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Abstract
Signal loss poses a significant threat to the security of quantum cryptography when the chosen
protocol lacks loss-tolerance. In quantum position verification (QPV) protocols, even relatively
small loss rates can compromise security. The goal is thus to find protocols that remain secure
under practically achievable loss rates. In this work, we modify the usual structure of QPV
protocols and prove that this modification makes the potentially high transmission loss between
the verifiers and the prover security-irrelevant for a class of protocols that includes a practically-
interesting candidate protocol inspired by the BB84 protocol (QPVf

BB84). This modification,
which involves photon presence detection, a small time delay at the prover, and a commitment
to play before proceeding, reduces the overall loss rate to just the prover’s laboratory. The
adapted protocol c-QPVf

BB84 then becomes a practically feasible QPV protocol with strong
security guarantees, even against attackers using adaptive strategies. As the loss rate between
the verifiers and prover is mainly dictated by the distance between them, secure QPV over
longer distances becomes possible. We also show possible implementations of the required
photon presence detection, making c-QPVf

BB84 a protocol that solves all major practical issues
in QPV. Finally, we discuss experimental aspects and give parameter estimations.
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1 Introduction
Imagine the following situation: You are sitting in front of your computer screen, looking at a
website that looks like the website of your bank. But how can you make sure it is authentic? One
way would be to verify that the server is indeed placed in the basement of your bank. That is the
idea behind position-based cryptography, in which the geographic location of a party is used to
authenticate it, without further cryptographic assumptions.

The fundamental building block for this is, as in the example above, secure position verification.
For simplicity, we will focus in this article on the one-dimensional case, in which two verifiers (V0
and V1) want to securely verify the position z of a prover (P ) located between them. In particular,
they need to be able to distinguish the honest situation from the case in which no-one is at the
location to be verified, but two attackers (Alice and Bob) try to fool the verifiers while Alice is
placed between V0 and z and Bob between z and V1.

Unfortunately, secure position verification with classical resources is impossible without further
assumptions as shown in [CGMO09], since classical information can be copied and therefore easily
be distributed among the attackers. Quantum information, however, cannot be copied perfectly.
This motivated the study of quantum information protocols for secure position verification, or
quantum position verification (QPV) for short. The first proposals to this end resulted in a patent
by Beausoleil, Kent, Munro, and Spiller published in 2006 [BKMS06]. More proposals that were
claimed to be secure followed in the academic literature in 2010 [Mal10a, Mal10b]. However, first
ad-hoc attacks were found to compromise the security of these protocols [KMS11, LL11], before a
general attack on any QPV protocol was put forward by Buhrman, Chandran, Fehr, Gelles, Goyal,
Ostrovsky, and Schaffner [BCF+11]. The attack makes ingenious use of quantum teleportation and
requires a doubly exponential amount of pre-shared entangled pairs. This amount was later reduced
to exponential by Beigi and König [BK11] with the help of port-based teleportation [GBO23b,
FTH23, GBO23a]. This idea was subsequently generalized to other settings in [GLW13, GLW16,
Dol19].

While these results have proved that unconditionally secure protocols for QPV are impossible,
the aim shifted to proving practical security of QPV protocols. Since it is hard to generate and
maintain entanglement, it would be enough to find protocols which need an unrealistically large
amount of entanglement to attack them to have information-theoretic security in practice. There-
fore, the main interest at present is to consider security against bounded attackers. For example,
the QPVBB84 protocol [KMS11], inspired by the BB84 quantum key-distribution protocol, involves
only a single qubit sent by V0 in one of the four BB84 states |0⟩, |1⟩, |+⟩, or |−⟩. This protocol
is secure against unentangled attackers [BCF+11], but can be broken by attackers sharing a single
entangled pair [LL11]. However, this protocol allows for parallel repetition, such that Θ(n) entan-
gled pairs are required to break its n-fold parallel repetition [TFKW13, RG15]. In practice, the
fact that the entanglement needed scales with the amount of rounds played in parallel is not a
very strong security guarantee, since the honest prover also needs to manipulate an equal amount
of qubits as there are rounds. Ideally, we would like to find protocols where the honest prover
has to manipulate a small quantum system, while the attackers need to pre-share a very large
entangled state, i.e., many EPR pairs. Significant progress to this problem was made in [BCS22],
with a different version of the protocol, QPVf

BB84. Here the basis in which the honest prover needs
to apply his measurement is determined by a classical function f depending on two n-bit input
strings x, y. In the paper the authors prove security against Ω(n) entangled pairs pre-shared by the
attackers for a random function f . Note that in this protocol there is only a single qubit, but the
required quantum resources for an attack scale at least linearly in the classical information sent.
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For an honest prover it is much easier to do some computation on classical inputs than on quantum
inputs. It has the additional advantage of being secure even with slowly traveling qubits, as for
example qubits sent over optical fiber, where transmission speed is typically 2/3 the speed of light.
Moreover, in a future quantum network it will likely often be the case that there is no direct link be-
tween the verifiers and the prover wanting to run a QPV protocol, further emphasizing the need for
protocols that can deal with slow quantum information. Other protocols combining classical and
quantum information can be found in [KMS11, CL15, Unr14, JKPP22, QS15, AER+23]. Attacks
for such protocols have also been analyzed in [BFSS13, Spe16a, OCCG20]. In particular, in a recent
breakthrough by some of the present authors, subexponential upper bounds have been proved for
attacks on the qubit routing protocol based on conditional disclosure of secrets schemes [ABM+23].
Alternative models of security use oracles [Unr14] or computational assumptions [LLQ22].

Although the protocol QPVf
BB84 is also resistant against small amounts of noise and loss as

shown in [BCS22, ES23], none of the above protocols is proved secure under conditions consistent
with current technologies, where the main source of error is photon loss. Using optical fibre, photon
transmission decays exponentially in the distance and at some point almost all photons will be lost.
This can compromise security in QPV protocols that are not loss tolerant, and immediately makes
QPVf

BB84 insecure in basically any practical setting. This is a major downside of QPVf
BB84, since

apart from this issue it has the most desirable properties of all known proposed protocols.
A common approach to deal with photon loss is to disregard rounds in which the prover claims

that a photon was lost during transmission. Regrettably, this approach renders these protocols
vulnerable to attackers since the attacks can take advantage of the photon loss by claiming the
photon was lost if they risk being detected. Recent progress towards addressing this major obstacle
to protocols that can be implemented on current devices has been made in [ABSV21, ABSV22],
where fully loss-tolerant protocols were studied. However, those protocols were found to be vulner-
able against simple entanglement-based attacks. And even though loss is not an issue in [LLQ22] as
all the communication is classical, their protocol requires a large quantum computer at the prover
to prepare the states used in it and therefore is not viable in the near-term. So far, however, a
protocol has been lacking that is both provably secure against realistic attacks while still being
implementable with current technologies.

1.1 Results
In our contribution, we focus on the design of such a practically feasible and secure QPV protocol.
We introduce a structural modification to QPV where, instead of the verifiers sending the informa-
tion to the prover such that all information arrives at the same time, the quantum information shall
arrive slightly before the classical information. The prover confirms the reception of the quantum
information, and commits to playing, after which he receives the classical information to complete
the task. In this way, for every QPV protocol P, we define its committing version c-P.

Consider a secure QPV protocol P with classical prover responses, which remains secure when
played in sequential repetition and in which the honest quantum information is allowed to travel
slowly (like QPVf

BB84). This implies that the protocol is state-independent, in the sense that the
attackers can replace the input state with any other quantum state. Then our main result states
that for every such QPV protocol P, its committing version c-P inherits the security of P, while
becoming fully loss-tolerant against transmission loss. Denoting by ηV the transmission rate from
the verifiers to the prover and by ηP the one within the prover’s laboratory (between committing
and receiving the classical information), we informally state our main result, Theorem 4.9, as
follows:

Theorem (Informal). The success probability of attacking c-P (with both ηV and ηP ) reduces to
the probability of attacking P (with only ηP ):

P[attack c-PηV ,ηP
] ≤ P[attackPηP

] + (1− 2c̃)8
√
ε+ 2c̃, (1)

where ε and c̃ are parameters that can be made arbitrarily small by running more rounds.

This means that the potentially very high loss between the verifiers and the prover, 1 − ηV ,
becomes irrelevant to security in c-PηV ,ηP

and only the much smaller loss at the prover’s laboratory,
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1− ηP , matters. And for sufficiently high values of ηP we often have security guarantees, e.g. for
QPVf

BB84 [BCS22, ES23]. In theory, for an ideal prover, c-PηV ,ηP
becomes fully loss-tolerant.

If we demand perfect coordination in commitments for all possible inputs, which is expected
from the honest prover, this will correspond to ε = c̃ = 0. Then our result reduces to

P[attack c-PηV ,ηP
] = P[attackPηP

], (2)

as the other direction P[attackPηP
] ≤ P[attack c-PηV ,ηP

] is simple to see1. The above theorem
allows for ε ̸= 0 ̸= c̃ in attack strategies to make our argument robust, as very small values of ε
(relative to the number of committed rounds) or c̃ (relative to the 22n input pairs x, y) could in
principle help attackers, while leaving them undetected.

We further prove that the success probability for attacking our protocol decays exponentially
with the number of (sequentially repeated) rounds run, even if attackers are allowed to use adaptive
strategies.

Applying our results to QPVf
BB84, we show that quantum position verification is possible even

if the loss is arbitrarily high, the (constant-sized) quantum information is arbitrarily slow, and
attackers pre-share some entanglement (bounded in the classical message length n). The question
of a super-linear lower bound on the required resources for a quantum attack still remains open.

Finally, we study two possible ways of implementing the non-demolition photon presence de-
tection step of our protocol: true photon presence detection as demonstrated in [NFLR21] as a
potential long-term solution, and a simplified photon presence detection based on a partial Bell
measurement [MMWZ96] at the prover that is technologically feasible today. In the latter, the
honest prover essentially teleports the input state of the protocol to himself and concludes the
presence of that state based on a conclusive click pattern in the partial Bell measurement, in which
case the quantum state got teleported and can be further acted on by the prover (e.g. by a polariza-
tion measurement). We note that for the committing version of QPVf

BB84, c-QPVf
BB84, no active

feed-forward for the teleportation corrections is required, as they predictably alter the subsequent
measurement outcome and thus can be classically corrected by the prover post-measurement. We
identify the experimental requirements at the prover as: being able to generate an EPR pair, to
do a partial Bell measurement, to store the teleported quantum state in a short delay loop until
the classical input information (x, y) arrives, and the ability to perform the protocol measurement
based on (x, y). The latter shall be possible fast enough such that the protocol rounds can be run
with high frequency (say, MHz or ideally GHz). To that end we argue that with top equipment
MHz rate is possible already and GHz rate feasible in principle. Practically, also the signal-to-
noise ratio of the photon presence detection is an important figure of merit that is relevant for the
security of the protocol, which we discuss further in the experimental section of the paper. We
argue that with state-of-the-art equipment our protocol can remain within its secure regime, even
in practice.2

To summarize, our main result holds more generally, but applied to QPVf
BB84 we provide a new

QPV protocol, c-QPVf
BB84, that is a practically feasible QPV protocol with decent security guar-

antees in the most general setting, even in practice. This opens up the road for a first experimental
demonstration of quantum position verification.

2 Preliminaries
Let H, H′ be finite-dimensional Hilbert spaces. We denote by B(H,H′) the set of bounded operators
from H to H′ and B(H) = B(H,H). Denote by S(H) the set of quantum states on H, i.e.
S(H) = {ρ ∈ B(H) | ρ ≥ 0,Tr[ρ] = 1)}. For ρ, σ ∈ B(H), a measure of distance between them is

||ρ− σ||1 := Tr

[√
(ρ− σ)(ρ− σ)†

]
. (3)

1The attackers can just pre-agree to commit with a rate ηV and use the strategy of PηP to produce the answers
for c-PηV ,ηP .

2As the numbers will strongly depend on the actual experimental setup of a demonstration, we only give estima-
tions.
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A linear map E : B(H) → B(H′) is a quantum channel if it is completely positive and trace
preserving (CPTP).

Lemma 2.1. (Kraus representation [Kra71]). A linear map Φ is completely positive and trace non-
increasing if and only if there exist bounded operators {Ki}ri=1 such that for all density operators
ρ,

Φ(ρ) =

r∑
i=1

KiρK
†
i , (4)

with
∑r

i=1K
†
iKi ≤ I, where r is the Kraus rank. Moreover, Φ is trace-preserving, i.e. a quantum

channel, if and only if
∑r

i=1K
†
iKi = 1.

Let Ω be a finite outcome set. A quantum instrument I is a set of completely positive linear
maps {Ii}i∈Ω such that

∑
i∈Ω Ii is trace preserving. Given the quantum state ρ ∈ S(H), the

probability of obtaining outcome i is given by Tr[Ii(ρ)] and the sub-normalized output state upon
outcome i is Ii(ρ).

2.1 Introduction to QPV
All proposed QPV protocols rely on both relativistic constraints and the laws of quantum mechanics
for their security. The QPV literature usually focuses on the 1-dimensional case, so verifying the
position of a prover P on a line, as it makes the analysis easier and the main ideas generalize to
higher dimensions.

The usual general setting for a 1-dimensional QPV protocol is the following: two verifiers V0
and V1, placed on the left and right of P , send quantum and/or classical messages to P at the
speed of light. P has to pass a challenge and to reply correctly to them with a signal at the speed
of light as well. The verifiers have perfectly synchronized clocks and if any of them receives an
inconsistent answer or if the timing of the answers is not as expected from the honest prover, they
abort the protocol3.

We will mainly focus on one type of QPV protocol, QPVf
BB84 [BCS22]. This protocol is well

studied, easy to implement and the lower bounds on the required quantum resources to attack
them scale linearly in the classical input size. However, it is not loss-tolerant enough for practical
purposes. We set out to solve this issue in this work.

Remark 2.2. We describe the QPVf
BB84 protocol in its purified version, where a verifier sends

half of an EPR pair instead of a single qubit, as they would do in its prepare-and-measure version.
Both versions are equivalent, but we use the purified version for our proof analysis.

Definition 2.3. (QPVf
BB84 protocol [BCS22, ES23]). Let n ∈ N, and consider a 2n-bit boolean

function f : {0, 1}n × {0, 1}n → {0, 1}. A round of the QPVf
BB84 protocol is described as follows.

1. V0 prepares the EPR pair |Φ+⟩ = (|00⟩ + |11⟩)/
√
2 and sends one qubit Q of |Φ+⟩ and

x ∈ {0, 1}n to P and V1 sends y ∈ {0, 1}n to P such that all information arrives at P simul-
taneously. The classical information is required to travel at the speed of light, the quantum
information can be sent arbitrarily slowly.

2. Immediately, P measures Q in the basis f(x, y)4 and broadcasts his outcome a ∈ {0, 1} to V0
and V1. If the photon is lost, he sends ‘⊥’.

3. The verifiers measure the qubit they kept in the basis f(x, y), getting outcome v ∈ {0, 1}.
They accept if a = v and a arrives on time. They record ‘photon loss’ if they both receive ‘⊥’
on time. If either the answers do not arrive on time or are different, the verifiers abort.

In the end, the verifiers accept the location of the prover P if after multiple repetitions of single
rounds they receive answers that are consistent with their known experimental parameters, i.e. if
the number of ‘photon loss’ answers is consistent with the transmission rate η, and the number of
wrong answers is consistent with the error in the experimental set-up.

3The time consumed by the prover to perform the task is assumed to be negligible relative to the total protocol
time

4Usually, the two bases correspond to the computational and the Hadamard basis, justifying the nomenclature
of QPVf

BB84. If m basis choices are possible, the range of f will be {0, 1, . . . ,m− 1}.
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V0 P V1··
··
··

a

time

Qx ∈ {0, 1}n y ∈ {0, 1}n

a

position

Figure 1: Schematic representation of the QPVf
BB84 protocol. Undulated lines represent quantum

information, whereas straight lines represent classical information. The slowly travelling quantum
system Q originated from V0 in the past.

General structure of an attack on QPVf
BB84

In a general attack on the QPVf
BB84 protocol, Alice and Bob act as follows.

1. The attackers prepare a joint (possibly entangled) quantum state.

2. Alice intercepts the quantum information sent from V0 and performs an arbitrary quantum
channel. She keeps a part of the resulting state and sends the rest to Bob. Denote by ρ their
joint state at this stage (before communication).

3. Alice and Bob intercept x and y, make a copy and send it to the other attacker, respectively.
Both then can apply local quantum channels depending on x (at Alice) and y (at Bob) to
ρ. Each can keep part of the resulting local state and send the other part to their fellow
attacker.

4. Upon receiving the information sent by the other party, each attacker can locally apply an
arbitrary POVM depending on (x, y) to obtain classical answers, which will be sent to V0
and V1, respectively.

If there is loss in the protocol the attackers need to mimic the transmission rate of the prover.

Known properties of QPVf
BB84

Neglecting photon loss, QPVf
BB84 was proven to be secure [BCS22] even if attackers pre-share a

linear amount of qubits in the size of the classical information n. The main advantage of this
protocol is that it only requires sending a single qubit whereas adversaries using an increasing
amount of entanglement can be combatted solely by increasing the number of classical bits used in
the protocol. In addition, QPVf

BB84 has the advantage that the quantum information can travel
arbitrarily slowly. However, photon loss constitutes a major problem. Consider the following easy-
to-perform attack, where Alice makes a random guess for the value of f(x, y) and just measures
in the guessed basis and broadcasts the result to Bob. Both attackers intercept the classical
information, make a copy and send it to their fellow attacker. After one round of simultaneous
communication, each can compute f(x, y) and both know if the initial guess was correct. If so,
they send the outcome of the measurement, which is correct, to the verifiers. Otherwise, they claim
no photon arrived. Alice’s basis guess will be correct half of the time (or 1/m of the time for more
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basis choices) and therefore, if the transmission rate is such that η ≤ 1
2 (or 1/m, respectively), the

attackers will be correct whenever they answer and thus break the protocol.
In [ES23], the range 1/2 < η ≤ 1 was studied for QPVf

BB84, and it was shown that the protocol
remains secure for attackers who pre-share a linear amount of entanglement in n and arbitrary
slow quantum information. However, η > 1

2 is only attainable for short distances. A way to bypass
this, first shown independently in [QS15] and [Spe16b, Chapter 5], can be achieved by encoding
the qubit Q in more bases than just the computational and the Hadamard bases. In the first case,
Q is encoded in a uniformly random basis in the Bloch sphere, and security holds for reasonably
high loss if the quantum information is sent at the speed of light and the attackers do not pre-share
entanglement. Following the second approach, where Q is encoded in m bases in the Bloch sphere,
[ES23] showed via semidefinite programming (whose size depends on m) that one can improve
the loss-tolerance by increasing m, while preserving security against attackers who pre-share a
linear amount of entanglement in n and arbitrary slow quantum information. The specific cases
of m = 3, 5 were worked out, showing that the protocol remains secure, preserving the other two
properties, if up to 70% of the photons are lost, making slightly larger distances than with two
bases still feasible.

In the next sections, we show how to make QPV for longer distances possible by slightly
modifying the structure of the previously known protocols. This opens up a feasible route to
the first experimental demonstration of a QPV protocol that captures security against the three
major problems that the field faces: bounded attackers, photon loss (for large distances) and slow
quantum information.

3 QPV with a commitment
One of the major issues in practical quantum cryptography is the transmission loss between the
interacting parties. In the context of QPV a high loss between the verifiers and the prover can
compromise security if the QPV protocol is not loss tolerant. Most QPV protocols are not loss
tolerant, and the ones who are have other drawbacks, most notably being broken by an entangle-
ment attack using only one pre-shared EPR pair [LXS+16, ABSV21] or requiring a large quantum
computer at the prover and computational assumptions [LLQ22].

To overcome this, we introduce the following modification to the structure of a certain class of
QPV protocols. Let PηV ,ηP

be a QPV protocol with the verifiers sending quantum and classical
information and the prover sending classical answers, where ηV is the transmission rate between
the verifiers and the prover, and ηP is the transmission rate in the prover’s laboratory. We define
its committing version (or protocol with commitment), denoted by c-PηV ,ηP

, by introducing a small
time delay δ > 0 between the arrival time of the quantum information and the classical information
at the prover. When the quantum information arrives at P , he is required to commit to play (c = 1)
or not to play (c = 0) the round. Only the c = 1 rounds are later analyzed for security purposes.
We will show that introducing this step will eliminate the relevance of the transmission rate ηV
from the verifiers to the prover for security. We prove that only the (potentially small) loss in the
prover’s laboratory ηP will count now because of this post-selection on “committed” rounds.

This trick can be applied to a class of QPV protocol that fulfills the necessary criteria of our
proof. For concreteness, and because it is practically most interesting, we will focus on the case
PηV ,ηP

= QPVf
BB84, where we denote by c-QPVf

BB84 the protocol with commitment.

3.1 The protocol c-QPVf
BB84

The committing version of QPVf
BB84 is described as follows. Again, we describe the protocol in

its purified form, whereas in practice it might be simpler to implement its prepare-and-measure
version.

Definition 3.1. Let n ∈ N, and consider a 2n-bit boolean function f : {0, 1}n×{0, 1}n → {0, 1}. A
round of the QPVf

BB84 protocol with commitment, denoted by c-QPVf
BB84, is described as follows.

1. V0 prepares the EPR pair |Φ+⟩ = (|00⟩ + |11⟩)/
√
2 and sends one qubit Q and x ∈ {0, 1}n

to P and V1 sends y ∈ {0, 1}n to P such that x, y arrive a time δ > 0 after Q at P . The
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classical information is required to travel at the speed of light, the quantum information can
be sent arbitrarily slowly.

2. If the prover receives Q, he immediately confirms that and broadcasts the commitment bit
c = 1. Otherwise, he broadcasts c = 0.

3. If c = 1, P measures Q in the basis f(x, y)5 as soon as x, y arrive and broadcasts his outcome
a to V0 and V1. If the photon is lost in the time δ or during the measurement, he sends ‘⊥’.

4. The verifiers collect (c, a) and V0 measures the qubit he kept in basis f(x, y), getting result
v. If c = 0 they ignore the round. If c = 1 they check whether a = v. If c, a arrived at their
appropriate times and a = v, they accept. They record ‘photon loss’ if they both receive ‘⊥’
on time. If any of the answers do not arrive on time or are different the verifiers abort.

V0 P V1··
··
··

δ

c c

a a

��ηV

ηP

position

time

Qx ∈ {0, 1}n y ∈ {0, 1}n

Figure 2: Schematic representation of the c-QPVf
BB84 protocol. Undulated lines represent quantum

information, straight lines represent classical information. The slowly travelling quantum system
Q originated from V0 in the past. The novel aspects are the time delay δ > 0 at the prover and the
prover commitment c ∈ {0, 1}. We show that for the security of this protocol, the transmission ηV
becomes irrelevant.

4 Security of QPV with commitment
The most general attack on a 1-dimensional QPV protocol is to place an adversary, who we will
call Alice, between V0 and the position where the prover should be and another adversary, who we
will call Bob, between the supposed prover location and V1. It is easy to see that having more than
two adversaries in a 1-dimensional setting does not improve an attack. In a general attack on a
QPV protocol PηV ,ηP

in which the verifiers send quantum and classical information and the prover
responds with classical answers proceeds as follows. Before the protocol, the attackers prepare a
joint (entangled) quantum state σ. Then, Alice and Bob intercept the information sent from their
closest verifier, they make a copy and broadcast the classical information to their fellow attacker,
and they perform a quantum operation on the intercepted quantum information, keep a register
and send another register to the other attacker. After one round of simultaneous communication,

5Again, for more basis choices, the range of f would become {0, 1, . . . ,m− 1}.
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they both perform a POVM to obtain a classical answer, and they send it to their closest verifier,
respectively.

Denote by x and y the classical information sent from V0 and V1, respectively. Without loss
of generality, consider them to be n bit strings, and we assume they are uniformly distributed.
Denote by ω(x,y) the quantum state after communication, which attackers apply the POVM
to. Fix a partition into systems AAcomBBcom, where ‘com’ denotes the subsystems that will
be communicated. We can write the attackers two-outcome POVMs as {ΠA,(x,y)

ABcom
,1 − Π

A,(x,y)
ABcom

}
and {ΠB,(x,y)

AcomB ,1− Π
B,(x,y)
AcomB } respectively, where we can assume without loss of generality that the

first outcome corresponds to the correct answer. Then, the probability that the attackers give the
correct answers can be written as

P[attack PηV ,ηP
] =

1

22n

∑
x,y

Tr
[(

Π
A,(x,y)
ABcom

⊗Π
B,(x,y)
BAcom

)
ω
(x,y)
AAcomBBcom

]
. (5)

Note that attackers need to mimic the loss rate of the honest prover, so the rate of ⊥ responses
must be 1 − ηV ηP , with ηV ηP being the total transmission between the verifiers and the prover
(including his equipment).

Definition 4.1. (State-independent protocol). We say that a QPV protocol P is state-independent
if the protocol remains secure independently of the state σ that the attackers pre-share at the start
of the protocol 6.

QPVf
BB84 is a state-independent protocol, since it remains secure for any σ whose dimension is

linearly bounded (in n) [BCS22].

General structure of an attack on c-P

In a general attack for a c-QPV protocol, Alice and Bob act as follows.

1. The attackers prepare a joint (possibly entangled) quantum state.

2. Alice and Bob intercept the quantum information sent from their closest verifier and each
of them performs an arbitrary quantum channel. Both keep a part of their resulting state
and send the rest to their fellow attacker. Denote by ρ their joint state at this stage (before
communication).

3. Alice and Bob intercept x and y, make a copy and send it to the other attacker, respectively.
Due to relativistic constraints, they have to commit before they receive the classical infor-
mation from the other party. The most general thing they can do is to use local quantum
instruments {IA

cA|x}cA∈{0,1} and {IB
cB |y}cB∈{0,1} on their registers of ρ to determine the com-

mitments cA and cB , respectively. Denote Ixy
1 = IA

1|x ⊗ IB
1|y. To proceed with the protocol,

the attackers will use the state post-selected on commitments cA = 1 and cB = 1, denoted
by Ĩxy

1 (ρ) = Ixy
1 (ρ)/Tr[Ixy

1 (ρ)]. Alice can send a share of her state to Bob and vice versa.

4. Upon receiving the information sent by the other party, each attacker can again locally apply
an arbitrary quantum channel depending on (x, y), followed by local POVMs on the state
they share to obtain classical answers which will be sent to V0 and V1, respectively, if cA = 1
and cB = 1. Similarly to before, define a partition AAcomBBcom and denote the final state
on which they measure by ωI1,(x,y).

The attack structure is depicted in Figure 3. Then the probability that the attackers answer the
correct values to the verifiers is given by

P[attack c-PηV ,ηP
] =

1

22n

∑
x,y

Tr
[(

Π
A,(x,y)
ABcom

⊗Π
B,(x,y)
BAcom

)
ω
I1,(x,y)
AAcomBBcom

]
. (6)

Here the attackers need to mimic the transmission rate of the prover’s laboratory ηP in the rounds
they commit to play.

6As long as this state does not allow for a perfect attack, for example due to sufficiently large pre-shared
entanglement, of course. In the regime where security can be shown, it is independent of the adversarial input state.
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V0

time

A B V1

ρ

Ĩxy
1 (ρ)

IA
cA|x IB

cB |y

position

{ΠA,(x,y)
ABcom

,1−Π
A,(x,y)
ABcom

} {ΠB,(x,y)
AcomB ,1−Π

B,(x,y)
AcomB }

cA cB
ωI1,(x,y)

Figure 3: Schematic representation of a general attack on a c-QPV protocol, where straight lines
represent classical information, and undulated lines represent quantum information, including x
and y.

4.1 Security proof
We move on to prove the security of c-QPV. The idea is to reduce the security of a protocol
with commitment c-PηV ,ηP

to the one of the underlying protocol without commitment PηP
and

(much larger) transmission rate ηP with ηV becoming irrelevant. The intuition is as follows. If
we can show that the post-commit state ρxy (cf. eq. (14)) can be replaced by a constant state τ
independent of (x, y), then the commitment phase does not help the attackers much. Now note that
if the underlying protocol PηP

remains secure for any adversarial input state that is independent
of (x, y), the attackers find themselves in the same situation as attacking PηP

(with input τ) when
they attack c-PηV ,ηP

. This is because the post-commit state ρxy can be replaced by τ . Then, the
success probability of attacking c-PηV ,ηP

should be close to the one of attacking PηP
.

Hence the task is to show that ||ρxy−ρx′y′ ||1 is small for any x, y, x′, y′. To do so we can invoke
the gentle measurement lemma and the fact that we need to have cA = cB . Consider classical
inputs x, y. Imagine that, say, Alice applies her instrument a tiny bit before Bob7. Then Alice’s
outcome cA ∈ {0, 1} completely fixes Bob’s outcome cB for any input y on his side. Thus, by the
gentle measurement lemma, the instrument on Bob’s side cannot disturb this post-commit-at-Alice
state he acts on. But that state only depends on x, so ρxy can only depend on x. Since Alice’s and
Bob’s operations commute, the same argument can be run with Bob instead of Alice applying the
instrument first, showing that ρxy cannot depend on y either. Both have to be true simultaneously
and therefore all post-commit states ρxy are actually independent of (x, y), or equivalently, close to
some fixed state τ . But then the attackers find themselves in the exact same situation as attacking
PηP

with input τ . The security of the underlying PηP
then guarantees security of c-PηV ,ηP

. We
also relax the requirement of cA = cB to hold only approximately for most input pairs (x, y) and
show that the argument is robust.

One subtlety is that the gentle measurement lemma only holds for POVMs, but in our setting
7Their measurements commute, since they act on separate registers. So considering this is without loss of

generality.
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Alice and Bob act with arbitrary quantum instruments. So in order to be able to use it as described
in the above argument, we need to decompose their instruments into measurements followed by a
channel. This is precisely what Lemma 4.3 does.

We continue by stating the lemmas used in our argument. First, the well known gentle mea-
surement lemma, stating that if a measurement identifies a state with high probability, then it
can’t disturb the state by too much.

Lemma 4.2. (Gentle Measurement Lemma [Win99]) Let ρ be a quantum state and {M,1 −M}
be a two-outcome measurement. If Tr[Mρ] ≥ 1− ε, then the post-measurement state

ρ′ =

√
Mρ

√
M

Tr[Mρ]
(7)

of measuring M fulfills

||ρ− ρ′||1 ≤ 2
√
ε. (8)

The following lemma stating that any quantum instrument can be decomposed into a measure-
ment followed by a quantum channel turns out to be a crucial ingredient in our proof. We include
a short proof of it for convenience.

Lemma 4.3. (E.g. Thm 7.2 in [Hay16]) Let I = {Ii}i∈Ω be an instrument, and {Mi}i its corre-
sponding POVM, i.e. I†

i (1) = Mi. Then, for every i ∈ Ω, there exists a quantum channel (CPTP
map) Ei such that

Ii(ρ) = Ei
(√

Miρ
√
Mi

)
(9)

Proof. Let {Kj}j be a Kraus decomposition of Ii, whose existence is guaranteed by Lemma 2.1.
Since

Tr[Ii(ρ)] = Tr

∑
j

KjρK
†
j

 = Tr

ρ∑
j

K†
jKj

 = Tr[ρMi] (10)

for any state ρ, we have Mi =
∑

j K
†
jKj . Denote the pseudo-inverse of

√
Mi by (

√
Mi)

− and let

P be the projection onto the support of
√
Mi, i.e. P =

√
Mi

(√
Mi

)−. Then note that∑
j

(√
Mi

)−
K†

jKj

(√
Mi

)−
=
(√

Mi

)−
Mi

(√
Mi

)−
= P †P = P. (11)

Hence, if we add 1−P on both sides, we obtain a full Kraus decomposition
{
Kj(

√
Mi)

−,1− P
}
j

of a map, call it Ei, that adds up to the identity. Thus, by Lemma 2.1, Ei is completely positive
and trace preserving, i.e. a quantum channel. Finally, we see that

Ei
(√

Miρ
√
Mi

)
= (1− P )

√
Miρ

√
Mi(1− P ) +

∑
j

Kj(
√
Mi)

−
√
Miρ

√
Mi(

√
Mi)

−K†
j

=
∑
j

KjρK
†
j = Ii(ρ), (12)

as desired. The last equation follows from the fact that (1−P )
√
Mi =

√
Mi−

√
Mi(

√
Mi

−
)
√
Mi =

0, which is one of the defining properties of the pseudo-inverse and that KjP = Kj . This follows
via Mi =

∑
j K

†
jKj , implying that ker(Mi) ⊆ ker(Kj) for all j. In other words, supp(Kj) ⊆

supp(Mi) = supp(
√
Mi) for all j, and P projects onto the latter. Hence KjP = Kj .

Combining the Stinespring dilation with Lemma 4.3 allows us to see the operations of the
attackers after the commit-measurement as a unitary in a larger space, and yields the following
decomposition of quantum instruments.
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Corollary 4.4. Let I = {Ii}i∈Ω be an instrument, and {Mi}i∈Ω its corresponding POVM. Then,
for every i ∈ Ω, there exists an environment Hilbert space HE and a unitary Ui on H ⊗HE such
that

Ii(ρ) = TrE

[
Ui

(√
Miρ

√
Mi ⊗ |0⟩⟨0|E

)
U†
i

]
(13)

for all ρ ∈ B(H),

In the case of a commit round of a QPV protocol the subscript denotes whether the attackers
commit (i = 1) or not commit (i = 0). The unitary Ui in eq. (13) is the unitary corresponding
to a Stinespring dilation of the channel Ei appearing in Lemma 4.3. We denote the POVMs
corresponding to the instruments {IA

cA|x}cA and {IB
cB |y}cB of Alice and Bob by {Mx

A,1−Mx
A} and

{My
B ,1−My

B} respectively. Here the POVM elementsMx
A andMy

B correspond to the measurement
outcome ‘commit’ (cA = 1 and cB = 1). We denote the post measurement state corresponding to
Alice and Bob committing to a particular input x, y by:

ρxy :=

(√
Mx

A ⊗
√
My

B

)
ρ
(√

Mx
A ⊗

√
My

B

)
Tr[(Mx

A ⊗My
B)ρ]

. (14)

The observation is now that no two post-commitment states can differ too much from each other
by Lemma 4.2. This is due to the fact that both players have to output the same commitment, at
least with high probability to not be detected. This will be the case for any two inputs x, y and
x′, y′. The following lemma relates the closeness of states to the probability of answering different
commits, given that one party commits.

Lemma 4.5. (Paths Between Strings) Assume that for inputs (x, y), (x′, y) and (x′, y′) in {0, 1}2n
that the probability that one party doesn’t commit, given that the other party commits, is upper
bounded by some ε > 0. Then,

∥ρxy − ρx
′y′

∥1 ≤ 8
√
ε. (15)

Proof. Consider the attackers Alice and Bob performing the most general attack described above
and the POVMs {Mx

A,1−Mx
A} and {My

B ,1−My
B} as defined above. We write

ρx,(·) =
(
√
Mx

A ⊗ 1B) ρ (
√
Mx

A ⊗ 1B)

Tr[(Mx
A ⊗ 1B)ρ]

, ρ(·),y =
(1A ⊗

√
My

B) ρ (1A ⊗
√
My

B)

Tr[(1A ⊗My
B)ρ]

(16)

for the post measurement states corresponding to only Alice or Bob committing before applying
the quantum channel. By assumption, we have:

Tr
[
((1A ⊗ (1−My

B))ρ
x,(·)

]
≤ ε, Tr

[
((1−Mx

A)⊗ 1B)ρ
(·),y
]
≤ ε. (17)

Similarly for the input (x′, y) and (x′, y′) we get:

Tr
[
(1A ⊗ (1−My

B))ρ
x′,(·)

]
≤ ε, Tr

[(
(1−Mx′

A )⊗ 1B

)
ρ(·),y

]
≤ ε, (18)

Tr
[(
1A ⊗ (1−My′

B )
)
ρx

′,(·)
]
≤ ε, Tr

[(
(1−Mx′

A )⊗ 1B

)
ρ(·),y

′
]
≤ ε. (19)

Therefore, by Lemma 4.2 (Gentle Measurement Lemma) we get the following inequalities:

∥ρ(·),y − ρxy∥1 ≤ 2
√
ε, ∥ρ(·),y − ρx

′y∥1 ≤ 2
√
ε

∥ρx
′,(·) − ρx

′y∥1 ≤ 2
√
ε, ∥ρx

′,(·) − ρx
′y′

∥1 ≤ 2
√
ε

(20)

Now we get for the trace distance between the two density matrices:

∥ρx
′y′

− ρxy∥1 = ∥ρx
′y′

− ρx
′,(·) + ρx

′,(·) − ρx
′y + ρx

′y − ρ(·),y + ρ(·),y − ρxy∥1
≤ ∥ρx

′y′
− ρx

′,(·)∥1 + ∥ρx
′,(·) − ρx

′y∥1 + ∥ρx
′y − ρ(·),y∥1 + ∥ρ(·),y − ρxy∥1

≤ 8
√
ε,

(21)

where we used the triangle inequality and eq. (20).
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Note that if the probability of answering different commits on the inputs (x′, y) was small we
would get the same inequality between ρxy and ρx

′y′
.

In general, an honest prover will never answer different commit bits back to the verifiers. Thus
one could argue that the probability of answering ‘no commit’ when the other party answers
‘commit’ should be zero. In that case, by Lemma 4.5, we see that all post commit states are equal,
and thus independent of x, y. Then, the quantum instrument that Alice and Bob apply adds no
extra power and their actions are contained in the actions they could do in attacking a state-
independent protocol (cf. Definition 4.1). And the probability to attack the protocol successfully
on rounds in which the attackers commit is equal to the original protocol. This is summarized in
the following corollary:

Corollary 4.6. If we demand perfect coordination for the commitments in attack strategies, then
for any state-independent quantum position verification P its version with commitment c-P becomes
fully loss tolerant against transmission loss. That is,

P[attack c-PηV ,ηP
] = P[attackPηP

]. (22)

Thus protocols like QPVf
BB84 now become secure against transmission loss.

However, one can argue setting the probability to answer ‘no commit’ given that the other party
answers ‘commit’ to zero is too restrictive. Also when this probability is sufficiently low, with high
probability the attackers will not get detected by answering different commitments. But, it could
be that this strategy outperforms the original attack strategy. This stronger setting is not always
considered in QPV protocols, but nonetheless relevant. We will show that allowing for this does
not help the attackers much, and we can still show security. We give a continuity statement on the
probability of attacking successfully, showing that the protocols with a commitment round are close
to the original protocol depending on the probability of answering different commitments. Again
the proof strategy is to show that the post-commit states must be close to each other, depending
on the probability of committing differently, given that one party commits (the rounds in which
no-one commits are discarded).

The statement of Lemma 4.5 can be pictured as a connection problem in a graph. The local
inputs x, y are represented as vertices in a bipartite graph, and we connect two vertices x, y if
the probability that the two parties send different commitments is upper bounded by ε as in the
proof of the above lemma. Then for two pairs of inputs x, y and x′, y′ (i.e. edges in the graph)
∥ρxy − ρx

′y′∥1 ≤ 8
√
ε, if there is an edge in the graph that connects either x′, y or x, y′. This is

represented in Figure 4.
Importantly, the statement of Lemma 4.5 only holds if the probability of committing different

commit bits, given that one party commits, is upper bounded by ε for all three pairs of strings.
However, this is not something that the verifiers can enforce to be true for every pair of strings.
The verifiers can only check for the rounds that they play whether the commitments are equal, but
given that there are 22n possible inputs they cannot get the commit statistics for all of them.

It could be that allowing the attackers to commit differently on a subset of strings can out-
perform attackers that have to behave well over all strings. Since this subset is unknown to the
verifiers (as it is part of the attack strategy) the probability to detect a wrong commit can be made
as small as the relative size of the subset to the total set.

We can visualize the problem of committing differently intuitively via the complete bipartite
graph in Figure 4. In the figure, two vertices are connected if the probability of answering different
commitments is upper bounded by ε. Allowing attackers to answer different commits with a higher
probability is equivalent to removing certain edges in this graph.

We still have a bipartite graph but not all edges are connected. What we are now interested
in is how many edges can still be reached within two steps from some other edge. It turns out
that even if we allow attackers to commit differently with probability higher than ε on a constant
fraction of edges, there will be an edge that will be connected to at least a constant fraction of
other edges in two steps (as used in Lemma 4.5).

Lemma 4.7 (Edge Removal). Consider a complete bipartite graph whose independent sets are of
equal size 2n. After removing a constant fraction c̃ ≤ 1

2 of edges, there exists a vertex such that
the number of other vertices that can be reached in two steps is at least (1− 2c̃)22n.
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x′

x

y′

y

Figure 4: Graphical representation of converting the pair (x, y) (red) to (x′, y′) (green) via (x′, y)
(orange). Vertices on the left correspond to possible inputs x, on the right to possible inputs y. A
connection between two strings means that the probability of committing differently on this input
is smaller than ε.

Proof. The number of edges of a complete bipartite graph with 2n nodes in its independent sets
is 22n, as there are 2n edges for any vertex. Now suppose we remove c̃ · 22n of these edges. Then,
there must be a vertex l on the left with at least (1− c̃)2n connecting edges. Now consider all the
vertices on the right that are connected to l. Before we removed any edges there were 2n edges
connecting each of these vertices to the left. However, we removed c̃ · 22n of these edges, so the
number of edges going back is now at least (1− c̃) · 22n − c̃ · 22n = (1− 2c̃)22n.

Now let us split up the set of all possible inputs into one set where the probability of not
committing, given that the other party commits, is lower than ε and its complement. We write

Σε := {x, y | Tr
[
(1⊗ (1−My

B))ρ
x,(.)

]
≤ ε ∧ Tr

[
(1−Mx

A)⊗ 1)ρ(.),y
]
≤ ε}, (23)

which can also be written in terms of conditional probabilities

Σε = {x, y | P[cB = 0 | cA = 1, xA, yB ] ≤ ε ∧ P[cA = 0 | cB = 1, xA, yB ] ≤ ε}, (24)

where the subscript A,B denote that the information about the strings x, y is only known to player
A or B and not both. Using this definition we can show the following.

Lemma 4.8. If |Σc
ε| ≤ c̃22n, then there is a pair (x∗, y∗) such that there exist at least (1− 2c̃)22n

pairs (x′, y′) ∈ Σε fulfilling

∥ρx
∗y∗

− ρx
′y′

∥1 ≤ 8
√
ε. (25)

Proof. |Σc
ε| ≤ c̃22n, so at most there are a fraction of c̃ edges removed from the complete bipartite

graph. By Lemma 4.7 there is a pair (x∗, y∗) from which there are at least (1 − 2c̃)22n edges
connected in two steps. Applying Lemma 4.5 gives the desired statement.

We can now formulate a statement about the security of a protocol with a commit round added
on top of a regular protocol. This is useful because it does not give attackers the opportunity to use
the option of answering ‘loss’ very often anymore and raises the effective transmission of the protocol
from ηV ηP to the usually much larger ηP . The latter may be large enough to protect against lossy
attacks that arise in e.g. f -BB84 QPV protocols. On the other hand, it opens up a new possible
attack. Attackers can now try to apply some transformation on their state and answer ‘no commit’
when this transformation fails. However, they still need to answer the same commitment to both
verifiers. In the following theorem we show that this action cannot help them much. Because the
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attackers need to give the same commit-bit with very high probability, the size of Σc
ε will be small

relative to all possible inputs. Then a large number of post-commit states will be close to a fixed
post-commit state independent of x, y by Lemma 4.8. We can now bound the probability of success
of the protocol with commitment, because the post-commit state can be replaced by one fixed post-
commit state independent of x, y. Thus the attackers find themselves in the same situation as in the
underlying protocol. Any underlying protocol that remains secure for any (constant) adversarial
input state as in Definition 4.1, thus has a corresponding commitment-protocol with the same
security guarantee (up to a small overhead). We make this precise in the following theorem. Note
that a particular protocol with the considered properties is QPVf

BB84 [BCS22].

Theorem 4.9. Let P be a quantum position verification protocol in which the verifiers send classical
and quantum information and the prover responds with classical answers. Suppose that for its
version with commitment, c-P, we have |Σc

ε| ≤ c̃22n for some ε ≤ 1/64. If P is state-independent
(cf. Definition 4.1) then, on the rounds the attackers play, the following bound on the probability
of attackers answering correctly to c-P holds:

P[attack c-PηV ,ηP
] ≤ P[attackPηP

] + (1− 2c̃)8
√
ε+ 2c̃. (26)

Proof. Both attackers need to generate a commitment bit (cA, cB) and send it to the verifiers.
The most general operation two attackers can do to generate these bits is a quantum instrument.
By Lemma 4.3 we can split up the quantum instrument in a measurement followed by a quantum
channel. Here the measurement outcome corresponds to the commitment bit the attackers generate
and the quantum channel corresponds to the operation they further perform, possibly depending
on their inputs (x, y). We want to upper bound the attacking probability in the case both attackers
commit to playing (i.e. cA = cB = 1, we denote this in the subscript of the instrument). Using the
Stinespring dilation theorem we can dilate these quantum channels to unitaries over some larger
quantum system and we get the following for the (renormalized) post instrument state the attackers
hold if they both commit to playing:

Ĩxy
1 (ρ) =

Ixy
1 (ρ)

Tr[Ixy
1 (ρ)]

=
Exy
1

((√
Mx

A ⊗
√
My

B

)
ρ
(√

My
B ⊗

√
Mx

A

))
Tr[(Mx

A ⊗My
B)ρ]

(27)

= Exy
1 (ρxy) (28)

= TrE
[
Uxy(ρxy ⊗ |0⟩⟨0|E)U

xy†]. (29)

By assumption |Σc
ε| ≤ c̃22n, so we can invoke Lemma 4.8, which says that there must be a reference

pair (x∗, y∗) ∈ Σε such that there are at least (1− 2c̃)22n other pairs (x, y) ∈ Σε fulfilling

∥ρx∗y∗ − ρxy∥1 ≤ 8
√
ε. (30)

Combining both results, we get that when we apply some quantum channel depending on (x, y)
on both post measurement states, the outputs are still close. This follows straightforwardly from
the data processing inequality for the 1-norm:

∥Exy
1 (ρxy)− Exy

1 (ρx∗y∗)∥1 ≤ ∥ρxy − ρx∗y∗∥1 (31)

≤ 8
√
ε. (32)

We define Λ
(x,y)
ε to be the set of all quantum states close to some reference state ρxy:

Λ(x,y)
ε =

{
(x′, y′) ∈ Σε : ∥ρxy − ρx

′y′
∥1 ≤ 8

√
ε
}
, (33)

and write Λε := Λ
(x∗,y∗)
ε for the remainder of this proof. By the previous argument we have

|Λε| ≥ (1− 2c̃)22n, and |Λc
ε| ≤ 2c̃ 22n.

After creating the commitment bit both attackers exchange a quantum system and apply
some measurement on this. Fix a partition into systems AAcomBBcom, where ‘com’ denotes
the subsystems that will be communicated. We can write the attackers two-outcome POVMs
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as {ΠA,(x,y)
ABcom

,1− Π
A,(x,y)
ABcom

} and {ΠB,(x,y)
AcomB ,1− Π

B,(x,y)
AcomB } respectively, where we can assume without

loss of generality that the first outcome corresponds to the correct answer.
Now we have all the ingredients to upper bound the attacking probability of a round in which

both attackers committed. For simplicity, denote the final operation of the attackers by Π
A,(x,y)
ABcom

⊗
Π

B,(x,y)
AcomB = Πxy. Then,

P[attack c-PηV ,ηP
] =

1

22n

∑
(x,y)

Tr
[
ΠxyĨxy

1 (ρ)
]

(34)

=
1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρxy)] +

1

22n

∑
(x,y)∈Λc

ε

Tr[ΠxyExy
1 (ρxy)] (35)

≤ 1

22n

∑
(x,y)∈Λε

Tr[Πxy(Exy
1 (ρxy)− Exy

1 (ρx∗y∗) + Exy
1 (ρx∗y∗))] +

|Λc
ε|

22n
(36)

=
1

22n

∑
(x,y)∈Λε

Tr[Πxy(Exy
1 (ρxy)− Exy

1 (ρx∗y∗))] +
1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] +

|Λc
ε|

22n
(37)

≤ 1

22n

∑
(x,y)∈Λε

∥Πxy∥∞∥Exy
1 (ρxy)− Exy

1 (ρx∗y∗)∥1 +
1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] +

|Λc
ε|

22n
(38)

≤ |Λε|
22n

8
√
ε+

|Λc
ε|

22n
+

1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] (39)

≤ |Λc
ε|

22n
(1− 8

√
ε) + 8

√
ε+ P[attackPηP

] (40)

≤ P[attackPηP
] + (1− 2c̃)8

√
ε+ 2c̃ (41)

where we used the triangle inequality, Hölder’s ineqality for Schatten norms [Wat18], and that
(1 − 8

√
ε) ≥ 0. The fact that 1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] ≤ P[attackPηP

] follows from the
assumption that the protocol is secure against any input state and the fact that Uxy = Ux⊗Uy as
Ixy
1 = IA

1|x ⊗ IB
1|y. Which we can neglect since the local unitaries can be absorbed into the attack

strategy on the original protocol PηV ,ηP
.

The idea is now to estimate ε and c̃ to show that over an increasing number of rounds,
P[attack c-PηV ,ηP

] becomes increasingly closer to P[attackPηP
]. This should follow from getting

better and better estimates of ε when verifiers keep on seeing only equal commitments.
The sequentially repeated protocol, denoted by c-Pseq

ηV ,ηP
, works as follows:

1. The verifiers collect a certain number of rounds r of c-PηV ,ηP
that come back with commit-

ments (cA, cB) ̸= (0, 0), as detailed below for the non-adaptive and adaptive case. Rounds
with (cA, cB) = (0, 0) are discarded.

2. If in any round the verifiers see different commits, i.e. (cA, cB) = (0, 1) or (1, 0), or different
protocol answers, they abort immediately.

3. Otherwise, after reaching the required number of (cA, cB) ̸= (0, 0) rounds, they do the security
analysis as described in Section 5 and accept or reject, depending on the score Γr of the
sample.

4.2 Parameter estimation
4.2.1 Non-adaptive strategies

The above theorem gives us a way to bound the probability of success in any lossy setting, which
makes protocols with a commitment round ideal candidates for practical implementation of QPV.
The role of ε and c̃ are important here. Theoretically, if we set ε to 0, i.e. we never allow attackers
to answer different commits, we see that the attackers cannot apply any lossy attack! Thus making
the protocol fully loss tolerant against transmission loss 1− ηV .
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However, as we have shown before we cannot set ε to be 0, since a small ε might help the
attackers, while still not being detected with high probability. On the other hand, if we play a
certain number of rounds in which we see a sufficient amount of committing rounds, but never
see different commit bits being sent, we can be quite certain that the probability of one party not
committing given that the other party commits is small. We want to estimate the conditional
probabilities:

P[cA = 0|cB = 1] =
1

22n

∑
x,y

P[cA = 0|cB = 1, xA, yB ], (42)

P[cB = 0|cA = 1] =
1

22n

∑
x,y

P[cB = 0|cA = 1, xA, yB ]. (43)

Intuitively, if we see a large number of rounds in which both parties commit but we never
see different commits, these probabilities should be small. Suppose we want to upper bound the
maximum conditional probability of the two in eq. (42) by some value α > 0. Then we can do the
following. We keep playing until we get r

α number of rounds in which both parties commit, where
r is some fixed constant. This takes an expected number r

α pcommit
of rounds, where pcommit is the

probability that the honest prover will commit.
Suppose the attackers’ strategy is non-adaptive. Then, if we detect different commit bits in one

of these rounds we immediately abort, because an honest prover would never send these. If the
probability of answering different commit bits would be larger than α, the probability to answer
equal commit bits (and not get detected) every round in which they commit would be smaller than
(1− α)

r
α .

We will now lower bound the probability to detect attackers due to differing commits. Suppose
the maximum of the two probabilities eq. (42), (43) is at least α and denote the events Ci

diff =
{(ciA, ciB) = (0, 1) or (1, 0)}, Ci

eq = {(ciA, ciB) = (0, 0) or (1, 1)}, Ci
(1,1) = {(ciA, ciB) = (1, 1)} and

Ci
̸=0 = {(ciA, ciB) ̸= (0, 0)}. Then for i, j ∈ {1, . . . , r/α} attackers are detected due to differing

commits with probability

P[detect attackers | commits ̸= (0, 0)] = P[∃j with (cjA, c
j
B) = (0, 1) or (1, 0) | ∀i (ciA, c

i
B) ̸= (0, 0)]

(44)

= P[∃j with Cj
diff | ∀i Ci

̸=0]. (45)

Using the complementary probability and the fact that attackers act non-adaptively, we can write

P[detect attackers | commits ̸= (0, 0)] = 1− P[∀i Ci
eq | ∀i Ci

̸=0] (46)

= 1−
r/α∏
i=1

P[Ci
(1,1) |C

i
̸=0] = 1−

r/α∏
i=1

(
1− P[Ci

diff |Ci
̸=0]
)

(47)

≥ 1−
r/α∏
i=1

(
1−max{P[ciB = 0 | ciA = 1],P[ciA = 0 | ciB = 1]}

)
(48)

≥ 1−
r/α∏
i=1

(1− α) = 1− (1− α)r/α (49)

≥ 1− e−αr/α = 1− e−r. (50)

In the second equality, we use that Ci
eq ∩ {Cj

̸=0∀j} = Ci
(1,1) = Ci

(1,1) ∩ C
i
̸=0 and that the attacks

are non-adaptive. The first inequality follows from the following argument. Notice that the event
{(ciA, ciB) ̸= (0, 0)} contains {ciA = 1 or ciB = 1}. Consider the case of ciA = 1. Then we can write

P[Ci
diff | ciA = 1] =

P[(ciA, ciB) = (1, 0)]

P[(ciA, ciB) = (1, 0)] + P[(ciA, ciB) = (1, 1)]
, (51)

P[Ci
diff |Ci

̸=0] =
P[(ciA, ciB) = (1, 0)] + P[(ciA, ciB) = (0, 1)]

1− P[(ciA, ciB) = (0, 0)]
. (52)
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Writing a = P[(ciA, ciB) = (0, 0)], b = P[(ciA, ciB) = (0, 1)], c = P[(ciA, ciB) = (1, 0)] and d =
P[(ciA, ciB) = (1, 1)] on can directly verify that c

c+d ≤ c+b
1−a given that a+ b+ c+ d = 1. Thus

P[Ci
diff |Ci

̸=0] ≥ P[Ci
diff | ciA = 1] = P[ciB = 0 | ciA = 1]. (53)

The case ciB = 1 works the same way. Hence

P[Ci
diff |Ci

̸=0] ≥ max{P[ciB = 0 | ciA = 1],P[ciA = 0 | ciB = 1]}. (54)

We see that if the probability to commit differently was higher than α we would detect attackers
in the r

α committed rounds with probability exponentially close to 1 in r. When we pick r = 20,
we have that P[detect attackers | commits ̸= (0, 0)] ≥ 1 − 10−9. And, if we don’t see any different
commit bits in r

α rounds we can say with very high probability that the probabilities in eq. (42),
(43) are upper bounded by α. The more rounds we run, the smaller we can make α (with high
probability), thus controlling the role of ε in Theorem 4.9.

For the theorem to be of any use, we also need to control the dependence on c̃ (which comes
from |Σc

α| ≤ c̃22n). Intuitively, if the set Σc
α is large, we know that a big part of this set must be

close to α in order for the average over all probabilities to still be α. Then, if we would look at, e.g.
Σc

2α, we expect the set to be much smaller. We can make this intuition precise. Suppose we play
k 20

α number of rounds for some value α that we fix beforehand. Then by the previous argument
we can assume with high probability that max{P[cA = 0|cB = 1], P[cB = 0|cA = 1]} ≤ α

k . Then
consider the set Σc

α. In the worst case, all the values in this set are very close to α and, in order for
the average to be α

k , we get that the maximal size is |Σc
α| ≤ 2

k2
2n. Indeed, from the condition that

max{P[cA = 0|cB = 1], P[cB = 0|cA = 1]} ≤ α
k it follows that in the worst case both probabilities

are equal to α/k and have non-zero values on disjoint pairs of (x, y). More formally, from the
definition of Σα we know that either P[cA = 0|cB = 1, x, y] ≥ α for at least |Σc

α|/2 pairs (x, y) in
Σc

α or P[cB = 0|cA = 1, x, y] ≥ α for at least |Σc
α|/2 pairs (x, y) in Σc

α. Let us assume without loss
of generality that we are in the former case. We estimate

α

k
≥ 1

22n

∑
x,y

P[cA = 0|cB = 1, xA, yB ]

≥ 1

22n

∑
(x,y)∈Σc

α

P[cA = 0|cB = 1, xA, yB ]

≥ 1

22n
|Σc

α|
2
α

Thus, we can set c̃ = 2
k . For simplicity of the final statement, note that we have the freedom to

pick α as we like. Picking α to be of the size 1
16k2 we get a clean inequality statement with a single

variable that can be set by the verifiers. Notice that α ≤ 1/64 implies k ≥ 2, but of course k should
be chosen much larger to suppress the additive term 6/k. Plugging this in Theorem 4.9 we get the
following corollary for the attacking probability of a single round of the protocol:

Corollary 4.10. Consider a quantum position verification protocol P, with the properties described
as in Theorem 4.9 and security under sequential repetition. Let k ≥ 2 and suppose we play its
version with commitment c-P until we have 320k3 rounds in which both parties commit. This takes
an expected number of rounds 320k3/pcommit. If attackers use a non-adaptive strategy, then either
the attackers are detected with probability bigger than 1−10−9 by means of a different commitment,
or we have the following bound on the probability of attacking a single round c-P depending only
on k:

P[attack c-PηV ,ηP
] ≤ P[attackPηP

] +

(
1− 4

k

)
8
√
α+

4

k
(55)

≤ P[attackPηP
] +

6

k
(56)

Thus, by running more rounds of the protocol we can get the probability of successfully attacking
the protocol to be arbitrary close to the attacking probability in a setting with no photon loss
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between the verifiers and the prover. What is also important to emphasize is that there is no
overhead in the procedure of getting bounds in Corollary 4.10, since the task of committing is
separate from the rounds themselves. Each round the verifiers play gives a better bound for the
probability of attack for all the previous rounds played.

4.2.2 Adaptive strategies:

The above proof assumed that attackers use the same strategy in each round. But in general
they could use adaptive strategies, adjusting it each round to how they responded before. We will
provide a bound for this most general scenario now. Firstly note that the statement of Theorem
4.9 can also be made for the adaptive setting. In an adaptive strategy, the measurement that
determines whether the attackers will commit or not given that the other party committed can
now depend on the information of the previous rounds. This may change the underlying probability
of events. However the proof already considers arbitrary distributions of commitments, thus we
replace ε by its round-dependent version εi. The attackers may replace the quantum state by
some state that depends on the information of the previous rounds, but by the state-independent
property this should not change the probability of successfully attacking the protocol. Therefore
we get the following corollary on the probability of attacking a specific round i:

Corollary 4.11. Consider a quantum position verification protocol P, with the properties described
as in Theorem 4.9 and security under sequential repetition. Suppose that for its version with
commitment, c-P, for a given round i we have |Σc

εi | ≤ c̃i2
2n for some εi ≤ 1/64. If P is state-

independent (cf. Definition 4.1) then, if the attackers play, the following bound on the probability
of attackers answering correctly on the i-th round of c-P holds:

P[attack c-PηV ,ηP
] ≤ P[attackPηP

] + (1− 2c̃i)8
√
εi + 2c̃i. (57)

The problem is now to estimate the value of εi, which we cannot estimate for every i since it
can change adaptively from round to round. We will show that if we run sufficiently many rounds,
and never see different commits by the attackers, that then at least a large fraction of all the εi
must have been sufficiently low.

We can make a similar argument as in the non-adaptive case, carefully including that attackers
can now condition on the past in each round. We will use the general property that

P[A1, . . . , An] = P[A1]P[A2 |A1] · · · P[An |A1, . . . , An−1], (58)

for any events A1, . . . , An. Consider running r rounds with commitments (cA, cB) ̸= (0, 0). Let
i, j ∈ {1, . . . , r}. Then we can bound the probability of being detected due to differing commits as
follows,

P[detect attackers | commits ̸= (0, 0)] = 1− P[∀i Ci
eq | ∀i Ci

̸=0] (59)

= 1− P[∀i Ci
(1,1) | ∀i C

i
̸=0]. (60)

Then eq. (60) can be written as

P[detect attackers | commits ̸= (0, 0)] = 1− P[C1
(1,1), . . . , C

r
(1,1) |C

1
̸=0, . . . , C

r
̸=0] (61)

After using eq. (58) and noting that Ci
(1,1) ∩ C

i
̸=0 = Ci

(1,1) for any i, this can be rewritten as

P[detect attackers | commits ̸= (0, 0)] = 1−
r∏

i=1

P
[
Ci

(1,1)

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0

]
(62)

= 1−
r∏

i=1

(
1− P

[
Ci

diff

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0

])
.

(63)
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We can then consider the analogous equations to eq. (51), (52), but with all the extra events for
rounds 1, . . . , i− 1, i+ 1, . . . , r in the conditioning. Again, labeling these probabilities analogously
with ai, bi, ci, di (cf. eq. (51), (52)) we obtain the inequality ci

ci+di
≤ ci+bi

pi−ai
, where now

pi = P
[
C1

(1,1), . . . , C
i−1
(1,1), C

i
any, C

i+1
̸=0 , . . . , C

r
̸=0

]
, (64)

with Ci
any = {(ciA, ciB) = (0, 0) or (0, 1) or (1, 0) or (1, 1)}. The inequality can be verified under

the condition that ai + bi + ci + di = pi. This shows

P[Ci
diff |C1

(1,1), . . . , C
i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0] ≥ P

[
Ci

diff

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), {c

i
A = 1}, Ci+1

̸=0 , . . . , C
r
̸=0

]
(65)

= P
[
ciB = 0

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), {c

i
A = 1}, Ci+1

̸=0 , . . . , C
r
̸=0

]
.

(66)

The same inequality holds for the case with A and B swapped, as before. Thus

P[detect attackers | commits ̸= (0, 0)] ≥ (67)

1−
r∏

i=1

(
1−max

{
P[ciB = 0 |C1

(1,1), . . . , C
i−1
(1,1), {c

i
A = 1}, Ci+1

̸=0 , . . . , C
r
̸=0],

P[ciA = 0 |C1
(1,1), . . . , C

i−1
(1,1), {c

i
B = 1}, Ci+1

̸=0 , . . . , C
r
̸=0]
})
.

Define εi to be the maximum in eq. (67). This quantity can be interpreted as follows. In the i-th
round adaptive attackers have the information that in all the previous rounds they committed and
that they committed equally, otherwise they would have already been caught. They also know that
they have to keep playing until they have reached the desired number of non-(0, 0) commits.

Now there are two cases, either the probability in eq. (67) is ≥ 1 − δ with some security
parameter δ > 0, in which case the verifiers catch an attack with high probability by means of a
different commit cA ̸= cB showing up, or it is ≤ 1 − δ. In the latter case, we still need to bound
the attack success probability. Note that then

1−
r∏

i=1

(1− εi) ≤ 1− δ.

We can rewrite the condition as

0 < δ ≤
r∏

i=1

(1− εi) ≤ e−
∑r

i=1 εi .

Equivalently,
∑r

i=1 εi ≤ ln(1/δ). Next, we will need the following lemma, saying that under such
a constraint there must be enough “good” rounds with εi not too large.

Lemma 4.12. Let
∑r

j=1 εj ≤ α. Then for any 0 < q < 1 such that qr ∈ N, there exists a subset
R ⊂ {1, . . . , r} of size |R| = qr such that for all εj with j ∈ R we have εj ≤ α

(1−q)r .

Proof. Assume you cannot find qr elements εj with εj ≤ α
(1−q)r , given

∑r
j=1 εj ≤ α. Then there

would be at least (1− q)r elements fulfilling εj > α
(1−q)r . But then

∑r
j=1 εj > α, a contradiction.

Thus, we must be able to find qr such elements and let R be the set of those.

That is, for a fraction q of the r rounds we have a round-independent upper bound on the εi
of those rounds, namely εi ≤ ln(1/δ)

(1−q)r for i ∈ R.
Therefore, a similar argument as in the proof for Corollary 4.10 can be run to argue that

c̃i ≤ 2/k for some constant k, while running k times the number of rounds r. Hence, for a fraction
q of the r rounds we have by Corollary 4.11 that

P[attack c-PηV ,ηP
in round i ∈ R] ≤ P[attackPηP

] +

(
1− 4

k

)
8

√
ln(1/δ)

(1− q)r
+

4

k
, (68)
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while kr rounds are run (similar to Corollary 4.10). We are free to pick (δ, q, k, r). Pick for example
δ = e−20 ≤ 3 · 10−9, q = 1− 1

k and r = 320k3. Then

P[attack c-PηV ,ηP
in round i ∈ R] ≤ P[attackPηP

] +

(
1− 4

k

)
8

√
20

r/k
+

4

k

≤ P[attackPηP
] +

6

k
, (69)

to obtain a similar bound as in Corollary 4.10, while in total we play until we hit kr = 320k4

rounds in which both parties committed. This takes an expected number of rounds 320k4/pcommit.
In the end, the verifiers may choose k, which will determine the number of rounds they have to run
in order to guarantee eq. (69) on a large fraction 1−1/k of rounds. Again, the condition εi ≤ 1/64
necessitates k ≥ 2, but k shall be chosen much larger to suppress the additive term 6/k (while still
keeping the number of necessary rounds manageable). We summarize our findings in the following
Corollary.

Corollary 4.13. Consider a quantum position verification protocol P, with the properties described
as in Theorem 4.9 and security under sequential repetition. Let k ≥ 2 and suppose we play its
version with commitment c-P until we have 320k4 rounds in which both attackers commit. This
takes an expected number of rounds 320k4/pcommit. We call this protocol c-Pseq. Then either the
attackers are detected with probability bigger than 1− 3 · 10−9 by means of a different commitment,
or there is a set R of size 1− 1/k times the number of rounds such that

P[attack c-Pseq
ηV ,ηP

in round i] ≤ P[attackPηP
] +

6

k
(70)

for all i ∈ R.

5 Sequential repetition
Throughout this section, we will consider a quantum position verification protocol P such that
fulfills the conditions of Theorem 4.9, and is secure against sequential repetition. We will prove
security for sequential repetition of c-P, showing that after r sequential repetitions, the probability
that attackers break the protocol decays exponentially in r; under the condition that the bound on
the number of qubits that the attackers share at the beginning of each round is the same as for a
single round of the protocol. We will analyze the above studied security models: for ε = c̃ = 0, non-
adaptive strategies (corresponding to Section 4.2.1), and any adaptive strategies (corresponding to
Section 4.2.2), which we will shortly denote by S1, S2, and S3, respectively.

5.1 Honest prover without error and loss
In the next proposition we show security in all the cases above if there is no error from the honest
prover.

Proposition 5.1. (Sequential repetition with no error and no loss) Let c-PηV
be as in Theorem

4.9, secure against sequential repetition, and such that the honest prover is assumed to have no error
and no loss (after having committed to playing). After r sequential repetitions of such protocol,

1. attackers are going to be caught in the S1 with probability at least

1− (P[attackP])r, (71)

2. if r = 320k3 and ε ≤ 1
16k2 in the S2, then either the attackers are detected with probability

bigger than 1−3 ·10−9 because of different commitments, or they are going to answer wrongly
in at least one round with probability at least

1−

(
P[attackP] + 24

3

√
5

r

)r

, (72)
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3. r = 320k4 in the S3, then either the attackers are detected with probability bigger than
1− 3 · 10−9 because of different commitments, or they are going to answer wrongly it at least
one round with probability at least

1−

(
P[attackP] + 12

4

√
20

r

)(
1−2 4

√
20
r

)
r

. (73)

Proof. Consider r sequential repetitions of c-PηV
. From

1. Theorem 4.9, we have that the probability to attack a single round of c-PηV
is such that

P[attack c-Pc
ηV

] ≤ P[attackP], given that ε = c̃ = 0 in every round.

2. Corollary 4.10, we have that the probability to attack a single round of c-PηV
is such that

P[attack c-PηV
] ≤ P[attackP] + 6/k in every round, given that r = 320k3, for S2.

3. Corollary 4.13, we have that the probability to attack a single round of c-PηV
is such that

P[attack c-PηV
] ≤ P[attackP] + 6/k in (1− 1

k )r rounds, given that r = 320k4, for S3.

We have that in the three previous cases, the probability to correctly answer the protocols for
the attackers is upper bounded by a bound pb ∈ {P[attackP],P[attackP] + 6

k ,P[attackP] +
6
k},

respectively, with the corresponding k. Let Xi be a random variable taking value 1 if the attackers
answer correctly and 0 otherwise for i ∈ {1, ..., r}. Since the attackers hold at most the same
amount of qubits in every round and we assume that the original protocol is secure under sequential
repetition, the bound Pr[Xi = 1 | Xi−1 = xi−1, ..., X1 = x1] ≤ pb holds for every round where we
have bounds. Therefore, the probability that the attackers answer correctly in all r rounds in the
S1 and S2 is upper bounded by

Pr[Xr = 1, ..., X1 = 1] =

r∏
i=1

Pr[xi = 1 | Xi−1 = 1, ..., X1 = 1] ≤ prb , (74)

and, similarly, upper bounding by 1 the probability of attacking the protocol for the 1
k rounds where

we do not have a bound, in the S3 we have the following bound: Pr[Xr = 1, ..., X1 = 1] ≤ p
(1− 1

k )r

b .

5.2 Honest prover with error and without loss
Now, we consider the more realistic case where the honest prover is assumed to have a probability
of error perr. For a random variable X, taking values on a finite set X = {x1, ..., xd}, a probability
distribution p is specified by pxi = Pr[X = xi], xi ∈ X, and p can be represented by a probability
vector p = (px1 , ..., pxd). The set of all probability distributions p over X is ∆d−1 = {p ∈ Rd |∑

xi∈X pxi = 1, pi ≥ 0}, which is known as the probability simplex, and it is a (d− 1)-dimensional
manifold. Then, given an error perr, an honest prover will answer correctly with probability pc =
1 − perr, and incorrectly with probability pi = perr, reproducing a probability distribution p =
(pc, pi) = (1−perr, perr). Bounds on c-PηV

characterize a (secure) subset S ⊊ ∆1 such the attackers
do not have access to strategies reproducing probabilities in S.

Denote by ansi ∈ {c, i} whether the answer they recorded in round i was correct (c) or incorrect
(i). Let pb ∈ {P[attackP],P[attackP] + 6

k ,P[attackP] +
6
k} be the bound on the probability of

attacking c-P in the security models S1, S2, and S3, respectively, and with k given in terms of r as
in the previous subsection. Let 1∗(ans) = 1 if ∗ = ans and 0 otherwise be the indicator function.
Consider the following payoff function Ti(ansi) = (1− pb)1c(ansi)− pb1i(ansi), for every round i
of the protocol. Let Γr =

∑r
i=1 Ti(ansi) be the total ‘score’ after r rounds. For an honest prover

(hp), the Ti’s are expected to be independent and identically distributed, and thus, for every i,
E[Thp

i ] = 1− pb − perr =: µ, and therefore E[Γhp
r ] = rµ.

Lemma 5.2. (Chernoff bound [Che52]) Let X1, ..., Xr be random variables such that a1 ≤ Xi ≤ a2
for all i ∈ [r]. Let µX =

∑r
i=1 E[Xi]. Then, for all δ > 0,

Pr

[
r∑

i=1

Xi ≤ µX(1− δ)

]
≤ e

− δ2µ2
X

r(a2−a1)2 . (75)

22



Consider the probability that the honest prover’s total score greater than rµ(1 − δ), for some
δ > 0, then, using that −pb ≤ Ti ≤ 1 − pb, E[Γhp

r ] = rµ, and the generalized Chernoff bound
(Lemma 5.2),

Pr[Γhp
r > rµ(1− δ)] = 1− Pr[Γhp

r ≤ rµ(1− δ)] ≥ 1− e−rδ2µ2

, (76)
which can be made arbitrary close to 1. Similarly to the honest party, for the attackers (att),
consider T att

i , and let Γatt
r denote the total score that they get. We will show that the attackers’

counterpart of (76) will decay exponentially with r. We will use the following concentration
inequality for martingales8:

Lemma 5.3. (Azuma’s inequality [Azu67]). Suppose {Xk}k≥0 is a martingale or a super-martingale,
and |Xk −Xk−1| ≤ βk almost surely. Then, for all N ∈ N and all β ∈ R+,

Pr[XN −X0 ≥ β] ≤ e
− β2

2
∑N

k=1
β2
k . (77)

Proposition 5.4. (Sequential repetition with error and no loss at P ) Let P be as in Theorem 4.9
and secure against sequential repetition. Let pb be the upper bound of the probability of attacking
c-P in any of the three security models stated above. Let the error of the honest prover be such
that pb < 1−perr. Then, either the attackers are caught with different commitment with probability
bigger than 1−3 ·10−9, or the probability that the attackers emulate the behavior of an honest party
by obtaining a total score of at least rµ(1− δ) after r sequential repetitions of c-P is exponentially
small:

• For security models S1 and S2 (with r = 320k3)

Pr
[
Γatt
r ≥ rµ(1− δ)

]
≤ e−

r
2 (µ(1−δ))2 , (78)

• for security model S3 (with r = 320k4),

Pr
[
Γatt
r ≥ rµ(1− δ)

]
≤ e−

r
2 (µ(1−δ)− 1

k )
2

, (79)

Proof. Let S ⊂ ∆1 be the set of probabilities such that the attackers do not have access to (secure
set), i.e. p = (pc, pi) such that pc > pb and pi < 1 − pb, where pc and pi denote the probability
of answering correctly and incorrectly, respectively. Let A = ∆1 \ S, which is the set that the
attackers potentially have access to. Consider the straight line s in variables (pc, pi) defined by the
two points (0, 0) and (pb, 1− pb) described by the equation (1− pb)pc − pbpi = 0 in R2, which has
normal vector n = (1− pb,−pb). Then, we have that the inner product

n · q ≤ 0 ∀q ∈ A, (80)

which corresponds to the expected value of T att
i if they play the round i with a strategy given by

q = (qc, qi), i.e. E[T att
i ] = qc(1− pb) + qi(−pb) = n · q. Therefore, for S1 and S2, we have that for

every round i, E[T att
i ] ≤ 0. Define Γatt

0 = 0. The process Γ = (Γatt
r : r ≥ 0) is a supermartingale

relative to the filtration Fr, where Fr = σ(T att
1 , ..., T att

r ), and σ denotes the σ-algebra. In fact,

E[Γatt
r | Fr−1] = E[T att

r | Fr−1] + E[Γatt
r−1 | Fr−1] ≤ Γatt

r−1, (81)

which is the definition of a supermartingale. The first equality is due to the linearity of the
conditional expectation, and the inequality is due to the fact that the expected value of T att

r is
non-positive and that Γatt

r−1 is Fr−1-measurable.
Since |T att

i | ≤ 1, then, eq. (78) follows from an immediate application of Azuma’s inequality
(Lemma 5.3) with βk = 1. Finally, for S3, let R be the set of indices i ∈ [r] such that we have a
bound (see Corollary 4.13), which, by construction, is of size

(
1− 1

k

)
r. Then,

Pr
[
Γatt
r ≥ rµ(1− δ)

]
= Pr

[∑
i∈R

T att
i ≥ rµ(1− δ)−

∑
i/∈R

T att
i

]
≤ Pr

[∑
i∈R

T att
i ≥ r

(
µ(1− δ)− 1

k

)]
,

where the inequality follows from using T att
i ≤ 1 for all i /∈ R. Then, the bound (79) follows

analogously by considering the supermartingale Γatt
R :=

∑
i∈R T att

i .

Propositions 5.1 and 5.4 are summarized in Table 1.
8See [Wil91] for more about martingales.
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perr = 0 perr > 0

Honest prover 1 1− e−rδ2µ2

Attackers: S1 1− (P[attackP])r e−
r
2 ((1−P[attackP]−perr)(1−δ))2

Attackers: S2 1−
(
P[attackP] + 24 3

√
5
r

)r
e
− r

2

(
(1−P[attackP]−24 3

√
5
r−perr)(1−δ)

)2

Attackers: S3 1−
(
P[attackP] + 12 4

√
20
r

)(1−2 4
√

20
r

)
r

e
− r

2

(
(1−P[attackP]−12 4

√
20
r )(1−δ)− 4

√
320
r

)2

Table 1: Comparison among the lower bounds for the honest prover’s probability of answering
always correctly (perr = 0) and Pr[Γr > rµ(1 − δ)] (perr > 0) vs the upper bounds of their
counterparts for the attackers in the security models S1, S2, and S3, after r-sequential repetitions
of c-PηV

if the honest party is assumed to have no loss after committing, i.e. ηP = 1. For the honest
prover when perr > 0, µ ∈ {1−P[attackP]− perr, 1−P[attackP]− 24 3

√
5/r− perr, 1−P[attackP]−

12 4
√
20/r} for S1, S2, and S3, respectively.

5.3 Honest prover with error and loss
Consider the situation where ηP < 1 and the verifiers are expected to receive a ‘photon loss’
answer with probability 1− ηP . Given a probability of error perr, an honest prover is expected to
reproduce php = (pc, p⊥, pi) = (px1

, px2
, px3

), depending on ηP and perr, where pc, p⊥, pi denote
the probability of being correct, answering ‘photon loss’ and answering incorrectly, respectively.
For example, if the error is independent of the loss, php = (ηP (1−perr), 1−ηP , ηP perr). Bounds on
c-PηV ,ηP

characterize a (secure) subset S ⊊ ∆2 such the attackers do not have access to strategies
reproducing probabilities in S. Let A = ∆2 \S, which is the set that the attackers potentially have
access to. In particular, it contains the set of all probabilities that the attackers have access to,
which is convex, since given any two strategies, they are allowed to play their convex combination.
If the bounds on the probabilities are tight, A corresponds to the set of all probabilities that the
attackers have access to. Security for c-PηV ,ηP

implies, in particular, that (1, 0, 0) /∈ A. Let γ ⊂ ∆2

be the curve that, together with the boundary of ∆2, describes S (cf. Figure 5) and assume γ is
differentiable (otherwise take an approximation of γ contained in S that is differentiable). Consider
the ruled surface F (pc, p⊥, pi) = 0 defined by the straight lines connecting every point in γ with
the origin (0, 0, 0), see Figure 5. Then, we have that, with the corresponding choice of sign for F ,

q · ∇F |q ≤ 0 ∀q ∈ A and p · ∇F |p > 0 ∀p ∈ S, (82)

where ∇F = (∇Fx1
,∇Fx2

,∇Fx3
) denotes the normalized gradient of F . Denote by ansi ∈ {c,⊥, i}

whether the answer they recorded in round i was correct (c), ‘photon loss’ (⊥), or incorrect (i).
Let T̃i(pi,ansi) := ∇Fx1 |pi

1c(ansi) +∇Fx2 |pi
1⊥(ansi) +∇Fx3 |pi

1I(ansi) for all i ∈ [r].
For an honest prover (hp), the T̃i’s are expected to be independent identically distributed, and

thus, for every i, E[T̃hp
i ] = pc∇Fx|php

+ p⊥∇Fy|php
+ pi∇Fz|php

= php · ∇F |php
=: µ̃ > 0, and

defining Γ̃hp
r :=

∑r
i=1 T̃

hp
i , E[Γ̃hp

r ] = rµ. Consider the probability that the honest prover’s total
score Γ̃hp

r greater than rµ(1− δ), for some δ > 0. Since ∇F has norm 1, −1 ≤ T̃i ≤ 1. Then, using
the Chernoff bound (Lemma 5.2), we have that

Pr[Γ̃hp
r > rµ̃(1− δ)] = 1− Pr[Γ̃hp

r ≤ rµ̃(1− δ)] ≥ 1− e−r δ2µ̃2

4 , (83)

which can be made arbitrary close to 1.
On the other hand, for any attackers, E[T̃ att

i ] = q · ∇F |q ≤ 0 for all i ∈ [r] in the S1 and
S2. Define Γ̃att

0 = 0. The process Γ̃ = (Γ̃att
r : r ≥ 0) is a supermartingale relative to the filtration

Fr = σ(T̃ att
1 , ..., T̃ att

r ). In fact,

E[Γ̃att
r | Fr−1] = E[T̃ att

r | Fr−1] + E[Γ̃att
r−1 | Fr−1] ≤ Γ̃att

r−1, (84)
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which is the definition of a supermartingale. The first equality is due to the linearity of the
conditional expectation and the inequality is due to the fact that E[T̃ att

r | Fr−1] = q ·∇F |q ≤ 0 for
any q ∈ A the attackers chose at the round r if it depends on the previous rounds in any way, and
Γ̃att
r−1 is Fr−1-measurable. Since ||∇F || = 1, |T̃ att

i | = maxj∈{1,2,3}|∇Fxj
| ≤ 1, then, an immediate

application of Azuma’s inequality (Lemma 5.3) leads to the bound in the next proposition with
βk = 1. Finally, analogously to the proof of Proposition 5.4, one finds the bound for S3 by the
supermartingale obtained by Γ̃R =

∑
i∈R T̃i, where R is the set of indices i ∈ [r] such that we have

a bound (see Corollary 4.13). The concrete bounds are given in the following proposition.

Proposition 5.5. (Sequential repetition with error and loss) Let P be as in Theorem 4.9, and
secure against sequential repetition. Let F (pc, p⊥, pi) = 0 be the ruled surface that separates the
region of ∆2 where the attackers do not have access to, as defined above, for c-PηV ,ηP

. Let ηP
and perr and δ be such that php · ∇F |php

= µ̃ > 0, where php is the probability vector expected
from the honest party. Then, after r-sequential repetitions of the protocol, either the attackers are
caught with different commitment with probability bigger than 1 − 3 · 10−9, or the probability that
the attackers emulate the behavior of an honest party by obtaining a total score Γ̃att

r of at least
rµ̃(1− δ) after r-sequential repetitions of c-P is exponentially small:

• For security models S1 and S2 (with r = 320k3)

Pr
[
Γ̃att
r ≥ rµ̃(1− δ)

]
≤ e−

r
2 (µ̃(1−δ))2 , (85)

• for security model S3 (with r = 320k4),

Pr
[
Γ̃att
r ≥ rµ̃(1− δ)

]
≤ e−

r
2 (µ̃(1−δ)− 1

k )
2

. (86)

∇F

A

S γ

pc

p⊥

pi

Figure 5: 2-dimensional probability simplex ∆2 with secure subset S defined by the curve γ for a
protocol c-PηV ,ηP

.

5.4 c-QPVf
BB84 as a promising candidate for practical QPV

Our result makes the practically interesting, but not loss-tolerant, protocol QPVf
BB84 a strong

candidate for an actual practical implementation of QPV by running its version c-QPVf
BB84 with

commitment instead.
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QPVf
BB84 and its extensions encoding the qubitQ inm bases can be attacked if the transmission

of the protocol is ηV ηP ≤ 1/m, by Alice guessing the basis and claiming ‘photon loss’ whenever
the guess was wrong. Previously, the high transmission loss between the verifiers and the prover
would make this condition always true in practice, making the protocol insecure. Our main result,
Theorem 4.9, removes this problem, as for c-QPVf

BB84 this transmission loss 1 − ηV becomes
irrelevant for the security of the protocol and only the loss in the provers’ laboratory 1−ηP , which
should be much smaller, matters. If one assumes there’s no loss in the prover’s delay δ, security is
recovered applying the upper bound on P[attackP] in [BCS22], which also includes errors from the
prover. In addition, considering loss in the prover’s setup in the delay δ, security for arbitrary large
distances is recovered by applying the upper bounds on P[attackPηP

] in [ES23]. These bounds hold
as long as the attackers cannot share a quantum state of larger dimension than the lower bound
at the beginning of each round. Notice that since the time delay δ is small, m can remain small (if
the loss during time δ is below 50%, QPVf

BB84 with m = 2 already provides security).
This makes c-QPVf

BB84 a protocol that is experimentally feasible to implement, can be made
loss-tolerant enough for practice, is robust against slow quantum communication, and inherits the
desirable tradeoff between resources of the honest parties and the attackers9 for an attack. Impor-
tantly, this latter lower bound is in the classical input size. Since sending classical information is
easy from the point of view of verifiers and the honest prover, we can set the attacking requirements
so high that it becomes practically infeasible to attack the protocol with current technology. In
the foreseeable future, it is not possible to store and manipulate the amount of qubits needed to
attack the protocol successfully.

6 QPV with commitment in practice
For our protocol with commitment, the honest prover needs a device detecting the presence of
the input quantum state10 without destroying it, i.e. a photon presence detector, also known as
quantum non-demolition (QND) measurement. We will consider two feasible solutions to this.
What’s important for the security of c-QPV is how much loss and error this introduces in the
prover’s setup. The main goal of c-QPV is to make the (large) transmission loss between the
verifiers and the prover irrelevant for security.

Transmission in the prover laboratory

The relevant transmission rate for security is the one in the prover’s laboratory (ηP ). It strongly
depends on the actual setup used, so we will only give rough estimates of ηP . Note that

ηP = P[photon measured |presence detected] =
P[photon measured ∧ presence detected]

P[presence detected]
. (87)

The presence of a photon is concluded either due to the photon being present and detected
(ηV η

QND
det ) or due to a dark count in the presence detection (pQND

dc ). Given the photon is her-
alded, successful measurement happens if

• either the photon survived the presence detection (ηsurv) and was not lost before measuring
it (ηequip) and the measurement detector registered it (ηdet) or

• (the measurement detector registered a dark count (pdc) when the photon did not survive the
presence detection or was lost before measurement) or (the measurement detector registered
a dark count when the presence detection also registered a dark count).

We absorb all losses after the presence detection into one term denoting the efficiency of the photon
measurement ηmeas = ηdetηequipηsurv. Using the above reasoning we can write out the probabilities

9Comprised of pre-shared entanglement and quantum communication.
10We will focus on photonic qubits.
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in eq. (87) as11

ηP =
(ηmeas + pdc)ηV η

QND
det + pdcp

QND
dc

ηV η
QND
det + pQND

dc

. (88)

Notice that12

if ηV ≪ pQND
dc : ηP ∼ pdc. (89)

If the probability that a photon enters the presence detector (ηV ) is much smaller than the dark
count rate pQND

dc then most photon presence detection events, and thus c = 1 commitments, will
be due to dark counts! Then the (e.g. polarization) measurement on the photon will not give
a click most of the time, making ηP very small. In the limit ηV → 0 we obtain ηP → pdc as
expected. Single photon detectors routinely achieve pdc ∼ 10−7 or similar per detection window
[Had09]. For such small ηP the usual lossy attack of guessing the provers’ measurement setting
(with probability 1/m) still works because in practice we wouldn’t be able to use a high enough
number of measurement settings m such that ηP > 1/m. So introducing the commitment step
would not help when ηV ≪ pQND

dc .
Let us write ηV = γpQND

dc for some constant factor γ. We define the signal-to-noise ratio of the
presence detection as

SNRQND(γ) =
ηV η

QND
det

ηV η
QND
det + pQND

dc

=
γηQND

det

γηQND
det + 1

. (90)

We have already argued that in the case ηV ≪ pQND
dc our proposal is useless. Let’s therefore focus

on the case where ηV is at least the order of magnitude of pQND
dc , corresponding to γ ≥ 1. Then,

using that pdc usually is negligibly small compared to the other quantities, we can simplify ηP as
follows,

ηP ∼ SNRQND(γ)ηmeas. (91)

The condition that the input transmission needs to be larger than pQND
dc will limit the distance

between the verifiers and the prover. This, however, is not a characteristic of our protocol – it is
an issue for any quantum communication protocol, as any protocol fails if most signals are noise
originating from dark counts.

Distance between verifiers and prover

The transmission law for optical fibers reads η = 10−αL/10 [SJ09], where α is the attenuation of
the fiber in dB/km and L is the fiber length in km. A standard value for current optical fibers is
α = 0.2 dB/km [SJ09], with the most sophisticated ones achieving α = 0.14 dB/km [HTS+18]. We
can solve for L and insert ηV in terms of the presence-detection dark count rate to obtain

L = −10

α
log10

(
γpQND

dc

)
. (92)

Rate of the protocol

There are several processes that we’d like to do at a high rate in our protocol: generating single
photons, modulating their polarization state, generating EPR pairs, fast switching between mea-
surement settings depending on f(x, y), and detecting single photons. State-of-the-art equipment
is able to achieve the following rates (order of magnitude) today or in the near future:

• Single photon generation: MHz, in principle up to GHz [MSSM20]
11For the event of a dark count it is implicit that the input photon was not detected. In our notation factors of

1− ηmeas or 1− ηV ηQND
det are included in the corresponding dark count variable.

12pdc is negligible compared to the other term, so we neglect the second term in the bracket of eq. (88) for eq. (89).
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• Polarization modulation: up to GHz [LLX+19]

• EPR state generation: up to GHz, depending on pump laser power [LVSL18, APS+21],

• Switching: up to THz [CHW+17]

• Single photon detector count rate: up to GHz [Had09]

Therefore, we expect our protocol can be run at least at MHz rate, and potentially at GHz rate
with top equipment, albeit we acknowledge that it may be challenging to run all these processes at
high rates simultaneously. The achievable rate of a setup will strongly depend on the equipmen-
t/architectures used, thus we only state current maximally achievable values here and refer to the
cited articles and reviews for more details. The rate of the protocol will determine the time that
is needed to reach the required number of rounds, as stated in Corollary 4.13.

The total number of rounds R that we expect to run to get r = 320k4 rounds with commitment
to play (c = 1) is R = 320k4/pcommit. If the protocol is run at frequency ν, then the expected
protocol duration tPc in seconds is therefore

tPc =
320k4

pcommitν
. (93)

Given a choice of security parameter k, a probability to commit pcommit from the prover13 and an
achievable protocol frequency ν, one can then estimate how long it takes to run the protocol with
the security guarantee given in Corollary 4.13.

6.1 True photon presence detection
Recently, a breakthrough paper [NFLR21] demonstrated true non-destructive detection of photonic
qubits. To do so, they prepare a 87Rb atom in an optical cavity in the superposition state |+⟩ =
(|0⟩+ |1⟩)/

√
2, where |0⟩ and |1⟩ denote certain energetic states of the atom. The optical cavity

is tuned such that a photon cannot enter the cavity if the atom is in state |0⟩, but is allowed to
enter if the state is |1⟩. In that case it gets reflected from one wall before leaving the cavity again,
acquiring a π/2 phase shift. This interaction adds a phase to the combined photon-atom state, i.e.
|ψphoton⟩|1⟩ 7→ −|ψphoton⟩|1⟩, changing the atom state from |+⟩ to |−⟩. Then a rotation is applied,
mapping the atomic state |+⟩ 7→ |1⟩ and |−⟩ 7→ |0⟩, after which it is measured. If the result is 0
there was a photon interacting with the atom, if the result is 1 there was not. This measurement
thus heralds the presence of a photon in the output mode of the optical cavity, which can be sent to
a polarization measurement for example. [NFLR21] achieves the following relevant experimental
parameters for their photon presence detector, which we can expect to improve in the future:

Photon in output mode given heralding (ηsurv): ∼ 25-55%,

Dark count rate (pQND
dc ): ∼ 3%,

Fidelity of photon in output mode: ∼ 96%.

(94)

Note that ηsurv depends on the dark count rate and was measured using weak coherent light in
[NFLR21] rather than true single photons. We take the stated range from their Figure 3b.

Even though this technology is currently unusuable for c-QPV due to the high dark count rate
(relative to realistic ηV over longer distances), we can expect the parameters to improve significantly
in the future. A true photon presence detector such as this could therefore be a clean and viable
long-term solution for c-QPV.

6.2 Simplified presence detection via partial Bell measurement
For the near term, we consider a simplified photon presence detection based on a partial linear-
optical Bell measurement. Essentially, the prover has to prepare a Bell state and teleport the input

13Which would just be ηV , if the prover had perfect equipment.
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state to himself when it arrives. A conclusive14 Bell measurement (BSM) heralds the presence of
the input state, after which the prover briefly stores it until he receives the classical information
x, y and measures it with the appropriate setting based on x, y. Note that we don’t require a full
Bell measurement. Even just discriminating 1 out of 4 Bell states via interference at one beam
splitter would be enough. The scheme in Figure 6 [Wei94, BM95, MMWZ96] can distinguish 2
out of 4 Bell states, doubling the efficiency, while just using linear-optical equipment. Importantly,
this scheme has first been demonstrated a long time ago [MMWZ96] and is experimentally feasible
today.
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<latexit sha1_base64="9RgAXHj6J8InIcRUsfMnsRtKbiM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEVDwV9OCxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHm57571yxa26M5Bl4uWkAjnqvfJXtx+zNEJpmKBadzw3MX5GleFM4KTUTTUmlI3oADuWShqh9rPZqRNyYpU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2+vEyaZ1Xvouren1dq13kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBwDONbA==</latexit>

D4

<latexit sha1_base64="irsGBByXTShajk0MA3CsQ1PcXiY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEVDwV9OCxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Gbqt564NiJWjzhOuB/RgRKhYBSt9HDb83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qLr355XadR5HEY7gGE7Bg0uowR3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8Au6eNaQ==</latexit>

D1
<latexit sha1_base64="e1a9ihmXwNwitWN8FSlbh9n/Sco=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkRFU8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD7e9aq9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26oScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7QheIsvL5NmteJdVNz783LtOo+jAMdwAmfgwSXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AvSuNag==</latexit>

D2

<latexit sha1_base64="AlDA7SoAiTjqICq+6xkIZH0+zwE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki2mXRjcuK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o3pdBbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPx7dxvT6jSTIpHM42pH+GhYCEj2FjJ70XYjHSY3jzM+l6/VHYrbga0SryclCFHo1/66g0kSSIqDOFY667nxsZPsTKMcDor9hJNY0zGeEi7lgocUe2nWegZOrfKAIVS2ScMytTfGymOtJ5GgZ3MQi57c/E/r5uYsOanTMSJoYIsDoUJR0aieQNowBQlhk8twUQxmxWREVaYGNtT0ZbgLX95lbSqFe+qUr2/LNdreR0FOIUzuAAPrqEOd9CAJhB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+Ys5H1</latexit>

BS1

<latexit sha1_base64="k93sQn2M5GeQFENBYQlz7Ea7QDs=">AAACIXicbVDLTsJAFL31ifUFunTTSExcENKigO4ImuASRB4JJWQ6vcWGvtKZGknTz3CrC7/GnXFn/BlL6ULAk0xy5pxzc2+O5lkm47L8Laytb2xubWd2xN29/YPDbO6oy9zAp9ihruX6fY0wtEwHO9zkFvY9H4mtWdjTJjczv/eEPjNd54FPPRzaZOyYhkkJj6WBahP+yIyw3o5G2bxclBNIq0RJSR5SNEc5AVTdpYGNDqcWYWygyB4fhsTnJrUwEtWAoUfohIxxEFOH2MiGYXJzJJ3Fii4Zrh8/h0uJ+nciJDZjU1uLk8mNy95M/NfTNN10xgvbw+f5UlFUdTTippJv2ArarsGj8L5Rj0Klel2QlEpBuihFi7FbRK/hIzppshzn5FJBuorEuDNluaFV0i0VlUqx3LrM1+ppexk4gVM4BwWqUIM7aEIHKLjwAq/wJrwLH8Kn8DWPrgnpzDEsQPj5Bfhxn9w=</latexit>

BS

<latexit sha1_base64="bCnL4wzSs6hN5bywDbkbj4bqKtA=">AAACInicbVDLTsJAFL31ifUFunTTSExcENKigO4ImuASRB4JJWTa3mJDX+lMjaTpb7jVhV/jzrgy8WMcShcCnmSSM+ecm3tzNN+2KJPlb2FtfWNzazuzI+7u7R8cZnNHXeqFgY4d3bO9oK8RirblYodZzMa+HyBxNBt72uRm5veeMKCW5z6wqY9Dh4xdy7R0wrikqg5hj9SMmvV2PMrm5aKcQFolSkrykKI5ygmgGp4eOugy3SaUDhTZZ8OIBMzSbYxFNaToE31Cxjjg1CUO0mGUHB1LZ1wxJNML+HOZlKh/JyLiUDp1NJ5Mjlz2ZuK/nqYZljte2B49z5eKomqgyatKvlErbHsmi6P7Rj2OlOp1QVIqBemiFC/GbhH9RoDopskyz8mlgnQVi7wzZbmhVdItFZVKsdy6zNfqaXsZOIFTOAcFqlCDO2hCB3Tw4QVe4U14Fz6ET+FrHl0T0pljWIDw8wup4aA2</latexit>

PBS
<latexit sha1_base64="bCnL4wzSs6hN5bywDbkbj4bqKtA=">AAACInicbVDLTsJAFL31ifUFunTTSExcENKigO4ImuASRB4JJWTa3mJDX+lMjaTpb7jVhV/jzrgy8WMcShcCnmSSM+ecm3tzNN+2KJPlb2FtfWNzazuzI+7u7R8cZnNHXeqFgY4d3bO9oK8RirblYodZzMa+HyBxNBt72uRm5veeMKCW5z6wqY9Dh4xdy7R0wrikqg5hj9SMmvV2PMrm5aKcQFolSkrykKI5ygmgGp4eOugy3SaUDhTZZ8OIBMzSbYxFNaToE31Cxjjg1CUO0mGUHB1LZ1wxJNML+HOZlKh/JyLiUDp1NJ5Mjlz2ZuK/nqYZljte2B49z5eKomqgyatKvlErbHsmi6P7Rj2OlOp1QVIqBemiFC/GbhH9RoDopskyz8mlgnQVi7wzZbmhVdItFZVKsdy6zNfqaXsZOIFTOAcFqlCDO2hCB3Tw4QVe4U14Fz6ET+FrHl0T0pljWIDw8wup4aA2</latexit>

PBS

Figure 6: Schematically a partial Bell measurement can be implemented via a 50/50 beam splitter
(BS), two polarization beam splitters (PBS) and four single photon detectors (Di). An input state
|Ψ−⟩ triggers one detector in each arm (D1, D3 or D2, D4), |Ψ+⟩ triggers two detectors in one arm
(D1, D2 or D3, D4) and the states |Φ+⟩, |Φ−⟩ could trigger any, but just one, detector. So one can
only conclusively distinguish |Ψ−⟩ and |Ψ+⟩, giving an efficiency of at most 50%, which is optimal
for linear optics [CL01]. Any click patterns other than the ones corresponding to |Ψ±⟩ are deemed
as “no-detection” events.

First, note that any losses or inconclusive click patterns in the BSM itself will simply reduce
the transmission ηV . This will jeopardize security only if it makes ηV so small that dark counts
take over. Moreover, it may be that the teleportation corrections don’t need to be actively applied
but can be classically calculated and corrected, as is the case when they just flip the measurement
result predictably like in c-QPVf

BB84 for example. So then only a partial, linear-optical BSM and
(very short) storage of the other EPR qubit would be required experimentally.

If we assume that the honest prover can generate entanglement when he expects the verifiers’
input to arrive, then most of the time there will be one photon (the one from the EPR pair) going
into the BSM setup, and only one dark count is needed for a false positive event. The relevant
photon presence detection dark count rate would then be just the one of a conventional single
photon detector, i.e. pQND

dc ∼ pdc. The presence-detection efficiency ηQND
det for such a BSM would

be the efficiency of detecting both photons if they are present, i.e. ηQND
det = η2det. Moreover, the

value of ηmeas = ηdetηequipηsurv depends on the equipment post-presence-detection, but is certainly
upper bounded by ηdet. So we have an upper bound of

ηP ∼ SNRQND(γ)ηmeas ≤
γη3det

γη2det + 1
. (95)

Easy-to-use single photon detectors have detection efficiencies of up to 20-65% [Had09], and the
most sophisticated detectors reach up to 98%15 [RNN+20]. In reality there will also be losses
pre-measurement, making the true value in eq. (95) smaller than the upper bound. If these can be
kept small enough, however, the true value of ηP will be close to the upper bound in eq. (95) and
secure c-QPV becomes possible if this value is large enough to prevent lossy attacks16.

14We will define which click patterns count as successful further in Figure 6.
15Note that detection efficiencies always depend on the wavelength of the photons used.
16Meaning higher than the basis guessing probability 1/m or higher than the values obtained in [ES23] for c-

QPVf
BB84, for example.
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With regards to the distance L between the verifiers and the prover, we can use eq. (92) to get
an estimate of what kinds of distances become possible for QPV with our proposal. As mentioned,
with this setup pQND

dc ∼ pdc ∼ 10−7. Moreover, ηV should be at least one (preferably more) order
of magnitude larger than pQND

dc to obtain a decent signal-to-noise ratio, so say γ ≳ 10. This yields
via eq. (92) that

L ≲ 400 km (96)

for the distance between the verifiers and the prover. We summarize our findings in the following
remark.

Remark 6.1. c-QPV makes a class of previously not loss-tolerant QPV protocols, with QPVf
BB84 as

a prime example, loss-tolerant even in practice as long as both the signal-to-noise ratio of the photon
presence detection SNRQND and the efficiency of the prover measurement ηmeas are sufficiently high
such that ηP is high enough to prevent lossy attacks17. The signal-to-noise ratio SNRQND depends
on the transmission ηV between the verifiers and the prover, the dark count rate pQND

dc , and the
detection efficiency ηQND

det . This ultimately limits the maximal distance between the verifiers and
the prover18. The experimental requirements of our proposal in the prover laboratory are:

• The prover needs to be able to generate an EPR pair on demand

• Photon presence detection, e.g. via a partial BSM (like the scheme in Figure 6)

• A short delay loop so the prover can store the teleported qubit until the classical information
x, y arrives. This time delay shall be made as short as possible.

• The prover needs to be able to do the measurement depending on x, y and should be able to
quickly switch between different measurements based on the value of f(x, y).

The verifiers need to be able to generate and modulate single photon states (e.g. polarization) with
high frequency.

All requirements are practically feasible, or within reach, with state-of-the-art equipment.

7 Discussion
The three major roadblocks for practically implementable and secure QPV are: entangled attackers,
slow honest quantum communication and signal loss. On top of that, the honest protocol must
be experimentally feasible. So far, no QPV protocol was able to deal with all of those issues.
Our work presents the first such protocol: c-QPVf

BB84. This opens up a feasible route to the
first experimental demonstration of a QPV protocol that remains secure in a practical setting
over long distances. We propose two options to do the required non-demolition photon presence
detection: a clean and viable long-term solution [NFLR21], assuming the non-destructive detector
parameters will improve in the future, and a simpler near-term solution via a partial Bell state
measurement [MMWZ96] that can be implemented with just a few linear-optical components and
conventional click/no-click single photon detectors. Given a sufficiently low dark-count rate in
the photon presence detection and sufficiently low loss in the prover’s laboratory, secure QPV can
be achieved in principle. c-QPVf

BB84 has two further major advantages: the quantum resources
required for an attack scale in the classical input size (which can easily be made very large) and
in case the prover uses the partial Bell measurement for photon presence detection, he does not
need to actively apply any teleportation corrections, but can passively calculate and correct them
instead, as they predictably flip the measurement outcome. By analyzing the rounds in which both
attackers commit we find that when we run enough rounds attacking the committing version of
the protocols becomes as hard as the underlying protocol. It would be interesting if we can use
the fact that it is also difficult for attackers to always answer equally on ‘no commit’ rounds in
the analysis to get better bounds on the number of rounds we have to run. We argue that all the

17For example as studied in [ES23] for QPVf
BB84, which carries over to our c-QPVf

BB84.
18To much larger distances than previously possible for QPV, however.
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experimental requirements are in principle feasible and that in principle our protocol can be run
at high rates. These properties taken together make c-QPVf

BB84 the first QPV protocol that can
successfully deal with all the major practical issues of QPV.

Our result is not limited to QPVf
BB84 per se, but can be applied to any QPV protocol that shares

the same structure as QPVf
BB84 and remains secure if the input state is replaced by any adversarial

input state not depending on the classical input information x, y. It would be interesting to
investigate whether our modification, introducing a prover commitment to play, can find application
for other types of QPV protocols, or whether it can make other security models, like the random
oracle model [Unr14], loss-tolerant.
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