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Abstract

A reduced-order model (ROM) of the global oceans is developed by project-
ing the hydrostatic Boussinesq equations of motion onto a proper orthogonal
decomposition (POD) basis. Three-dimensional POD modes are calculated from
the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the
POD ROM are calculated using a regression approach. The performance of var-
ious POD ROM configurations are assessed. Each configuration is derived from
an alternate sea-water equation of state, linking the density and temperature
fields. POD ROM variants incorporating an equation of state in which density is
a quadratic function of temperature, are able to reproduce the statistics of the
large-scale structures at a fraction of the computational cost required to numer-
ically simulate this flow. Due to the speed and efficiency of calculation, such
reduced-order models of the global geophysical system will enable researchers
and policy makers to assess the physical risk for a broader range of potential
future climate scenarios.
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1 Introduction

Geophysical turbulence is highly dimensional, nonlinear, and multi-scale. Scales of
motion range from planetary waves with lengths in the order of 10, 000km to
millimetre sized turbulence [1]. It is chaotic, whilst still comprising of large-scale
three-dimensional coherent structures with significant temporal and spatial correla-
tions [2, 3]. Our ability to understand and predict such physical phenomena benefits
from reducing these systems to their most basic building blocks. As Einstein famously
put it in his 1933 lecture, “It can scarcely be denied that the supreme goal of all the-
ory is to make the irreducible basic elements as simple and as few as possible without
having to surrender the adequate representation of a single datum of experience” [4].
This quote has commonly been paraphrased to state that a model should be as simple
as possible but not simpler. One might consider reduced-order modelling as a mathe-
matical representation of this statement. Here, we develop such reduced-order models
(ROM) to simulate the global oceans.

There are numerous approaches to model reduction. In a Galerkin projection,
continuous equations of motion are solved on a truncated basis. Such a basis serves
as a collection of the aforementioned basic elements, or building blocks. There are
many techniques to calculate such a basis tailored to the flow configuration of interest.
Methods include, but are not limited to: linear stability (or normal) modes [5–7];
principle oscillation pattern type methods [8–11]; finite time variants of normal modes
[12]; cyclic principle oscillation patterns [13]; covariant Lyapunov vectors [14]; and bred
vectors [15]. Many of these methods can be considered as subsets of a more general
convex coding framework [16]. The basis adopted in this study, is the proper orthogonal
decomposition (POD), also referred to in other fields as empirical orthogonal functions,
or a singular value decomposition.

A POD is a set of orthogonal basis functions for a given series of observations (or
snapshots). These modes can be used to describe the unsteady motions of turbulent
flows [17]. The POD basis is designed to maximise a specified non-negative norm (e.g.
kinetic energy). By definition, this norm decays monotonically for each subsequent
mode. To develop a POD ROM, one projects appropriate equations of motion onto the
POD basis, producing a set of ordinary differential equations (ODEs). These ODEs
can be solved at a fraction of the computational cost used to generate the original data
set. One can calculate the coefficients in the ODEs from their analytical expressions
[18, 19] or using regression approaches [20, 21]. These approaches are designed to
evolve the instantaneous flow field forward in time. Alternate Bayesian [22] and statis-
tical dynamical closure methods [23] simulate properties of the probability distribution
function. In this study, we will develop the first ever POD ROM of the global oceans,
as represented within a global reanalysis dataset.

In general, reanalyses are generated using some form of data assimilation to modify
imperfect simulations of reality with a series of partial and potentially noisy mea-
surements [24]. This results in a better representation of the true system state than
could be achieved with measurements or simulations alone. Numerical simulations of
the global oceans (and atmosphere) are undertaken by codes referred to as general
circulation models (GCMs). Freely running GCMs can possess significant biases, due
in part to the: unresolved scales of motion; parameterisation of unresolved physical
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processes; and the artificial dissipation introduced by spatial discretisation and time
stepping schemes [25]. Reanalyses mitigates against such biases and provide the best
possible estimate of the historical climate.

However, reanalyses are limited to the period over which sufficient historical obser-
vations are available. The atmosphere has been well observed since the introduction of
satellite monitoring in the 1970s. Satellites have also provided sufficient observations
for the ocean surface temperatures, but not within the ocean volume. The global ocean
interior has arguably only been well observed since the mid to late 2000s (see figures
1 and 2 of [26]), coinciding with the increased density of the in-situ ocean monitoring
network [27]. Fortunately, the Climate Analysis Forecast Ensemble (CAFE) reanaly-
sis, denoted by CAFE-60 [26], provides 96 realisations of the Earth each month. All
realisations satisfy the equations of motion, and the partial observations of the Earth
system. CAFE-60 is the dataset adopted herein. It has been shown to be consistent
with other world-class data sets on multiple fronts, including the representation of
large scale climate phenomena (e.g. the El Niño / La Niña cycle) [28].

The manuscript is organised as follows. The CAFE-60 reanalysis is first charac-
terised in section 2. The snapshot POD method is presented in section 3, and applied
to the velocity and temperature fields. The POD ROM dynamical system is derived
in section 4, with the hydrostatic Boussinesq equations of motion for the global ocean
projected onto the POD modes. A derivation of the oceanic equations of motion can
be found in appendix A. The most general equation of state adopted herein, is one in
which the density of seawater is a quadratic function of temperature. We also assess
equations of state in which density is linearly dependent upon temperature, and also
one with no temperature dependence. Each of these assumed equations of state yield
different sets of coefficients in the POD ROM dynamical system. In section 5, lin-
ear regression is used to calculate the POD ROM coefficients associated with these
equations of state, as well as some additional variants. Further details on the regression
approach is presented in appendix B. We use all of the CAFE-60 ensemble mem-
bers to learn the POD ROM coefficients, which provides us with a factor of 96 times
more samples than one would have if only one state estimate was available per time
instant. The evolution and assessment of the optimal POD ROM system is presented
in section 6. Finally, concluding remarks are made in section 7.

2 Reanalysis and flow characterisation

In CAFE-60 [26, 28], numerical simulations and real-world observations are fused
together via the ensemble transform Kalman filter algorithm [29, 30]. In essence, this
algorithm sums together the simulated and observed data inversely weighted by their
respective uncertainties. The CAFE system manages an ensemble of 96 simultaneous
numerical simulations of the global climate starting from different initial conditions.
The spatio-temporally varying model uncertainty is quantified by the covariance
matrix calculated across the 96 ensemble members. The adopted GCM solves for the
coupled global atmosphere, ocean, sea-ice, land and bio-geo-chemical system [31]. The
correction of all prognostic variables within the GCM are determined on the basis of a
comprehensive network of global real world observations, with uncertainties prescribed
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for each observation class (e.g. satellites, floats). This approach has also been used to
simultaneously estimate both prognostic variables and model parameters [32]. CAFE-
60 provides three-dimensional fields for the entire ensemble every month from 1960
to 2020. It is effectively a spatio-temporally varying sampled probability distribution
function of the global climate.

Whilst CAFE-60 provides the prognostic variables pertaining to the atmosphere,
ocean, sea-ice, land and bio-geo-chemistry, in this study we require only the ocean
variables. We analyse the monthly averaged ocean fields over the period from January
2010 to December 2020, which are a function of time t, and space x = (x, y, z). The
spatial coordinates are attached to the rotating Earth, where x is positive pointing
east (longitudinal direction), y is positive pointing north (latitudinal or meridional
direction), and z is positive pointing upupward normal to the surface of the Earth. The
Earth’s surface is located at z = 0, with ocean depth defined as −z. The zonal (south
to north), meridional (west to east) and vertical velocity components are denoted by
u, v and w, respectively. The ocean grid has 50 vertical levels, with grid spacings of
10m up to a depth of 200m. The vertical grid spacings then increase as they approach
the latitudinally and longitudinally dependent ocean floor, which is nowhere deeper
than 6km. The grid is unstructured in the horizontal plane, however, it nominally has
a longitudinal resolution of 1◦, with the latitudinal resolution finer in specific regions.
In the generation of the data, the time step size of the ocean model component was
1 hour. The data has been output as monthly averages, hence the time interval between
the samples is one month.

To facilitate the following discussion, for a given ensemble member (e), we define the
state vector qe = (ue, Te), comprising of the temperature (Te), and horizontal velocity
vector ue = (ue, ve) with eastward zonal (ue), and northward meridional (ve) velocity
components. The subscript e on each of the state variables refers to the ensemble mem-
ber index. In the CAFAE-60 dataset e ranges from 1 to 96, inclusive. WeNote, we focus
on only the horizontal velocity components, since in the hydrostatic approximation,
the vertical velocity component is a diagnostic field as opposed to a prognostic one -
see appendix A.

The boundary conditions of the physical system are both periodic (e.g. solar radi-
ation) and aperiodic (e.g. growing greenhouse gas concentration) in nature. This gives
rise to trends, and variability on annual and inter-annual timescales in the monthly
averaged fields. Since we are only considering the most recent decade, the trend com-
ponent is negligible, and can safely be ignored. The flow is then decomposed using the
triple decomposition of [33] such that

qe(x, t) = q̄e(x) + q̃e(x, t) + q′
e(x, t) , (1)

where q̄e(x) is the time average, and q̃e(x, t) is the seasonal component with a 1-
year phase period and time mean of zero. The remaining q′

e(x, t) term, represents the
anomalous inter-annual fluctuations about the seasonal cycle. We also define q̆e(x, t) =
q̄e(x)+ q̃e(x, t), as the phase (or climatological) component. The phase angles are the
twelve calendar months

ϑ ∈ [January, . . . ,December] ≡ [Jan, . . . ,Dec] ≡ [1, . . . , 12] . (2)
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The climatological component is reconstructed according to

q̆e(x, t) = q̄e(x) +

Dec∑
ϑ=Jan

q̃ϑ
e (x) d

ϑ(t) ≡
Dec∑

ϑ=Jan

q̆ϑ
e (x) d

ϑ(t) , (3)

where dϑ(t) is a time series equal to 1 within the associated month ϑ, and zero
otherwise, with the property

Dec∑
ϑ=Jan

dϑ(t) = 1 , (4)

for all time t. The term q̃ϑ
e (x) is the average deviation from the mean of season ϑ.

The associated phase averaged field is calculated in the usual way according to

q̆ϑ
e (x) = q̄e(x) + q̃ϑ

e (x) =

Nyears∑
ι=1

qe(x, t0 + ϑ+ ιNϑ) , (5)

for each phase angle ϑ, where t0 is the time of the first data instance, Nyears the
number of years in the data set, and Nϑ = 12 being the number of months per year
(i.e. number of phase angles). The ensemble average is the best estimate of the system
state given by

q(x, t) =
1

Nens

Nens∑
e=1

qe(x, t) , (6)

where the number of ensemble members Nens = 96. One can also take the ensemble
average of the individual components within the triple decomposition.

To characterise the flow, properties in the latitude / longitude plane at the sea
surface are illustrated in figure 1. The rows from top to bottom illustrate statistics for
the zonal (west to east) velocity, meridional (south to north) velocity and temperature
fields. The columns from left to right illustrate the mean, standard deviation of the
seasonal cycle, and standard deviation of the fluctuations about the seasonal cycle.
To facilitate a direct comparison of the zonal velocity standard deviations, the same
colour bars are adopted for the seasonal component in figure 1(b) and the anomalous
fluctuations in figure 1(c). A common colour bar is also used for the associated stan-
dard deviations of the meridional velocity in figures 1(e) and 1(f). Typical of the Earth
system, the variability in the seasonal cycle is larger than the inter-annual variability
in most locations, and particularly so in the tropics. This is a result of the seasonal
changes in the solar forcing, due to the Earth’s inclined axis of rotation, and its ellip-
tical orbit around the Sun. The seasonal variability in the fluid fields arises due to
shifts in location of the mean structures. The Southern Ocean is perhaps an exception,
where many of the mean velocity structures are persistent, and have a lesser depen-
dence upon the seasons, as quantified by the lower seasonal standard deviations in
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this region. This lack of seasonality is due to the ocean currents in this region being
steered by the continental geometry and ocean floor topography. Whilst we present
here the mean and standard deviations of the flow field, the velocity fields are in fact
non-Gaussian in time, with a spatially dependent skewness.

The mean temperature field has a strong dependence upon latitude as illustrated
in figure 1(g). It is warmer in the tropics and cooler in the polar regions due to the
additional distance the solar radiation must travel to reach the higher latitudes. The
seasonal variability in temperature is significantly greater than its inter-annual vari-
ability. Notice the change in colour bar limits in figures 1(g) and 1(h). This difference
in variability is more stark than what was previously observed for the velocity fields.
Unlike the velocity field, the temperature field in the Southern Ocean does have signif-
icant seasonal variability. This is due to the strong influence the cyclical solar forcing
has on ocean stratification in this region. The Pacific ocean is the zone of greatest
variability in the fluctuating temperature field in figure 1(h). It is coincident with the
principle location of the El Niño Southern Oscillation, with canonical phases El Niño
and La Niña [34]. The POD presented in the following section decomposes the fluc-
tuating (or anomalous) velocity and temperature fields to further characterise the
dynamics. The temperature fields are also non-Gaussian in time, with the spatially
dependent non-zero skewness.

3 Proper Orthogonal Decompositions

The snapshot POD method [35] is utilised in this study as it is computationally more
efficient when the spatial resolution exceeds the temporal resolution, which is in case
here. As required for the POD ROM to follow, we calculate a POD for the fluctuating
components of the ensemble averaged fields. The ensemble averaged state vector is
decomposed into its mean, seasonal and fluctuating components according to

q(x, t) = q̄(x) + q̃(x, t) + q′(x, t) . (7)

One POD is calculated for the anomalous horizontal velocity vector field (u′), and
another for the anomalous temperature scalar field (T ′). It is perhaps non-standard
in the fluid mechanics literature to calculate POD modes on the fluctuations about a
cycle, as opposed to the fluctuations about a static mean. This is perhaps because in
engineering applications, one is interested in how the period of q̃(x, t), might change
under different Reynolds numbers and other flow parameters. In the present geophys-
ical application, however, q̃(x, t) is the seasonal cycle, with a phase period fixed by
the Earth’s orbit. In this instance, one is primarily interested in understanding the
anomalies and making predictions more skilful than prescribing the repeating seasonal
cycle. Given this motivation, the snapshot POD method is applied to the fluctuations
about the phase average.

The POD of the anomalous horizontal velocity field requires the solution of the
following eigenvalue problem

Ea(n) = Λ(n)
u a(n) , (8)
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Fig. 1 Statistical properties at the sea surface. Time mean (first column), standard deviation of
the seasonal cycle (second column), and standard deviation of the fluctuations (third column) for the
zonal velocity (first row in ms-1), meridional velocity (second row in ms-1) and temperature (third
row in ◦C) fields.

where the elements of the covariance matrix E are given by

Eki =
1

Ns
⟨u′(x, tk),u

′(x, ti)⟩u for 0 < k, i < Ns − 1 , (9)

with Ns the number of snapshots. The inner product is defined as

⟨u′(x, tk),u
′(x, ti)⟩u =

∫
V

u′(x, tk) · u′(x, ti) dV , (10)

where V is the integration volume. E is a positive symmetric matrix of leading dimen-

sion Ns. The matrix E, therefore, has Ns non-negative real eigenvalues Λ
(n)
u , and

associated eigenvectors a(n). This inner product is representative of the kinetic energy
in the anomalies of the horizontal velocity components throughout the entire ocean
volume, and is also required for the POD ROM to follow.
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The elements in the eigenvector a(n), are instances in time of the temporal POD
mode a(n)(t). The temporal modes are normalised such that

a(n)(t) a(m)(t) =
1

Ns

Ns∑
k=1

a(n)(tk) a
(m)(tk) = Λ(n)

u δnm , (11)

which ensures the amplitude is proportional to the kinetic energy in the mode, and
δnm is the Kronecker delta function. The spatial modes U (n)(x) ≡ (U (n)(x),V(n)(x)),
are then calculated via

U (n)(x) =
1

NsΛ
(n)
u

Ns∑
k=1

a(n)(tk) u
′(x, tk) , (12)

which by definition are also orthogonal such that〈
U (n)(x),U (m)(x)

〉
u
= δnm . (13)

The horizontal velocity vector field can then be reconstructed by

u(x, t) = ū(x) + ũ(x, t) + u′(x, t)

≃ ū(x) +

Dec∑
ϑ=Jan

dϑ(t) ũϑ(x) +

Nu∑
n=1

a(n)(t) U (n)(x) . (14)

The reconstruction is exact when Nu = Ns. The equations of motion are projected
onto this decomposition in the POD ROM section to follow.

Following the same procedure we develop the temperature decomposition

T (x, t) = T̄ (x) + T̃ (x, t) + T ′(x, t)

≃ T̄ (x) +

Dec∑
ϑ=Jan

dϑ(t) T̃ϑ(x) +

NT∑
n=1

b(n)(t) T (n)(x) , (15)

where b(n)(t) is the n-th temporal POD mode, and NT the number of modes retained
in the reconstruction. The inner product associated with the scalar temperature field
is given by

⟨T ′(x, tk), T
′(x, ti)⟩T =

∫
V

T ′(x, tk) T
′(x, ti) dV . (16)

It has analogous orthogonality properties of
〈
T (n)(x), T (m)(x)

〉
T

= δnm and

b(n)(t) b(m)(t) = Λ
(n)
T δnm, where Λ

(n)
T is the variance of each mode. This decomposi-

tion will contribute to the source term in the POD ROM presented in the following
section.

8



u T
0

20

40

60

80

100

120

%
 to

ta
l v

ar
ia

nc
e

(a) seasonal and fluctuating variance
seasonal (u, T)
inter-annual (u′, T ′)

100 101 102

mode index

10 2

10 1

100

101

%
 v

ar
ia

nc
e 

pe
r m

od
e

(b) POD spectra of u′

0

20

40

60

80

100

%
 c

um
m

ul
at

iv
e 

va
ria

nc
e

per mode
cummulative

100 101 102

mode index

10 2

10 1

100

101

%
 v

ar
ia

nc
e 

pe
r m

od
e

(c) POD spectra of T ′

0

20

40

60

80

100

%
 c

um
m

ul
at

iv
e 

va
ria

nc
e

per mode
cummulative

Fig. 2 Decomposition of variability in the horizontal velocity (u) and temperature (T ) fields.

(a) Contribution of seasonal (ũ, T̃ ) and anomalous variability (u′, T ′), with white hatched regions
indicating the amount of anomalous variance required to reach 90% of total variance. (b) POD spectra
of u′. (c) POD spectra of T ′. White hatched regions in (b) and (c) indicate the number of POD
modes required to reach 90% of total variance.

We now describe the distribution of variability in the velocity and temperature
fields. Figure 2(a) illustrates the breakdown of the globally integrated variability
between the seasonal (green) and anomalous (blue) components. As discussed in the
previous section, the seasonal component is the dominant source of variability in the
climate system. Here the seasonal component contributes 60% of the total horizon-
tal velocity field variability and 67% of the total temperature variability. The white
hatched zone in these bar graphs indicate the additional amount of variability from
the fluctuating component required to reach 90% of the total variability in the system.
The variability associated with each mode in the velocity and temperature field POD
are illustrated in figures 2(b) and 2(c), respectively. The black lines illustrate the vari-
ance per mode as a percentage of the total anomalous variance in the decomposition.
The temperature POD has a greater concentration of variability in the first few modes
and a steeper decay of variance with mode index as compared to the velocity POD
spectra. The blue shaded region illustrates the cumulative variance again as a percent-
age of the total anomalous variance. Consistent with figure 2(a), the white hatched
region indicates the amount of anomalous variance required, which in addition to the
seasonal component, captures 90% of the total variance. For the velocity field 20 POD
modes are required, whilst for the temperature field only 6 POD modes are needed.

These six most energetic temperature POD modes are illustrated in figure 3. The
solid lines in figure 3(a) are the temporal modes b(n)(t). The multi-year time scale of
the first two temporal POD modes are consistent with the nominal oscillation period
between El Niño and La Niña states. The large amplitudes for modes b(1) and b(2)

in the beginning of 2016 coincides with a large El Niño event. This particular event
is characterised in more detail in figure 1 of [36]. The spatial patterns in the tropical
Pacific ocean of the first two modes in figure 3(b) and figure 3(c) are also indicative
of the variability associated with the El Niño Southern Oscillation. The higher order
modes have shorter time scales, and comparatively more variability distributed in the
higher latitude regions. We can also use this decomposition to determine the relative
variability over the ensemble of climates. The shaded envelope in figure 3(a) is the
range of coefficients across all 96 ensemble members. This is calculated by applying the
inner product (16) between spatial mode T (n)(x) and each temperature field Te(x, t),

9



2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
year

0.15

0.10

0.05

0.00

0.05

0.10

0.15

b(n
) (t

) [
C]

(a) temperature temporal modes
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(b) (1)(x)

14

10

6

2

2

6

10

14

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(c) (2)(x)

14

10

6

2

2

6

10

14

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(d) (3)(x)

14

10

6

2

2

6

10

14

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(e) (4)(x)

14

10

6

2

2

6

10

14

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(f) (5)(x)

14

10

6

2

2

6

10

14

0°E 60°E 120°E 180° 120°W 60°W0°E

60°S

30°S

0°

30°N

60°N

(g) (6)(x)

14

10

6

2

2

6

10

14

Fig. 3 POD of anomalous temperature variability. (a) Temporal modes of six most energetic modes,
b(n)(t) (solid coloured lines), with range of coefficients for each mode across the 96 member ensemble
(shaded coloured envelope), all in units of ◦C. Associated dimensionless spatial modes: (b) T (1)(x) ;
(c) T (2)(x) ; (d) T (3)(x) ; (e) T (4)(x) ; (f) T (5)(x) ; and (g) T (6)(x).

for all time t and all ensemble members e. The fact that these envelopes tightly follow
the temporal modes, indicates that the variability of the ensemble mean over time, is
greater than the uncertainty across the ensemble at a given instant in time.

The horizontal velocity field POD is illustrated in figure 4. The temporal modes
in figure 4(a) have shorter dominant time scales as compared to those of the temper-
ature POD. The spatial patterns of the velocity components are also of smaller scale
as compared to the temperature modes. Note, the colour bars for the zonal velocity
in left column are all the same. Likewise, the colour bars for the meridional velocity
component in the right column are all the same. Moving from the top row of maps to
the bottom, the mode index increases, and the variability is progressively distributed
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Fig. 4 POD of anomalous horizontal velocity variability. (a) Temporal modes of six most energetic
modes, a(n)(t) (solid coloured lines), with range of contributions of each mode across the 96 member
ensemble (shaded coloured envelope), all in units of ms-1. Zonal and meridional components of the
dimensionless spatial modes, for the three most energetic: (b) U(1)(x) ; (c) V(1)(x) ; (d) U(2)(x) ; (e)
V(2)(x) ; (f) U(3)(x) ; and (g) V(3)(x).

away from the tropical regions and toward the higher latitudes. This is most evident
in the meridional velocity. Returning to the temporal POD modes in figure 4(a), the
width of the shaded range across the ensemble for these velocity modes is relatively
larger than that observed for the temperature modes. More precisely, the variability
across the ensemble relative to the variability of the ensemble mean in time, is larger
for the temporal velocity POD modes as compared to the temperature ones. Note,
in CAFE-60 ocean temperatures are directly observed via satellite measurements and
floats. The velocity field on the other hand is not directly observed, and rather inferred
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via its dynamical relationship to temperature and other observed quantities. Conse-
quently there is a greater diversity of velocity fields that satisfy both the equations
of motion and available observations. The velocity and temperature POD provide the
basis for our ROM to follow.

4 Derivation of POD ROM dynamical system

Our POD ROM is based on the hydrostatic Boussinesq equations of motion for the
global ocean. As derived in appendix A this system of equations can be written in the
compact vector form

∂u

∂t
= N (u,u) +L(u) +M(T, T ) + S(T ) , where (17)

N (u,v) = −u ·∇hv +

∫ 0

z

∇h · u dz
∂v

∂z
, (18)

L(u) = f [(e2 · u)e1 − (e1 · u)e2] , (19)

M(T,Υ) = − g

ρ0

∫ 0

z

2γ2T∇hΥdz , (20)

S(T ) = − g

ρ0

∫ 0

z

(γ1z − 2γ2Tref)∇hTdz , (21)

and u = (u, v) as defined previously, with ∇h the horizontal derivative operator. Here
z is used to distinguish the terms in the integrand from the lower limit in the integral.
Note, z is the lower limit in the integral because the ocean surface is at z = 0, and
since z is positive upward, then the ocean depths all have negative values of z. The
unit vectors e1 = (1, 0) and e2 = (0, 1), the gravity g = 9.81ms-2, and the Coriolis
parameter f = 2Ω sinϕ, with ϕ the latitude, and Ω = 7.292 × 10−5s-1 the angular
velocity magnitude of the Earth. The nominal ocean density is ρ0 ≈ 1.04 g cm-3. The

vector v is of the same type as u, and has been introduced here to write N in the general manner required

below. N is a nonlinear operator. For the purposes of defining (17) one could express
N as simply a function of u. However, here we define N as a function of the two vec-
tor quantities of equivalent type, u and v, which is required to define the POD ROM
coefficients below. Likewise, the scalar Υ is of the same type as T , and introduced to
write M in a sufficiently general way. The coefficients γ1, γ2, and Tref are associated
with the non-linear equation of state for seawater, linking the temperature field to
density - see appendix A. The viscous term would ordinarily appear in the L(u) term,
but is negligible for the global ocean at the scales resolved in the current reanalysis.

We produce a POD ROM of this system by applying the horizontal velocity field
inner product (10), between the n-th velocity spatial POD mode, U (n), and the
equations of motion in (17), such that〈

U (n),
∂u

∂t

〉
u

=
〈
U (n),N (u,u) +L(u) +M(T, T ) + S(T )

〉
u

. (22)
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The POD ROM is derived by substituting in the velocity and temperature decomposi-
tions of (14) and (15), into (22). Expanding the terms and applying the orthogonality
properties, results in the ordinary differential equations (ODE)

˙̂a(n)(t) =

Dec∑
ϑ=Jan

[
Dϑ

nḋ
ϑ(t) + Cϑ

nd
ϑ(t) +

Dec∑
ϑ′=Jan

Fϑϑ′

n dϑ(t)dϑ
′
(t)

]

+

Dec∑
ϑ=Jan

[
Nu∑
m=1

Lϑ
nmâ(m)(t)dϑ(t) +

NT∑
m=1

Zϑ
nmb(m)(t)

]

+

Nu∑
m=1

Nu∑
k=1

Qnmkâ
(m)(t) â(k)(t) +

NT∑
m=1

NT∑
k=1

Rnmkb
(m)(t) b(k)(t) , (23)

where the number of modes used in the velocity and temperature decompositions
are Nu = 20 and NT = 6, respectively. As discussed previously, these numbers of
modes ensure that 90% of the total variance is captured in both decompositions. The
superscript ˙ denotes a time derivative. The ˆ notation is introduced here to distinguish
these dynamical representations from the temporal modes calculated from the original
data. The temporal velocity POD modes, â(n)(t), are dynamically evolved, whilst the
temperature modes, b(n)(t), are prescribed akin to a source term. The superscripts on
the termsDϑ

n, C
ϑ
n , F

ϑϑ′

n , Lϑ
nm, and Zϑ

nm, denotes that these coefficients are symbolically
functions of seasonally dependent fields, as expanded upon in the following paragraph.

The coefficients in (23) can all in principle be calculated from the spatial POD
modes and phase averaged fields, using the expressions provided below. Note, we do
not do so here, but these symbolic representations provide the justifications for the
input factors used in the regression approach to calculating these coefficients. Firstly,
Dϑ

n is associated with the time derivative of the seasonal cycle being brought over
from the left hand side of (22), and is given by

Dϑ
n =

〈
U (n),−ũϑ

〉
u

. (24)

The coefficients involving linear and quadratic functions of the seasonal cycle, are
respectively given by

Cϑ
n =

〈
U (n),L(ŭϑ) + S(T̆ϑ)

〉
u

, and (25)

Fϑϑ′

n =
〈
U (n),N (ŭϑ, ŭϑ′

) +M(T̆ϑ, T̆ϑ′
)
〉
u

. (26)

Note, due to the properties of dϑ(t), on the raw data dϑ(t)dϑ
′
(t) = δϑϑ′ for all t.

This means that Fϑϑ′

n is only non-zero when ϑ = ϑ′. However, when applied to the
temporally interpolated time series, dϑ(t)dϑ

′
(t), and hence Fϑϑ′

n , are strictly speaking
also non-zero for adjacent months such that |ϑ − ϑ′| ≤ 1. The linear velocity POD
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terms are

Lϑ
nm =

〈
U (n),N (U (m), ŭϑ) +N (ŭϑ,U (m)) +L(U (m))

〉
u

. (27)

The velocity POD quadratic terms have no seasonal dependence justified by the
equations of motion and are given by

Qnmk =
〈
U (n),N (U (m),U (k))

〉
u

. (28)

Note, by virtue of the symmetry properties in summation of these quadratic terms in
the (23), one can redefine Qnmk to be (Qnmk + Qnkm)/2, without loss of generality.
The linear temperature POD mode coefficients are

Zϑ
nm =

〈
U (n),M(T (m), T̆ϑ) +M(T̆ϑ, T (m)) + S(T (m))

〉
u

. (29)

Finally the temperature POD quadratic terms also have no seasonal dependence and
are given by

Rnmk =
〈
U (n),M(T (m), T (k))

〉
u

. (30)

Again, one can redefine Rnmk to be (Rnmk +Rnkm)/2, without loss of generality. To
determine the POD ROM coefficients using the above equations, one must calculate
sufficiently accurate spatial derivatives. This can be particularly difficult for com-
plex geometries on arbitrary grids. Here we adopt an alternate approach, where these
coefficients are instead calculated using linear regression, as outlined in the following
section.

Given the above symbolic representations, one can define a set of physically mean-
ingful subsets of coefficients. Each subset is associated with simplified versions of the
equation of state linking density to temperature. To represent the full complexity of
the quadratic equation of state all of the coefficients are required, namely Cϑ

n , F
ϑϑ′

n ,
Dϑ

n, L
ϑ
nm, Qnmk, the seasonally varying linear temperature coefficients Zϑ

nm, and sea-
son invariant quadratic temperature coefficients Rnmk. We also test variants when
quadratic temperature coefficients Rnmk are excluded, to determine their relative
importance. One can also define an equation of state in which density is only linearly
dependent upon temperature by excluding the M operator. In this instance the only
non-zero coefficients are Cϑ

n , F
ϑϑ′

n , Dϑ
n, L

ϑ
nm, Qnmk and a season invariant linear tem-

perature coefficient Znm. Finally when all temperature terms are removed, the only
non-zero coefficients are Cϑ

n , F
ϑϑ′

n , Dϑ
n, L

ϑ
nm and Qnmk. In this case density can only

be depth dependent. We also additionally test all of the above variants without the
nonlinear meanfield coefficients Fϑϑ′

n , and without both coefficients Dϑ
n and Fϑϑ′

n .

5 Calculation of the POD ROM coefficients

The true value of the POD temporal modes and their time derivatives are known from
the raw data. Based on the form of the ODEs in (23), one can then form the following
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regression problem

Y = βX , (31)

solved separately for each mode n. The matrixY contains the time derivatives, ȧ(n)(t),
as per the left-hand-side of (23). When solving for the full complexity, β contains the
POD ROM coefficients (Dϑ

n, C
ϑ
n , F

ϑϑ′

n , Lϑ
nm, Qnmk, Z

ϑ
nm, Rnmk), including only the

unique coefficients spanning allm and k.X then contains the terms multiplied by these
coefficients in the right-hand-side of (23). The structure of Y, X and β are detailed
in appendix B. The time series used to construct X are also scaled such that they
both have zero mean and are approximately bounded from −1 to 1. This scaling is
important to ensure the regularisation discussed below appropriately balances between
the fit to data, and size of the parameters. Solving for β in (31) yields the required
POD ROM coefficients.

Here we solve for β using ridge regression, where L2 regularization is applied to the
squared magnitude of the POD ROM coefficients. The cost function to be minimised
with respect to β, is defined as

J (β) =
1

N
(Y − βX) (Y − βX)

T
+ κββT , (32)

where N is the number of samples used over the training period, and κ is the ridge
regression hyper-parameter. This cost function has the closed form solution

β =
YXT

N

(
XXT

N
+ κI

)−1

, (33)

where the superscript T denotes the transpose operation. I is the identity matrix of
leading dimension equal to the number of input factors. We calculate (33) using the
monthly averaged fields across the entire CAFE-60 ensemble from 2010 to 2015. The
data is temporally interpolated to a time step of 1/30th of a month, or approximately
one day. This finer time step size is required for the numerical stability of the POD
ROM in the following section. Cubic splines are used to interpolate a(n)(t), which are
analytically differentiated to determine compatible values for ȧ(n)(t). Cubic splines are
also used to interpolate b(n)(t). The dϑ(t) time series are interpolated such that they
transition from 0 in the previous month to 1 in the current month to 0 again in the
following month using a scaled and offset cosine function. This is analytically differ-
entiated to produce interpolated versions of ḋϑ(t). After this temporal interpolation,
there are 172, 800 samples or data instances used to solve the regression problem (5
years × 12 months per year × 30 time steps per month × 96 ensemble members).

The following error statistics comparing the predicted and actual values of Y are
calculated, per mode n, and per hyper-parameter κ. These statistics are calculated
over the out-of-sample period from 2015 to 2020, using the first data instance of each
month (void of any temporal interpolation). Since the samples across the ensemble
are not necessarily independent, we compare the predicted and actual values on the
basis of their average across the ensemble.
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Fig. 5 Root mean squared error of ridge regression normalised by the variance of the output per
mode n for various hyper-parameters κ when solving for coefficients: (a) Cϑ

n , L
ϑ
nm, Qnmk excluding

any temperature dependence; (b) Cϑ
n , L

ϑ
nm, Qnmk with fixed in time linear temperature coefficients

Znm; (c) Cϑ
n , Lϑ

nm, Qnmk with climatological linear time temperature coefficients Zϑ
nm; and (d)

Cϑ
n , Lϑ

nm, Qnmk with climatological linear time temperature coefficients Zϑ
nm, and fixed in time

quadratic temperature coefficients Rnmk. Solid black line is where the mean squared error is the
same as the variance in the predicted output. Filled symbols locate the hyper-parameter of minimum
MSE per mode. Hollow circle symbols locate the hyper-parameter of minimum MSE per mode, when
additionally solving for Dϑ

n. Hollow square symbols locate the hyper-parameter of minimum MSE per

mode, when additionally solving for Dϑ
n and Fϑϑ′

n . κ = 0.056 is indicated by the vertical magenta line.

The ability to represent Y is tested using all of the theoretically justified parame-
ters, and also the subsets defined in the previous section. Each subset is associated to
simplified versions of the equation of state. We initially solve the regression problem
with the exclusion of both the seasonal time derivative term Dϑ

n, and the nonlinear
meanfield term Fϑϑ′

n . Figure 5 illustrates the root mean squared error (RMSE) of mode
n per hyper-parameter κ. We assess κ over a logarithmically spaced grid from 1×10−3

to 1. The RMSE is normalised by the standard deviation of the actual time derivative
of mode n over the test period. Figure 5(a) presents the error measures when solv-
ing for the full complement of remaining coefficients associated with an equation of
state quadratic in temperature. In figure 5(b) we test the model when quadratic tem-
perature coefficients Rnmk are excluded. Figure 5(c) solves for Cϑ

n , L
ϑ
nm, Qnmk and a

fixed in time linear temperature coefficient Znm, associated with a linear dependence
of density on temperature. Figure 5(d) presents the results when we are only solv-
ing for the parameters Cϑ

n , L
ϑ
nm and Qnmk, associated with a density field with no

temperature dependence.
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The red shading in these figures are where the RMSE is greater than the standard
deviation, and hence have worse skill than continually predicting the mean. The ver-
tical hatching are regions in which the RMSE is greater than the standard deviation
to a 99% confidence level. The blue shading indicate where the RMSE is less than the
standard deviation, and are potentially skilful. The black dots in these figures indicate
the hyper-parameter of minimum RMSE per mode, and are all located within the blue
regions. Each set of calculations are repeated by solving for the sets of parameters
additionally including Dϑ

n. The hollow circle symbols in each plot indicate the asso-
ciated hyper-parameter of minimum RMSE. Likewise, the calculations are repeated
where both Dϑ

n and Fϑϑ′

n are additionally included, with the hollow square symbols
locating the hyper-parameter of minimum RMSE. The optimal hyper-parameter is
not changed in many instances with the inclusion of these additional terms. Those
instances where it has changed, it has moved by only one evaluated value of κ.

The blue regions have higher hyper-parameters than the red regions, and hence
penalise the coefficient magnitude to a greater extent. Whilst the parameter sets in
the blue zone have a lower RMSE, they also produce lower variability than that of the
actual time derivatives. The diagonal hatching indicates regions where the variance
of the predicted time derivative is less than that of the actual to a 99% confidence
level. This is not a desired property if one is looking to ensure the variance of the
predicted POD ROM per mode is sufficiently similar to that of the underlying data.
With the exception of mode n = 10, the optimal hyper-parameters all lie in regions
of insufficient variance. There is in fact only a narrow lane of hyper-parameters that
lie outside of both zones of insufficient agreement (vertical hatch), and insufficient
variance (diagonal hatch). Since we solve for each POD mode individually, one could in
principle have a different hyper-parameter for each mode n. For the sake of simplicity,
however, we select κ = 0.056 for all modes and all model variants, as it is the lowest
value inside the blue zone for the majority of modes for each variant. This value of κ
is indicated by the vertical magenta line in figure 5.

6 POD ROM temporal integration

The RMSE statistics presented in the previous section are effectively how well the set
of coefficients represents the time derivative of the temporal POD mode one time step
into the future. The tougher test, and ultimate goal, is how well one can reproduce the
dynamically evolving temporal POD modes simulated throughout the observed period.
The coefficients are learnt across all of the samples using κ = 0.056, and for each of
the aforementioned subsets of parameters. We adopt these POD ROM coefficients in
(23), which is solved using the fourth order Runge-Kutta time stepping scheme. We
tested for the influence of temporal discretisation error, by running experiments across
a variety of time step sizes. The results presented in this manuscript are insensitive to
the choice of time steps smaller than the adopted one of 1/30th of a month.

Figure 6 illustrates the temporal integrations of the first 6 POD modes. POD
ROMs with equations of state that have either no temperature dependence (Cϑ

n , L
ϑ
nm,

Qnmk - red lines), or only a linear one (Cϑ
n , L

ϑ
nm, Qnmk, Znm - green lines) have a

poorer fit to the original data. The variants that retain some elements of the quadratic
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relationship between density and temperature (blue and magenta lines), are in better
agreement across all of the modes. For all variants the solid line represent a POD ROM
with no seasonal derivative terms (Dϑ

n) nor any nonlinear meanfield terms (Fϑϑ′

n ).
The dotted lines include Dϑ

n, and the dashed lines include both Dϑ
n and Fϑϑ′

n . The
addition of the seasonal derivative and nonlinear meanfield terms have a negligible
influence on the evolution of all systems. Recall our POD ROM represents the evolu-

tion of the perturbations about the seasonal cycle. The fact thatDϑ
n and Fϑϑ′

n provided
negligible improvement, suggests that these perturbations are less influenced by the
seasonal derivatives and nonlinear seasonal interactions, and more so by the linear and
nonlinear interactions between the perturbations themselves.

These observations are also evident in the statistical comparisons between the
underlying data and the POD ROM integrations per mode. Figure 7(a) illustrates a
comparison of the POD kinetic energy spectra (black line), and each of the various
POD ROMs. For the moment we concentrate on the solid lines, which are the POD
ROM variants not including the Dϑ

n and Fϑϑ′

n terms. The variants retaining some
quadratic relationship between density and temperature (blue and magenta) are able
to reproduce the energy across the POD spectrum. These variants also have correla-
tions between the integrated and actual time series of above 0.8 for the first 11 modes,
as indicated in figure 7(b). Their root-mean-squared-error (RMSE) is also lower than
the remaining variants, as shown in figure 7(c). The prescribed temperature POD
modes, b(n)(t), are key to the agreement between the temporal integrations â(n)(t),
and the original POD modes a(n)(t). The anomalous temperature field is setting the
phase of the large scale structures, to which the anomalous velocity field responds. As
such, it is unsurprising that the variants with no influence from the temperature field
(red lines) have the lowest correlation and highest RMSE.

The inclusion of the Dϑ
n and Fϑϑ′

n terms have made little discernible impact on
the energy per mode in figure 7(a) for all sets of parameters. Figure 7(b) illustrates
that the inclusions of these terms has resulted in a small decrease in correlation across
all parameter sets for most modes. Consistently, figure 7(c) indicates that the nor-
malised RMSE has increased in most instances with the inclusion of these additional
parameters. This suggests that whilst these terms are theoretically justified, they
have negligible impact on the physical system. The inclusion of Dϑ

n and Fϑϑ′

n in the
regression problem, does not add to the performance of the POD ROM, but rather
exacerbates the problem of learning the other significant coefficients from the available
samples.

7 Concluding remarks

To summarise, a POD ROM was developed for the global oceans on monthly averaged
time scales over a recent decade. As opposed to black-box methods, the data-driven
approach adopted here is both physically constrained and interpretable. Three-
dimensional POD modes were calculated from the ensemble averaged ocean fields of
the CAFE-60 reanalysis. The contribution of these modes to the 96 individual ensem-
ble members of CAFE-60 was determined. A reduced-order dynamical system was
constructed to be constrained by the physics, by projecting the hydrostatic Boussinesq

18



2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075
a(n

) (t
) [

m
s

1 ]
(a) n = 1

a(n)(t) C ′

n , Lnm, Qnmk C ′

n , Lnm, Qnmk, Znm C ′

n , Lnm, Qnmk, Znm C ′

n , Lnm, Qnmk, Znm, Rnmk

2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

a(n
) (t

) [
m

s
1 ]

(b) n = 2

2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

a(n
) (t

) [
m

s
1 ]

(c) n = 3

2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

a(n
) (t

) [
m

s
1 ]

(d) n = 4

2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

a(n
) (t

) [
m

s
1 ]

(e) n = 5

2010 2012 2014 2016 2018 2020
0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

a(n
) (t

) [
m

s
1 ]

(f) n = 6

Fig. 6 POD ROM temporal integration of the ensemble average adopting subsets of model coeffi-
cients for modes: (a) n = 1; (b) n = 2; (c) n = 3; (d) n = 4; (e) n = 5; and (f) n = 6. The legend in
(a) associating the subsets of model coefficients is applicable to all figures. Dotted lines additionally

include the Dϑ
n terms. Dashed lines additionally include the Dϑ

n and Fϑϑ′
n terms.
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Fig. 7 Comparative statistics per mode of the POD ROMs on the basis of: (a) variance; (b) cor-
relation between â(n)(t) and a(n)(t); and (c) normalised root-mean-square-error. The legend in (a)
associating the subsets of model coefficients is applicable to all figures. Dotted lines additionally

include the Dϑ
n terms. Dashed lines additionally include the Dϑ

n and Fϑϑ′
n terms.

equations of motion onto a horizontal velocity POD mode basis. A set of temper-
ature POD modes acted as a prescribed source term. The coefficients in this POD
ROM were determined via a regression approach, exploiting all of the samples in time
and across the full 96 member ensemble. Various POD ROMs were tested each with
effectively different equations of state. Each variant was evaluated by its ability to sim-
ulate the ensemble averaged field. POD ROM variants with a quadratic dependence
between the density and temperature fields were able to reproduce the statistics of the
large scale structures. This was achieved at a mere fraction of the computational cost
required by a GCM to simulate such a flow. The inclusion of input factors associated
with the seasonal cycle time derivative and nonlinear meanfield terms, was found to
not improve performance.

The seasonal component was represented here as statistics per calendar month,
which is the standard approach in the climate sciences. This was done to enable the
results and model coefficients to be interpreted in this standard way. However, the
calendar months of the year are human constructs. Alternatively, an approach poten-
tially more faithful to the physics, would be to create “phase angles” that are instead
centred around the solstices and equinoxes linked to the orbit of the Earth. We will
investigate this approach in future studies.

Finally, having estimates of the evolution of the three-dimensional ocean velocity
field has numerous real-world applications. For instance it may enable forecasting the
transport of various scalar quantities, including: biological species; chemical spills; and
plastic pollution.
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Appendix A Hydrostatic Boussinesq equations of
motion

The hydrostatic Boussinesq equations of motion constitute the conservation of hor-
izontal momentum, hydrostatic balance, conservation of mass, and an equation of
state [37]. In the following notation, time is denoted by t. The spatial coordinates
x ≡ (x, y, z) are attached to the rotating Earth, and positive pointing east, north
and up, respectively. The Earth’s surface being located at z = 0. The zonal (south to
north), meridional (west to east) and vertical velocity components are denoted by u,
v and w.

The Boussinesq approximation decomposes the density (ρ) and pressure (p) fields
according to

ρ(x, y, z, t) = ρ̌(x, y, z, t) + ρ̊(z) + ρ0 , and (A1)

p(x, y, z, t) = p̌(x, y, z, t) + p̊(z) , (A2)

where one assumes that ρ0 ≫ |ρ̊|, |ρ̌|. This is valid in the ocean, with ρ0 ≈ 1.04 g cm-3,
|ρ̊| ≈ 0.03 g cm-3 and |ρ̌| ≈ 0.003 g cm-3 [37]. The density field is approximated to ρ0
in all evolution equations, other than for the gravitational (or buoyancy) term.

Under these assumptions the conservation of horizontal momentum equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p̌

∂x
+ fv , and (A3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p̌

∂y
− fu , (A4)

where the Coriolis parameter f = 2Ω sinϕ, of latitude ϕ, and Ω = 7.292× 10−5s-1 the
angular velocity magnitude of the Earth. Note, the viscous term is negligible for the
global ocean at the scales resolved in the current reanalysis.

In the global ocean the vertical velocity is orders of magnitude smaller than the
other velocity components. Applying this to the vertical momentum equation, results
in the hydrostatic approximation

∂p

∂z
= −ρg . (A5)

Since there is now no time derivative term in the w velocity component momentum
equation, w is a diagnostic field as opposed to a prognostic one. The time invariant
components of pressure and density satisfy the hydrostatic approximation in (A5) such
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that

∂p̊(z)

∂z
= − (ρ0 + ρ̊(z)) g . (A6)

Subtracting (A6) away from (A5) produces the hydrostatic equation for the pertur-
bation components given by

∂p̌(x, y, z, t)

∂z
= −ρ̌(x, y, z, t)g . (A7)

Integrating both sides of (A7) produces

p̌(x, y, z, t) = −g

∫ 0

z

ρ̌(x, y, z, t)dz , (A8)

giving an expression for the perturbation component of pressure. Here z is used to
distinguish the terms in the integrand from the lower limit in the integral. Note, z is
the lower limit because the ocean surface is at z = 0, and since z is positive upward,
the ocean depths have negative values of z.

The conservation of mass is given by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (A9)

which can be rearranged as follows

w(x, y, z, t) = −
∫ 0

z

(
∂u(x, y, z, t)

∂x
+

∂v(x, y, z, t)

∂y

)
dz , (A10)

to obtain a diagnostic equation for the vertical velocity.
There are no fundamental equations of state for seawater, but rather a family of

empirical ones. In general the density of seawater is a nonlinear relationship involving
temperature, pressure and salinity, with the latter playing a lesser role [38]. Note, we
do not require an equation of state for the complete density field, ρ, instead only one
for the perturbation component, ρ̌. This requirement effectively removes the direct
influence of pressure. We then adopt a modified version of [39] excluding salinity effects
such that

ρ̌(x, y, z, t) = −γ1zT (x, y, z, t)− γ2(T (x, y, z, t)− Tref)
2 . (A11)

This retains the minimal complexity in the relationship with temperature, where γ1,
γ2 and Tref are empirically derived parameters. Substituting (A11) into (A8) produces

p̌(x, y, z, t) = g

∫ 0

z

[
γ1zT (x, y, z, t) + γ2(T (x, y, z, t)− Tref)

2
]
dz , (A12)
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which is now an expression for the perturbation component of pressure as a function
of temperature. Note, γ1, γ2 and Tref can also be depth dependent, and not influence
the following derivation.

Substituting (A12) for p̌, and (A10) for w, into the horizontal momentum equations
(A3) and (A4), produces

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−

∫ 0

z

(
∂u

∂x
+

∂v

∂y

)
dz

∂u

∂z
= fv

− g

ρ0

∫ 0

z

[γ1z + 2γ2(T − Tref)]
∂T

∂x
dz , and (A13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
−

∫ 0

z

(
∂u

∂x
+

∂v

∂y

)
dz

∂v

∂z
= −fu

− g

ρ0

∫ 0

z

[γ1z + 2γ2(T − Tref)]
∂T

∂y
dz . (A14)

The above two equations have three unknowns, u, v and T . At this stage we produce
a POD ROM for the velocity field, with the temperature field entering as a prescribed
source term. Future work will also have a dynamically evolving temperature field,
which would additionally require the adoption of the energy equation.

Making use of the unit vectors e1 = (1, 0) and e2 = (0, 1) we can write the
horizontal momentum equation in the vector form

∂u

∂t
= N (u,u) +L(u) +M(T, T ) + S(T ) , where (A15)

N (u,v) = −u ·∇hv +

∫ 0

z

∇h · u dz
∂v

∂z
, (A16)

L(u) = f [(e2 · u)e1 − (e1 · u)e2] , (A17)

M(T,Υ) = − g

ρ0

∫ 0

z

2γ2T∇hΥdz , (A18)

S(T ) = − g

ρ0

∫ 0

z

(γ1z − 2γ2Tref)∇hTdz , and (A19)

∇h =

(
∂

∂x
,
∂

∂y

)
, (A20)

is the horizontal derivative operator, with u = (u, v). The quantities v and ΓΥ, are
of the same type as u and T , respectively, and have been introduced here for clarity
of notation. Note, if the viscous term was included, it would appear in the expression
for L(u).
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Appendix B Calculation of POD ROM coefficients
using regression

In the regression approach to calculating the POD ROM coefficients, here we solve for
β in the equation

Y = βX , (B21)

for each POD mode n, separately. In the most general application, involving the
calculation of all parameters in the physically justified POD ROM

Y = ȧ(n) , and (B22)

β =
[
Dn Cn Fn LJan

n · · · Lϑ
n · · · LDec

n Qn ZJan
n · · · Zϑ

n · · · ZDec
n Rn

]
,(B23)

where the coefficient vectors in β are defined as

Dn =
[
DJan

n · · · Dϑ
n · · · DDec

n

]
, (B24)

Cn =
[
CJan

n · · · Cϑ
n · · · CDec

n

]
, (B25)

Fn =
[
F Jan Jan
n · · · Fϑϑ′

n · · · FDec Dec
n

]
, (B26)

Lϑ
n =

[
Lϑ
n1 · · · Lϑ

nm · · · Lϑ
nNu

]
, (B27)

Qn =
[
Qn11 · · · Qnmk · · · QnNuNu

]
, (B28)

Zϑ
n =

[
Zϑ
n1 · · · Zϑ

nm · · · Zϑ
nNT

]
, and (B29)

Rn =
[
Rn11 · · · Rnmk · · · RnNTNT

]
. (B30)

The Fϑϑ′

n coefficients are only included for adjacent months such that |ϑ−ϑ′| ≤ 1. The
vector Qn only include the unique coefficients of Qnmk, recalling that Qnmk = Qnkm.
Likewise Rn only includes the unique coefficients of Rnmk, where Rnmk = Rnkm. The
vertical lines in (B23), separate β into a set of seven blocks. The associated seven
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input factors blocks are separated by horizontal lines in the definition of X, given by

X =



ḋJan

...

ḋϑ

...

ḋDec

dJan

...
dϑ

...
dDec

dJan ⊙ dJan

...

dϑ ⊙ dϑ′

...
dDec ⊙ dDec

AJan

...
Aϑ

...
ADec

a(1) ⊙ a(1)

...
a(m) ⊙ a(k)

...
a(Nu) ⊙ a(Nu)

BJan

...
Bϑ

...
BDec

b(1) ⊙ b(1)

...
b(m) ⊙ b(k)

...
b(NT ) ⊙ b(NT )



, where (B31)
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with

Aϑ =



a(1) ⊙ dϑ

...
a(m) ⊙ dϑ

...
a(Nu) ⊙ dϑ

 , and (B32)

Bϑ =



b(1) ⊙ dϑ

...
b(m) ⊙ dϑ

...
b(NT ) ⊙ dϑ

 , (B33)

with ⊙ denoting the Hadamard (or Schur) product for component-wise multiplication.
The horizontal vectors a(n), b(n), dϑ, ȧ(n), and ḋϑ contain the interpolated and trans-
formed versions of the temporal elements of a(n)(t), b(n)(t), dϑ(t), ȧ(n)(t) and ḋϑ(t),
respectively. The products dϑ⊙dϑ′

in X are associated with the Fϑϑ′

n coefficients, and
hence are only included for adjacent months where |ϑ − ϑ′| ≤ 1. The product terms
a(m) ⊙ a(k) and b(m) ⊙ b(k), are associated with Qnmk and Rnmk, respectively, and
only include unique combinations of these products.

For increased temporal resolution cubic splines are used to interpolate a(n)(t) and
also determine compatible values for ȧ(n)(t). Cubic splines are also used to interpolate
b(n)(t). The dϑ(t) time series are interpolated such that they transition from 0 in the
previous month to 1 in the current month to 0 again in the following month using a
scaled and offset cosine function. This is analytically differentiated to produce interpo-
lated versions of ḋϑ(t). All of these time series are transformed to have approximately
zero mean and bounded from −1 to 1. The rows of Y and X are horizontally concate-
nated to include the samples across the 96 member ensemble. This only increases the
number of samples, and does not change the dimensions of β.

In principle one could use any appropriate methods to solve for β. Here we adopt
ridge regression. When solving for a subset of the parameters, one removes the param-
eters that are not required from the β, and also remove the associated input factors
from X.

References

[1] Holton, J.R.: An Introduction to Dynamic Meteorology. Elsevier, New York
(2004)

[2] Kitsios, V., O’Kane, T.J., Zagar, N.: A reduced order representation of the
madden-julian oscillation based on reanalyzed normal mode coherences. J. Atmos.
Sci. 76, 2463–2480 (2019)

26



[3] O’Kane, T.J., Kitsios, V., Collier, M.A.: On the semiannual formation of large
scale three-dimensional vortices at the stratopause. Geophys. Res. Let. 48(4),
2020–090072 (2020)

[4] Einstein, A.: “How can we save mankind and it’s spiritual acquisitions of which
we are the heirs and how can one save Europe from a new disaster?”. lecture at
the Royal Albert Hall (1933)

[5] Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid
and of a viscous liquid. Part 1: A perfect liquid; Part 2: A viscous liquid. Proc.
R. Ir. Acad. A 27, 9–6869138 (1907)

[6] Sommerfeld, A.: Ein Beitrag zur Hydrodynamischen Erklärung der Turbulenten
Flüssigkeitbewegungen. In: Atti del IV. Congresso Internazionale dei Matematici,
vol. III. Rome, pp. 116–124 (1908)

[7] Theofilis, V., Hein, S., Dallman, U.: On the origins of unsteadiness and three-
dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A
358(1777), 3229–3246 (2000)

[8] Hasselmann, K.: PIPs and POPs: The reduction of complex dynamical system-
susing principal interaction and oscillation patterns. J. Geophys. Research 93,
11015–11021 (1988)

[9] Penland, C.: Random forcing and forecasting using principal oscillation pattern
analysis. Mon. Wea. Rev. 117, 2165–2185 (1989)
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