∈ ΠS ,
1√
d
∥H −K∥2 ≥ ε so

∑
P /∈S α

2
P ≥ ε2 (choose K =

∑
P∈S

1
dTr(PH)P ),

• |S∪{I}|
d+1 ≤ t2ε2

4 and 7t4 ≤ t2ε2

4 .

For t = ε
6 , it is sufficient to add the condition that the size of the set S satisfies

|S ∪ {I}| ≤ (d+ 1) · ε4

144
.

We can choose the number of repetitions to be N = 2 log(3)
t2ε2 so that:

Ei,j,ℓ [PH1
[|ϕi1,ℓ1⟩ ∼S |ϕi1,j1⟩ , · · · , |ϕiN ,ℓN ⟩ ∼S |ϕiN ,jN ⟩]]

= Ei1,j1,l1 [P (|ϕi1,ℓ1⟩ ∼S |ϕi1,j1⟩)]
N ≤

(
1− t2ε2

2

)N
≤ 1

3
.

Error probability under the null hypothesis. Here we suppose that H ∈ ΠS . The error probability is

Ei,j,ℓ [PH1
[|ϕi1,ℓ1⟩ ≁S |ϕi1,j1⟩ or · · · or |ϕiN ,ℓN ⟩ ≁S |ϕiN ,jN ⟩]] ≤ N · Ei1,j1,l1 [P (|ϕi1,ℓ1⟩ ≁S |ϕi1,j1⟩)] .

Observe that under the event {|ϕi,ℓ⟩ ≁S |ϕi,j⟩} we have ℓ ̸= j since I ∈ S ∪ {I}. Also |ϕi,ℓ⟩ ≁S |ϕi,j⟩ implies
⟨ϕi,ℓ|H |ϕi,j⟩ = 0 since H ∈ ΠS . To see this we can write |ϕi,j⟩⟨ϕi,j | = 1

d

∑
p∈Gi

(−1)rj◦pS(p) where rj ∈ AGi

then for Q ∈ Pn we have

| ⟨ϕi,ℓ|Q |ϕi,j⟩ |2 =
1

d2

∑
p1,p2∈Gi

(−1)r
i
ℓ◦p1+r

i
j◦p2Tr(S(p1)QS(p2)Q)

=
1

d2

∑
p1,p2∈Gi

(−1)r
i
ℓ◦p1+r

i
j◦p2+q◦p2Tr(S(p1)S(p2)QQ)

=
1

d

∑
p∈Gi

(−1)r
i
ℓ◦p+r

i
j◦p+q◦p

= 1
({
riℓr

i
jq ∈ Gi

})
, (15)

where we wrote q for the element in Pn corresponding to Q ∈ Pn. In the last line, we have used Lemma 2.4.
Moreover, we used the fact r ◦ p + s ◦ p = (rs) ◦ p which can be seen from (−1)(rs)◦pP (r)P (s)P (p) =
P (p)P (r)P (s) = (−1)r◦pP (r)P (p)P (s) = (−1)r◦p(−1)s◦pP (r)P (s)P (p). Thus either ⟨ϕi,ℓ|Q |ϕi,j⟩ = 0 or
| ⟨ϕi,ℓ|Q |ϕi,j⟩ | = 1⇔ Q |ϕi,j⟩ = eiθ |ϕi,ℓ⟩. Hence, under the event {|ϕi,ℓ⟩ ≁S |ϕi,j⟩} we have ⟨ϕi,ℓ|Hm |ϕi,j⟩ =
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0 for m = 0, 1. Therefore:

Ei,j,ℓ [P (|ϕi,ℓ⟩ ≁S |ϕi,j⟩)] =
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21 ({|ϕi,ℓ⟩ ≁S |ϕi,j⟩})

=
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
⟨ϕi,ℓ|Hm |ϕi,j⟩

∣∣∣∣∣∣
2

1 ({|ϕi,ℓ⟩ ≁S |ϕi,j⟩})

≤ 1

d(d+ 1)

d+1∑
i=1

∑
j,ℓ

∣∣∣∣∣∣
∑
m≥2

(it)m

m!
⟨ϕi,ℓ|Hm |ϕi,j⟩

∣∣∣∣∣∣
2

=
1

d(d+ 1)

d+1∑
i=1

∑
j,ℓ

∑
m,m′≥2

(it)m

m!
· (−it)

m′

m′!
⟨ϕi,ℓ|Hm |ϕi,j⟩ ⟨ϕi,j |Hm′

|ϕi,ℓ⟩

=
1

d(d+ 1)

d+1∑
i=1

∑
m,m′≥2

(it)m

m!
· (−it)

m′

m′!
Tr(HmHm′

)

≤ 1

d(d+ 1)

d+1∑
i=1

∑
m,m′≥2

tm

m!
· t
m′

m′!
|Tr(HmHm′

)|

≤ 1

d(d+ 1)

d+1∑
i=1

t4d = t4 ,

where we used that {|ϕi,j⟩}j is an orthonormal basis, |Tr(Hm)| ≤ d and
∑
m≥2

(t)m

m! ≤ t
2 .

Hence, for t ≤ ε
6 and N =

⌈
2 log(3)
t2ε2

⌉
we have that

Ei,j,ℓ [PH1
[|ϕi1,ℓ1⟩ ≁S |ϕi1,j1⟩ or · · · or |ϕiN ,ℓN ⟩ ≁S |ϕiN ,jN ⟩]]

≤ N · Ei1,j1,ℓ1 [P (|ϕi1,ℓ1⟩ ≁S |ϕi1,j1⟩)] ≤
⌈
2 log(3)

t2ε2

⌉
t4

≤ 2 log(3)

ε2
t2 + t4 ≤ 2 log(3)

36
+

1

64
<

1

3
.

Complexity

• Evolution time at each step t = ε
6 ,

• Number of independent experiments N =
⌈
2 log(3)
t2ε2

⌉
=
⌈
72 log(3)

ε4

⌉
,

• Total evolution time Nt =
⌈
72 log(3)

ε4

⌉
· ε6 ≤

12 log(3)
ε3 +

ε

6︸︷︷︸
≤1/6

,

• Total classical processing time: In each round 1 ≤ s ≤ N , we check whether |⟨ϕis,js |Q |ϕis,ℓs⟩| = 1
for any Q ∈ S ∪ {I}. Via Equation (15), this reduces to checking whether risℓsr

is
js
q ∈ Gis . As Gis

is a maximal Abelian subgroup, it equals its own commutator, so we can equivalently check whether
risℓsr

is
js
q commutes with all n generators of Gis . Each such commutation check can be performed in time

O(n), see e.g. [SH14, Section 3]. This leads to a total classical processing time of O
(
Nn2|S ∪ {I}|

)
=

O
(
n2|S∪{I}|

ε4

)
.

• Complexity of state preparation and measurements: The input states used in our protocol are (ran-
domly chosen) stabilizer states |ϕi,j⟩, each of which can be prepared using a Clifford circuit with
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O( n2

logn ) many 2-qubit gates [AG04]. The measurements used in our protocol are w.r.t. some (ran-

domly chosen) orthonormal basis of stabilizer states. Given any such a target basis, there always exists
a Clifford unitary that maps the computational basis to the target basis. This can be seen via the
surjective group homomorphism between n-qubit Cliffords and the symplectic automorphism group on
(2n)-bit strings [Haa16, Proposition II.14.], under which stabilizer groups correspond to (symplecti-
cally) isotropic subspaces, and then using the fact that every symplectic subspace can be obtained by
applying a symplectic transformation to a span of a suitable number of canonical basis elements in F2n

2

[Haa16, Proposition II.8]. Thus, each of our measurements can be implemented by a Clifford circuit

with O( n2

logn ) many 2-qubit gates [AG04] followed by a computational basis measurement.

5 Lower bounds for learning a general Hamiltonian

In this section, we prove Theorem 1.4 on lower bounds for learning a general Hamiltonian in normalized
Schatten 2-norm.

Theorem 5.1. Let n ≥ 11. Suppose that the Hamiltonian H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1.

• Any bounded-ancilla coherent algorithm that constructs Ĥ such that 1√
d
∥H − Ĥ∥2 ≤ ε with probability

at least 2/3 has to use a number of independent experiments N = Ω
(

22n

n

)
.

• Any non-adaptive ancilla-free incoherent algorithm that construct Ĥ such that 1√
d
∥H − Ĥ∥2 ≤ ε with

probability at least 2/3 has to use a total evolution time Ω
(

22n

ε

)
.

We follow a standard strategy for proving lower bounds for learning problems [Fla+12; Haa+17; LN22;
FOS23; Ouf23].

Proof. We use the following construction inspired by [BCL20]:

HU = εUOU† where U ∼ Haar(d), and O = diag(+1, . . . ,+1︸ ︷︷ ︸
d
2 times

,−1, . . . ,−1︸ ︷︷ ︸
d
2 times

).

Note that in particular Tr[O] = 0 by construction. For such a Hamiltonian we have ∥H∥∞ ≤ ε∥U∥∞∥O∥∞∥U†∥∞ =
ε ≤ 1. The expected distance between two independent Hamiltonians HU and HV satisfies:

E
[
1

d
∥HU −HV ∥22

]
=
ε2

d
E
[
Tr
[
(UOU†)2

]
+ 2Tr

[
UOU†V OV †

]
+Tr

[
(V OV †)2

]]
= 2ε2 +

2ε2

d
E
[
Tr
[
UOU†O

]]
= 2ε2 +

2ε2

d2
(Tr[O])2

= 2ε2 .

Here, the second equality used invariance of the Haar measure, the third equality used E
[
UOU†

]
= Tr[O]

d I,
and the last equality used Tr[O] = 0. Moreover for d ≥ 2,

E
[
1

d2
∥HU −HV ∥42

]
=
ε4

d2
E
[(
Tr
[
(UOU†)2

]
+ 2Tr

[
UOU†V OV †

]
+Tr

[
(V OV †)2

])2]
=
ε4

d2
E
[(
2d+ 2Tr(UOU†V OV †)

)2]
= 4ε4 +

4ε4

d
E
[
Tr
[
UOU†O

]]
+

4ε4

d2
E
[(
Tr
[
OU†OU

])2]
≤ 4ε4 +

8ε2

d2
≤ 6ε2 .
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Here, the third equality again used Haar invariance, while the fourth equality used E
[
UOU†

]
= Tr[O]

d I = 0
as well as (relying on [Mel23, Corollary 13])

E
[(
Tr
[
(OU†OU

])2]
= Tr

[
O⊗2

(
E
[
(U†OU)⊗2

])]
= Tr

[
O⊗2

1

d2 − 1

(
Tr[O⊗2]1+ FTr[O⊗2F ]− 1

d
FTr[O⊗2]− 1

d
Tr[FO⊗2]1

)]
=

1

d2 − 1

(
(Tr[O])

4
+
(
Tr[O2]

)2 − 2

d

(
Tr[O2]

)
(Tr[O])

2

)
=

d2

d2 − 1

≤ 2 ,

with F the flip operator. So by Hölder’s inequality:

E
[

1√
d
∥HU −HV ∥2

]
≥

√√√√E
[
1
d∥HU −HV ∥22

]3
E
[

1
d2 ∥HU −HV ∥42

] ≥√ (2ε2)3

6ε4
> 1.1ε .

Observe that the function f : (U, V ) 7→ 1√
d
∥HU −HV ∥2 is Lipschitz:

|f(U, V )− f(U ′, V ′)|

=
ε√
d

∣∣∥UOU† − V OV †∥2 − ∥U ′OU ′† − V ′OV ′†∥2∣∣
≤ ε√

d

∣∣∥UOU† − V OV † − U ′OU ′† + V ′OV ′†∥2
∣∣

≤ ε√
d

∣∣∥UOU† − UOU ′†∥2 + ∥UOU ′† − U ′OU ′†∥2 + ∥V OV † − V OV ′†∥2 + ∥V OV ′† − V ′OV ′†∥2∣∣
≤ ε√

d

∣∣∥U† − U ′†∥2 + ∥U − U ′∥2 + ∥V † − V ′†∥2 + ∥V − V ′∥2∣∣
=

2ε√
d
|∥U − U ′∥2 + ∥V − V ′∥2|

≤ 2
√
2ε√
d
∥(U, V )− (U ′, V ′)∥2 ,

where ∥(U, V )−(U ′, V ′)∥2 :=
√
∥U − U ′∥22 + ∥V − V ′∥22. Hence, by the concentration inequality of Lipschitz

functions w.r.t. the Haar measure [MM13, Corollary 17]:

P (f(U, V )− E [f(U, V )] ≤ −s) ≤ exp
(
− ds2

12
(
2
√
2ε√
d

)2) = exp

(
−s

2d2

96ε2

)
.

So, since E [f ] ≥ 1.1ε:

P (f(U, V ) ≤ ε) ≤ P (f(U, V )− E [f(U, V )] ≤ −0.1ε) ≤ exp

(
− ε2d2

9600ε2

)
= exp

(
− d2

9600

)
.

Therefore, by iteratively picking independent Haar-random unitaries, we can construct a family F = {Hx =

εUxOU
†
x}x∈[M ] where M = exp

(
d2

38400

)
that is ε-separated with high probability. In fact, by the union
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bound, we have that:

P (F is not ε-separated) = P
(
∃x ̸= x′ ∈ [M ] :

1√
d
∥Hx −Hx′∥2 < ε

)
≤M2P

(
1√
d
∥H1 −H2∥2 < ε

)
≤ exp

(
d2

19200

)
· exp

(
− d2

9600

)
≤ exp

(
− d2

19200

)
.

Let X ∼ Uniform[M ] and Y be the observations of a correct algorithm. By Fano’s inequality we have:

I(X : Y ) ≥ (2/3) log(M)− log(2) ≥ d2

38400
− log(2)

Bounded-ancilla coherent algorithms. For algorithms that use auxiliary systems of dimension daux
bounded by cN · dN−1, the dimension of the output state is at most cN · dN . So, a naive upper bound on
the mutual information for an ancilla-bounded algorithm is given by

I(X : Y ) ≤ 2 log(cN · dN ) = 2N log(c · d).

Hence

N ≥ d2

76800 log(d · c)
− log(2)

2 log(d · c)
.

Ancilla-free incoherent non-adaptive algorithms. In this setting, the algorithm selects a set of input
states {ρℓ}ℓ∈[N ], time evolutions {tℓ}ℓ∈[N ], and measurement devices {Mℓ}ℓ∈[N ], which we assume without

loss of generality to be of the form Mℓ = {λiℓ
∣∣ϕℓiℓ〉〈ϕℓiℓ ∣∣}iℓ for projectors

∣∣ϕℓiℓ〉〈ϕℓiℓ ∣∣ and non-negative co-
efficients λiℓ satisfying

∑
iℓ
λiℓ = d. At step ℓ ∈ [N ], the input state is transmitted through the channel

U tℓx (ρ) = e−itℓHxρeitℓHx , and the output state is measured using the deviceMℓ, resulting in the outcome Iℓ.
For a non-adaptive algorithm, the observations Y = (I1, . . . , IN ) are independent, so the chain rule reads:

I(X : Y ) = I(X : I1, . . . , IN ) =

N∑
ℓ=1

I(X : Iℓ).

Fix l ∈ [N ] and recall the notation U tℓx (ρ) = e−itℓHxρeitℓHx where Hx = εUxOU
†
x, we have the joint

distribution of (X, Iℓ):

q(x, iℓ) =
1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 .
So the mutual information is:

I(X : Iℓ) =
∑
x,iℓ

q(x, iℓ) log

(
q(x, iℓ)

q(x)q(iℓ)

)

=
∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 log
(

1
M λiℓ

〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
1
M ·

∑
y

1
M λiℓ

〈
ϕℓiℓ
∣∣U tℓy (ρℓ)

∣∣ϕℓiℓ〉
)

= Σℓ1 +Σℓ2 ,

where

Σℓ1 =
∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 log
( 〈

ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
EU∼Haar(d)

[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
)
,

Σℓ2 =
∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 log
(
EU∼Haar(d)

[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
1
M

∑
y

〈
ϕℓiℓ
∣∣U tℓy (ρℓ)

∣∣ϕℓiℓ〉
)
,
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and U tℓU (ρ) = e−itℓεUOU
†
ρeitℓεUOU

†
.

We have for H = εUOU†, eitH = cos(tε)I+ i sin(tε)UOU† hence〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 = 〈ϕℓiℓ∣∣ e−itℓHxρℓe
itℓHx

∣∣ϕℓiℓ〉
= cos2(tℓε)

〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

〈
ϕℓiℓ
∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉

+ 2ℑ cos(tℓε) sin(tℓε)
〈
ϕℓiℓ
∣∣ ρℓUOU† ∣∣ϕℓiℓ〉 ,

E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] = cos2(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)E

[〈
ϕℓiℓ
∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉]

= cos2(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

(
d

d2 − 1
−
d
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉

d(d2 − 1)

)

≥ cos2(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

d+ 1
,

E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉2] ≤ cos4(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉2 + sin4(tℓε)E

[〈
ϕℓiℓ
∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉2]

+ 4 cos2(tℓε) sin
2(tℓε)E

[〈
ϕℓiℓ
∣∣UOU†ρℓ ∣∣ϕℓiℓ〉 〈ϕℓiℓ ∣∣ ρℓUOU† ∣∣ϕℓiℓ〉]

+ 2 cos2(tℓε) sin
2(tℓε)E

[〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉 〈ϕℓiℓ ∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉]

+ 4ℑ cos(tℓε) sin
3(tℓε)E

[〈
ϕℓiℓ
∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉 〈ϕℓiℓ ∣∣ ρℓUOU† ∣∣ϕℓiℓ〉]

≤ cos4(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉2 + sin4(tℓε)O

(
1

d2

)
(16)

+ cos2(tℓε) sin
2(tℓε)O

(〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉
d

)
.

For E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉], the calculations are similar as in Equation (9). To show Inequality (16), we used

Weingarten calculus Appendix D and the remark that ∥O∥∞ = 1,Tr(O) = 0, O2 = I and |Wg(π, d)| ≤ O
(

1
dn

)
for π ∈ Sn and n = 2, 3, 4.

In particular, we have

0 ≤
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
≤

cos2(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

〈
ϕℓiℓ
∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉+ 2ℑ cos(tℓε) sin(tℓε)

〈
ϕℓiℓ
∣∣ ρℓUOU† ∣∣ϕℓiℓ〉

cos2(tℓε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

d+1

≤ 1 + (d+ 1) +
√
d+ 1 ≤ 2d

for d ≥ 5. Hence〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 ·
∣∣∣∣∣
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] − 1

∣∣∣∣∣
=

〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] ·
∣∣∣∣∣ sin2(tℓε) 〈ϕℓiℓ ∣∣UOU†ρℓUOU† ∣∣ϕℓiℓ〉
+ 2ℑ cos(tℓε) sin(tℓε)

〈
ϕℓiℓ
∣∣ ρℓUOU† ∣∣ϕℓiℓ〉− sin2(tℓε)

d+1

∣∣∣∣∣
≤ 6dtℓε

Here, we used that sin2(x) ≤ x and that cos(x) sin(x) ≤ x for x ≥ 0. So by taking the average over the

outcome iℓ and assuming that
∑N
ℓ=1 tℓ ≤

d2

ε (since otherwise we already have the statement that we set out
to prove) we have

Yx =

N∑
ℓ=1

∑
iℓ

λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 ·
( 〈

ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] − 1

)
∈ [−6d4, 6d4].
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Hence, by Hoeffding’s inequality applied to the i.i.d. random variables {Yx}x∈[M ]:

P

(∣∣∣∣∣ 1M ∑
x

Yx − E [YU ]

∣∣∣∣∣ >
√

122d8 log(20)

M

)
≤ 2 exp

(
−M ·

122d8

M log(20)

122d8

)
=

1

10
.

Therefore with probability at least 9/10, for all l ∈ [N ], using the inequality log(x) ≤ x− 1, we have:

N∑
ℓ=1

Σℓ1 −
√

122d8 log(20)

M

=

N∑
ℓ=1

∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 log
( 〈

ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
)
−
√

122d8 log(20)

M

≤ 1

M

∑
x

N∑
ℓ=1

∑
iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
( 〈

ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] − 1

)
−
√

122d8 log(20)

M

≤ EV∼Haar(d)

[
N∑
ℓ=1

∑
iℓ

λiℓ
〈
ϕℓiℓ
∣∣U tℓV (ρℓ)

∣∣ϕℓiℓ〉
( 〈

ϕℓiℓ
∣∣U tℓV (ρℓ)

∣∣ϕℓiℓ〉
EU∼Haar(d)

[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] − 1

)]

≤
N∑
ℓ=1

∑
iℓ

λiℓ

E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉2]
E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉] − 1

≤
N∑
ℓ=1

∑
iℓ

λiℓ

cos4(tε)
〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉2 + sin4(tε)O

(
1
d2

)
+ cos2(tε) sin2(tε)O

(
⟨ϕℓ

iℓ
|ρℓ|ϕℓ

iℓ
⟩

d

)
cos2(tℓε)

〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉+ sin2(tℓε)

d+1

− 1

≤
N∑
ℓ=1

∑
iℓ

λiℓ cos
4(tℓε)

〈
ϕℓiℓ
∣∣ ρℓ ∣∣ϕℓiℓ〉− 1 +

∑
iℓ

λiℓ sin
2(tℓε)O

(
1

d

)
+
∑
iℓ

λiℓ sin
2(tℓε)O

(
1

d

)

≤
N∑
ℓ=1

[cos4(tℓε)− 1] +O
(
sin2(tℓε)

)
+

√
122d8 log(20)

M
≤

N∑
ℓ=1

O(min{t2ℓε2, 1})

≤ O

(
N∑
ℓ=1

tℓε

)
(17)

where we use cos(x) ≤ 1, sin(x) ≤ min{x, 1}. On the other hand, for the second sum Σ2, we can use again
the inequality log(x) ≤ x− 1:

Σℓ2 =
∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉 log
(

E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
1
M

∑
y

〈
ϕℓiℓ
∣∣U tℓy (ρℓ)

∣∣ϕℓiℓ〉
)

≤
∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
(

E
[〈
ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]
1
M

∑
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∣∣U tℓy (ρℓ)

∣∣ϕℓiℓ〉 − 1

)

=
∑
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λiℓE
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ϕℓiℓ
∣∣U tℓU (ρℓ)

∣∣ϕℓiℓ〉]−∑
x,iℓ

1

M
λiℓ
〈
ϕℓiℓ
∣∣U tℓx (ρℓ)

∣∣ϕℓiℓ〉
= E

[
Tr
(
U tℓU (ρℓ)

)]
−
∑
x

1

M
Tr
(
U tℓx (ρℓ)
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= 0.
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Therefore,

d2

38400
− log(2) ≤ I(X : I1, . . . , IN ) =

N∑
ℓ=1

I(X : Iℓ) =

N∑
ℓ=1

(Σℓ1 +Σℓ2)

≤ O

(
N∑
ℓ=1

tℓε

)
+

√
122d8 log(20)

M

≤ O

(
N∑
ℓ=1

tℓε

)
+ 1

for n ≥ 11 since M = exp
(

d2

38400

)
. Finally:

N∑
ℓ=1

tℓ ≥ Ω

(
d2

ε

)
.
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A Relating Hamiltonian distances to time evolution distances

In this appendix, we give operational interpretations for the operator norm distance between Hamiltonians as
a worst-case distance and for the normalized Frobenius norm distance between Hamiltonians as an average-
case distance. We do so by relating them to corresponding distances between the associated unitary evolutions
in the limit of short times.

A.1 Operator norm distance between Hamiltonians

The operator norm distance between two Hamiltonians is connected to the following distance measures on
the level of associated time evolution unitaries:

(a) Worst-case fidelity between (pure) output states of the unitaries,

(b) 1-to-1 norm distance between the unitary channels (i.e., worst-case 1-norm distance between output
states over all input states without auxiliary system),

(c) Diamond norm distance between unitary channels (i.e., worst-case 1-norm distance between output
states over all input states with auxiliary system),

(d) Operator norm distance between the unitaries up to a global phase,

dist∞(U, V ) = min
φ∈[0,2π)

∥∥U − eiφV
∥∥
∞ .

We first recall the distance measures involved and the relations between them. Then, we demonstrate their
connection to the operator norm distance between Hamiltonians.

First, we know that the 1-norm distance between two pure states is closely connected to their fidelity via
∥ |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| ∥1 = 2

√
1− |⟨ϕ|ψ⟩|2, by the equality case in the Fuchs-van de Graaf inequalities [FV99].

This implies the following connection between the above distance measures (a) and (b):

∥U − V∥1→1 = max
|ψ⟩
∥U |ψ⟩⟨ψ|U† − V |ψ⟩⟨ψ|V †∥1 = 2

√
1−min

|ψ⟩
|⟨ψ|U†V |ψ⟩|2 .

Next, as we’re dealing with unitary channels, the 1-to-1 and diamond norm distances coincide, ∥U−V∥1→1 =
∥U − V∥⋄ (see [Wat18, Theorem 3.55]). Finally, from [Haa+23, Proposition 1.6], we know that for two
unitaries U, V , the diamond norm distance between the associated channels U ,V and the operator norm
distance between the unitaries up to a global phase coincide up to multiplicative constants:

1

2
∥U − V∥⋄ ≤ dist∞(U, V ) ≤ ∥U − V∥⋄ .

So, all four distance measures (a)-(d) above are equivalent.
To understand them on the level of Hamiltonians, let H, H̃ be two n-qubit Hamiltonians with Tr[H] =

Tr[H̃]. We write the associated unitary time evolutions as Ut = e−itH and Ũt = e−itH̃ . Then, as t → 0, we
have for any input state |ψ⟩:

|⟨ψ|U†t Ũt |ψ⟩|2 = |⟨ψ|1+ itH − t2

2
H2 − itH̃ − t2

2
H̃2 + t2HH̃ |ψ⟩|2 +O(t3)

=

(
1− t2

2
⟨ψ| (H − H̃)2 |ψ⟩

)2

+ t2
(
⟨ψ| (H − H̃) |ψ⟩

)2
+O(t3)

= 1− t2 ⟨ψ| (H − H̃)2 |ψ⟩+ t2
(
⟨ψ| (H − H̃) |ψ⟩

)2
+O(t3) .
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Therefore, we have

∥U − V∥⋄ = ∥U − V∥1→1

= 2

√
1−min

|ψ⟩
|⟨ψ|U†t Ũt |ψ⟩|2

= 2

√
t2 max
|ψ⟩

(
⟨ψ| (H − H̃)2 |ψ⟩ −

(
⟨ψ| (H − H̃) |ψ⟩

)2)
+O(t3)

≤ 2
√
t2 max|ψ⟩ ⟨ψ| (H − H̃)2 |ψ⟩+O(t3)

≥ 2

√
t2
(

1
2 (λ

2
max + λ2min)−

(
1
2 (λmax + λmin)

)2)
+O(t3)

(18)

= 2
√
t2∥H − H̃∥2∞ +O(t3)

= 2
√
t2 · (λmax−λmin)2

4 +O(t3){
= 2t∥H − H̃∥∞ +O(t2)

≥ 2

√
t2 · max(λ2

max,λ
2
min)

4 +O(t3){
= 2t∥H − H̃∥∞ +O(t2)
= t∥H − H̃∥∞ +O(t2)

.

Here, we used λmax/min to denote the maximal and minimal eigenvalues of H − H̃. For the lower bound in

Equation (18), we made the specific choice |ψ⟩ = 1√
2
(|ψmax⟩+ |ψmin⟩), where

∣∣ψmax/min

〉
are the (orthogonal)

eigenvectors of H − H̃ for the eigenvalues λmax/min. In the second-to-last step, we used that Tr[H − H̃] = 0
implies that λmax ≥ 0 and λmin ≤ 0. Additionally, in the second-to-last as well as in the last step, we

used the Taylor expansion
√
1 + x = 1 + O(x) to get

√
t2∥H − H̃∥2∞ +O(t3) = t∥H − H̃∥∞

√
1 +O(t) =

t∥H − H̃∥∞ (1 +O(t)) and similarly
√
t2 · λ

2
max

4 +O(t3) = t · λmax

2

√
1 +O(t) = t · λmax

2 (1 +O(t)). This

derivation tells us that, for short times, we can understand the worst-case distances (a)-(d) via the operator
norm distance between the two Hamiltonians underlying the unitary evolutions.

A.2 Normalized Frobenius norm distance between Hamiltonians

The normalized Frobenius norm distance between two Hamiltonians is connected to the following tightly
related distance measures on the level of the associated time evolution unitaries:

(a) Frobenius norm distance between (normalized) Choi states,

(b) Normalized Frobenius norm distance between unitaries up to a global phase,

(c) Average-case squared Frobenius norm distance over Haar-random input states,

(d) Average-case squared trace norm distance over Haar-random input states,

(e) Average-case fidelity between output states over Haar-random input states.

Note that due to our focus on unitary evolutions, pure input states lead to pure output states, so that the
relevant average-case squared Frobenius and trace norm distances are related by constant factors. Thus, (c)
and (d) are immediately related. And via the standard relation between the trace distance and the fidelity
between pure states, we can immediately translate between (d) and (e). We now review the connections
between (a), (b), and (c) established in prior work, and then relate (a) to the normalized Frobenius norm
distance between Hamiltonians.

For two n-qubit channels N and M, we define D(N ,M) = 1√
2
∥C(N )− C(M)∥2, where C(N ) =

(N ⊗ id)(Ω) = (N ⊗ id)(|Ω⟩⟨Ω|) denotes the (normalized) Choi state obtained by applying the channel to a
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canonical maximally entangled state. From [BY23, Proposition 15], we know: If N ,M are unital, then

E|ψ⟩∼Haarn

[
∥N (|ψ⟩⟨ψ|)−M(|ψ⟩⟨ψ|)∥22

]
=

2n+1

2n + 1
D(N ,M)2 .

Moreover, if we define, for two unitaries U, V ,

dist2(U, V ) =
1√
2n

min
φ∈[0,2π)

∥∥U − eiφV
∥∥
2
,

and if we denote the associated unitary channels by U and V, then [BY23, Lemma 14] tells us

1√
2
dist2(U, V ) ≤ D(U ,V) ≤ dist2(U, V ) .

Now, consider two n-qubit Hamiltonians H, H̃ with Tr[H] = Tr[H̃], giving rise to unitary time evolutions

Ut = e−itH and Ũt = e−itH̃ . Then, as t→ 0, we have:

D(Ut, Ũt) =
1√
2

∥∥∥(Ut ⊗ 1)Ω(U†t ⊗ 1)− (Ũt ⊗ 1)Ω(Ũ†t ⊗ 1)
∥∥∥
2

=
1√
2

∥∥∥Ω− it[H ⊗ 1,Ω]−
(
Ω− it[H̃ ⊗ 1,Ω]

)∥∥∥
2
+O(t2)

=
t√
2

∥∥∥[(H − H̃)⊗ 1,Ω]
∥∥∥
2
+O(t2)

=
t√
2n

∥∥∥H − H̃∥∥∥
2
+O(t2) .

Thus, in the limit of short times, 1√
2n

∥∥∥H − H̃∥∥∥
2
closely relates to D(Ut, Ũt) and thereby also to dist(Ut, Ũt)

as well as to

√
E|ψ⟩∼Haarn

[∥∥∥Ut |ψ⟩⟨ψ|Ut − Ũt |ψ⟩⟨ψ| Ũt∥∥∥2
2

]
. This tells us that for short times, the different

average-case distance measures (a)-(e) are connected to the normalized Frobenius distance between the
underlying Hamiltonians.

B More general variants of Hamiltonian property testing

In this appendix, we discuss three variants and extensions of the Hamiltonian property testing procedure
presented in Section 4.2. First, we demonstrate how a small modification to our original procedure allows us
to test many properties simultaneously. Second, we show that we can test arbitrarily large properties when
allowing the testing procedure to use auxiliary qubits. Third, we present a variant of the procedure that can
be used for tolerant testing.

B.1 Testing many properties

If we want to test many properties S1, . . . , SM with the same data acquired, we need to change the algorithm
decision rule. The new decision rule is

At step x = 1, . . . , N , let Ex = {|ϕix,ℓx⟩ ∼S |ϕix,jx⟩} and let Ēx be its complement. Answer the null
hypothesis iff

1

N

N∑
x=1

1({Ēx}) ≤
3

8
t2ε2.

As we will see below, the error probability can be shown to be at most δ by Chernoff-Hoeffding’s inequal-
ity [Hoe63] for the following set of parameters:
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Algorithm 2: Testing Multiple Properties for Hamiltonian Evolutions

Input : A Hamiltonian H, a set of properties ΠSm
for m ∈ {1, . . . ,M}, and an accuracy parameter

ε ∈ (0, 1)
Output: The null hypothesis Hm

0 or the alternate hypothesis Hm
1 for each m ∈ {1, . . . ,M}

1 t← ε
6 ;

2 N ←
⌈
100 log(M/δ)

t2ε2

⌉
;

3 for s← 1 to N do
4 Sample is ∼ Uniform[d], js ∼ Uniform[d+ 1];
5 Input state : ρs = |ϕis,js⟩⟨ϕis,js |;
6 Evolve under H for time t;
7 Measurement : Ms = {|ϕis,ℓ⟩⟨ϕis,ℓ|}ℓ and observe ℓs ←Ms(Ut(ρs));
8 end
9 for m← 1 to M do

10 if 1
N

∑N
s=1 1({|ϕis,ℓs⟩ ≁Sm

|ϕis,js⟩}) ≤ 3
8 t

2ε2 then
11 return Hm

0

12 else
13 return Hm

1

14 end

15 end

• Evolution time at each step t = ε
6 ,

• Number of independent experiments N =
⌈
100 log(1/δ)

t2ε2

⌉
=
⌈
602 log(1/δ)

ε4

⌉
,

• Total evolution time Nt =
⌈
602 log(1/δ)

ε4

⌉
· ε6 ≤

600 log(1/δ)
ε3 +

ε

6︸︷︷︸
≤1/6

.

So, to test M properties we can take the error probability to be δ → δ
M and apply a union bound. The

new complexity can be taken to be

• Evolution time at each step t = ε
6 ,

• Number of independent experiments N =
⌈
100 log(M/δ)

t2ε2

⌉
=
⌈
602 log(M/δ)

ε4

⌉
,

• Total evolution time

Nt =

⌈
602 log(M/δ)

ε4

⌉
· ε
6
≤ 600 log(M/δ)

ε3
+

ε

6︸︷︷︸
≤1/6

.

The logarithmic scaling with M and 1/δ is good, however, the dependency in ε might be sub-optimal.
With multiple properties, there is a null and alternate hypothesis for each property. The null hypothesis

Hi
0 at i ∈ {1, . . . ,M} becomes that H ∈ ΠSi

and the alternate hypothesis Hi
1 is that H is ε far from being

in ΠSi
. The algorithm for the testing of multiple properties is therefore Algorithm 2.

Theorem B.1. Let Si ⊂ Pn such that |Si ∪ {I}| ≤ (2n+1)ε4

144 for all i ∈ {1, . . . ,M}. Suppose that the
Hamiltonian H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1. For each i ∈ {1, . . . ,M}, Algorithm 2 tests whether
H ∈ ΠSi

or whether 1√
2n
∥H−K∥2 > ε for all Hamiltonians K ∈ ΠSi

. The algorithm succeeds with probability

at least 1 − δ and uses a total evolution time O
(

log(M/δ)
ε3

)
, a number of independent experiments N =

O
(

log(M/δ)
ε4

)
, and a total classical processing time Õ

(
n2
∑M
i=1

|Si∪{I}|
ε4

)
. Each experiment uses efficiently

implementable states and measurements.
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As in Theorem 4.2, we in fact have stronger guarantees than just efficient implementability for the states
and measurements. Also here, the input states are n-qubit stabilizer states and the output measurements
are w.r.t. some n-qubit stabilizer state bases.

Proof Sketch. From the proof of correctness in Section 4.2 we have the following inequalities, conditioned on
either the null or alternate hypothesis being true:

PH1
(E) = PH1

(|ϕi,ℓ⟩ ∼S |ϕi,j⟩) ≤ 1− t2ε2

2
,

PH0(Ē) = PH0(|ϕi,ℓ⟩ ≁S |ϕi,j⟩) ≤ t4 ≤
t2ε2

4
,

for t = ε
6 and |S ∪ {I}| ≤ (d+1)ε4

144 . Now we have a linear behavior of the KL divergence:

KL

(
3

8
t2ε2

∥∥∥1
2
t2ε2

)
, KL

(
3

8
t2ε2

∥∥∥1
4
t2ε2

)
≥ 1

100
· t2ε2.

Here, we have used that

KL(p∥αp) ≥ (− logα+ α− 1)p ,

KL(αp∥p) ≥ (α logα+ 1− α)p ,

for α ∈ (0, 1) and p ∈ [0, 1], which can be inferred easily from log(1 + x) ≥ x/(1 + x) for x > −1. Under the
null hypothesis, since 3

8 t
2ε2 > 1

4 t
2ε2 ≥ PH0

[
Ē
]
, we can apply the Chernoff-Hoeffding inequality (see [Hoe63]

or [Mul18, Theorem 2.1]):

PH0

[
1

N

N∑
x=1

1({Ēx}) >
3

8
t2ε2

]
≤ exp

(
−N KL

(
3

8
t2ε2

∥∥∥PH0

[
Ē
]))

≤ exp

(
−N KL

(
3

8
t2ε2

∥∥∥1
4
t2ε2

))
≤ exp

(
−N · 1

100 · t
2ε2
)
≤ δ

for N =
⌈
100 log(1/δ)

t2ε2

⌉
. Here, we have used in the second inequality that α 7→ KL(p∥αp) is decreasing on

(0, 1) for any p ∈ [0, 1], which can be verified by differentiating in α.
The alternate hypothesis case is similar. The bounds on the classical processing time and on the quantum

circuit sizes required for state preparation and measurements follow as in the proof of Theorem 4.2.

Remark B.2. We highlight two applications of Theorem B.1. The first is Hamiltonian sparsity testing, that
is, the task of testing whether an unknown Hamiltonian H has an at most k-sparse Pauli basis expansion
or is ε-far w.r.t. 1√

d
∥ · ∥2 from all such Hamiltonians, where k = O(1). This can be embedded into the

scenario of Theorem B.1 by testing M =
(
4n−1
k

)
= O(4nk) many properties of size k simultaneously, each

corresponding to a possible set of at most k Pauli terms that appear with non-zero coefficients. As our bounds
in Theorem B.1 scale logarithmically with the number of properties, Algorithm 2 solves this sparsity testing
problem with an efficient number of queries and an efficient total total evolution time. If 1√

2n
∥H∥2 = 1,

meaning
∑
P∈Pn

|αP |2 = 1, then Algorithm 2 can even be used to estimate the support of H. Namely, in
this case, each of the M properties that gets assigned the corresponding null hypothesis in the second for-
loop corresponds to a Pauli support such that the corresponding coefficients of H have a squared ℓ2-norm of
≥ 1− ε2.

Second, we can use Theorem B.1 to test whether an unknown H is a low-intersection Hamiltonian.
This property served as an important assumption in recent work on Hamiltonian learning, for instance in
[HKT22; Hua+23]. We call a Hamiltonian H =

∑
P∈Pn

αPP a (k, d)-intersection Hamiltonian if |P | ≤ k
for all P ∈ Pn with αP ̸= 0 and if |{Q ∈ Pn | αQ ̸= 0 ∧ supp(P ) ∩ supp(Q) ̸= ∅}| ≤ d for all P ∈ Pn
with αP ̸= 0. Here, supp(P ) = {1 ≤ i ≤ n | Pi ̸= I} denotes the support of an n-qubit Pauli string.
We speak of a low-intersection Hamiltonian if both k, d = O(1). Given fixed k and d, there are at most
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Algorithm 3: Testing Arbitrary Properties for Hamiltonian Evolutions

Input : A Hamiltonian H, a property ΠS , and an accuracy parameter ε ∈ (0, 1)
Output: The null hypothesis H0 or the alternate hypothesis H1

1 naux ←
⌈
log2

(
144·|S∪{I}|

2nε4

)⌉
;

2 Snaux
← (S ∪ {I})⊗ I2naux ;

3 t← ε
6 ;

4 N ←
⌈
2 log(3)
t2ε2

⌉
;

5 for s← 1 to N do
6 Sample is ∼ Uniform[2n+naux ], js ∼ Uniform[2n+naux + 1];
7 Input state : ρs = |ϕis,js⟩⟨ϕis,js |;
8 Evolve the first n qubits under H for time t;
9 Measurement : Ms = {|ϕis,ℓ⟩⟨ϕis,ℓ|}ℓ and observe ℓs ←Ms [(Ut ⊗ idnaux)(ρs)];

10 if |ϕis,js⟩ ≁Snaux
|ϕis,ℓs⟩ then

11 return H1 and stop
12 end

13 end
14 return H0

2O(npoly(k,d)) many different dual interaction graphs (see [HKT22] for a definition) that a (k, d)-intersection
Hamiltonian can have. (A loose bound that does not take d into account can be seen as follows: By the locality

constraint, admissible dual interaction graphs have at most
∑k
ℓ=0

(
n
ℓ

)
3ℓ ≤ O(nk+1) vertices and thus at most

O(n2(k+1)) edges. As each edge can either be present or not, there are at most 2O(n2(k+1)) many admissible
dual interaction graphs.) Therefore, by simultaneously testing all the size-O(nk+1) properties corresponding
to different valid dual interaction graphs, Algorithm 2 can test whether an unknown H is a (k, d)-intersection
Hamiltonian; and thanks to Theorem B.1, the query complexity and total evolution time for doing so can be

bounded in terms of log 2O(npoly(k,d)) = O(npoly(k,d)).

B.2 Testing arbitrarily large properties

In Theorem 4.2, we can test a property ΠS if the size of the set S satisfies:

|S ∪ {I}| ≤ (d+ 1)ε4

144
.

To lift this assumption, we propose to use auxiliary systems. The idea is that if we can add an naux-qubit
ancilla, then we can query the unitary

eitH ⊗ I2naux = eitH⊗I2naux .

So we can think of testing H⊗I2naux instead of H, and the relevant property now is Snaux
= (S∪{I})⊗I2naux .

This is not exactly true, because we cannot enforce that H⊗ I2naux is ε-far from ΠSnaux
given that H is ε-far

from ΠS . However, in terms of distance, we only need that
∑
P /∈S α

2
P ≥ ε2 for our proof. To see this, let us

bound P (E) under both the null and alternate hypothesis, where we write again E = {|ϕi,ℓ⟩ ∼S |ϕi,j⟩} and
Ē for its complement.

First, under the null hypothesis, the main ingredient in the proof in Section 4.2 is the observation that
if H ∈ ΠS and |ϕi,ℓ⟩ ≁S |ϕi,j⟩, then for all j ̸= l we have ⟨ϕi,ℓ|Hm |ϕi,j⟩ = 0 for m = 0, 1. This is not
affected if we add ancilla as |ϕi,ℓ⟩ ≁Snaux

|ϕi,j⟩ ⇒ ∀P ∈ Snaux : | ⟨ϕi,ℓ|P |ϕi,j⟩ | ̸= 1 ⇒ ∀P ∈ S ∪ {I} :
| ⟨ϕi,ℓ|P ⊗ I2naux |ϕi,j⟩ | ≠ 1, thus ⟨ϕi,ℓ| (H ⊗ I2naux )m |ϕi,j⟩ = ⟨ϕi,ℓ|Hm ⊗ I2naux |ϕi,j⟩ = 0 for m = 0, 1.
Hence, under the condition that the null hypothesis is true,

PH0

[
Ē
]
≤ t4 ,
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by the same reasoning as before. Next, under the alternate hypothesis, we have (by the previous calculations):

PH1
[E ] ≤

∑
P∈Snaux∪{I}

2n+naux

2n+naux(2n+naux + 1)

+
∑

P∈Snaux∪{I}

1

2n+naux(2n+naux + 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(P (H ⊗ I2naux )m)

∣∣∣∣∣∣
2

=
|S ∪ {I}|

(2n+naux + 1)
+

∑
P∈S∪{I}

1

2n+naux(2n+naux + 1)

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)2naux

∣∣∣∣∣∣
2

≤ |S ∪ {I}|
(2n+naux + 1)

+
∑

P∈S∪{I}

1

22n

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

,

since P ∈ S ⇔ P ⊗ I2naux ∈ Snaux . Then we can continue as in the proof of Theorem 4.2 to have

PH1
[E ] ≤ |S ∪ {I}|

(2n+naux + 1)
+

∑
P∈S∪{I}

1

22n

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
Tr(PHm)

∣∣∣∣∣∣
2

≤ 1− t2ε2 + |S ∪ {I}|
(2n+naux + 1)

+ 7t4 .

Hence, if we choose t = ε
6 , then we have PH0

[
Ē
]
≤ t2ε2

4 . Thus, we have to fulfill the following in order to

ensure PH1 [E ] ≤ 1− t2ε2

2 :

|S ∪ {I}|
2n+naux

≤ t2ε2

4
=

ε4

144
and 7t4 ≤ t2ε2

4
.

The second inequality holds with our choice of t as |S ∪ {I}| ≥ 1, and the first inequality holds if

naux ≥ log2

(
144 · |S ∪ {I}|

2nε4

)
.

As we have always |S ∪ {I}| ≤ 22n, a number of auxiliary qubits

naux ≥ log2

(
144 · 2n

ε4

)
= n+ log2

(
144

ε4

)
is enough to ensure PH1 [E ] ≤ 1− t2ε2

2 . With this amount of ancilla qubits, we can test any set S, regardless
of its size.

Since we have the inequalities

PH1(E) ≤ 1− t2ε2

2
and PH0(Ē) ≤

t2ε2

4
for t =

ε

6
,

the query complexity and the total evolution time are the same as for the ancilla-free algorithm. The classical
processing time changes compared to Theorem 4.2 in that we now need to check properties of (n + naux)-
qubit Paulis. With the same arguments as in the proof of Theorem 4.2, we see that the relation ∼Snaux

can

be checked with O((n + naux)
2|Snaux |) = Õ(n2|S ∪ {I}|) classical processing time. Here, we used Õ as a

notational simplification that hides a factor polylog(1/ε). Finally, the input states are now (n+ naux)-qubit
stabilizer states and the measurements are in some bases of (n+naux)-qubit stabilizer states, so the quantum
circuit sizes can be bounded as before upon replacing n by n+naux, leading to quantum circuit complexities

of O
(

(n+naux)
2

log(n+naux)

)
= Õ

(
n2

logn

)
, where the Õ again hides factors that are polylogarithmic in 1

ε .

Thus, we have shown the following theorem in this section:
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Algorithm 4: Tolerantly Testing Properties for Hamiltonian Evolutions

Input : A Hamiltonian H, a property ΠS , and accuracy parameters 0 ≤ ε1 < ε2 < 1
Output: The null hypothesis H0 or the alternate hypothesis H1

1 t←
√

1
20 (ε

2
2 − ε21);

2 N ←
⌈
30 log(3)(ε22+ε

2
1)

t2(ε22−ε21)2

⌉
;

3 for s← 1 to N do
4 Sample is ∼ Uniform[d], js ∼ Uniform[d+ 1];
5 Input state : ρs = |ϕis,js⟩⟨ϕis,js |;
6 Evolve under H for time t;
7 Measurement : Ms = {|ϕis,ℓ⟩⟨ϕis,ℓ|}ℓ and observe ℓs ←Ms(Ut(ρs));
8 end

9 if 1
N

∑N
s=1 1({|ϕis,ℓs⟩ ≁S |ϕis,js⟩}) ≤

1
5 t

2(2ε22 + 3ε21) then
10 return H0

11 else
12 return H1

13 end

Theorem B.3. Let S ⊂ Pn. Suppose that the Hamiltonian H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1. Using

naux =
⌈
log2

(
144·|S∪{I}|

2nε4

)⌉
ancilla qubits, Algorithm 3 tests whether H ∈ ΠS or 1√

2n
∥H −K∥2 > ε for all

Hamiltonians K ∈ ΠS with probability at least 2/3 using a total evolution time O
(

1
ε3

)
, a total number of

independent experiments N = O
(

1
ε4

)
, and a total classical processing time Õ

(
n2|S∪{I}|

ε4

)
. Each experiment

uses efficiently implementable states and measurements on O(n+ log(1/ε)) many qubits.

B.3 Tolerant Hamiltonian property testing

So far, we have focused on the standard setting of property testing. Now, we turn our attention to tolerant
testing [PRR06]. In our Hamiltonian case, we formulate a tolerant property testing problem as follows:

Problem B.4 (Tolerant Hamiltonian property testing). Given a property ΠS associated to a subset S ⊆ Pn,
a norm |||·|||, and two accuracy parameters 0 ≤ ε1 < ε2 < 1, we denote by T ΠS

|||·||| (ε1, ε2) the following Hamilto-

nian property testing problem: Given access to the time evolution according to an unknown Hamiltonian H,
decide, with success probability ≥ 2/3, whether

(i) H is ε1-close to having property ΠS, that is, there exists H̃ ∈ ΠS such that
∣∣∣∣∣∣∣∣∣H − H̃∣∣∣∣∣∣∣∣∣ ≤ ε1, or

(ii) H is ε2-far from having property ΠS, that is, ∀H̃ ∈ ΠS:
∣∣∣∣∣∣∣∣∣H − H̃∣∣∣∣∣∣∣∣∣ ≥ ε2 .

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

Clearly, the tolerant testing problem T ΠS

|||·||| (ε1, ε2) is at least as hard as T ΠS

|||·||| (ε2), so the lower bounds

of Section 3 for locality testing w.r.t. unnormalized Schatten p-norms carry over straightforwardly. More
interestingly, in this section, we show, via a variant of the analysis from Section 4.2, that an analogue of
Theorem 4.2 holds for Algorithm 4.

Theorem B.5. Let 0 ≤ ε1 < ε2 < 1, and let S ⊂ Pn such that |S ∪ {I}| ≤ (2n+1)(ε22−ε
2
1)

2

400 . Suppose that

the Hamiltonian H satisfies Tr(H) = 0 and ∥H∥∞ ≤ 1. Algorithm 4 tests whether there exists H̃ ∈ ΠS with
1√
2n
∥H − H̃∥2 ≤ ε1 or 1√

2n
∥H −K∥2 > ε2 for all Hamiltonians K ∈ ΠS with probability at least 2/3 using a

total evolution time O
(

1
(ε2−ε1)2.5ε0.52

)
, a total number of independent experiments N = O

(
1

(ε2−ε1)3ε2

)
, and

a total classical processing time O
(
n2|S∪{I}|
(ε2−ε1)3ε2

)
. Each experiment uses efficiently implementable states and

measurements.

54



Proof Sketch. First, note that the error probability under the alternate hypothesis (i.e., in case H is ε2-
far from having property ΠS) can be upper bounded with exactly the same reasoning as in the proof of
Theorem 4.2 (Eq. 14) to obtain

Ei,j,ℓ [P (|ϕi,ℓ⟩ ∼S |ϕi,j⟩)] ≤ 1− t2ε22 +
|S ∪ {I}|
d+ 1

+ 7t4 ≤ 1− t2ε22 + 8t4

for |S ∪ {I}| ≤ (d + 1)t4. So, we only have to adapt the analysis of the error probability under the null
hypothesis.

Therefore, suppose that H is ε1-close to having property ΠS and let H̃ ∈ ΠS be such that 1√
2n
∥H−H̃∥2 ≤

ε1. Following the reasoning from the proof of Theorem 4.2, we have to upper bound the expression

Ei,j,ℓ [P (|ϕi,ℓ⟩ ≁S |ϕi,j⟩)] =
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21 ({|ϕi,ℓ⟩ ≁S |ϕi,j⟩}) .

Using that under the event {|ϕi,ℓ⟩ ≁S |ϕi,j⟩}, we have both ⟨ϕi,ℓ| I |ϕi,j⟩ = 0 and ⟨ϕi,ℓ| H̃ |ϕi,j⟩ = 0, we can
expand the exponential series and obtain:

Ei,j,ℓ [P (|ϕi,ℓ⟩ ≁S |ϕi,j⟩)] =
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

| ⟨ϕi,ℓ| eitH |ϕi,j⟩ |21 ({|ϕi,ℓ⟩ ≁S |ϕi,j⟩})

=
1

d(d+ 1)

d+1∑
i=1

∑
j ̸=ℓ

∣∣∣∣∣∣
∑
m≥0

(it)m

m!
⟨ϕi,ℓ|Hm |ϕi,j⟩

∣∣∣∣∣∣
2

1 ({|ϕi,ℓ⟩ ≁S |ϕi,j⟩})

≤ 1

d(d+ 1)

d+1∑
i=1

∑
j,ℓ

∣∣∣∣∣∣it ⟨ϕi,ℓ| (H − H̃) |ϕi,j⟩+
∑
m≥2

(it)m

m!
⟨ϕi,ℓ|Hm |ϕi,j⟩

∣∣∣∣∣∣
2

=
1

d(d+ 1)

d+1∑
i=1

∑
j,ℓ

t2
∣∣∣⟨ϕi,ℓ| (H − H̃) |ϕi,j⟩

∣∣∣2 (19)

+ 2
1

d(d+ 1)
ℜ
d+1∑
i=1

∑
j,ℓ

it ⟨ϕi,ℓ| (H − H̃) |ϕi,j⟩
∑
m≥2

(−it)m

m!
⟨ϕi,j |Hm |ϕi,ℓ⟩ (20)

+

∣∣∣∣∣∣
∑
m≥2

(it)m

m!
⟨ϕi,ℓ|Hm |ϕi,j⟩

∣∣∣∣∣∣
2

. (21)

The term in (21) has already been upper bounded by t4 in the proof of Theorem 4.2. Now, we address the
remaining two terms. First, note that

(19) =
1

d(d+ 1)

d+1∑
i=1

∑
j,ℓ

t2Tr[|ϕi,ℓ⟩ ⟨ϕi,ℓ| (H − H̃) |ϕi,j⟩ ⟨ϕi,j | (H − H̃)]

=
1

d(d+ 1)

d+1∑
i=1

t2Tr[(H − H̃)2] = t2
Tr[(H − H̃)2]

d
≤ t2ε21 ,
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where the second step used that {|ϕi,j⟩}j forms an ONB for every i, and where the last step used that
1√
2n
∥H − H̃∥2 ≤ ε1. Now, we bound the final remaining term:

(20) = 2
1

d(d+ 1)
ℜ
d+1∑
i=1

∑
j,ℓ

∑
m≥2

(−1)m(it)m+1

m!
Tr
[
|ϕi,ℓ⟩ ⟨ϕi,ℓ| (H − H̃) |ϕi,j⟩ ⟨ϕi,j |Hm

]
= 2

1

d
ℜ
∑
m≥2

(−1)m(it)m+1

m!
Tr
[
(H − H̃)Hm

]
= 2

1

d

∑
m≥2, m odd

(−1)m(it)m+1

m!
Tr
[
(H − H̃)Hm

]
= 2

1

d

∑
m≥3, m even

(−1)m−1(it)m

(m− 1)!
Tr
[
(H − H̃)Hm−1

]
≤ 3t4 .

where the second step used that {|ϕi,j⟩}j forms an ONB for every i; the third step used that H = H†

and H̃ = H̃†, so that Tr
[
(H − H̃)Hm

]
∈ R for all m; the fourth step used |Tr[(H − H̃)Hm−1]| ≤ ∥H −

H̃∥1∥H∥m−1∞ ≤
√
d∥H − H̃∥2 ≤ d and thus

∑
m≥4

tm

(m−1)! |Tr((H − H̃)Hm−1)| ≤ 0.22 · dt4 since t ≤ 1.

Combining the upper bounds on (19), (20), and (21), we have shown that

Ei,j,ℓ [P (|ϕi,ℓ⟩ ≁S |ϕi,j⟩)] ≤ t2ε21 + 3t4 + t4 ≤ t2ε21 + 4t4 . (22)

Following the logic laid out in Appendix B.1, we set t2 = 1
20 (ε

2
2 − ε21) and the new decision rule is:

At step s = 1, . . . , N , let Es = {|ϕis,ℓs⟩ ∼S |ϕis,js⟩} and let Ēs be its complement. Answer the null
hypothesis iff

1

N

N∑
s=1

1({Ēs}) ≤
1

5
t2(2ε22 + 3ε21).

To control the error probability under the null hypothesis, we apply the Chernoff-Hoeffding inequality
[Hoe63]:

PH0

[
1

N

N∑
s=1

1({Ēs}) >
1

5
t2(2ε22 + 3ε21)

]
≤ exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥PH0

[
Ē
]))

≤ exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥t2ε21 + 4t4
))

= exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥1
5
t2(ε22 + 4ε21)

))
= exp

(
−N · 1

10
· t2 · (ε

2
1 − ε22)2

2ε22 + 3ε21

)
≤ δ

where we used our choice of t and KL(x∥y) ≥ 1
2x (x− y)

2 for x ≥ y and N =
⌈
30 log(1/δ)(ε22+ε

2
1)

t2(ε22−ε21)2

⌉
.
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The alternate hypothesis case is similar.

PH1

[
1

N

N∑
s=1

1({Ēs}) ≤
1

5
t2(2ε22 + 3ε21)

]
≤ exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥PH1

[
Ē
]))

≤ exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥t2ε22 − 8t4
))

= exp

(
−N KL

(
1

5
t2(2ε22 + 3ε21)

∥∥∥1
5
t2(3ε22 + 2ε21)

))
= exp

(
−N · 1

10
· t2 · (ε

2
1 − ε22)2

3ε22 + 2ε21

)
≤ δ

where we used our choice of t and KL(x∥y) ≥ 1
2y (x − y)2 for x ≤ y and N =

⌈
30 log(1/δ)(ε22+ε

2
1)

t2(ε22−ε21)2

⌉
=

O
(

log(1/δ)ε22
(ε22−ε21)3

)
= O

(
log(1/δ)

(ε2−ε1)3ε2

)
. This leads to a total evolution time Nt = O

(
log(1/δ)

√
(ε2−ε1)(ε2+ε1)

(ε2−ε1)3ε2

)
=

O
(

log(1/δ)
(ε2−ε1)2.5ε0.52

)
.

C Deferred proofs

The following Lemma uses the notation from the proof of Theorem 3.1.

Lemma C.1 (Generalized Le Cam). Let n ≥ Ω(1). Let k ≤ O
(

n
log(n)

)
. We have for α ≤ 1

10N :

EV∼Haar(d) [TV(P,QαV )] ≥
1

18
.

We use Le Cam’s method [Le 73]:

Proof of Lemma C.1. Let xk = λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉
and yk = λ

(k)
ik

〈
ϕ
(k)
ik

∣∣∣Uv,tkρkU†v,tk ∣∣∣ϕ(k)ik

〉
. Note that since

Tr(ρk) = 1 we have
∑
ik
xk =

∑
ik
yk = 1.

Let E be the event that η(V |0⟩⟨0|V † − I/d) is not (η/4)-close to any k-local Hamiltonian. On the one
hand, by the correctness of the algorithm and the data processing inequality, we have that:

TV(P,EV∼Haar(d)|E [QV ]) ≥ TV(Bern(1/3)∥Bern(2/3)) = 1

3
.

On the other hand, since we have P (E) ≥ 1− exp(−Ω(d)) by Lemma 3.2, we have by the triangle inequality:

TV(EV∼Haar(d) [QV ] ,EV∼Haar(d)|E [QV ])

=
1

2

∑
i

∣∣∣∣EV∼Haar(d) [QV (i)]− EV∼Haar(d)

[
QV (i)

1({E})
P (E)

]∣∣∣∣
=

1

2

1

P (E)
∑
i

∣∣P (E)EV∼Haar(d) [QV (i)]− EV∼Haar(d) [QV (i)1({E})]
∣∣

≤ 1

2

1

P (E)
∑
i

∣∣P (Ec)EV∼Haar(d) [QV (i)]1({E})
∣∣+ 1

2

1

P (E)
∑
i

∣∣P (E)EV∼Haar(d) [QV (i)1({Ec})]
∣∣

≤ 1

2

(
P (Ec)P (E)

P (E)
+ P (Ec)

)
≤ exp(−Ω(d)).
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So by the triangle inequality

EV∼Haar(d) [TV(P,QV )] ≥ TV(P,EV∼Haar(d) [QV ])

≥ TV(P,EV∼Haar(d)|E [QV ])− TV(EV∼Haar(d) [QV ] ,EV∼Haar(d)|E [QV ])

≥ 1

3
− exp(−Ω(d)) ≥ 2

9

for d (or, equivalently, n) larger than some constant.
The expected TV distance between P and QαV can be expressed as follows:

2EV∼Haar(d) [TV(P,QαV )]

= EV∼Haar(d)

 ∑
i1,...,iN

∣∣∣∣∣
N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ (αρk + (1− α)Uv,tkρkU
†
v,tk

)
∣∣∣ϕ(k)ik

〉
−

N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉∣∣∣∣∣


= EV∼Haar(d)

 ∑
i1,...,iN

∣∣∣∣∣
N∏
k=1

(αxk + (1− α)yk)−
N∏
k=1

(αxk + (1− α)xk)

∣∣∣∣∣


= EV∼Haar(d)

 ∑
i1,...,iN

∣∣∣∣∣∣
∑
S⊂[N ]

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk −
∏
k/∈S

xk

)∣∣∣∣∣∣


≥ EV∼Haar(d)

[ ∑
i1,...,iN

∣∣∣∣∣∑
S=∅

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk −
∏
k/∈S

xk

)∣∣∣∣∣
−

∑
i1,...,iN

∣∣∣∣∣∣
∑

∅̸=S⊂[N ]

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk −
∏
k/∈S

xk

)∣∣∣∣∣∣
]

When S = ∅, we recover the TV distance between P and Q up to a factor as follows:

EV∼Haar(d)

 ∑
i1,...,iN

∣∣∣∣∣∑
S=∅

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk −
∏
k/∈S

xk

)∣∣∣∣∣


= EV∼Haar(d)

 ∑
i1,...,iN

∣∣∣∣∣(1− α)N
(

N∏
k=1

yk −
N∏
k=1

xk

)∣∣∣∣∣


= EV∼Haar(d)

(1− α)N ∑
i1,...,iN

∣∣∣∣∣
N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣Uv,tkρkU†v,tk) ∣∣∣ϕ(k)ik

〉
−

N∏
k=1

λ
(k)
ik

〈
ϕ
(k)
ik

∣∣∣ ρk ∣∣∣ϕ(k)ik

〉∣∣∣∣∣


= 2(1− α)NEV∼Haar(d) [TV(P,QV )] ≥
4(1− α)N

9
.
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When S ̸= ∅, we can use the triangle inequality:

∑
i1,...,iN

∣∣∣∣∣∣
∑

∅̸=S⊂[N ]

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk −
∏
k/∈S

xk

)∣∣∣∣∣∣
≤

∑
i1,...,iN

∑
∅̸=S⊂[N ]

α|S|(1− α)N−|S|
∏
k∈S

xk

(∏
k/∈S

yk +
∏
k/∈S

xk

)

=
∑

∅̸=S⊂[N ]

α|S|(1− α)N−|S|
∑

i1,...,iN

∏
k∈S

xk

(∏
k/∈S

yk +
∏
k/∈S

xk

)

=
∑

∅̸=S⊂[N ]

α|S|(1− α)N−|S|
∏
k∈S

∑
ik

xk

(∏
k/∈S

∑
ik

yk +
∏
k/∈S

∑
ik

xk

)
= 2(1− (1− α)N ).

Therefore:

2EV∼Haar(d) [TV(P,QαV )] ≥
4(1− α)N

9
− 2(1− (1− α)N ).

Let α = c
N where 0 ≤ c ≤ 1/10 is a small constant. We have:

4

9
(1− α)N − 2(1− (1− α)N ) =

22

9

(
1− c

N

)N
− 2 ≥ 22

9
(1− c)− 2 =

4− 22c

9
≥ 1

9
.

Therefore

EV∼Haar(d) [TV(P,QαV )] ≥
1

18
.

Lemma C.2. For all x ∈ [ 1
10N ,∞),

(− log)(x) ≤ −(x− 1) + 2 log(10N)(x− 1)2 .

Proof. Let f(x) = log(x)− (x− 1) + 2 log(10N)(x− 1)2. We have for c = 1
4 log(10N) < 1:

f ′(x) =
1

x
− 1 + 4 log(10N)(x− 1) =

(1− x)
cx

(c− x) ,

which is positive for x ∈ (0, c) ∪ (1,∞) and negative for c < x < 1, limx→0+ f(x) = −∞ and f(1) = 0.
Hence, there is a 0 < c′ < c such that:

x ≥ c′ ⇐⇒ f(x) ≥ 0.

But we have

f

(
1

10N

)
= − log(10N)− 1

10N
+ 1 + 2 log(10N)

(
1− 1

10N

)2

≥ 1− 1

10N
> 0 .

Thus, we can take c′ < 1
10N and for all x ≥ 1

10N > c′ we have f(x) ≥ 0.

D Weingarten Calculus

As we use a random Hamiltonian constructed from sampling a Haar-random unitary matrix in our lower
bound proofs, we need some facts from Weingarten calculus in order to compute the corresponding expecta-
tion values with respect to the Haar measure. If π is a permutation of [n], let Wg(π, d) denote the Weingarten
function of dimension d. The following lemma is useful for our results.
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Lemma D.1 ([Gu13]). Let U be a Haar-distributed unitary (d×d)-matrix and let {Ai, Bi}ni=1 be a sequence
of complex (d× d)-matrices. We have the following formula for the expectation value:

E [Tr(UB1U
∗A1U . . . UBnU

∗An)]

=
∑

α,β∈Sn

Wg(βα−1, d)Trβ−1(B1, . . . , Bn)Trαγn(A1, . . . , An),

where γn = (12 . . . n) and Trσ(M1, . . . ,Mn) = ΠjTr(Πi∈Cj
Mi) for σ = ΠjCj and Cj are cycles.

We will also need some values of Weingarten function:

Lemma D.2 ([CŚ06]). The function Wg(π, d) has the following values:

• Wg((1), d) = 1
d ,

• Wg((12), d) = −1
d(d2−1) ,

• Wg((1)(2), d) = 1
d2−1 ,

• Wg((123), d) = 2
d(d2−1)(d2−4) ,

• Wg((12)(3), d) = −1
(d2−1)(d2−4) ,

• Wg((1)(2)(3), d) = d2−2
d(d2−1)(d2−4) ,

• Wg((1234), d) = − 5
d7−14d5+49d3−36d ,

• Wg((12)(34), d) = d2+6
d8−14d6+49d4−36d2 ,

• Wg((123)(4), d) = 2d2−3
d8−14d6+49d4−36d2 ,

• Wg((12)(3)(4), d) = − 1
d5−10d3+9d ,

• Wg((1)(2)(3)(4), d) = d4−8d2+6
d8−14d6+49d4−36d2 .
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