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Minimal Impact Pokes to Place Objects
on Planar Surfaces

Ahmed Zermane∗, Member, IEEE, Léo Moussafir∗, Youcan Yan, and Abderrahmane Kheddar, Fellow, IEEE

Abstract—We present a planning and control method that
computes a minimal sequence of pokes to slide a given object
from an initial pose to a desired final one (or as close to it
as possible) on a planar surface. Both planning and control are
based on impact models to generate pokes. Our framework takes
into account the object’s dynamics with a rich contact model
and parameters to plan the poking sequence. The planning is
conducted in the joint-space and generates trajectories tracked
using an impact-aware QP control, which corrects for post-
pokes errors using discrete visual feedback. We implemented
our method on a Panda robot arm and assessed its versatility
and robustness. The experimental results show that the proposed
poking approach can bring the object to the desired position
and orientation with minimal errors (0.05 m for translation and
0.2 rad for rotation), highlighting its potential application in
diverse industrial scenarios such as logistics.

Index Terms—Impact-aware planning and control, Non-
Prehensible Dexterous Manipulation, Optimal Control.

I. INTRODUCTION

POKING an object with a robot to make it slide toward
a precise configuration can serve various applications

such as in logistics. Poking is a subset of non-prehensible
manipulations, it can enhance productivity by reducing time
required for robotic tasks [1]. Poking objects offers an alterna-
tive to traditional pick-and-place or tossing tasks, effectively
addressing issues such as dead zone problems—areas within
a robot’s workspace that are difficult to reach—and gripping
limitations, where robots struggle to securely grasp certain
objects due to their size, shape, or surface properties. Dead
zone issue is also relevant to pushing tasks, where the robot
end-effector must sustain contact with the object [2]–[4].

Given a setup consisting of a robot, a planar surface, and
an object to be slid from one end (initial planar configuration)
to the other (target planar configuration). In imposed single-
poking, pose target can be missed or even unfeasible, and no
correction is then possible [5] contrary to multi-step poking
strategies. Finding the minimal poking hits that achieves a
target goal is a challenging problem. It requires understanding
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the kinodynamics of planar motion, which is hard to pre-
dict due to the unilateral nature and the friction dynamics
of the sliding contact behavior. Poking involves successive
impact inputs generated by the robot’s end-effector on the
object, necessitating consideration of: (i) both robot and object
resilience to impact, (ii) impact-aware control [6], and (iii)
impact parameters. This hybrid dynamic characteristic is what
makes planning the optimal succession of pokes challenging.
Yet, if feasible, the outcome can be a single hit.

Recent work on poking, e.g., [1], [5], [7], [8], see Sec. II,
primarily focuses on the translational motion of the object not
considering spinning. This limitation restricts their application
in scenarios where precision in the object’s target pose is
needed. In this work, our main contribution is in addressing
this problem under a model-based formulation perspective.
Indeed, we show that formulating the entire planning as a
Mixed-Integer Non-Linear Optimization Problem (MINLP),
effectively resolves successive pokes solutions (Sec. IV). This
formulation of the problem allows integrating friction by de-
vising a simplified model for planar motions that accounts for
both sliding and spinning motions to ease online identification
of the friction parameters (Sec. III). We also enabled incorpo-
rating the robot’s capabilities to generate impacts and defining
poking task limits (Sec. III). In order to assess our approach,
we conducted real-time experiments on a manipulator robot
with a dedicated setup on different objects (Sec. V).

II. RELATED WORK

There is a large panel of research dealing with tasks in
which robots manipulate objects or interact with them to
achieve specific goals such as picking, tossing, pushing, stop-
ping, or even hitting and halting, see [9]. An extensively stud-
ied form of non-prehensible manipulation is planar pushing.
This quasi-static problem assumes a sustained contact force
between the robot’s end-effector and the object of interest.
In [2], a high-fidelity experimental dataset is created where
push interactions vary across six pushing action dimensions
that are: contact point, direction, speed, acceleration, surface
characteristics, and shape of objects. This dataset is later em-
ployed in a data-driven pushing model on different objects [3].
In [10], a Model Predictive Controller (MPC) is formulated
using a complementarity-based hard-contact model, Newton’s
Impact law, and optimal control to tackle various dynamic
pushing problems. In [11], combined analytical and learning
models allowed to enhance the prediction during pushing
manipulations. In [12], a Limit-Surface model is used to slide
objects on planar surfaces to desired poses accurately. State-
triggered constraints within the friction model are exploited
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in [13] to define contact modes of quasi-static pushing and
compare the performance to a Mixed-Integer Programming
(MIP) based controller. A framework in [4] built around one-
finger manipulation is used to reposition and reorient 3D
objects on frictional surfaces by pushing.

Yet, all the aforementioned work involves interacting with
objects at low speed while maintaining contact with the object
throughout the motion; which differs from poking. In [14], an
intuitive physics model using interaction data is demonstrated
for poking, where internal joint’s forward and inverse models
describe how poked objects move. Poking as a task is also
addressed in [15] for objects short translational displacement
by solving a contact implicit trajectory optimization; the latter
is based on variable smooth contact and successive convexifi-
cation yet not considering the frictional forces. This work was
extended later to be tuning-free, in which physical simulations
are used to solve each task [7]. Another example is [16],
where an impact-aware multi-mode Trajectory Optimization
(TO) method with hybrid dynamics and control encoded in a
single formulation is used to halt moving objects. In a recent
work [8], a data-driven framework solves single-shot poking
by first aligning the object to a stable poking region, estimating
its center of mass, and then applying the necessary hitting
poke impulse using a tactile sensor mounted on a tool. A
related approach in [5] develops a statistical model (Gaussian
Process Regression) and a directional inertia controller to
form “hitting flux” to poke different objects to various target
positions, yielding satisfactory results. In [1], a sampling-based
method is used to plan poking in the object configuration
space, but it does not define the limits of the robotic poking
task. Additionally, they use feed-forward physics (under the
PyBullet simulation environment) to check the feasibility of
solutions within the planning loop. The entire planning process
is formulated as a closed loop to compensate for approach
errors. However, these works consider only the sliding motion
of the object, neglecting its spinning motion during poking,
which is critical in real-world applications.

To overcome this limitation, we propose a simple friction
model based on energy loss during planar motion. This
model accounts for both sliding and spinning of the object
and is computationally efficient compared to other friction
models [17]–[19], such as those based on LuGre Dynamics
and Limit-Surface [19]. We have also investigated impact
analysis in mechanical interactions [20], estimating the robot’s
dynamics regarding impact, torque, and velocity jumps (using
methods described in [6], [21]) and integrating them within
our QP control framework over an entire trajectory horizon.
Experimental results show that our proposed poking approach
can move the object to the desired position and orientation
with minimal errors (0.05 m for translation and 0.2 rad
for rotation), highlighting its potential applications in diverse
industrial scenarios such as logistics.

III. PHYSICS MODELING

Given an object with fixed shape and inertia, having a
mass m and an inertia matrix I, center of mass (CoM) c,
initial location O on a flat support, and a static-balanced

Figure 1: Schematic illustration of the object and poking parameters.

pose PO such that its current contacting known surface with
the support is not nil (i.e., planar contact). Let B and PB
be, respectively, this object’s target location and pose to be
achieved by means of a sequence of impact-pokes generated
by a robot. Pokes can be made on a point anywhere on the
lateral object’s surfaces, noted p. Both p and O are assumed
within the robot’s reachable space W , where as PB can be
inside or outside W . Starting from O, this problem can be
formulated as finding a sequence of CoM planar velocities ċk,
with min k ∈ N∗ � +∞, that achieves c reaching B. The
pokes shall not induce a change in the contact topology, and
shall not induce a non-reversible deformation on the object.
Only sliding and spinning around the planar support’s normal
is allowed. Therefore, impulses ιk must apply in the horizontal
plane at z = zc. Static and dynamic translational and rotation
frictions are considered. Figure 1 shows these parameters for
any object. The main challenges in solving this problem are:
• find a minimal bounded k (number of pokes);
• find the best first pokes, especially if PB /∈ W , to bring

the object as close to PB yet inW such that the last poke
warrant to highest possible precision to both PB and B.

A. Planar Motion Modeling with Energy Loss

1) Sliding: we express the linear kinetic energy Ec (J) of
the object and the work Wf (J) due to frictional forces fr (N)
between the object and the support as follows:

Ec =
1

2
m‖ċ‖2 (1)

Wf = ‖fr‖‖∆c‖ = mµdg‖∆c‖ (2)

where µd is the coefficient of dynamic friction; g is the gravity
(m/s2); and ∆c is the CoM planar displacement (m).

At impact time (t = 0), the kinetic energy Ec is at its
maximum subsequent to post-impact velocity. The work Wf

done by friction forces dissipates this energy until the object
comes to rest. At the final position, the kinetic energy is zero,
and the total mechanical energy is given by Em = Ec −Wf .

The initial velocity can then be derived from (1) and (2):

ċi =
√

2gµd‖cB‖ (3)

2) Spinning: since the object orientation is also controlled,
we express the rotational kinetic energy Eθk (J) as:

Eθk =
1

2
ωT Iω (4)

with ω the angular velocity (rad/s) of the object. The energy
lost by friction can be interpreted as a result of a brake
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action on a surface S between the object and the support.
Each surface element dS located on the point r of the object’s
contact surface produces a torque Cf at the CoM.

Cf =

∫
S

‖−→cr‖gm
S
µddS (5)

The corresponding work Wf (J) is Wf = Cf∆θ, where ∆θ
is the resultant rotation around the surface’s normal. Once k-
th initial rotational energy Eθk, due to initial angular velocity
ωi, is fully dissipated, the final rotation θfinal is:

θfinal =
ωTi Iωi
2Cf

(6)

B. Impact Dynamics Modeling

Impact dynamics derives from Newton’s second law applied
to the object’s CoM c at impact. Let f be the impact force
applied to the object at point p, we have:

f = mc̈;

∫ δt

0

fdt = m
∫ δt

0

c̈dt

ċδt = m−1ι
(7)

Iω̇ = −→cp × f ; I
∫ δt

0

ω̇dt = −→cp ×
∫ δt

0

fdt

ωδt = I−1(−→cp × ι)
(8)

These equations establish the relation between velocity (ċ, ω)
and impulse ι, linking kinetic energies to the poking impulse ι
and, eventually, to robot control. In our work, we assumed that
the object is still before each poke. Hence, its initial velocity
is equal to the post-impact velocities: ċδt = ċi, ωδt = ωi. In
other words, we do not apply poking to moving objects. This
model depicts how an object responds to a specific impulse.

Integrating the equation of motion over the impact time δt,
see [22], one can express the joint space velocity jump in terms
of the task space impulse:

I(q)∆q̇ = J>ι (9)

I(q) is the robot’s inertia matrix, J is the jacobian, and q is
the joint configuration. By left-multiplying by I−1(q), we have:

∆q̇ = I−1(q)J
>ι (10)

Then the end-effector (EE) cartesian velocity V is:

J∆q̇ = ∆V = JI−1(q)J
>ι (11)

where JI−1(q)J
> is the inverse of the effective mass matrix Λ(q)

at EE. Using the translation part of this matrix, defined as Λt(q),
one can express the impulse ι in terms of momentum h as:

ι = ∆hbox = ∆hrobot

mċ+ − mċ− = Λt(q)V
+ − Λt(q)V

− (12)

and the coefficient of restitution er as:

er =

∥∥ċ+ − V+
∥∥∥∥V− − ċ−
∥∥ (13)

where the post and pre-impact velocities are denoted with the
superscript + and -, respectively. Let ι̂ be the directional unit

vector of ι, we express the object velocity as ċ+ =
∥∥ċ+

∥∥ι̂ =

ċ+ι̂ = (ι/m)ι̂, and EE velocities as V� =
∥∥∥V�

∥∥∥ι̂ = V �ι̂,
equations (12) and (13) can be written as:

mċ+ι̂ = (V + − V −)Λt(q)ι̂ (14a)

er =
‖(ċ+ − V +)ι̂‖
‖V −ι̂‖

=
|ċ+ − V +|

V −
(14b)

By substuting V + from (14b) into (14a) and left-multiply it
by ι̂>, the robot’s required pre-impact velocity that satisfies
the impulse ι is:

V − =
ċ+(m + λ)

(1 + er)λ
=

ι

(1 + er)

m + λ

λm
(15)

where λ = ι̂>Λt(q)ι̂ is the directional mass.

C. Constraints and Limits Definition for Poking Tasks

Now we define the limits for the poking task. The impulse
space Ximpulse of the robot can be define as:

{ι ∈ R3 | ι = Λt(q)∆V,

∀Λt(q) ∈ Xmass ∧ ∀V+,V− ∈ Xvelocity} (16)

where Xvelocity is the set of admissible velocities, and Xmass is
the set of allowed masses. In order to effectively define these
limits, we consider the following key features:

1) Poking Reachable Workspace: This defines the spatial
limits of the robot’s poking ability. It can be estimated off-
line by generating position and velocity samples within the
robot’s reachable workspace W . The resulting reachable-by-
poking workspace depends on the coefficient of restitution,
friction, and the object’s inertial parameters.

2) Poked Object Maximum Mass: estimating the maximum
weight that can be poked involves considering the maximum
allowed joint state jumps of the used robot, also the static
friction coefficient µs. The robot must be able to exert suf-
ficient impulsive force to move the object. However, if the
static friction or the object’s mass m are too high, and the
allowed torque jumps ∆τ q are limited, the robot is unable to
generate poking that lead to effective motions of the object.
Based on the impact model and the joint-space projections
reported in [6], the relationship between the impulsive force
and the torque jumps can be expressed as:

∆τ q = J tf = J t
dι

dt
(17)

Here, τ q is the joint torques; from Fig. 1 (left side) we have:∥∥∥∥dιdt
∥∥∥∥ > fs (18)

where fs = mgµs is the static friction force. Consequently,
the torque jumps in the robot are determined as follows:

∆τ q < mgµsJ t
ι

‖ι‖
= mgµsJ tuι (19)

where u is the impact directional vector. The problem is
constrained by the robot’s limits: ∆τ q < (∆τ q)

limits. With
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these constraints, the maximal pokable mass constraint writes:

mmax < min

(
(∆τ q)

limits � 1

gµsJ tuι

)
(20)

where � denotes the Hadamard product (i.e., element-wise
product). This quantity is configuration-dependent, observed
during trials on a real robot, as it includes the Jacobian term.

IV. PROBLEM FORMULATION

A. Cost Function

After establishing the planar motion model and the related
constraints for the robot, we formulate the poking hits prob-
lem as a multi-objective Mixed-Integer Nonlinear Program-
ming (MINLP) with the following cost functions:

g1 = |
−→
OT − ck+1|, g2 = |θT − θck+1

|, g3 = k (21)

For k pokes, we can predict the position and orientation of
the object with equations (3) and (6) after the kth poke as:

ck+1 =
ċ2k � sign(ċk)

2gµd
+ ck (22)

θk+1 =
Izzωzk

2 � sign(ωzk)

2Cf
+ θk (23)

where ?zk, and Izz are the components around the support
normal direction z for (−→cp × ι), ω and I respectively. We
replace velocities with the impulse from eqs. (7) and (8) as:

ck+1 =
ι2k � sign(ιk)

2m2gµd
+ ck (24)

θk+1 =
(−→cp × ι)zk

2 � sign(−→cp × ι)zk
2IzzCf

+ θk (25)

The decision variables are impulses ιk and application
points p. We can conveniently express point p in the object’s
frame Fobj with c as the origin. At each step, k, the object’s
new orientation, and position will be obtained by a straight-
forward transform.

B. Constraints

The optimization problem embeds several constraints re-
lated to the object’s shape, the poking tool used, the robot’s
dynamics, and the global strategy. The shape contour is
described in the object’s frame Fobj as a parametric function
γ(u) (see Figure 1). Depending on the real object’s shape,
this function might not be differentiable ∀u; to address this,
we approximate it by a quadratic function (other parametrized
curves such as Nurbs can be used), leading to a closed-form
tangent space γ̇(u) and normal space γ̈(u). To hit the object
efficiently, the impulse vector must lie within the static friction
cone with coefficient µs on point p [6]. We constraint the angle
α between the normal γ̈(u) and the impulse ι as follows:

− arctan(µs) < α < arctan(µs) (26)

Additionally, the impact point must be within the set Xworkspace
ofW , and the impulse vector must be within the impulse space
Ximpulse (16).

p ∈ Xworkspace (27)

Poking Tool

Tactile Force Sensor

Figure 2: Left: Panda’s reachable workspaceW (upper view, in blue) and the
extended reachable-by-poking workspace (in red), considering hardware limits
specified by the manufacturer with an object’s mass of 0.9 kg, a coefficient
of friction µd = 0.28 and a plan z = 0.1 m. Right: The experimental setup
with a poking tool (equipped with a tactile sensor) mounted at the end of the
robot.

ι ∈ Ximpulse (28)

To consider the friction cone at the poking point, ιk is
expressed by its angle of impact αk and norm ι for every
poke. The point pk has two components for our 2D problem.
Therefore, the decision variables vector can be detailed as:

Xvariables = {k, k · [ι], k · [α], k · [px], k · [py]} (29)

Using (21) and corresponding weights w1, w2, w3, the op-
timization problem is defined as multi-objective MINLP:

Minimize
Xvariables

w1g1 + w2g2 + w2g3

Subject to Impulse angular limitation (26)
Workspace (27)
Impulse space (28)

(30)

that can be solved in an efficient way using either derivative-
free optimization methods (e.g., Genetic Algorithms, Particle
Swarm...) or gradient-based solvers under CasADi [23], e.g.,
multiple NLPs, such as Bonmin or Knitro. We have been able
to solve it at a 10 Hz frequency using C++ genetic algorithm
implementation.

V. EXPERIMENTAL SETUP

The overall framework of the proposed poking method,
see Fig. 3, includes planning, tracking, and perception. First,
the frictional parameters of the contact surface and the box’s
center of mass c are estimated. Then, a target pose is de-
fined in the task frame. By solving the problem described
in Sec III, the outputs generated by the optimization solver,
Xd = {k, k · [ι], k · [α], k · [px], k · [py]}d are fed into Poking-
Aware-IK (Sec V-A) to determine the set of equivalent joint
space Qi = {qipoke, q̇ipoke}. Subsequently, the reference tra-
jectories are planned by an online trajectory generator (OTG)
for each of these configurations from different launching poses
defined by the transition motion policy (Sec V-C). Finally, our
QP-based tracking executes the trajectory under the embedded
safety constraints and collision avoidance. All the experiments
are conducted using a 7 Degrees of Freedom (DoF) Panda
robot to poke containers of different shapes (mainly boxes).
The poking reachable workspace (Figure. 2) is estimated using
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Poking Planner

10 Hz

Planar Target Pose

Friction Modeling
Collision avoidance

Safety constraints

1 kHz

Tracking task

90 Hz

Poking-Aware-IK

Constrained QP
Ruckig-Planner

Tactile FeedBack (V-E)

Visual FeedBack
(V-D)

Rrobot

(q(t), q̇(t), q̈(t))reference

Xd
(
−→
OT, θT ) q̇(t)desired

Figure 3: The proposed model-based poking framework, starting from modeling and poke planning to task execution (tracking) through a QP formulation
combining an IK-solver and Jerk-Limited planning. Sensory inputs include tactile feedback (from the tactile sensor mounted on the poking tool) and visual
feedback (from the Kinect Azure camera).

the robotic toolbox [24], with a fixed rotation of the poking
tool. The entire implementation is done using the open-source
C++ framework mc_rtc 1 along with the corresponding robot
module and control interface mc_panda and mc_franka.

A. Poking-aware Inverse Kinematics

The optimization solver returns poking points and impact
vectors in the task-space. To express this information in the
configuration space, we first perform inverse kinematics using
IKFast [25]. For each given optimization solution (p, ι)k, we
compute a batch of joint position solutions and corresponding
mass matrices. Then, to control ιk, we compute the effective
mass Λ(qk) = (JI−1qk J

>)−1 allowing us to find a feasible joint
velocity by estimating the corresponding task-space velocity
as expressed by V− in eq (15).

B. Poking Trajectories

Poking task trajectories are generated in the configuration
space by the OTG Ruckig [26]. The latter considers third-
order constraints and calculates valid extremal profiles for all
DoFs, taking into account the blocked intervals for each. The
result is a joint-space reference trajectory {q(t), q̇(t), q̈(t)}ref .
This planner is combined with a QP posture problem with
well-defined static environment obstacles to ensure collision-
free trajectories. Up to this point, which corresponds to the red
dotted square in Figure 3, the process runs at around 90 Hz
whenever it is called.

The planned trajectories are then tracked using a QP-
controller [27] that operates at realtime frequency of
1 kHz (blue dotted square in Figure 3), in which the main
task is defined as follows:

min
q̈∈Rn

‖q̈− q̈desired‖ (31a)

s.t: C(q̇,q)q̈ +D ≤ 0 (31b)
Collisions Constraints (31c)

where the desired task acceleration is: q̈desired = q̈ref −
Ks(q − qref) − Kd(q̇ − q̇ref), here, Ks and Kd are strictly
positive gains for stiffness and damping of the task respec-
tively, {q, q̇, q̈}t ∈ R3n represent the position, velocity,
acceleration in the configuration space of dimension n, C(q̇,q)
is the constraints matrix related to the robot’s limits (position,

1https://jrl.cnrs.fr/mc rtc/index.html

velocity, acceleration, torque, torque derivatives, and jerk) and
D is the bounds values vector of all these constraints. The
collision constraints represent the set of defined collisions with
dynamic obstacles while tracking, such as boxes to be poked
in undesired locations and other robots.

In order to find suitable solutions, we can use all sets of
joint configurations q for each pose P , (JI−1J>)−1and V−
previously computed and avoid non-feasible trajectories.

0 1
X(m)

−1.0

−0.5

0.0

0.5

1.0
Y
(m
)

0 1
X(m)

−1.0

−0.5

0.0

0.5

1.0

Y
(m
)

Figure 4: Transition motion policy for two poking planning examples.

C. Transition Motion Policy
Between each two consecutive pokes, it is paramount to

ensure that the robot moves close to the next poking position
while avoiding the box (see Figure 4). To achieve this, we
established a simple ad-hoc policy in 2D. Based on the next
poking point pk, we first identify a nearby point plaunch, placed
at a sufficient distance to generate the impulse and positioned
in the scaled opposite direction of the impulse vector. To
ensure the robot does not collide with the box during this
displacement, we create a second point pavoid equidistant from
plaunch and the initial point, which can be either the previous
poking point or the resting pose. There will be two potential
solutions for pavoid, and the one closest to plaunch is chosen.
Finally, we add a third point pretract at a distance equal to
the longest dimension of the box (here, the diagonal) from
the initial point, in a direction normal to the impulse vector
and closer to pavoid. The resulting trajectory is planned and
executed using a QP-based position task, with continuous
collision constraints enforced to avoid undesired contacts.

D. Visual Feedback
Visual feedback is used for high-level control of the poking

task using a Kinect Azure RGB-D camera and a tracking

https://jrl.cnrs.fr/mc_rtc/index.html
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software developed in [28]. The latter operates on a multi-
threading configuration at a frequency of 30 Hz.

E. Tactile Feedback

In order to control all the contact parameters introduced, we
use a tactile sensor, described in [29], see Figure 2, to measure
the force during the poking task in the early stages to estimate
and monitor impacts. This sensor is mounted on a dedicated
3D-printed tool designed for poking and housing the sensor.
This latter operates at around 100 Hz.

VI. EXPERIMENTS RESULTS

In our poking experiments, we used a set of cardboard boxes
with varying masses and dimensions (see Table I). Each box is
poked on a wooden surface (table), and we selected arbitrarily
initial and final desired poses and locations for each trial. We
discuss further the estimation of the friction parameters, and
the results obtained from poking experiments. We also ran our
poking algorithms on non box-shaped objects (see Figure 5);
including a cylindrical object (0.39 Kg) and triangular prism
(0.41 Kg), to validate its effectiveness (see Figure 10). Videos
of our experiments are available in a supplementary material2.
The overall planning time for the poking in our trails was at
100 ms, whereas the QP-Jerk-limited planning block checks
the trajectory feasibility in 11 ms. The QP-based controller
tracks these trajectories at 1 ms.

Table I. Parameters of the set of boxes used.

m (kg) L (m) w (m) h (m)
Box 1 0.21 0.237 0.199 0.102
Box 2 0.32 0.240 0.145 0.1
Box 3 0.91 0.31 0.225 0.11
Box 4 1.12 0.349 0.206 0.099
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Figure 5: Examples on minimal poking applied to different shapes, triangular
prism and cylinder.

A. Estimation of µd and er

We estimate boxes’ planar velocity and displacement using
vision and eq. (3). The dynamical coefficient of friction µd is
estimated from:

µd =

∥∥ċO
∥∥2

2g‖ci‖
(32)

where ‖ci‖ is distance travelled after the initial poke. For the
static coefficient of friction µs, an offline estimation is done

2https://seafile.lirmm.fr/f/d5b7c9b3da054e599bf0/

Figure 6: Experimental coefficient of restitution estimation using measured
velocities from encoder and visual feedback.

for objects with known-mass by relying on force sensor mea-
surements when start sliding under uniform constant velocity
pushing, µs = ‖fmeasured‖/mg [8].

Theoretical models used to estimate the coefficient of resti-
tution, e.g., [30], suffer from significant number of unknown or
uncertain parameters (e.g., stress, strain... of the colliding pair
of objects) when applied to real-world use-cases. Alternatively,
we can experimentally estimate the er parameter from (15):

er =
m + λ

λ

ċ+

V −
− 1 (33)

We conducted tests on the set of boxes in Table I by poking
along the y-direction with different velocities and a fixed λ
(around 3.5 kg). The results are reported in Figure 6. For
boxes 3 and 4, the velocity that produces noticeable motion
of the boxes is higher than that of the boxes 2 and 1. This
is due to the difference of weights. It can be noticed that the
variation of er is inversely proportional to the pre-impact robot
velocity V − for all boxes. Our results from equation (33) align
with those in [31, Eq. 20] presenting a method to estimate er.

B. Experimental Results for Poking Tasks

1) Positional and Orientational Accuracy: From open-loop
trials on experiments’ video, our approach is efficient regard-
ing translational motions. It achieved limited translational error
‖et‖ ≤ 0.05 m. Whereas rotation motions are less precise.
In combined motions, this would affect both the sliding and
spinning results. This is due to the sensitivity regarding the
poke point p. This is also because of the variability of the fric-
tional rotational torque Cf due to either anisotropic coefficient
of friction, non-planar contact, or non-homogeneous mass
distribution on the surface S. Figures (7-10) show that these
limitations can be compensated for using visual feedback. We
achieved a reasonable rotational error ‖erot‖ ≤ 0.2 rad.

2) Impact Reconstruction: In Figure 11, we show the
reconstructed impact value by integrating the force measure-
ments from the tactile sensor, assuming an impact duration
of T = 20 ms. The estimated impact is consistent with
the desired one with negligible energy dissipated due to the
deformation of the silicone material of the tactile sensor.
This indicates the validity of the required post-impact velocity
defined in eq (15).

3) Trajectory Tracking: Figure 12 depicts the task-space
planar errors for the position and velocity targets, alongside
the actual measured position and velocity of the end-effector.
The targets at the moment of impact are represented by dashed
straight lines. These targets are met only at the desired poking

https://seafile.lirmm.fr/f/d5b7c9b3da054e599bf0/
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Figure 7: Closed-loop poking of a box to a goal pose by successive sliding,
demonstrating the convergence of the real planar motion to the planned
trajectory.
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Figure 8: Closed-loop poking of a box to a goal pose, showing the planner’s
spinning angle differences between the model and two ground truth sources
(Xsens and visual feedback).

Figure 9: Closed-loop poking performing stationary rotation.

RealPose

TargetPose
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TargetPose

Figure 10: Examples of poking on triangular prism and cylindrical object.
Targets are indicated by a dark dashed outline, whereas the real measurements,
obtained from a motion capture system, are shown in blue outline.

point on the object’s surface. The results show that the real
position and velocity of the robot align closely with the
desired values, exhibiting only a small error during the impact
moment represented by the Impact Instant long-dashed
line within the light-gray area. This indicates a high accuracy
in trajectory tracking performance.
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Figure 11: Reconstructed impulse (left) from tactile force measurements
(right) at the moment of poking, along with task-space errors: position (blue)
and velocity (black) relative to the poking point.
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Figure 12: Task-space position and velocity errors, showing the real and target
poking point planar positions (x, y) and the corresponding velocities.

C. Discussions and limitations

In contrast to [8] and [5], our model-based poking approach
not only plans for sliding motions but also addresses spinning
motions that have not been previously investigated. The ex-
perimental results show that the actual position and rotation
of the object are close to the target values for the poking task,
suggesting the efficacy of our method. During the experiments,
we observed that the assumptions regarding the nature of
contact were highly significant. We are aware that the coeffi-
cient of restitution variability w.r.t changes in impact velocity
during the poking task. While the sliding model is relatively
insensitive to the nature of the contact surface, the rotational
model suffers from inaccuracies. In the point-contact mode,
for example, the object tends to rotate more than predicted
by the model [32]. Additionally, the contact force distribution
related to inertial parameters could affect both the sliding and
spinning models. Our method relies on the friction model,
and therefore, we can integrate a more complex approach to
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address problems with nonuniform µd on the support surface
or the object. This model is also highly dependent on the
physics attribute of the object; hence, we could improve our
method by incorporating initial measurements of µ, er, Cf
or I through a few preliminary pokes. Another issue is the
robot’s impact-aware control, where the torque derivatives
limits can sometimes be violated during impact. Implementing
an efficient constraint on the trajectory for this measure will
lead to greater robustness. Finally, we demonstrated a scenario
where poking can be combined with another robotic tasks
(tossing). This shows that the purpose of poking is not only to
increase the robot’s workspace as it also allows collaborative
process in a multi-robot setting to accelerate tasks, especially
in logistics [33].

VII. CONCLUSION AND FUTURE WORK

In this letter, we present a model-based method for deter-
mining an optimal sequence of pokes to achieve the desired
planar motion of an object using a robotic manipulator. The
experimental results demonstrate that our approach can always
provide feasible solutions for the trajectory planning with high
robustness for robot control, and it can move the object to
the desired position and orientation with minimal error and
using a limited number of pokes. Given this accuracy and
efficiency, the method has significant potential for industrial
applications, particularly in addressing logistic challenges and
simulating object motion. We delve into contact mechanics
and robot control under impacts, providing all the necessary
information and guidance to implement this process on any
robot at a low cost, utilizing open-source tools. While visual
feedback control is not mandatory for poking tasks, it could
significantly improve the precision of the results depending on
the requirements of specific applications. We have explored the
use of impact-aware QP control for this task. Still, it may be
beneficial to find an optimal solution for the effective mass
Λ(q) by introducing it to the mechanical constraints of the
robot’s structure. In future work, we plan to integrate this
approach with various model-based modules, (e.g., tossing,
grabbing, picking) to create a dedicated workflow for handling
logistics packages in diverse scenarios.
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