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Highlights

Stiefel Manifold Interpolation for Non-Intrusive Model Reduction of

Parameterized Fluid Flow Problems

Achraf El Omari, Mohamed El Khlifi, Laurent Cordier

• First application of interpolation on the tangent space of the Stiefel man-

ifold to engineering data.

• Non-intrusive method for interpolating physical solutions at a new operat-

ing condition.

• Direct interpolation method for spatial and temporal modes. No post-

interpolation operations required.
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Abstract

Many engineering problems are parameterized. In order to minimize the com-

putational cost necessary to evaluate a new operating point, the interpolation of

singular matrices representing the data seems natural. Unfortunately, interpolat-

ing such data by conventional methods usually leads to unphysical solutions, as

the data live on manifolds and not vector spaces. An alternative is to perform the

interpolation in the tangent space to the Grassmann manifold to obtain interpo-

lated spatial modes. Temporal modes are afterwards determined via the Galerkin

projection of the high-fidelity model onto the interpolated spatial basis. This

method, which is known for some fifteen years, is intrusive. Recently, Oulghelou

and Allery (JCP, 2021) have proposed a non-intrusive approach (equation-free),

but requiring the resolution of two low-dimensional optimization problems after

interpolation. In this paper, a non-intrusive alternative based on Interpolation on

the Tangent Space of the Stiefel Manifold (ITSSM) is presented. This approach

∗Corresponding author

Preprint submitted to Journal of Computational Physics October 25, 2024



has the advantage of not requiring a calibration phase after interpolation. To as-

sess the method, we compare our results with those obtained using global POD

on the one hand, and two methods based on Grassmann interpolation on the

other. These comparisons are performed for two classical configurations encoun-

tered in fluid dynamics. The first corresponds to the one-dimensional non-linear

Burgers’ equation. The second example is the two-dimensional cylinder wake

flow. We show that the proposed strategy can accurately reconstruct the physi-

cal quantities associated with a new operating point. Moreover, the estimation

is fast enough to allow real-time computation.

Keywords: Manifold interpolation, Stiefel manifold, non-intrusive model

reduction, fluid dynamics, parameterized model reduction

1. Introduction

The vast majority of engineering problems encountered in automotive, aero-

nautical and biomedical applications are parametric in nature [1]. The configu-

rations of interest depend on so-called control parameters such as Reynolds or

Mach numbers, or more generally on geometric design parameters or external

forces. To improve our physical understanding of these domains and/or to solve

optimization problems, numerous numerical resolutions of high-fidelity models

are required. Despite continuous progress in numerical methods, the resolutions

of these systems, often consisting of Partial Differential Equations (PDEs) de-

rived from first principles, are still too demanding in terms of computation. This

is all the more true as applications become increasingly complex at the same

time. This high computational cost is due to the huge number of degrees of

freedom arising from the spatial discretisation of the models and to the small
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time steps required to solve them accurately. To overcome these difficulties,

Reduced-Order Models (ROMs) have been developed extensively over the last

twenty years [e.g., 2]. The purpose of these simplified dynamical models is to

represent the most important information content of the high-fidelity model in a

low dimensional subspace. The final objective is to enable ROMs to operate in

near real-time computations and to be integrated in optimal control procedures.

ROMs are divided into two main families [3, Chap. 1]: intrusive methods, in

which the reduced solutions are determined by solving dynamical models obtained

by projecting the high-fidelity model onto the reduced space, and non-intrusive

methods, in which only the data collected from numerical simulations or experi-

mental measurements are considered. The main drawback of intrusive methods

is that they require access to the high-fidelity model that produced the data.

Proper Orthogonal Decomposition (POD) is one of the most popular model

reduction methods in fluid dynamics. Given a collection of high-dimensional input

data, called snapshots, the POD algorithm [see 4, 5] determines an orthogonal

basis whose elements are solutions of an integral eigenvalue problem [6]. By

definition, these eigenfunctions, also called POD modes, are representative of

the most dominant (in a given sense) realizations of the input data. Model

reduction techniques generally lack robustness to parameter variation. To address

this issue, a single global projection basis for the entire parametric domain is used

successfully in Bergmann et al. [7] for optimizing an aerodynamic configuration.

This global approach might however become computationally inefficient if each

new parametric configuration is significantly different in terms of information

content. In Bergmann and Cordier [8], a trust-region optimization algorithm is

coupled to a POD ROM. Inside the trust-region, the POD model is used for
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predicting the dynamics. When the optimization leads to parameters outside

the domain of validity of the trust-region, the POD basis has to be determined

again, and it is necessary to solve the high-fidelity model, which can be very

expensive. Despite the interest of these methods, it seems relevant to seek to

develop fast and robust algorithms for adapting a set of pre-computed POD bases

to variations in parameter values.

From a mathematical point of view, POD subspaces can be interpreted as

special cases of matrix manifolds [for the definition, see Chap. 3 of 9, or later

in Section 3.1]. Matrix manifolds are characterized by some properties of linear

algebra, such as orthogonality, full-column rank or positiveness. For instance,

POD basis can be represented by an orthogonal, full-column rank matrix (see

Section 2). The problem of interpolating POD bases can therefore be formally

reduced to that of interpolating data on matrix manifolds. Since a manifold is

a space of non-zero curvature, the direct interpolation of points contained on

the manifold does not necessarily produce a point on the manifold (see Section

3). For example, the interpolation of orthogonal matrices does not necessarily

produce an orthogonal matrix. To reproduce the dynamics of the system for

an “unseen” configuration, Amsallem and Farhat [10] proposed, in their seminal

work, to interpolate local basis on the tangent space to a matrix manifold (see

Section 3.2). The algorithm can be summarized as follows. First, local bases

determined by POD are mapped to the tangent space of a matrix manifold of

choice (see the discussion in Section 3.3). Then, the mapped data is interpo-

lated with a conventional interpolation algorithm. Finally, the interpolated result

is mapped back to the manifold yielding the sought basis for the “unseen” pa-

rameter. Essentially, this algorithm exploits the fact that the tangent space of
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a differential manifold is a “flat” Euclidean vector space in which interpolation

can be performed in the usual way. Considering that the POD basis can be rep-

resented naturally on a Grassmann manifold (see Section 3.1 for the definition),

Amsallem and Farhat [10] called their approach Interpolation on the Tangent

Space of the Grassmann Manifold (ITSGM). This interpolated basis is then used

in a classical Galerkin projection to predict the temporal dynamics of the system

for unseen configuration. Amsallem et al. [11] extended their early work to the

interpolation of the linear structural dynamics of reduced-order models. To take

into account the physical constraints of the problem, they chose to perform the

interpolation on the tangent space to the manifold of symmetric positive definite

(SPD) matrices. The work of Amsallem and Farhat [10] has received a great

deal of attention. As a consequence, interpolation on the Grassmann manifold

was used repeatedly in the literature to study other engineering configurations.

In Oulghelou and Allery [12], the authors used interpolation on the tangent

space of the Grassmann manifold to optimize by optimal control the flow in

a lid-driven cavity at low Reynolds number. In Oulghelou and Allery [13] and

Oulghelou and Allery [14], the same authors solved several 2D optimal control

problems (Burgers, nonlinear reaction diffusion, nonlinear heat) using concur-

rently two interpolation methods: ITSGM and Proper Generalized Decomposi-

tion. More recently, Vlachas et al. [15] proposed an extension of interpolation on

the tangent space of the Grassmann manifold, using a preprocessing that con-

sists in partitioning the parameter space into several subregions, thus facilitating

interpolation. These studies have shown that ITSGM is well suited to tackling

parametric problems. However, in all the cited cases, the method is intrusive, the

temporal modes being obtained by Galerkin projection. Naively, we might think
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that it is possible to use the same method of interpolation on the tangent space

of the Grassman manifold for the right singular matrix of the snapshot matrix.

However, this is in principle impossible, as the ITSGM algorithm determines a

solution up to right multiplication with an orthogonal matrix (this is referred to

as an equivalence class, see Section 3.1). For the spatial modes determined by

ITSGM and used in the Galerkin projection, this does not pose any difficulties, as

we can show (Section 2.2) that the reduced-order model determined by Galerkin

projection remains unchanged by using spatial POD modes known to within one

orthogonal matrix. In that perspective, Oulghelou and Allery [16] recently pro-

posed a non-intrusive two-step extension, referred as Bi-CITSGM (Bi-Calibrated

ITSGM). In the first step, the left and right singular matrices obtained by Sin-

gular Value Decomposition of the snapshot matrices are interpolated by ITSGM

and the singular value matrix are interpolated by spline cubic. The second step

consists in solving two auxiliary optimization problems aiming to calibrate the

interpolated modes by determining two small orthogonal matrices. This method

was used successfully to estimate a wake flow past a circular cylinder at low

Reynolds number (195).

In cases, often encountered in industrial applications, where commercial soft-

ware is used in the numerical process, it is clearly not possible to use an intrusive

method based on the integration of a reduced-order model derived from Galerkin

projection. In this context, Friderikos et al. [17] recently proposed a non-intrusive

method, based on a mechanism specific to the commercial finite element software

used for simulation (Abaqus), for imposing internal constraints. In the same pa-

per, the authors investigate the necessary stability conditions for applying POD

bases interpolation on the tangent space of the Grassmann manifold. They

6



showed that these stability conditions help to explain some numerical difficulties

encountered with Grassmann interpolation.

Recently, Oulghelou et al. [18] proposed a new interpolation strategy to accel-

erate updates of Galerkin projections. Instead of using the Grassmann manifold as

in their previous work, the POD subspaces are represented1 on the quotient space

of the set of full-rank matrices by the orthogonal group. This approach exploits

the reduced computational cost associated with the simple explicit expressions of

the exponential and logarithmic mappings determined in Massart and Absil [19].

The parametric interpolation phase is performed using a weighted Riemannian

barycenter method or Karcher barycenter (see Zimmermann and Bergmann [20]

for instance). The advantage of this interpolation method is to do not require the

introduction of a reference point in the tangent space. However, the interpolant

is searched iteratively as the existence and uniqueness of the solution to the mini-

mization problem associated with the Karcher barycenter can only be guaranteed

locally. This interpolation step of the spatial POD subspace is followed by the

resolution of a Galerkin system in order to evaluate the temporal dynamics. In a

later work, Oulghelou et al. [21] opted to interpolate both the spatial and tem-

poral bases without a calibration phase. According to the authors, calibration

between the columns of the spatial and temporal bases is naturally ensured by

barycentric interpolation, unlike interpolation on the Grassmann manifold where

calibration is lost.

In this paper, an alternative non-intrusive interpolation method is assessed

1In contrast to the interpolation on the Stiefel manifold, the orthogonality of the matrix

representing the POD subspace is not considered.
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on configurations typically encountered in fluid mechanics. Inspired by previous

studies, we propose an original method called Interpolation on the Tangent Space

of the Stiefel Manifold (ITSSM). As it will be shown, the main advantage of this

approach is that it does not require calibration phases, as interpolation can be

performed directly on the left and right singular matrices. Interpolation on the

Stiefel manifold has not been treated in the literature, except in a short 8-page

article [22] in which the authors made two numerical experiments on a financial

model called Black-Scholes equation, very far from those generally encountered

in physics.

The first objective of this paper is to present in more depth the previous

ITSSM method, by testing it on two examples issued from physical modelling in

fluid mechanics (Burger’s equation and wake flow downstream a circular cylin-

der). Another objective is to help popularize the use of interpolation on the

tangent space of the Stiefel manifold. In Section 3.3, we will return to the ad-

vantages provided by the ITSSM method compared to the ITSGM algorithm

used so far. As Zimmermann and Debrabant note in their article, it is necessary

for performing interpolation on the Stiefel manifold to have efficient projection

algorithms on the manifold and its tangent space. While an explicit formula

existed for about twenty years for projecting to the Stiefel manifold a point be-

longing to its tangent space (the so-called exponential mapping, see Section 3.1

and Alg. 2), an efficient algorithm for calculating the inverse projection oper-

ator (denoted logarithm mapping, see Alg. 3) was developed very recently by

Zimmermann [23].

The paper is organized as follows. In Section 2, we present POD-based

reduced-order modelling. Section 3 begins with reminders of differential geome-
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try, essential for understanding interpolation methods on tangent spaces of matrix

manifold, then presents in detail the Stiefel and Grassmann manifolds. In Section

3.2, the general process of interpolation on a tangent space to a matrix manifold

is reviewed. Subsequently, Section 3.3 briefly presents the advantages of using

the Stiefel manifold for interpolation. Section 4 describes the interpolation al-

gorithm on the tangent space to the Stiefel manifold, as well as its numerical

complexity. Finally, in Section 5, the proposed method is assessed by comparing

results with the global POD and two interpolation methods on the Grassmann

manifold. Two test configurations of increasing complexity are analyzed. The

first one corresponds to the one-dimensional non-linear Burgers’ problem (Sec-

tion 5.1), while the second one is the two-dimensional cylinder wake flow (Section

5.2). Conclusions are drawn in Section 6.

2. Reduced-order modelling based on Proper Orthogonal Decomposi-

tion

2.1. Proper Orthogonal Decomposition

Let U = {u(x, tm)}Nt

m=1 be a set of Nt real2 snapshots of size Nxc = NxNc

taken over a time interval [0, T ], with x ∈ Ω the spatial domain, Nx the number

of points of a spatial grid and Nc the dimension of the system state (for example,

the three components of the fluid velocity). We introduce H a Hilbert space

with inner product (·, ·)H and induced norm ∥ · ∥H . The aim of the POD [24,

for instance] is to find a subspace Sk of dimension k ≪ Nt, such that Sk =

2Similarly, we could consider complex-valued snapshots. We would then have to modify

accordingly the inner product.
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span (Φ1, · · · ,Φk) where {Φi}ki=1 are solutions of the constrained optimization

problem given by:

max
ΠPOD

Nt∑
m=1

∥ΠPODu(x, tm)∥2H s.t. ∥Φk∥2H = 1 , (1)

where ΠPOD is the orthogonal projector on Sk, i.e.

ΠPODu(x, tm) =
k∑

i=1

(u(x, tm),Φi(x))H Φi(x) . (2)

Using, for instance, a Lagrange multiplier technique, we can show that the

solution of (1) is given by the following eigenvalue/vector problem:(
S̃S̃T

)
Φ̃i = λiΦ̃i, i = 1, · · · , k , (3)

where S̃ = W 1/2S, with S the snapshot matrix of size Nxc × Nt, W 1/2 the

square root of the weighting matrix W representing the inner product (·, ·)H and

Φ̃i = W 1/2Φi. The matrix W is assumed symmetric, positive semidefinite. If

H corresponds to L2(Ω), then W is the mass matrix of the FEM. If H is the

vector space of real-valued vectors of size Nxc (RNxc) with the Euclidean inner

product, then W is the identity matrix.

The solution of (3) can be determined via the singular value decomposition

of S̃, i.e.

S̃ = ŨΣ̃Ṽ T ,

where Ũ ∈ RNxc×Nxc and Ṽ ∈ RNt×Nt are the left and right singular matrix,

respectively, and Σ ∈ RNxc×Nt is the singular value matrix. Both Ũ and Ṽ are

orthogonal matrices: Ũ ŨT = ŨTŨ = INxc and Ṽ Ṽ T = Ṽ TṼ = INt . Finally,

Σ = diag(σ1, · · · , σp, 0, · · · , 0) with p = min(Nxc, Nt) and σ1 ≥ σ2 ≥ · · · ≥

σr > σr+1 = σr+2 = · · · = σp = 0 where r = rank(S̃) ≤ p.
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Precisely, we have span
(
Φ̃1, · · · , Φ̃k

)
= Ũk where Ũk corresponds to the

first k columns of Ũ . POD therefore reduces to the singular value decomposi-

tion of a snapshot matrix, which is function of the chosen inner product. The

orthogonal projector on Sk is given by ΠPOD = ŨkŨ
T
k . It is worth noting that if

the matrix Ũk is known to within one orthogonal matrix Q, then the projector is

not modified:

ΠPOD =
(
ŨkQ

)(
ŨkQ

)T
= Ũk QQT︸ ︷︷ ︸

I

ŨT
k = ŨkŨ

T
k .

2.2. POD reduced-order model

The main aim of model reduction is to represent the high-fidelity dynamics

derived from physical principles by a low-dimensional dynamical system consisting

of a few degrees of freedom in effective interaction [6, for instance]. Applications

are aimed at improving understanding of physical phenomena via simplified phe-

nomenological models, or at parametric studies requiring numerous resolutions

of the high-fidelity system, as in the case for continuation methods or opti-

mization problems [25, and in many others]. Let’s consider a spatio-temporal

semi-discretized dynamical model given by

dv(t;λ)

dt
= f (v(t;λ)) , (4)

where v ∈ RNxc corresponds to the discretized – in space – state vector u,

λ ∈ RNλ to the parameters of the model, and f to the full-order dynamics

discretized in space. Following the results presented in Section 2.1, the full state

vector v(t) can be approximated as

v(t) ≈ Ũka(t) or a(t) ≈ ŨT
k v(t) ∈ Rk, with k ≪ Nxc . (5)
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By projecting the dynamics onto the subspace generated by POD, the dimension

of the problem is considerably reduced. We would like to replace (4) with a

simplified dynamical model. To do this, we can perform a Galerkin projection,

by expanding v with (5) and projecting (4) onto the k-dimensional subspace

spanned by Ũk. Multiplying both sides of (4) by ŨT
k , we obtain:

ŨT
k

dv(t;λ)

dt
= ŨT

k f (v(t;λ)) or
da(t;λ)

dt
= ŨT

k f (v(t;λ)) . (6)

A similar procedure is described in Cordier et al. [26] for the incompressible

Navier-Stokes equations (see also Appendix A). Let’s imagine for a moment that

the matrix Ũk is known to within one orthogonal matrix Q. Replacing Ũk by

ŨkQ, we find again model (6), confirming that the POD subspace is invariant

via multiplication by an orthogonal matrix. This result is at the basis of the

intrusive method generally used for interpolation on the tangent space of the

Grassmann manifold (see Section 3.3).

3. Interpolation in the tangent space of a matrix manifold

This section deals with interpolation in the tangent space of a matrix man-

ifold. It begins (Section 3.1) with a reminder of essential notions of differential

geometry and, in particular, recalls the definition and important properties of

Stiefel and Grassmann manifolds. Essentially, these reminders come from Absil

et al. [9], Bendokat et al. [27], Zimmermann [28], Boumal [29]. Readers familiar

with differential geometry or interpolation on Grassmann manifolds might want

to skip this section at first reading. Section 3.2 describes the algorithm of the

interpolation in the tangent space of a matrix manifold. Finally, Section 3.3

presents the interest of interpolating on the Stiefel manifold compared with that

on the Grassmann manifold.
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3.1. Some elements of differential geometry

3.1.1. Matrix manifold

A manifold is a topological space3 such that each point has a neighbourhood

which is homeomorphic4 to an open subset of an Euclidean space [31]. After Absil

et al. [9, Chap. 3], a matrix manifold is a manifold for which there is a natural

representation of elements in the form of matrices. This matrix representation

allows to use linear algebra to tackle problems of differential geometry. In this

way, it is easier, for example, to solve optimization problems, constrained by

non-Euclidean data.

3.1.2. Matrix manifolds of interest

The matrix manifolds of interest for practical applications in mechanical en-

gineering in general, and in particular in model reduction, are [28]:

• The general linear group GL(n) of invertible square matrices, i.e.

GL(n) =
{
A ∈ Rn×n | det(A) ̸= 0

}
.

3A topological space is a set endowed with a structure called a topology. The most

commonly used definition of a topology is via open sets. A topology on a set X may be

defined [30, Section 1.2] as a collection τ of subsets of X, called open sets, satisfying the

following axioms: 1. Both X and the empty set belong to τ . 2. Any (finite or infinite)

union of members of τ belongs to τ . 3. Any finite intersection of members of τ belongs to

τ . An essential aspect is the ability to define closeness without necessarily considering a

distance.
4Two spaces with a homeomorphism between them are called homeomorphic. A home-

omorphism is a bijective and continuous function between topological spaces that has a

continuous inverse function.
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Regular matrices appear in Linear Time Invariant (LTI) and discretized

PDE systems.

• The orthogonal group O(n), i.e.

O(n) =
{
Q ∈ Rn×n | QQT = In = QTQ

}
.

• The matrix manifold of symmetric positive definite matrices SPD(n), i.e.

SPD(n) =
{
A ∈ sym(n) | xTAx > 0, ∀x ∈ Rn \ {0}

}
,

where sym(n) is the set of real, symmetric n-by-n matrices.

• The Stiefel manifold S(n, r) ⊂ Rn×r of rectangular column-orthogonal

n-by-r matrices with r ≤ n, i.e.

S(n, r) =
{
U ∈ Rn×r | UTU = Ir

}
.

• The Grassmann manifold G(n, r) ⊂ Rn×r of r-dimensional subspaces U of

Rn for r ≤ n, i.e.

G(n, r) = {U ⊂ Rn | dim(U) = r} .

Every point U ∈ G(n, r) may be represented by selecting a basis {u1, · · · ,ur}

such that U = span (u1, · · · ,ur). In numerical schemes, orthonormal

bases are exclusively used. Hence, points U on the Grassmann manifold

are represented by points U ∈ S(n, r) via U = span(U). Such U is called

a matrix representative of a subspace U .

Stiefel and Grassmann manifolds play a fundamental role in interpolating

POD bases. We therefore detail their most important properties in Section

3.1.2.1 and 3.1.2.2, respectively.
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3.1.2.1. The Stiefel manifold. An alternative but equivalent mode of describing

the Stiefel manifold is to consider a quotient space representation of S(n, r), see

Example 7.4 of Zimmermann [28] or Section 2.3.1 of Edelman et al. [32]. Let

U ∈ S(n, r), i.e. such that U ∈ Rn×r and UTU = Ir. We extend the columns

of U = (u1, · · · , ur) to an orthogonal matrix Q = (u1, · · · , ur, ur+1, · · · , un) ∈

O(n). Let us define the Lie group Ir ×O(n− r) ⊂ O(n) as

Ir ×O(n− r) =


Ir 0

0 R

 | R ∈ O(n− r)

 .

The action Q̃ = QΦ with any orthogonal matrix Φ ∈ Ir × O(n − r) preserves

the first r columns of Q. Hence, U may be identified with the equivalence class

[Q] = {QΦ | Φ ∈ Ir ×O(n− r)} .

From this, we deduce that the Stiefel manifold may be also defined as the

quotient space S(n, r) = O(n)/ (Ir ×O(n− r)).

Tangent space For any matrix U ∈ S(n, r), the tangent space of S(n, r)

at U is given by

TUS(n, r) = {∆ ∈ Rn×r | UT∆ = −∆TU} ⊂ Rn×r .

Every tangent vector ∆ ∈ TUS(n, r) may be written as:

∆ = UA+ U⊥B, A ∈ Rr×r skew, B ∈ R(n−r)×r arbitrary ,

where U⊥ ∈ S(n, n − r) is such that (U,U⊥) ∈ O(n). The dimension of

TUS(n, r) and S(n, r) is nr − 1
2
r(r + 1) = r(r−1)

2
+ r(n− r).
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Distances Let U ∈ S(n, r) be a point and ∆ = UA + U⊥B and ∆̃ =

UÃ + U⊥B̃ be two tangent vectors belonging to TUS(n, r). Two standard

metrics can be defined on the Stiefel manifold:

• The Euclidean metric that is the one inherited from the representation of

S(n, r) in Rn×r:

⟨∆, ∆̃⟩0 = trace
(
∆T∆̃

)
= traceATÃ+ traceBTB̃ .

• The canonical metric derived from the quotient representation of S(n, r):

⟨∆, ∆̃⟩U = trace
(
∆T

(
I − 1

2
UUT

)
∆̃

)
=

1

2
traceATÃ+ traceBTB̃ .

Geodesics In differential geometry, the shortest path between two points

in a manifold M is called a geodesic. This path can be uniquely represented

by a twice differentiable function c(t), with 0 ≤ t ≤ 1, solution of a second

order differential equation. For the Stiefel manifold, we can consider c(0) = U ∈

S(n, r) and ċ(0) = ∆ ∈ TUS(n, r) as initial point of the geodesic and initial

derivative condition, while the terminal point at t = 1 is c(1) = Ũ ∈ S(n, r)

(see Figure 1). The exponential mapping gives the final extremity point of the

geodesic. The logarithmic mapping is the inverse of the exponential mapping

when such an inverse can be defined.

The Stiefel exponential The Stiefel exponential at a base point U ∈

S(n, r) sends a Stiefel tangent vector ∆ to the endpoint Ũ ∈ S(n, r) of a

geodesic that starts from U with velocity vector ∆. An efficient algorithm for

computing the Stiefel exponential map with respect to the canonical metric was

derived in [32]. This algorithm is reported in Appendix B.
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Figure 1: Visual illustration of the geodesic path c(t) on the Stiefel manifold.

The Stiefel logarithm The Stiefel logarithm at a base point U ∈ S(n, r)

finds for another point Ũ ∈ S(n, r) a Stiefel tangent vector ∆ such that the

geodesic that starts from U with velocity ∆ reaches Ũ after an arc length of

∥∆∥U =
√

⟨∆,∆⟩U .

A matrix-algebraic algorithm for approximating the Stiefel logarithm map with

respect to the canonical metric was recently developed in [23]. Other variants

may be found in [33]. This algorithm is reported in Appendix C.

3.1.2.2. The Grassmann manifold. Similar to what was done for the Stiefel

manifold (see Section 3.1.2.1), the Grassmann manifold may be viewed as the

quotient space G(n, r) = O(n)/ (O(r)×O(n− r)) where the Lie subgroup

O(r)×O(n− r) ⊂ O(n) is defined as

O(r)×O(n− r) =


S 0

0 R

 | S ∈ O(r), R ∈ O(n− r)

 .

An alternative representation of the Grassmann manifold as a quotient man-
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ifold of the Stiefel manifold is

G(n, r) = S(n, r)/O(r) = {[U ] | U ∈ S(n, r)} ,

where the equivalence class is given by [U ] = {UR | R ∈ O(r)}.

Tangent space For any matrix representative U ∈ S(n, r) of U ∈ G(n, r),

the tangent space of G(n, r) at U is given by

TUG(n, r) = {∆ ∈ Rn×r | UT∆ = 0} ⊂ Rn×r .

Every tangent vector ∆ ∈ TUG(n, r) may be written as:

∆ = U⊥B, B ∈ R(n−r)×r arbitrary ,

where U⊥ ∈ S(n, n − r) is such that (U,U⊥) ∈ O(n). The dimension of

TUG(n, r) and G(n, r) is nr − r2.

Distances Let ∆ and ∆̃ be two tangent vectors belonging to TUG(n, r).

A metric on TUG(n, r) is defined as

⟨∆, ∆̃⟩U = trace
(
∆T∆̃

)
= ⟨∆, ∆̃⟩0 ,

where ⟨·, ·⟩0 stands for the standard inner matrix product. In contrast to the

Stiefel manifold, the canonical metric is equivalent to the Euclidean metric [32,

§2.5].

The Grassmann exponential The Grassmann exponential at a base

point U ∈ G(n, r) sends a Grassmann tangent vector ∆ to the endpoint Ũ ∈

G(n, r) of a geodesic that starts from U with velocity vector ∆. An efficient

algorithm for computing the Grassmann exponential was derived in [32]. This

algorithm is reported in Appendix D.
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The Grassmann logarithm The Grassmann logarithm at a base point

U ∈ G(n, r) finds for another point Ũ ∈ G(n, r) a Grassmann tangent vector ∆

such that the geodesic that starts from U with velocity ∆ reaches Ũ after an arc

length of ∥∆∥U =
√

⟨∆,∆⟩U .

An algorithm for computing the Grassmann logarithm is reported in Ap-

pendix E.

3.2. Principle of tangent space interpolation

The method of Interpolation on a Tangent Space to a Matrix Manifold

(ITSMM) was proposed by Amsallem and Farhat [10] to interpolate bases ob-

tained by POD (see Section 2.1 for the definition of POD and its link with the

singular value decomposition of snapshot matrices). Indeed, despite the opti-

mality of POD bases and their interest in modelling, they are generally highly

dependent on the parameters used to determine them. Interpolating these bases

was therefore quickly studied. However, since the space of POD subspaces is

not flat, it is impossible to interpolate bases directly. The concept of differen-

tial geometry and matrix manifold has overcome these difficulties. Hereafter,

we present interpolation on tangent space in a generic way, without focusing on

Stiefel or Grassmann manifolds.

Let {Yi = Y(λi)}Np

i=1 denote a set of elements of a manifold M and Λ =

{λi}Np

i=1 be the corresponding set of operating conditions. We consider that

each element Yi is represented by a matrix Yi ∈ Rn×r that belongs to a matrix

manifold M′. The goal is to compute an element Ŷ ∈ M associated with a new

value of the parameter λ̂ /∈ Λ and its matrix representative Ŷ ∈ M′.

The interpolation algorithm on the tangent space consists of 4 steps (see

Figure 2 for a graphical representation of the general operation):
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• Step 1: Choose YiRef ∈ {Yi}Np

i=1 as a reference point. This point serves as

the origin for the tangent interpolation space TYiRef
M.

• Step 2: Map each of the elements {Yi}Np

i=1 that are sufficiently close5 to

YiRef to the tangent space TYiRef
M. For that, determine

Xi = LogMYiRef
(Yi)

and the corresponding matrix representative Xi ∈ Rn×r.

• Step 3: Interpolate with any linear6 multi-variate interpolation method the

matrices Xi to obtain the matrix X̂ associated with the target value λ̂.

A complete overview of the different interpolation scenarios is made in

Section 7.3 of Benner et al. [34]. A commonly used method is to perform

Lagrangian interpolation, i.e.

X̂(λ̂) =

Np∑
j=1

(
Np∏

i=1,i ̸=j

λ̂− λi

λj − λi

)
Xj . (7)

• Step 4: Map the element X̂ ∈ TYiRef
M represented by the matrix X̂ to

an element Ŷ ∈ M represented by a matrix Ŷ ∈ M′. For that, determine

Ŷ = ExpM
YiRef

(X̂ ) .

5The logarithm mapping LogMYiRef
is only defined in a neighbourhood of YiRef . If the

neighbourhood is sufficiently small then the interpolation method should not be sensitive

to the choice of the reference point YiRef .
6Because of the vector space structure of the tangent space of M, the interpolation

method must be linear with the data. Linear interpolation, Lagrange and Hermite inter-

polation, spline interpolation and interpolation via radial basis may be used.
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When M is an embedded manifold7 of Rn×r, then M = M′ and Yi = Yi

for i = 1, · · · , Np.

Figure 2: Graphical description of the interpolation on the tangent space of a matrix man-

ifold M. Each point Yi of the manifold M is first projected via logarithm mapping onto

the tangent space in YiRef of M. The points Xi which are obtained, are then interpolated

to determine X̂ corresponding to the solution for λ = λ̂. Finally, X̂ is then projected back

onto the manifold M with the exponential mapping, leading to Ŷ. Linear interpolation of

points Y1 and Y3 does not lead in general to a point Ŷ on the manifold M.

3.3. Advantage of working with the Stiefel manifold

From a mathematical point of view, the Grassmann manifold can be rep-

resented (see Section 3.1.2.2) as a quotient manifold of the Stiefel manifold,

i.e.

G(n, r) = S(n, r)/O(r) = {[U ] | U ∈ S(n, r)} ,

where the points of G(n, r) are given by an equivalence class defined as [U ] =

{UR | R ∈ O(r)}. The Grassmann elements are therefore known up to an or-

thogonal matrix. This result explains why, until the introduction of the method

7This is the case for GL(n), O(n), SPD(n) and S(n, r).
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recently proposed by Oulghelou and Allery [16], interpolation on Grassmann was

only carried out in an intrusive manner.

The main advantage of the Stiefel manifold is that it is an embedded mani-

fold. Therefore, each point of the Stiefel manifold is represented by itself, rather

than an equivalence class as in the case of quotient manifolds such as the Grass-

mann manifold. It is then possible to determine directly the interpolated solution

without the need of solving additional optimization problems to calibrate the

solution.

We present the algorithm in the next section and perform numerical tests on

two generic configurations in Section 5.

4. Interpolation on the Stiefel manifold

4.1. Description of the ITSSM method

We consider a set of parameter values Λ = {λi}Np

i=1 where8 λi ∈ R are physical

and/or modelling parameters. For each value λi, we dispose of S̃i = S̃(λi) a

set of snapshots, solutions of a parametrized non-linear space-time dependent

problem of interest. Following the notations introduced in Section 2.1, each

column of S̃i contains the solution to the problem at a given time. So we have

S̃i ∈ RNxc×Nt where Nxc = Nx Nc is the dimension of the solution state vector

and Nt is the number of time samples.

The objective is to efficiently compute the solution snapshot matrix Ŝ =

S(λ̂) for a new value λ̂ /∈ Λ of the parameter without returning to numerical

8For the sake of simplicity, the algorithm is presented for λ ∈ R. The extension to the

case where we have λ ∈ RNλ is immediate.
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simulations. To resolve this problem, we propose in this paper a strategy based

on Interpolation on a Tangent Space to the Stiefel Manifold (ITSSM).

The first step is to perform truncated Singular Value Decompositions (SVD)

of order k ≤ Nt to the snapshot matrices (see Section 2.1), i.e.

S̃i = ŨiΣ̃iṼ
T
i i = 1, · · · , Np ,

where the index k is chosen via a decay analysis of the set of singular values

Σ̃i. A frequently used criterion is the relative information content (see Section

5.2.3). By definition of the SVD, the matrices Ũi and Ṽi are orthogonal. We

therefore have Ũi ∈ S(Nxc, k) and Ṽi ∈ S(Nt, k).

The next step is to apply successively to Ũi and Ṽi the ITSSM algorithm

described in Section 3.2 with M a Stiefel manifold. This gives us Û and V̂ , the

left and right singular matrices of Ŝ. Similarly, the matrices of singular values Σ̃i

are interpolated using a standard interpolation method such as Lagrange, Spline,

Radial Basis Functions, Inverse Distance Weighted,. . . The result is Σ̂. Finally,

we determine Ŝ as ÛΣ̂V̂ . The procedure is summarized in Alg. 1. An enhanced

version of this algorithm that also uses derivative information with respect to the

parameters was recently described in Zimmermann [35].

4.2. Computational complexity

The ITSSM algorithm can be divided into an off-line phase and an on-line

phase. In the off-line phase, all SVD decompositions and projections onto the

tangent space of the Stiefel manifold can be performed (Stiefel logarithm map).

To do this, a reference point must be chosen to determine the tangent space.

In the on-line phase, interpolations are performed and the interpolated matrices
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Algorithm 1 Interpolation on the Tangent Space of the Stiefel Manifold

(ITSSM). All the operations are done for i = 1, · · · , Np.

Input: S̃i = S̃(λi) ∈ RNxc×Nt .

1: Apply the SVD S̃i = ŨiΣ̃iṼ
T
i .

Choose k, order of the truncated SVD.

2: Apply successively to Ũi and Ṽi the ITSSM algorithm described in Section

3.2 with M a Stiefel manifold.

Determine Û and V̂ .

3: Interpolate Σ̃i with a standard interpolation method.

Determine Σ̂.

4: Compute Ŝ = ÛΣ̂V̂ .

Output: Ŝ = S(λ̂).

projected back onto the Siefel space (Stiefel exponential map). The solution is

determined by matrix multiplication of the various interpolated quantities.

The computational complexity of the different phases are as follows:

– Np truncated SVD of the snapshot matrices. The total asymptotic com-

putational cost is equal to Np ×O(Nxck
2).

– 2× (Np − 1) Stiefel Logarithm mappings. The total asymptotic computa-

tional cost is equal to 2× (Np − 1)× (O(Nxck
2) +O(Ntk

2)).

– Assuming that Lagrange is chosen as univariate interpolation method, the

interpolation of initial velocities and singular values matrices is executed for

an asymptotic computational cost equal to O(Nxck) +O(Ntk) +O(k2).
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– 2 Stiefel Exponential mappings. The total asymptotic computational cost

is equal to 2× (O(Nxck
2) +O(Ntk

2)).

– The two matrix multiplications needed for Ŝ are computed at an asymptotic

computational cost equal to O(NxckNt).

To analyse the numerical complexity, let’s consider the case often encountered

in numerical applications, where Nxc ≫ Nt ≥ k. The off-line steps are performed

once and for all with an asymptotic computational cost equal to (3Np − 2) ×

O(Nxck
2) + 2× (Np − 1)×O(Ntk

2). On the other hand, a computational cost

equal to 2 × O(Nxck
2) + O(NxcNtk) + O(Nxck) + 2 × O(Ntk

2) + O(Ntk) +

O(k2) is expected for the on-line phase. Hence, the total computational cost

of the proposed algorithm grows linearly with respect to Nxc, the number of

degrees of freedom of the high-fidelity model. Therefore, the method ITSSM is

computationally efficient for on-line computations.

5. Applications

5.1. Application: 1D Burgers’ equation

As a first configuration, we consider the one-dimensional non-linear Burg-

ers’ problem. These equations share many similarities with the Navier-Stokes

equations, and have often been used as a model system for Turbulence. In the

following, we analyse the Burgers’ equations with periodic initial disturbance and

homogeneous boundary conditions, as we know in this case an analytical solu-

tion ua (see Appendix F for the expression), enabling interpolation methods to
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be validated. The underlying problem is governed by the set of equations

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
, x ∈ [0, L] and t ∈ [0, T ] , (8a)

u(x, 0) = u0 sin(
πx

L
) x ∈ [0, L] , (8b)

u(0, t) = u(L, t) = 0 t ∈ [0, T ] , (8c)

where u, x, t and ν are the solution field, spatial coordinate, time and kinematic

viscosity, respectively.

This problem is clearly parametrized by the kinematic viscosity ν. We there-

fore solve (8) for a set of viscosity values ranging from 0.01 to 0.2 in steps of

0.01. This set of numerical solutions will later be used to perform interpola-

tions in Stiefel tangent spaces. In a classical Machine Learning approach, this

set corresponds to the training data set. Two further numerical simulations are

performed for the target values of kinematic viscosity considered: ν̂ = 0.075 and

ν̂ = 0.145. This set acts as a testing data set. The other simulation parameters

are fixed and arbitrarily given by u0 = 1, L = 1 and T = 0.1. The solution field

corresponding to a target value ν̂ of kinematic viscosity is estimated using the

ITSSM algorithm (see Alg. 1) for9 k = Nt = 1001. The Lagrange polynomial

method (see (7)) is chosen to interpolate both the singular values and the ini-

tial velocities in the tangent space to the Stiefel manifold. All calculations are

performed in Matlab.

We first analyse the influence of numerical parameters characterizing the

interpolation on the results. We call ∆ν, the difference in ν values between

9In this first, rather simple case study, there is no need to determine the dimension of

the projection subspace via a criterion of relative information content, for instance. Such

a study will be performed in Section 5.2.3 for the cylinder wake flow.
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two points used for interpolation, and NIP, the number of interpolation points

used to apply the ITSSM algorithm. In the following, we consider ∆ν ∈ {0.01,

0.02, 0.03, 0.04, 0.05, 0.06} and NIP ∈ {2, 3, 4}. The aim of these numerical

tests is to challenge the interpolation method by considering a given number of

interpolation points and increasing the value of ∆ν, i.e. by enlarging the space

over which the data are taken. In Tables 1 and 2, we give the values of ν used

for interpolation. Reference points are shown in bold. According to Amsallem

and Farhat [10] (see Remark II, Section IV. B.), interpolation on the Grassmann

manifold is not very sensitive to the choice of reference points as long as the

bases to be interpolated are chosen in the neighbourhood of the reference point.

We consider that the same result holds for interpolation on the Stiefel manifold,

and choose by convention that

– for NIP = 2, the reference point is always the first point (left point) ;

– for NIP = 3, the reference point is always the second point (middle point)

and

– for NIP = 4, the reference point is always the second point.

The quality of the estimation at ν̂ will be measured on the basis of different

relative error criteria. We first consider the 2-norm of the solution matrices

obtained analytically (Ua) and by ITSSM (UITSSM). We thus define 10

Eu(ν = ν̂) =
∥Ua(ν = ν̂)− UITSSM(ν = ν̂)∥2

∥Ua(ν = ν̂)∥2
, (9)

10By extension, we keep the same notation Eu and eu when the approximation is made

by global POD or by interpolation on the Grassmann manifold. The context should

prevent any confusion.
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where

∥A∥2 = sup
x̸=0

∥Ax∥2
∥x∥2

,

for any m× n matrix A and x ∈ Rn.

We also analyse interpolated solutions using relative instantaneous error de-

fined as

eu(t; ν = ν̂) =
∥ua(x, t; ν = ν̂)− uITSSM(x, t; ν = ν̂)∥2

∥ua(x, t; ν = ν̂)∥2
, (10)

where uITSSM(x, t; ν = ν̂) are obtained using the method described in Section 4.1.

∆ν NIP = 2 NIP = 3 NIP = 4

0.01 0.07 ; 0.08 0.06 ;0.07 ; 0.08 0.05 ;0.06 ; 0.07-0.08

0.02 0.07 ; 0.09 0.05 ;0.07 ; 0.09 0.07 ;0.09 ; 0.11-0.13

0.03 0.07 ; 0.1 0.07 ;0.1 ; 0.13 0.01 ;0.04 ; 0.07-0.1

0.04 0.05 ; 0.09 0.01 ;0.05 ; 0.09 0.01 ;0.05 ; 0.09-0.13

0.05 0.06 ; 0.11 0.01 ;0.06 ; 0.11 0.01 ;0.06 ; 0.11-0.16

0.06 0.07 ; 0.13 0.01 ;0.07 ; 0.13 0.01 ;0.07 ; 0.13-0.19

Table 1: Interpolation points used for the prediction at ν̂ = 0.075 of the 1D Burgers’

equation. Reference points are denoted in bold.

To evaluate the method proposed in Alg. 1, we compare the results of ITSSM

with three approaches:

– The global POD approach, hereafter referred to as GPOD. This approach

determines a global POD basis by including in the snapshot matrix multiple

data sets obtained for several values of the control parameter [36] or from
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∆ν NIP = 2 NIP = 3 NIP = 4

0.01 0.14 ; 0.15 0.13 ;0.14 ; 0.15 0.13 ;0.14 ; 0.15-0.16

0.02 0.13 ; 0.15 0.13 ;0.15 ; 0.17 0.13 ;0.15 ; 0.17-0.19

0.03 0.13 ; 0.16 0.10 ;0.13 ; 0.16 0.10 ;0.13 ; 0.16-0.19

0.04 0.13 ; 0.17 0.09 ;0.13 ; 0.17 0.05 ;0.09 ; 0.13-0.17

0.05 0.11 ; 0.16 0.06 ;0.11 ; 0.16 0.01 ;0.06 ; 0.11-0.16

0.06 0.13 ; 0.19 0.07 ;0.13 ; 0.19 0.01 ;0.07 ; 0.13-0.19

Table 2: Interpolation points used for the prediction at ν̂ = 0.145 of the 1D Burgers’

equation. Reference points are denoted in bold.

forced transients of the flow [7]. The snapshot matrix to be considered is

therefore written as

SGPOD(λ̂) = [S(λ1) . . . S(λNIP)] ,

with λ1 < λ̂ < λNIP . To ensure fair comparisons, the global POD

basis is determined by retaining the snapshots corresponding to the control

parameter values used for interpolation (see Tables 1 and 2). The same

procedure will be followed in Section 5.2.4 for the wake flow (see Table 6).

The number of columns in the snapshot matrix is therefore given by NIP Nt.

We then determine the temporal correlation matrix of size NIP Nt×NIP Nt

and solve the eigenvalue problem. One advantage of GPOD is that the

modes are calculated once and for all for all the values λ̂. However, the

method is very costly in terms of calculation time (assembling the temporal

correlation matrix and calculating the eigenelements), especially as the

number of interpolation points increases. While good prediction properties

can be obtained over the entire parameter space [see 36, for instance],
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the global modes are no longer optimal for any of the control parameter

values. We thus clearly lose any physical consideration. Furthermore, we

have no mathematical results to guide our choice of snapshots to introduce

into SGPOD. Finally, the computational cost is still too high to make this

approach a model reduction method in itself (see Table 10 for a comparison

of the CPU time).

– A non-intrusive method similar to that of Alg. 1 in which the left and right

singular matrices are interpolated on the Grassmann manifold. To make

the distinction with the name introduced by Amsallem [37], this method is

hereafter referred to as ITSGMni (ni for non-intrusive). This method has

the advantage of keeping the structure of Alg. 1. However, there is no

guarantee that the modes are ordered correctly. It is therefore sometimes

necessary to introduce a specific procedure (Bi-CITSGM algorithm intro-

duced by Oulghelou and Allery [16] for instance) to rearrange the modes.

In our applications, the ITSGMni modes were correctly ordered. We there-

fore did not resort to such post-interpolation procedures. When using POD

basis interpolations to solve optimal control problems, it is obviously not

possible to rely on a posteriori checks. It will then be necessary to system-

atically rearrange the modes. This method has also been used in Friderikos

et al. [38] to determine a space-time POD basis for parametric simulations

of rigid-viscoplastic.

– Finally, we also use interpolation on the Grassmann manifold as originally

introduced by Amsallem [37]. The spatial basis is thus interpolated on the

Grassman manifold, the temporal evolution being obtained by integration
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of a POD reduced-order model (see Appendix A). The results are hereafter

referred to as ITSGM.

A comparison of the relative error values Eu obtained by ITSSM, GPOD,

ITSGMni and ITSGM is shown in Figures 3 and 4 for ν̂ = 0.075 and ν̂ = 0.145,

respectively. Numerical values of interpolation errors are also given in Tables 3

and 4. We observe that the relative errors obtained by GPOD are 6 orders of

magnitude lower than those from ITSSM, ITSGMni and ITSGM. The order of

magnitude of the error is 10−9 to 10−7 in the case of GPOD, 10−6 to 10−3 in the

case of ITSSM, 10−3 to 10−2 in the case of ITSGMni and ITSGM. We observe that

the error obtained by ITSGM remains constant whatever the values of ∆ν and

NIP. This result can be explained by the fact that the error increases gradually

in time during the temporal integration of the POD reduced-order model (see

Fig. 6). This phenomenon is classically encountered in model reduction and

explains why data assimilation methods must sometimes be used to limit the

amplification of the error [39]. In the vast majority of tested configurations, the

error obtained by ITSSM is smaller than the errors obtained by interpolation on

the Grassmann manifold.

For a given value of NIP, the minimum reconstruction error determined by

ITSSM is generally obtained for the lowest value of ∆ν (0.01). For NIP = 4, we

do not observe this behaviour, the minimum value being found for ∆ν = 0.04.

Furthermore, the evolution of the error is generally not monotonic with ∆ν for a

fixed value of NIP. This result is not entirely surprising, since we do not know a

priori the topology of the manifold representing the solution. We note, however,

that the relative error does not tend to increase disproportionately with the value

of ∆ν.
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∆ν
NIP = 2

GPOD ITSSM ITSGMni ITSGM

0.01 2.1402× 10−8 2.62× 10−4 2.7× 10−3 1.90× 10−2

0.02 2.1755× 10−8 1.7× 10−3 2.7× 10−3 1.90× 10−2

0.03 2.2455× 10−8 1.7× 10−3 2.7× 10−3 1.90× 10−2

0.04 2.3955× 10−9 4.7× 10−3 1.49× 10−2 1.90× 10−2

0.05 2.1577× 10−9 2.4× 10−3 8.5× 10−3 1.90× 10−2

0.06 2.6514× 10−8 1.2× 10−3 2.7× 10−3 1.90× 10−2

(a) NIP = 2

∆ν
NIP = 3

GPOD ITSSM ITSGMni ITSGM

0.01 1.8784× 10−9 2.15× 10−4 2.7× 10−3 1.90× 10−2

0.02 4.5266× 10−9 1.1× 10−3 2.7× 10−3 1.90× 10−2

0.03 2.4660× 10−9 1.6× 10−3 1.16× 10−2 1.90× 10−2

0.04 3.7987× 10−7 4.1× 10−3 1.75× 10−2 1.90× 10−2

0.05 4.5378× 10−9 5.7× 10−3 1.28× 10−2 1.90× 10−2

0.06 7.0529× 10−9 5.1× 10−3 4.5× 10−3 1.90× 10−2

(b) NIP = 3

∆ν
NIP = 4

GPOD ITSSM ITSGMni ITSGM

0.01 2.4190× 10−9 1.3× 10−3 8.5× 10−3 1.90× 10−2

0.02 2.2713× 10−8 3.1× 10−3 7.4× 10−3 1.90× 10−2

0.03 4.4338× 10−8 4.6× 10−3 2.27× 10−2 1.90× 10−2

0.04 6.5561× 10−9 7.23× 10−4 1.54× 10−2 1.90× 10−2

0.05 7.2344× 10−9 5.3× 10−3 9.7× 10−3 1.90× 10−2

0.06 7.0180× 10−9 1.6× 10−3 3.4× 10−3 1.90× 10−2

(c) NIP = 4

Table 3: Relative interpolation errors Eu for different values of ∆ν and NIP. Prediction

at ν̂ = 0.075 for the 1D Burgers’ equation. Comparison of ITSSM with GPOD, ITSGMni

and ITSGM results.
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∆ν
NIP = 2

GPOD ITSSM ITSGMni ITSGM

0.01 5.3168× 10−9 3.6× 10−5 1.5× 10−3 2.8× 10−3

0.02 6.8492× 10−9 1.18× 10−4 4.6× 10−3 2.8× 10−3

0.03 7.0203× 10−9 2× 10−3 4.6× 10−3 2.8× 10−3

0.04 7.3939× 10−9 2.4× 10−3 4.6× 10−3 2.8× 10−3

0.05 9.9095× 10−9 8.8× 10−3 1.14× 10−2 2.8× 10−3

0.06 8.1988× 10−9 3.2× 10−3 4.6× 10−3 2.8× 10−3

(a) NIP = 2

∆ν
NIP = 3

GPOD ITSSM ITSGMni ITSGM

0.01 6.5573× 10−9 8× 10−6 1.5× 10−3 2.8× 10−3

0.02 6.7900× 10−9 1.49× 10−4 1.5× 10−3 2.8× 10−3

0.03 1.2009× 10−8 5.18× 10−4 4.6× 10−3 2.8× 10−3

0.04 1.5251× 10−8 2.7× 10−4 4.6× 10−3 2.8× 10−3

0.05 1.8883× 10−9 1.3× 10−3 1.14× 10−2 2.8× 10−3

0.06 2.6390× 10−8 1.4× 10−3 4.6× 10−3 2.8× 10−3

(b) NIP = 3

∆ν
NIP = 4

GPOD ITSSM ITSGMni ITSGM

0.01 6.3958× 10−9 3.0× 10−5 1.5× 10−3 2.8× 10−3

0.02 7.0333× 10−9 6.14× 10−4 1.5× 10−3 2.8× 10−3

0.03 1.1475× 10−8 1.4× 10−3 4.6× 10−3 2.8× 10−3

0.04 2.3649× 10−9 1.2× 10−3 1.94× 10−2 2.8× 10−3

0.05 8.8879× 10−9 5.08× 10−4 3.46× 10−2 2.8× 10−3

0.06 8.8169× 10−9 6.77× 10−4 2.92× 10−2 2.8× 10−3

(c) NIP = 4

Table 4: Relative interpolation errors Eu for different values of ∆ν and NIP. Prediction

at ν̂ = 0.145 for the 1D Burgers’ equation. Comparison of ITSSM with GPOD, ITSGMni

and ITSGM results.
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(a) NIP = 2. (b) NIP = 3.

(c) NIP = 4.

Figure 3: Relative interpolation errors Eu for different values of ∆ν and NIP. Prediction

at ν̂ = 0.075 for the 1D Burgers’ equation. Comparison of ITSSM with GPOD, ITSGMni

and ITSGM results.
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(a) NIP = 2. (b) NIP = 3.

(c) NIP = 4.

Figure 4: Relative interpolation errors Eu for different values of ∆ν and NIP. Prediction

at ν̂ = 0.145 for the 1D Burgers’ equation. Comparison of ITSSM with GPOD, ITSGMni

and ITSGM results.
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Figure 5: Comparison of the spatial modes obtained by SVD with those determined by

interpolation (ITSSM and ITSGM methods) for ν̂ = 0.075, NIP = 2 and ∆ν = 0.06.

Figure 6: Comparison of the temporal modes obtained by SVD with those determined

by interpolation (ITSSM, ITSGMni and ITSGM methods) for ν̂ = 0.075, NIP = 2 and

∆ν = 0.06.
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To go beyond the analysis of the relative error, we now seek to represent the

solution at ν̂ = 0.075 from the ITSSM results interpolated under the conditions

NIP = 2 and ∆ν = 0.06. The error associated with these parameters is in

the low range of those obtained for all the parameters tested. It will therefore

be characteristic of solutions that can be obtained by interpolation. We first

compare in Figures 5 and 6, the spatial and temporal modes obtained by the

three interpolation methods (ITSSM, ITSGMni and ITSGM) to the correspond-

ing modes obtained directly by SVD. We obtain a perfect prediction of these two

families of modes. Looking closely at the results obtained by ITSGM, we note,

as we pointed out earlier, that the prediction at the end of the time integration

domain (t > 0.08) and for the high-order modes becomes slightly imprecise.

This phenomenon reflects the amplification in time of the error via the integra-

tion of the POD reduced-order model. The instantaneous and mean velocities

determined by ITSSM are then compared with the analytical solution at various

characteristic times in Figure 7. We observe a perfect match between the ITSSM

reconstruction and the analytical solution. This result is further confirmed by the

time evolution of the relative error corresponding to SVD and ITSSM shown in

Figure 8 in semi-logarithmic scale. The error oscillates around 10−15 for the SVD

results (of the order of magnitude of double precision) and 10−4 for ITSSM.

Finally, Figure 9 shows the relative interpolation errors obtained by ITSSM

for different target values when NIP = 2 and ∆ν = 0.06. The target values

considered range from 0.015 to 0.195 in 0.01 steps (19 values tested). In all

cases, we obtain very low relative error values (at most 1.6%), indicating that

ITSSM interpolation produces very good approximations of the solutions. We

also note that for ν̂ > 0.7, the relative error values are even lower, below 0.4%.
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(a) Instantaneous velocities. (b) Mean velocity.

Figure 7: Comparison of instantaneous and mean velocities obtained analytically with the

ITSSM solution for ν̂ = 0.075, NIP = 2 and ∆ν = 0.06.

Figure 8: Time evolution of the relative interpolation error eu for ν̂ = 0.075, NIP = 2 and

∆ν = 0.06. Comparison of SVD and ITSSM results.
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Figure 9: Relative interpolation errors Eu obtained by ITSSM for different target values

ν̂ when NIP = 2 and ∆ν = 0.06. Interpolation and reference points were chosen following

the same rules as in Tables 1 and 2.

5.2. Application: 2D-cylinder wake flow

5.2.1. Flow configuration

We now consider as configuration the incompressible unsteady wake flow be-

hind a circular cylinder of diameter D (see Figure 10). Let Ω be a two-dimensional

domain filled with Newtonian viscous fluid of dynamic viscosity µ and density ρ.

The boundaries ∂Ω of Ω are denoted by Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γc, where

Γi, i = 1, 2, 3, 4 are the external boundaries of the domain and Γc corresponds

to the cylinder boundary. The continuity and Navier-Stokes equations are made

dimensionless by introducing Lref = D, uref = U∞, tref = D/U∞ and pref = ρU2
∞

as reference quantities for length, velocity, time and pressure, respectively. The

governing equations can then be expressed in the following non-dimensional form:
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∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u x ∈ Ω t ∈ [0, T ] ,

∇ · u = 0 ,

(11)

where u = (u, v) is the velocity field, p is the pressure field and Re = ρU∞D/µ

is the Reynolds number. The boundary conditions associated with the problem

(11) are defined in Appendix G.1.

Figure 10: Computational domain and boundary conditions for the 2D-cylinder wake flow

simulation.

Numerical simulations were performed using a Finite Element Method (FEM).

For this, a variational formulation of the Navier-Stokes equations (11) was first

derived (see Appendix G) and then solved with FreeFem++ [40]. For the time dis-

cretization, a third-order Backward Differential Formula was used with a constant

time step ∆t = 0.01. Non-linear terms were discretized semi-implicitly using an

optimized Newton method. Concerning the spatial discretization, Taylor-Hood

finite elements P2−P1 (P2 for velocity fields and P1 for pressure) were employed.

The unstructured mesh (see Figure G.19 in Appendix G) contains 10798 DOFs

for velocity and 8170 DOFs for pressure.
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5.2.2. Numerical validation

To validate the numerical developments, we compare our results to those

obtained in the 2D-2 benchmark of Schäfer et al. [41] for the same boundary

conditions and flow parameters. We consider a flow at Re = 100, and evaluate

the drag (CD) and lift (CL) coefficients, the Strouhal number characterizing the

vortex shedding frequency (St = Dfvs/U∞), and finally the pressure drop across

the cylinder (∆p). The drag and lift coefficients are given by CD = FD/
(
1
2
ρU2

∞
)

and CL = FL/
(
1
2
ρU2

∞
)

where FD and FL are the drag and lift forces exerted

by the fluid on the cylinder boundary Γc. This reference numerical simulation is

randomly initialized in velocity and pressure. It is therefore necessary to wait for

the decay of the transients (see Fig. 11) before analysing the characteristic flow

quantities. The corresponding values are reported in Table 5. The results of our

numerical simulations match well with those of the benchmark, validating our

numerical developments.

Aerodynamic coefficients Current results Schäfer et al. [41]

CD,max 3.221 3.220 – 3.440

CL,max 1.011 0.990 - 1.010

∆pmax 2.495 2.460 - 2.500

St 0.293 0.295 - 0.305

Table 5: Coefficients CD,max, CL,max, ∆pmax and St for the 2D-cylinder wake flow at

Re = 100. Comparison of our results with those obtained by Schäfer et al. [41]. The

ranges of values given for Schäfer et al. correspond to the results obtained for different

simulation parameters (mesh characteristics and time steps).
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Figure 11: Time evolution of the aerodynamic coefficients (CD and CL) and pressure

drop (∆p) along the cylinder for the 2D-cylinder wake flow at Re = 100. These results

correspond to the benchmark described in Schäfer et al. [41]. The dimensions of the

computational box are much smaller than those of Figure 10, which explains why the mean

value of the drag coefficient and the maximum value of the lift coefficient are different from

the values shown in Figure 12.

Figure 12: Time evolution of the aerodynamic coefficients CD and CL for the 2D-cylinder

wake flow at Re = 100. The dimensions of the computational box are those shown in

Figure 10.
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5.2.3. SVD analysis

In Section 5.2.4, we will apply the ITSSM method to estimate both the

velocity and the pressure fields in the wake flow at R̂e = 195. To do this, we will

perform various interpolations (NIP ranging from 2 to 4, as in Section 5.1) for

Reynolds numbers going from 100 to 300. In this section, we therefore determine

the order of the reduced-order models needed to represent with sufficient accuracy

velocity and pressure fields over this Reynolds number range. To initialize all the

numerical simulations performed for Reynolds numbers strictly greater than 100,

we consider a solution snapshot obtained in the periodic flow regime at Re = 100

(see Figure 12, for example, for the time evolution of aerodynamic coefficients).

The SVD is performed on Nt = 500 snapshots taken evenly between ti = 2

and tf = 7, i.e. in the established dynamical regime. Figures 13a and 13b show

the singular value spectrum obtained from the SVD of the velocity and pressure

fields, respectively, at Re = 100, 200 and 300. The singular value spectrum

plotted on a semi-log scale decreases quickly. It is therefore conceivable to

neglect the contribution of the small singular values and to approximate the

velocity and pressure fields by a low-rank approximation obtained with the first

modes of the right and left SVD matrices. To go further in the analysis, the

relative information content, defined as RIC(k) =

k∑
i=1

σi

Nt∑
i=1

σi

, is plotted in Figures 14a

and 14b for both the velocity and pressure fields. Convergence to 1 is very fast for

both velocity and pressure, with a slight advantage for velocity. In the following,

we choose to keep the first 10 SVD modes for approximating the velocity and

pressure fields.
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(a) Velocity. (b) Pressure.

Figure 13: Singular value spectrum of the velocity and pressure fields for the 2D-cylinder

wake flow (Re = 100, 200 and 300).

(a) Velocity. (b) Pressure.

Figure 14: Relative information content of the velocity and pressure fields for the 2D-

cylinder wake flow (Re = 100, 200 and 300).
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5.2.4. Prediction by ITSSM of the flow at R̂e = 195

The ITSSM procedure is applied to approximate both the velocity and the

pressure fields by interpolating solutions snapshots associated to a variety of

Reynolds number values. As a training database, we consider a set of numerical

simulations, performed at Reynolds numbers ranging from 100 to 300 in steps

of 10, i.e. 12 simulations. We choose as target Reynolds number R̂e = 195

located roughly in the middle of the range defined above. As in Section 5.1, the

Lagrange method is used to interpolate the singular values as well as the initial

velocities on the tangent space. An investigation is done in order to choose at

best the number of neighbouring interpolation points NIP and the parameter step

size ∆Re. In Table 6, we give the values of Reynolds numbers used for interpo-

lation. Reference points, shown in bold, are determined similarly as in Section

5.1. Interpolation quality is assessed using the relative error criteria Eu and

Ep (see (9) for the definition) for the velocity and pressure fields, respectively.

These values are reported in Tables 7 and 8 where ITSSM results are compared

with those of GPOD, ITSGMni and ITSGM. Let’s start with some general ob-

servations. Firstly, since we do not derive a POD reduced-order model for the

pressure coefficients, we cannot apply interpolation on the Grassmann manifold

for pressure and therefore determine relative errors Ep in Table 8 for ITSGM. The

relative errors obtained by GPOD are two orders of magnitude smaller than those

associated with all the interpolation methods (ITSSM, ITSGMni and ITSGM.)

The order of magnitude of the error in the case of GPOD is 10−3, 10−2 to 10−1

in the case of ITSSM, 10−2 in the case of ITSGMni and finally 10−1 in the case

of ITSGM. The error associated with the ITSGM method is nearly independent

of the parameters ∆Re and NIP for the same reasons as in Section 5.1 (see dis-
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cussion of the results given in Tables 3 and 4). For the approximation of velocity

fields, the ITSSM method always performs better than ITSGM. Surprisingly, the

ITSGMni method remains competitive with ITSSM in terms of relative error. As

for pressure fields, the relative error level is in favor of ITSSM, for NIP = 2 when

∆Re = 30, 40 or 50, for NIP = 3 in the case of ∆Re = 30 and finally for NIP = 4

when ∆Re = 50.

ITSSM interpolation gives the lowest relative errors for NIP = 3 and ∆Re =

30. Hereafter, we will use these values of parameters to evaluate the method on

other physical criteria.

∆Re NIP = 2 NIP = 3 NIP = 4

10 190 ; 200 190 ;200 ; 210 190 ;200 ; 210 ; 220

20 190 ; 210 170 ;190 ; 210 180 ;200 ; 220 ; 240

30 190 ; 220 160 ;190 ; 220 160 ;190 ; 220 ; 250

40 190 ; 230 150 ;190 ; 230 160 ;200 ; 240 ; 280

50 190 ; 240 150 ;200 ; 250 150 ;200 ; 250 ; 300

100 190 ; 290 100 ;200 ; 300 See caption.

Table 6: Interpolation points used for the prediction at R̂e = 195 of the cylinder wake

flow. Reference points are denoted in bold. In our training database, we do not have four

numerical simulations separated by 100 in terms of Reynolds numbers. Hence, we cannot

evaluate the case NIP = 4 and ∆Re = 100. For the same reasons, there will be no results

in the corresponding cells of Tables 7 and 8.

In Figure 15, we compare the first 5 longitudinal modes obtained by SVD

and ITSSM for NIP = 3 and ∆Re = 30. Figure 16 shows the corresponding

representations for the transverse spatial modes. We obtain a perfect match

between the two families of modes, showing that ITSSM interpolation works.
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∆Re
NIP = 2

GPOD ITSSM ITSGMni ITSGM

10 2.1× 10−3 1.595× 10−1 2.82× 10−2 1.709× 10−1

20 1.6× 10−3 8.91× 10−2 2.9× 10−2 1.708× 10−1

30 1.6× 10−3 1.6× 10−2 2.91× 10−2 1.708× 10−1

40 1.5× 10−3 1.51× 10−2 2.9× 10−2 1.707× 10−1

50 1.2× 10−3 4.6× 10−2 2.88× 10−2 1.707× 10−1

100 1.5× 10−3 3.8× 10−2 2.88× 10−2 1.703× 10−1

(a) NIP = 2

∆Re
NIP = 3

GPOD ITSSM ITSGMni ITSGM

10 1.6× 10−3 1.259× 10−1 2.7× 10−2 1.709× 10−1

20 1.6× 10−3 6.02× 10−2 2.85× 10−2 1.708× 10−1

30 1.6× 10−3 1.07× 10−2 2.84× 10−2 1.706× 10−1

40 1.6× 10−3 1.7× 10−2 2.86× 10−2 1.704× 10−1

50 1.4× 10−3 3.43× 10−2 2.73× 10−2 1.713× 10−1

100 1.8× 10−3 2.96× 10−2 2.85× 10−2 1.726× 10−1

(b) NIP = 3

∆Re
NIP = 4

GPOD ITSSM ITSGMni ITSGM

10 1.6× 10−3 1.063× 10−1 2.85× 10−2 1.708× 10−1

20 1.0× 10−3 5.68× 10−2 2.8× 10−2 1.708× 10−1

30 1.2× 10−3 2.01× 10−2 2.92× 10−2 1.707× 10−1

40 1.2× 10−3 1.51× 10−2 2.76× 10−2 1.710× 10−1

50 1.3× 10−3 1.99× 10−2 2.73× 10−2 1.711× 10−1

100 — — — —

(c) NIP = 4

Table 7: Relative errors Eu of the velocity field for the 2D-cylinder wake flow at R̂e = 195

for different values of ∆Re and NIP. Comparison of ITSSM with GPOD, ITSGMni and

ITSGM results.
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∆Re
NIP = 2

GPOD ITSSM ITSGMni

10 3.1× 10−3 1.838× 10−1 6.67× 10−2

20 2.9× 10−3 1.385× 10−1 6.69× 10−2

30 2.9× 10−3 5.84× 10−2 6.72× 10−2

40 2.7× 10−3 5.67× 10−2 6.87× 10−2

50 2.8× 10−3 5.12× 10−2 6.97× 10−2

100 3.1× 10−3 8.39× 10−2 7.01× 10−2

(a) NIP = 2

∆Re
NIP = 3

GPOD ITSSM ITSGMni

10 2.9× 10−3 1.676× 10−1 6.5× 10−2

20 3.0× 10−3 1.048× 10−1 6.68× 10−2

30 3.3× 10−3 5.08× 10−2 6.69× 10−2

40 3.1× 10−3 6.95× 10−2 6.74× 10−2

50 3.1× 10−3 7.77× 10−2 6.56× 10−2

100 3.1× 10−3 7.14× 10−2 6.85× 10−2

(b) NIP = 3

∆Re
NIP = 4

GPOD ITSSM ITSGMni

10 3.0× 10−3 1.458× 10−1 6.5× 10−2

20 2.4× 10−3 1.682× 10−1 6.55× 10−2

30 2.8× 10−3 7.89× 10−2 6.75× 10−2

40 2.7× 10−3 1.074× 10−1 6.71× 10−2

50 2.8× 10−3 5.55× 10−2 6.73× 10−2

100 — — —

(c) NIP = 4

Table 8: Relative errors Ep of the pressure field for the 2D-cylinder wake flow at R̂e = 195

for different values of ∆Re and NIP. Comparison of ITSSM with GPOD and ITSGMni

results.
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Figure 15: Comparison of longitudinal spatial modes obtained by SVD (left) and ITSSM

(right). Mode 1 to 5 from top to bottom.
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Figure 16: Comparison of transversal spatial modes obtained by SVD (left) and ITSSM

(right). Mode 1 to 5 from top to bottom.
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Figure 17: Comparison of the first 6 temporal modes obtained by SVD and ITSSM.

Figure 17 represents the temporal evolution of the first 6 modes obtained by

POD (SVD of the snapshot matrix at R̂e = 195) and by interpolation on the

tangent space of the Stiefel manifold. As expected, the amplitude variation of

the first POD mode is very small, as this component corresponds, to a first

approximation, to the mean field calculated as the average over all the snapshots

used for POD. For the other modes, we find that the solutions determined by

ITSSM are very accurate representation of the targeted field. However, we note

a slight phase shift in time, mainly on modes 2 and 3. We also note that mode

2 is obtained to within -1 coefficient, which is reflected in the isovalues shown in

Figures 15 and 16.

To further assess the ITSSM method, we compare the results obtained by

finite element simulations and ITSSM in terms of average drag coefficient (CD),

maximum lift coefficient (CL,max) and Strouhal number (St), see Table 9 en-
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hanced11 with results of GPOD and ITSGMni. For the Strouhal number, all the

reduced-order methods predict the exact value. The GPOD algorithm gives a

better prediction of CD and CL,max than the ITSGMni and ITSSM methods. The

prediction of CD is better by ITSSM than by ITSGMni. Regarding to the predic-

tion of the value of CL,max, ITSSM results in an underestimate, while ITSGMni

results in an overestimate, with a very slight advantage in favor of ITSGMni.

The results of the ITSSM method converge to those obtained with the FEM

method. This result is confirmed in Figures 18a and 18b where the time evolution

of CD and CL is plotted. The results obtained by ITSSM are in perfect agreement

with those of FEM simulations. In terms of CPU time, it is shown in Table 10

that the ITSSM approach is12 525 times faster than the FEM method, 195 times

faster than the POD approach which is the classical model reduction technique

in fluid mechanics and 11932 times faster than the GPOD. The CPU times of the

two non-intrusive interpolation methods are of the same order of magnitude, with

the ITSGMni method being twice as fast as the ITSSM algorithm. The ITSGM

method takes 58 times longer than the ITSSM, the former being penalized by

the calculation of the coefficients of the POD reduced-order model and its time

integration. In addition, the CPU time corresponding to the online phase of the

ITSSM method is very small (0.0469 s) and thus could be perfectly executed in

near-real time computations 13.

11For the same reasons as above (see analysis of Table 8), we did not use ITSGM to

estimate the pressure field, and were therefore unable to assess its contribution to the drag

and lift coefficients.
12These CPU time ratios are evaluated by considering the sum of the offline and online

phases.
13Here, we use "real time" in the sense described by Chinesta et al. [42], i.e. as an
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CD CL,max St

FEM 1.3666 0.6928 0.1953

GPOD 1.3677 0.6957 0.1953

ITSGMni 1.3659 0.7154 0.1953

ITSSM 1.3661 0.6772 0.1953

Table 9: Comparison of coefficients CD, CL,max and St obtained by FEM, GPOD,

ITSGMni and ITSSM for the 2D-cylinder wake flow at R̂e = 195 with NIP = 3 and

∆Re = 30.

(a) CD. (b) CL.

Figure 18: Comparison of the time evolution of CD and CL obtained by FEM and ITSSM

for the 2D-cylinder wake flow at R̂e = 195 with NIP = 3 and ∆Re = 30.

53



CPU time

Offline Online

FEM 47.7 min

POD 17.7 min 0.4 s

GPOD 18.05 h 2.8 s

ITSGMni 2.6 s 0.0247 s

ITSGM 2.5 s 5.22 min

ITSSM 5.4 s 0.0469 s

Table 10: Comparison of CPU times associated to FEM, POD, GPOD, ITSGMni, ITSGM

and ITSSM methods for the 2D-cylinder wake flow at R̂e = 195 with NIP = 3 and

∆Re = 30. The POD is computed at Re = 195 with 500 snapshots. For the POD appli-

cation, the offline phase involves calculating the temporal correlation matrix and solving

the eigenvalue problem. The online phase corresponds to the reconstruction of the physi-

cal fields from the selected modes (6 for POD and 42 for GPOD). For the application of

Grassmann or Stiefel interpolation methods, the offline phase corresponds to the applica-

tion of SVD and the calculation of Logarithm mappings. For ITSGM, the online phase

involves calculating the coefficients of the POD reduced-order model, its time integration

and the reconstruction of the physical fields. The calculation of the coefficients of the

POD reduced-order model (terms Ai, Bij and Cijk in Appendix A) is the most penalizing

step.
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6. Conclusion

In this paper, we have proposed a new non-intrusive interpolation strategy

for non-linear, parameterized, time-dependent fluid flow problems such as those

encountered with the Navier-Stokes equations. The aim of the proposed method,

called Interpolation on the Tangent Space of the Stiefel Manifold (ITSSM), is to

adapt an existing set of experimental or numerical data to estimate the solution

of the problem for a new value of control parameters. This method operates on

a set of solution snapshots and not on the underlying high-fidelity model. It is

therefore perfectly suited for real-time computations.

Up to now, the model reduction community has used interpolation on the

Grassmann manifold to approximate solutions for a new parameter value. In the

intrusive approach originally proposed by Amsallem [37], the spatial modes were

interpolated on the Grassmann manifold, and the temporal modes determined

using a reduced-order model derived by Galerkin projection of the high-fidelity

model onto the previous spatial modes. It was therefore necessary to know the

high-fidelity model in order to perform the interpolation. However, for some com-

plex physical problems, such as brain function, there is as yet no model. Very

recently, Oulghelou and Allery [16] proposed a non-intrusive method based on a

calibration phase performed in a corrective manner after an initial stage of in-

terpolation on the Grassmann manifold. Intrinsically, these difficulties stem from

the quotient structure of the Grassmann manifold, which leads to the determina-

tion of a solution up to right multiplication with an orthogonal matrix. After the

interpolation on Grassmann, it is therefore necessary to solve auxiliary optimiza-

approach that is fast enough to be embedded in real systems requiring decision-making.
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tion problems in order to determine two orthogonal matrices of small dimension

leading to physical solution. The advantage of interpolation on the tangent space

of the Stiefel manifold is that it does not require calibration phases. This comes

from the fact that the Stiefel manifold is an embedded manifold, where each ele-

ment is uniquely represented by itself rather than by an equivalence class as in the

case of the Grassmann manifold. Clearly, the interpolation on the Stiefel manifold

was made possible thanks to the efficient algorithm developed by Zimmermann

[23] in order to evaluate the logarithm mapping on the Stiefel manifold.

Interpolation on the tangent space of the Stiefel manifold was tested on

two academic fluid dynamics configurations. The first corresponds to the one-

dimensional non linear Burgers’ problem, where the parameter is the kinematic

viscosity. The second configuration is the two-dimensional cylinder wake flow,

where the parameter is given by the Reynolds number. The obtained results show

that the ITSSM algorithm is efficient in terms of both reconstruction accuracy

and computational time. ITSSM results were compared to Global POD and

to two interpolation methods based on Grassmann interpolation (ITSGMni and

ITSGM). The Global POD was more accurate but too expensive in terms of CPU

time. For both tested configurations, ITSSM was more accurate than ITSGM.

We also found that in the case of the cylinder wake flow, ITSSM performs better

than ITSGMni for several values of NIP and ∆Re. The results of Section 5.2.4

showed that the ITSSM method perfectly predicted the flow at Re = 195.

Following this initial work, many perspectives open up. Obviously, we will now

be able to solve optimal control problems in fluid dynamics. We will also be able

to revisit our algorithm by focusing on the stability conditions recently highlighted

in the work of Friderikos et al. [17]. Another direction of interest is to study
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the influence of the chosen interpolation method on the interpolated results. An

interesting direction would be to use a weighted barycentric interpolation method

as in Mosquera et al. [43], Oulghelou et al. [18], Zimmermann and Bergmann [20].

It would be also interesting to perform a data clustering step before interpolating

by ITSSM. Very likely, this preprocessing step should improve on-line interpolation

performance in terms of precision. Finally, the ITSSM algorithm being very

versatile, we can imagine applying it in many disciplinary fields of engineering

and more broadly in many disciplines where data-driven approaches make full

sense.

Appendix A. POD reduced-order models

In this appendix, we give the expressions of the POD reduced-order models

for the Burgers’ equation (Section 5.1) and for the cylinder wake flow (Section

5.2). For that, we apply the procedure described in Section 2.2, considering for

decomposition on the POD basis of a velocity field u, the expression:

u(x, t) = um(x) +

q∑
j=1

aj(t)Φj(x) (A.1)

where um is the mean field, q the number of modes kept in the expansion and

aj, the j−th coordinate of a(t).

The reduced order models are given by

q∑
j=1

Mij
daj(t)

dt
= Ai +

q∑
j=1

Bijaj(t) +

q∑
j=1

q∑
k=1

Cijkaj(t)ak(t) (A.2)

q∑
j=1

Mijaj(0) = (Φi,u(x, 0)− um(x))Ω i = 1, · · · q
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where Mij = (Φi,Φj)Ω is the mass matrix for the L2(Ω) inner product.

The coefficients Ai, Bij and Cijk depend on the equations governing the case in

question. Their expressions are given in the next two sections.

Appendix A.1. Coefficients for the Burgers’ equation

Ai = −
(
Φi, um

∂um

∂x

)
Ω

+
1

Re

(
Φi,

∂2um

∂x2

)
Ω

(A.3)

Bij = −
(
Φi, um

∂Φj

∂x

)
Ω

−
(
Φi,Φj

∂um

∂x

)
Ω

+
1

Re

(
Φi,

∂2Φj

∂x2

)
Ω

(A.4)

Cijk = −
(
Φi,Φj

∂Φk

∂x

)
Ω

(A.5)

Appendix A.2. Coefficients for the cylinder wake flow

Ai =− (Φi, (um ·∇)um)Ω − 1

Re

(
∇Φi,∇um

)
Ω

(A.6)

+
1

Re

[(
∇um

)T
Φi

]
∂Ω

Bij =− (Φi, (um ·∇)Φj)Ω − (Φi, (Φj ·∇)um)Ω (A.7)

− 1

Re

(
∇Φi,∇Φj

)
Ω
+

1

Re

[(
∇Φj

)T
Φi

]
∂Ω

Cijk =− (Φi, (Φj ·∇)Φk)Ω (A.8)

where(
P ,Q

)
Ω
=

∫
Ω

P : Q dx =
Nc∑

i,j=1

∫
Ω

PijQij dx and [u]∂Ω =

∫
∂Ω

u · n dx

with n, the outward unit normal vector.
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Algorithm 2 Stiefel Exponential map [32]
Input: Base point U ∈ S(n, r), tangent vector ∆ ∈ TUS(n, r)

1: A := UT∆ horizontal component, skew

2: QR := ∆− UA Thin qr-decomposition of normal component of ∆

3:

A −RT

R 0

 = TΛTH ∈ R2r×2r EVD of skew-symmetric matrix

4:

M

N

 := T expm(Λ)T
H

Ir

0

 ∈ R2r×r

Output: Ũ := ExpS
U(∆) = UM+QN ∈ S(n, r)

Appendix B. Stiefel exponential map

The algorithmic procedure is summarized in Alg. 2. EVD stands for Eigen-

Value Decomposition and expm denotes the standard matrix decomposition. The

computational effort is O(nr2).

Appendix C. Stiefel logarithm map

The algorithmic procedure is summarized in Alg. 3. After Zimmermann [23],

this algorithm is guaranteed to converge if the input data points U and Ũ are at

most of a Euclidean distance ∥U − Ũ∥2 ≤ 0.09 apart. The computational effort

is O(nr2).

Appendix D. Grassmann exponential map

The algorithmic procedure is summarized in Alg. 4. The computational effort

is O(nr2). By omitting the rightmost VT in line 2 of 4, we still have a represen-

tative of the same equivalence class [32]. This is the expression that is used in

Amsallem [37] and in many papers using Grassmann interpolation.
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Algorithm 3 Stiefel Logarithm map [23]

Input: Base point U ∈ S(n, r), Ũ ∈ S(n, r) in the neighbourhood of U ,

τ > 0 convergence threshold

1: M := UTŨ ∈ Rr×r

2: QN := Ũ − UM ∈ Rn×r Thin qr-decomposition of normal component of

Ũ

3: V0 :=

M X0

N Y0

 ∈ O(2r) Compute orthogonal completion of

M

N


4: for k = 0, 1, 2, · · · do

5:

Ak −BT
k

Bk Ck

 := logm (Vk) Matrix logarithm of orthogonal matrix

6: if ∥Ck∥2 ≤ τ then break

7: end if

8: Φk := expm(−Ck) matrix exponential of skew matrix

9: Vk+1 := VkWk where Wk :=

Ir 0

0 Φk


10: end for

Output: ∆ := LogSU(Ũ) = UAk +QBk ∈ TUS(n, r)

Algorithm 4 Grassman Exponential map [see 32, Section 2.5.1]
Input: Base point U = [U ] ∈ G(n, r), where U ∈ S(n, r), tangent vector

∆ ∈ TUG(n, r)

1: QΣVT SV D
:= ∆ with Q ∈ S(n, r) thin SVD of tangent vector

2: Ũ := UV cos(Σ)VT +Qsin(Σ)VT cos and sin act only on diagonal

entries

Output: Ũ := ExpG
U(∆) = [Ũ ] ∈ G(n, r)
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Appendix E. Grassmann logarithm map

Algorithm 5 Grassman Logarithm map [see 44, §3.8, p. 210]

Input: Base point U = [U ] ∈ G(n, r), with U ∈ S(n, r), Ũ = [Ũ ] ∈ G(n, r)

with Ũ ∈ S(n, r)

1: M := UTŨ

2: L :=
(
I − UUT

)
ŨM−1 = ŨM−1 − U

3: QΣVT SV D
:= L thin SVD

4: ∆ := Qarctan(Σ)VT arctan acts only on diagonal entries

Output: ∆ := LogGU(Ũ) ∈ TUG(n, r)

The algorithmic procedure is summarized in Alg. 5. The composition ExpG
[U ]◦

LogG[U ] is the identity on G(n, r), wherever it is defined. However, on the level of

the actual matrix representatives, the operation(
ExpG

[U ] ◦ LogG[U ]

)(
[Ũin]

)
= [Ũout]

produces a matrix Ũout ̸= Ũin. The input matrix can be achieved via a so-

called Procrustes-type preprocessing step [see 28, for more information and an

algorithm using it].

Appendix F. Analytical solutions of the 1D Burgers’ equation

The analytical solution of the 1D Burgers’ equation (8) is given [see 45, §4.1]

by

ua(x, t) =
2πν

L

∞∑
n=1

ann sin(nπx/L) exp(−n2π2νt/L2)

a0 +
∞∑
n=1

an cos(nπx/L) exp(−n2π2νt/L2)

,
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where the coefficients an are:

a0 =
1

L

∫ L

0

exp

[
−u0L

2πν

(
1− cos(

πx

L
)
)]

dx,

an =
2

L

∫ L

0

exp

[
−u0L

2πν

(
1− cos(

πx

L
)
)]

× cos(
nπx

L
) dx.

Appendix G. Cylinder wake flow

Appendix G.1. Boundary conditions

The problem (11) is solved with the following boundary conditions (see

Fig. 10). At the left boundary of the domain, an inlet condition is applied:

(u, v) = (1, 0) on Γ1 .

At the side-walls of the channel, zero shear stress conditions are imposed:

∂u

∂y
= 0, v = 0 on Γ2, Γ4 .

On the surface of the cylinder, no-slip boundary condition is considered:

(u, v) = (0, 0) on Γc .

Provided that the right boundary is placed at a sufficient distance downstream

of the cylinder, the condition

p = 0 on Γ3

is found to be an acceptable approximation for conditions at the outflow.
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Appendix G.2. Variational formulation

The variational formulation of the Navier-Stokes equations require the defini-

tion of different function spaces. Let L2(Ω) denote the space of square integrable

function over the domain Ω, we introduce successively:

L2
0(Ω) =

{
v ∈ L2(Ω) /

∫
Ω

v dx = 0

}
,

H1(Ω) =
{
v ∈ L2(Ω) / ∇v ∈ L2(Ω)

}
,

and

H1
0 (Ω,Γ) =

{
v ∈ H1(Ω) / v = 0 on Γ

}
.

H1(Ω) is the Hilbert space of vector functions with first derivatives in L2(Ω) and

H1
0 (Ω,Γ) is the set of H1(Ω) functions with zero values on the domain boundary

Γ.

Hereafter, we denote H = H1
0 (Ω,Γ)

2 and L = L2
0(Ω). Let v and q be

two test functions for velocity and pressure fields, respectively. The variational

formulation consists in finding un+1 and pn+1, velocity and pressure at the time

instant n+ 1, such that:∫
Ω

[
αr
0

∆t

(
un+1 · v

)
+

1

Re
(
∇un+1 : ∇v

)
− q∇ · un+1 − pn+1∇ · v

+ v ·
((
un+1 ·∇

)
un + (un ·∇)un+1

)
− ϵ pn+1q

]
dx

=

∫
Ω

[
v · ((un ·∇)un) + f · v −

r∑
i=1

αr
i

∆t

(
un+1−i · v

)]
dx, ∀v ∈ H ,∀q ∈ L ,

(G.1)

where ∆t is the time step of integration and ϵ the coefficient of the penalty

method. The coefficients of the BDF scheme of order r = 1, 2 or 3 are given

by:
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α1 =

 1

−1

 ; α2 =


3

2

−2
1

2

 ; α3 =



11

6

−3
3

2

−1

3


.

The unstructured mesh used to solve the variational formulation (G.1) is

shown in Figure G.19.

Γ1

Γ4

Γ3

Γ2

Figure G.19: Spatial mesh used for the 2D-cylinder wake flow simulation. The mesh is

built using FreeFem++’s builmesh command. The number of mesh points on the different

boundaries is: 30 on Γ1 and Γ3, 75 on Γ2 and Γ4, 45 on Γc (cylinder). The cylinder diameter

is D = 0.1.
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