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GKP states, introduced by Gottesman, Kitaev, and Preskill, are continuous variable logical qubits
that can be corrected for errors caused by phase space displacements. Their experimental realization
is challenging, in particular using propagating fields, where quantum information is encoded in
the quadratures of the electromagnetic field. However, travelling photons are essential in many
applications of GKP codes involving the long-distance transmission of quantum information. We
introduce a new method for encoding GKP states in propagating fields using single photons, each
occupying a distinct auxiliary mode given by the propagation direction. The GKP states are defined
as highly correlated states described by collective continuous modes, as time and frequency. We
analyze how the error detection and correction protocol scales with the total photon number and
the spectral width. We show that the obtained code can be corrected for displacements in time-
frequency phase space - which correspond to dephasing, or rotations, in the quadrature phase space
- and to photon losses. Most importantly, we show that generating two-photon GKP states is
relatively simple, and that such states are currently produced and manipulated in several photonic
platforms where frequency and time-bin biphoton entangled states can be engineered.

Derived from classical error correction protocols, quan-
tum error correction plays a central role in quantum in-
formation theory. The counterintuitive features of quan-
tum mechanics are inherently fragile and necessitate er-
ror correction to enable the manifestation of the quantum
advantage of protocols over their classical counterparts.
Originally devised for qubits and finite-dimensional dis-
crete systems [1, 2], quantum error-correcting codes rely
on creating redundant states composed of multiple phys-
ical qubits to define logical qubits. By measuring well
chosen observables that do not affect the state of the
logical qubit - the stabilizers - one can detect and cor-
rect errors affecting the physical qubits. Entanglement
is usually an important ingredient in error correction, as
exemplified by the states that withstand physical qubit
flips and dephasing [3, 4].

When dealing with continuous variables such as posi-
tion and momentum, it is also possible to encode quan-
tum information into states that can be corrected for
errors [5–8]. One of the most successful model for error
correction in continuous variables is known as the GKP
code [9] (see, for instance, [10] for a review), named af-
ter its creators: Gottesman, Kitaev, and Preskill. GKP
states are a direct extension of the discrete variable codes
into the continuous domain [11, 12] and are correctable
for errors modeled as displacements in phase space. In
the realm of quantum optics, one usually thinks of en-
coding GKP states using two orthogonal quadratures of
the electromagnetic field, since the associated observables
obey the same commutation relation as position and mo-
mentum. In such a system, phase space displacements
can be the consequence of unwanted interference with a
parasite classical field or model photon losses [13, 14].
However, a main difficulty consists of the experimental
production of such highly non-classical states, which in-

volves, for instance, the prior (non-deterministic) pro-
duction of Schrödinger cat-like states (or, in practice, kit-
tens) that are made to interfere [15]. Several proposals
exist [16–21], as well as a first experimental realization
[22]. Of course, one can also encode GKP states using
other bosonic systems, as superconducting circuits [23]
or the motional states of trapped ions [24, 25]. However,
building a robust code adapted to propagating fields is
clearly of major importance if one wills to transmit quan-
tum information, in particular, to several independent
users [26].

In the present Letter we propose a new way to encode
GKP states in quantum optics using an original approach
to continuous variables. We use continuous collective
variables of single photons occupying distinct auxiliary
modes, as the propagation direction [27], to define re-
dundant states. Our model can apply to different single
photon continuous modes, as time and frequency (that
we discuss in detail), the transverse position and momen-
tum [28], the propagation direction [29, 30] and also to
the collective modes of massive particles, as the normal
modes of trapped ions [31, 32]. Using the established for-
malism, we theoretically investigate how GKP codewords
can be defined in a system comprising n individual pho-
tons, elucidating how some known properties of the en-
coded states can be retrieved, as for instance the scaling
of the error rate with the number of photons, their possi-
bility to recover from photon losses and the effects of im-
perfect preparation and measurement. Notably, we show
that in the time-frequency (TF) encoding scheme, these
properties have a fundamentally different physical origin
compared to quadrature-based (QB) encoding. Finally,
we demonstrate that the generation and manipulation of
TF GKP states in quantum optics is already a reality in
laboratories. This is particularly evident in experimental
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setups where entangled photon pairs with a correlated
comb-like temporal or spatial structure are observed, as
exemplified in references [26, 33–45]. Consequently, these
experimental platforms and the associated quantum pro-
tocols can immediately benefit from our findings.

We define as Sn the subspace consisting of n single
photons occupying each an auxiliary mode, as the prop-
agation direction. Photons are characterized by a col-
lective spectral function that also depends on the auxil-
iary mode. The auxiliary modes can be seen as external
degrees of freedom and frequency as internal degrees of
freedom [46]. Pure states are written as

|ψ⟩ =
∫
dω1...dωnf(ω1, ..., ωn) |ω1, ..., ωn⟩ , (1)

where f is a normalized function (the spectral ampli-
tude) that determines the properties of state (1), as en-
tanglement and its mode decomposition [47, 48], and

â†i (ωi) |0⟩ = |ωi⟩. In Sn, errors are represented in the
basis of time and frequency displacements, and they can
affect the photons locally, i.e., they act independently
on the photons of each auxiliary mode, a situation sim-
ilar to the one affecting a collection of physical qubits.
Such displacements are described by operators acting
on a given mode j ∈ {1, ..., n} as D̂ω̂j (δtj ) = e−iω̂jδtj

and D̂t̂j
(δωj

) = e−it̂jδωj , where ω̂i =
∫
dωωâ†i (ω)âi(ω)

and t̂i =
∫
dtt˜̂a†i (t)

˜̂ai(t), with ˜̂ai(t) =
1√
2π

∫
dωeiωtâ(ω),

where â†i (η) creates one photon at frequency η at the i-

th auxiliary mode and [ω̂k, t̂j ] = iδk,j
∫
dωâ†k(ω)âk(ω) =

n̂kiδk,j (n̂k = 1 on Sn) [27, 49]. Now we show that entan-
gled states of n photons in the TF continuous variables
sharing the same properties of GKP states can be cor-
rected for this type of errors. Such states can be written
in the general separable form in collective variables:∣∣k〉 = ∫ dΩ1...dΩnFk(Ω1)Π

n
i>1Gi(Ωi) |ω1, ..., ωn⟩ , (2)

where Ωj =
∑n

i αi,jωi are collective variables, αi,j is an
invertible matrix with αi,j ∈ {−1/

√
n, 1/

√
n} and k ∈

{0, 1}. We consider for simplicity and without loss of
generality that αi,1 = 1/

√
n ∀ i, and that n = 2m, m ∈

N. The matrix α is unitary and symmetric, hence ωi =∑
j αj,iΩj .

An ideal n photon GKP state
∣∣k〉 in Sn can be defined

from (2) using Fk(Ω1) =
∑s=∞

s=−∞ δ(Ω1 − (2s + k)Ωo),
where δ is the Dirac delta function and Ωo is an arbitrary
(constant) frequency. Hence, the logical qubits

∣∣0(1)〉 are
non-physical states formed by an infinity of peaks local-
ized at frequencies which are integer multiples of Ωo, and
2Ωo is the peak interspacing in each logical qubit (the
choice of αi,j means that we have supposed that all the
photons’ frequencies are equally spaced [50]). States

∣∣k〉
are defined uniquely using the collective variable Ω1. The
functions Gi are arbitrary and their role, not crucial for

the code working principles, will be discussed later in
this manuscript. Thus, all the relevant information for
error diagnosis and correction is contained only in vari-
able Ω1, and we disregard the information contained in
Ωi>1. This type of situation is current in quantum optics
where different physical properties, as group and phase
velocity for multi-modal fields, are associated to different
collective variables. For instance in the Hong-Ou-Mandel
(HOM) experiment [51] (see [52, 53] for its generaliza-
tion to many photons), the variable Ω1 = (ω1 − ω2)/

√
2

is directly measured, while the information in variable
Ω2 = (ω1+ω2)/

√
2 is disregarded [54]. By combining dif-

ferent interferometric techniques [55], one can access dif-
ferent collective variables measuring not only frequency
but other continuous modes, as the transverse position
and momentum [28, 39].

TF GKP states are intrinsically multimode states re-
lying on the particle-mode non-separability, so they are
fundamentally different from optical combs in single
mode states using spectral engineering of classical (co-
herent) states or single photons [33, 56]. Thanks to
the encoding in collective variables (modes) of individ-
ual photons, TF GKP states reveal their multi-photonic
properties, as the scaling of the error tolerance with the
number of photons n. Hence, they’re also fundamentally
distinct from QB GKP states - that can be defined in
single modes -, even in their multi-dimensional version
[57].

An example of a possible
∣∣k〉 state with Gi(Ωi) =

δ(Ωi) ∀ i in (2) is [58]:

∣∣k〉 = ∞∑
s=−∞

∣∣∣∣(2s+ k)
Ωo√
n

〉
1

...

∣∣∣∣(2s+ k)
Ωo√
n

〉
n

, (3)

Analogously to the QB GKP states, we can identify
non-Hermitian operators that act in

∣∣k〉 as Pauli ma-
trices [33]. One way to see this is using displacements

in the collective TF variables, D̂T̂1
(∆ω) = e−iT̂1∆ω and

D̂Ω̂1
(∆t) = e−iΩ̂1∆t , where ∆t(ω) ∈ R, Ω̂1 =

∑n
i ω̂i/

√
n

and T̂1 =
∑n

i t̂i/
√
n, with [Ω̂1, T̂1] = 1i in Sn [49].

Collective operators can also be associated to variables
Ωi>1. By an appropriate choice of ∆t(ω), we can de-
fine the Pauli-like operators in the TF GKP subspace as

X̂ = e−iΩ̂1To and Ẑ = e−iT̂1Ωo , with To = π/Ωo and
Ŷ = iẐX̂ so

∣∣1〉 = X̂
∣∣0〉. Also, a combination of the

universal time-frequency gates defined and physically de-
scribed in [49], can be used to complete the universal
gate-set in the TF GKP space [59]. A key aspect of the
proposed encoding is that the construction of the logi-
cal operators X̂, Ŷ and Ẑ (and consequently of the TF
GKP universal gate-set) is not unique. Nevertheless, the
formal construction of the TF GKP code is identical to
the QB one, so all the properties of the latter can be re-
trieved here, but now associated to different continuous
variables: states (3) enable correcting for collective time
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FIG. 1: Left: Physical TF GKP state with peak spacing
2Ωo in the collective variable Ω1. Ω⊥ is a collective
variable orthogonal to Ω1. Right: A displacement of
2
√
nΩo in the local variable ωj also displaces variable

Ω1. The displacement in the orthogonal direction Ω⊥ is
not relevant since we ignore the information it contains.

and frequency errors corresponding to TF displacements
such that |∆ω| < Ωo/2 and |∆t| < π/(2Ωo), delimiting
a TF phase space area of correctable errors satisfying
4|∆ω||∆t| < π. Physically, displacement errors can cor-
respond to imperfect aligning of an interferometer and
the effects of a non-linear device as an optical fiber.

Restricting to collective errors is missing our main goal,
which is creating states which are robust against local
displacements in the TF variables of each photon. Phys-
ically, this corresponds to a situation where each pho-
ton occupying a different propagation mode is distributed
throught different channels and frequency and time dis-
placements occur independently in each mode (and con-
sequently each photon). Such TF displacements are ro-
tations in the quadrature phase space, a type of error
against which the usual QB GKP are not very efficient
[10] and require using rotation symmetric states in the
quadrature space [60]. As for states (3), they are robust
against global and local rotations by construction. We
now study the effect of local noise in the TF GKP states
(2). We have:

D̂ω̂j
(δtj )

∣∣k〉 = (4)∫
dΩ1...dΩne

−i
Ω1δtj√

n Fk(Ω1)

n∏
k>1

G̃k(Ωk) |ω1, ..., ωn⟩ ,

where G̃k(Ωk) = e
−i

αj,kΩkδtj√
n Gk(Ωk). In addition,

D̂t̂j
(δωj )

∣∣k〉 = (5)∫
dΩ1...dΩnFk

(
Ω1 −

δωj√
n

) n∏
k>1

Gk(Ωk − Ω̄k) |ω1, ..., ωn⟩ ,

where Ω̄k = αj,kδωj
. Eqs. (4) and (5) lead to an impor-

tant result: the codewords (3) protect against shifts in
local variables ωj in a way that scales with

√
n with the

number of photons n. Some examples of correctable er-
rors are then: a single photon in mode j that is displaced
by |δtj | <

√
nπ/(2Ωo); up to ≈

√
n photons in differ-

ent modes j that are each displaced by |δtj | < π/(2Ωo);

n photons that are each equally displaced by |δtj | <
π/(2Ωo

√
n). Thus, if one focus on local errors, the code-

words (3) can protect for them provided that they lie in a
phase space area of size 4|

∑n
j δωj

||
∑n

j δtj | < nπ [61]. We
can see this as a re-scaling of the code, since the overall
protection corresponds to the one of a single photon GKP
states formed by peaks that are distant of 2

√
nΩo and√

n/(2Ωo) in time and frequency variables, respectively.
Interestingly, contrary to what one would observe in a
classical time frequency Fourier relation where the dilata-
tion of the frequency space is accompanied by the shrink-
ing of the time space and vice-versa, the observed effec-
tive phase space dilatation is a geometric consequence of
encoding information in collective variables while errors
occur in local ones. This re-scaling leads to a photon
number dependency of the probability error rate analo-
gous to the one observed for QB GKP encoding, as we’ll
see later.

Operators X̂ and Ẑ are not unique. We can define
X̂j = e−iω̂jTo

√
n and check by computing X̂j

∣∣k̄〉 that X̂j

acts in variables Ω1 in the same way as X̂ does (see Fig.
1 and [59]). Using this, we can detect the loss of one
photon in mode j′ (unknown) and adapt to its effects
by measuring time and frequency displacements only. If
a photon is lost, the TF GKP state becomes

∣∣k̄〉−1
=∫

dωâj(ω)
∣∣k̄〉 = Êj

∣∣k̄〉 (we considered that the photon
loss rate is independent of the frequency [62]). Defining

Ŝj = e−iηjΩo t̂j X̂2
j e

iηjΩo t̂j = e−i2(ω̂j−n̂jηjΩo)To
√
n, ηj ∈ R,

and only considering the information in Ω1, we have that
ŜjŜj+1 stabilizes

∣∣k〉 in Sn if (ηj +ηj+1)
√
n = m, m ∈ Z,

for all j, and it stabilizes Êj′
∣∣k̄〉 = ∣∣k̄〉−1

if j′ ̸= j, j+1. In

addition, ŜjŜj+1Êj
∣∣k〉 = ÊjŜj+1

∣∣k〉 = e−2iηjπ
√
nÊj

∣∣k〉,
so by judiciously choosing ηj we can detect a photon
loss and the mode from which it was lost (j or j + 1
here). We can also define Ŝ = ΠjŜj , which is a sta-

bilizer of
∣∣k〉. Using that ŜÊj

∣∣k〉 = e−iηjπ
√
nÊj

∣∣k〉 we
can detect in a single shot that a photon has been lost
and from which mode, by judiciously choosing ηj ’s and if∑n

j=1 ηj
√
n = m [59]. The stabilizer measurement pro-

vides essential information about the mode that lost a
photon, permitting to adapt the operations and measure-
ments to a n − 1 photon configuration: if a photon is
lost, the collective effects in displacements are smaller,

and in order to have e2iΩ̂1T
′
o

∣∣k〉−1
=
∣∣k〉−1

we must use

T ′
o = Ton/(n − 1). One can also re-insert the lost pho-

ton by applying a two-photon conditional gate involv-
ing mode j and an arbitrary mode i′ in the code, and a
displacement, so that D̂T̂1

(−ωj)e
it̂j ω̂i′ â†j(ωj)

∣∣k〉−1
=
∣∣k〉

[49, 59, 63].

States (3) are not physical. We can define
their normalizable version,

∣∣0̃(1̃)〉, using F̃k(Ω1) =∑s=∞
s=−∞ e−κ2(2s+k)2Ω2

oe−
(Ω1−(2s+k)Ωo)2

∆2 , k ∈ {0, 1}, where
each peak of the TF GKP code has a Gaussian spec-
trum of width ∆(≪ Ωo) in variable Ω1 and the comb of
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peaks distribution is modulated by a Gaussian envelope
of width κ−1 ≪ To/π [9]. We’ll consider for simplic-
ity that ∆ = κ. A finite width provides an intrinsic error
probability to states

∣∣0̃(1̃)〉, seen as perfect states (3) that
have been subjected to a distribution of displacements
(errors). Hence, an error probability E(∆/Ωo) is asso-
ciated to the error correction protocol through the def-
inition of non-perfectly orthogonal states as codewords.
The finite spectral width can be modeled as independent
displacements of individual photons with a Gaussian am-
plitude distribution of width ∆j . Each photon j in (3) is
described by state∣∣∣∣∣ ˜

(2s+ k)
Ωo√
n

〉
j

= (6)

∫
dωe

−∆2
j (2s+k)2

(
Ωo√
n

)2

e
−

(
ω− (2s+k)Ωo√

n

)2

∆2
j |ω⟩j .

The local variables ωi behave as independent random
variables, and we can suppose ∆j = ∆. Each n pho-

ton peak has the form Πn
j

∣∣∣∣ ˜(2s+ k) Ωo√
n

〉
j

, and the total

state’s temporal envelope is ∆−1. By changing to the col-
lective variables Ωi, each peak is described by a Gaussian
spectral distribution of width ∆ in all variables Ωi, lead-
ing to F̃k(Ω1) shown above. Hence, differently from the
QB GKP encoding, the spectral width does not depend
on the average photon number, and the probability of

mistaking
∣∣0̃〉 and

∣∣1̃〉 is given by E(∆/Ωo) =
∆

πΩo
e

−πΩ2
o

4∆2

[9]. We recall however that in the present encoding the
effective displacement on the collective variable Ω1 de-
creases with

√
n, increasing the effective distance between

peaks. Consequently, the region of potential overlap be-
tween the two supposedly orthogonal QB GKP qubit
states is modified [64].

By analyzing the effects of photon losses discussed
above for physical TF GKP states, we see that the loss
of m photons will not significantly affect the code if
the cumulated effective peak interspacing modification
Tom/n [59] in the whole state (≈ 1/(2∆To) peaks) is
within each peak’s half-width ∆/2, leading to the con-
dition 2Tom/n × 1/(2∆To) = m/(∆n) ≤ ∆, or n/m ≥
1/∆2 ≫ π/(ΩoTo) = 1. These errors propagate with the
number of gates, and a detailed analysis should be car-
ried, but displacement based correction strategies can be
devised based on this scaling [59].

We now discuss the role of a finite frequency width
in the collective variables Ωj>1. For simplicity, we’ll
consider Ω⊥ to be one of these variables and ignore all
the others, considering a state with spectral amplitude
Fk(Ω1)G(Ω⊥). The width of the spectral distributions Fk

and G in (2) can be independent and related to different
physical constraints, as for instance energy conservation
and the phase matching condition in spontaneous para-
metric down-conversion (SPDC). If the spectral function

of state (2) is separable in variables Ω1 and Ω⊥ and all
the measurements performed on variable Ω1, the spec-
tral width σ or the particular shape of G have no im-
portance. However, state preparation may be imperfect,
leading to a state that is still separable but in the vari-
ables Ω′

1 = cos θΩ1+sin θΩ⊥ and Ω′
⊥ = cos θΩ⊥−sin θΩ1.

This model also describes the situation of imperfect mea-
surements, where variable Ω′

1 is measured instead of
Ω1. In these cases the peaks’ width in the measured
variable is broadened by an additive factor σ sin θ and
the peak spacing is re-scaled to 2Ωo cos θ (for details
and a figure, see [59]). This effective width and peak-
spacing can be seen as errors that do not significantly
affect the code if the cumulated change in peak spacing
Ωo(1− cos θ)(1/(2Ωo∆) lies within the peak’s half-width
∆/2, or (1− cos θ) ≲ ∆2 ≪ ΩoTo/π = 1. Otherwise, we
can adapt the code to the modified interspacing 2Ωo cos θ
(where θ is known), with an associated error probability
E(σ tan θ/Ωo) in frequency and E(tan θ/(σTo)) in time,
leading to tan θ ≪ min{πσ/(2Ωo),Ωo/(2σ)} [59].

Finally, two n photon TF GKP states can be entan-
gled by applying frequency CNOT gates Ĉi,j = eiω̂i⊗t̂j

[33, 49], implementing Ĉi,j |ωi⟩i |ωj⟩j = |ωi⟩i |ωi + ωj⟩j .
We define D̂1,2 = ⊗n

i=1Ĉ(i,1),(i,2) [59], where (i, j) de-
notes the i-th spatial mode of the j-th TF GKP qubit,
with j = 1(2) for the control (target) qubit. Hence,

D̂1,2

∣∣k̄1〉1 ∣∣k̄2〉2 =
∣∣k1〉1 ∣∣∣(k2 + k1) mod 2

〉
2
, and using

|+̄⟩i = 1√
2

(∣∣0〉
i
+
∣∣1〉

i

)
, we obtain D̂1,2 |+⟩1

∣∣0〉
2

=

1/
√
2
(∣∣0〉

1

∣∣0〉
2
+
∣∣1〉

1

∣∣1〉
2

)
. Interestingly, it is also pos-

sible to implement the CNOT gate between two TF
GKP qubits by coupling only one photon from the tar-
get qubit to one photon of the control qubit: since infor-
mation is encoded in the collective variables Ω1 of each
qubit, for qubit states as (3), for instance, we also have

that einω̂(i,1)⊗t̂(i,2)
∣∣k̄1〉1 ∣∣k̄2〉2 =

∣∣k1〉1 ∣∣∣(k2 + k1) mod 2
〉
2

(see [59] for details). In [63, 65] frequency controlled
two-photon gates were experimentally implemented and
promising proposals exist for cavity QED platforms, e.g.
[66].

We can compare our results to other encodings based
on GKP-like states within the continuous modes of single
photons. In the TF domain, it is possible to define GKP
qubits using a frequency comb spectral distribution in
single photons. In this case, one photon corresponds to
one qubit, and the spectral function of each photon de-
fines a two-level-like system that exhibits local robustness
against TF displacements [33, 67]. This is a single-mode
classical-like effect independent of the number of pho-
tons involved, and if the photon’s peaks are separated
by 2Ωo/

√
n (as in (3)), the protection against displace-

ment errors is limited to amplitudes δωj ∼ Ωo/(2
√
n) per

photon. Of course, it’s possible to enhance protection
against local (single-photon) quibit flipping and dephas-
ing by using entangled photons. However, the so con-
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structed codes operate similarly to discrete ones [1–4],
and correction for qubit flip and dephasing requires us-
ing entangled states of at least five photons. In contrast,
the encoding proposed here demonstrates enhanced pro-
tection starting from n = 2.

Based on our analysis, we can reinterpret the results
of [33] as the production of a two-photon GKP state.
While it remains a GKP state on a small scale, the exist-
ing techniques for producing QB GKP states involve the
manipulation of Schrödinger kittens with a mean photon
number of the order of one. Therefore, TF GKP states
hold significant promise: techniques to directly generate
large entangled states [42, 68–74] and high dimensional
combs [75], to manipulate photons using non-linear de-
vices so as to implement single mode [76–78] or two-mode
controlled [63, 65, 66] time-frequency operators in the
universal set rapidly develop, together with high perfor-
mance frequency (or mode) resolved [79–81] and non-
destructive single-photon detectors [82, 83].

In conclusion, we have introduced and conducted an
extensive study on a novel quantum optical encoding
method for GKP states that can be implemented in small
scale in many laboratories using current technology. Us-
ing the presently available TF GKP states, we can al-

ready envision applications in various domains, as quan-
tum communications [26, 84], quantum computation [85],
and quantum metrology [86]. Moreover, we can broaden
the scope of potential applications by applying the pro-
posed GKP encoding from the flourishing domain of TF
based quantum photonics [87] to other continuous de-
grees of freedom of mode entangled photons, such as their
transverse position and momentum [28, 39], the propaga-
tion direction [29, 30] and even to individual electrons in
distinguishable modes with an underlying bosonic struc-
ture [88]. An interesting perspective involves adapting re-
cent theoretical and experimental advancements related
to QB GKP states in quantum information to the modal
domain [16, 89–95]. Finally, the tools we provide for
defining quantum continuous variables using collective
variables of single photons can also be extended to other
error-correcting codes, such as cat codes [96–100]. How-
ever, this remains a subject for future investigation.
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Imperfect state preparation or measurement and the transverse spectral width

We now discuss the role of a finite frequency width in the other collective variables Ωj ̸=1 and measurement or state
preparation imperfections. For this, we start with the general form

|ψ⟩ =
∫
dΩ1...dΩnFk(Ω1)Π

n
i>1Gi(Ωi) |ω1, ..., ωn⟩ , (7)

For simplicity, we will consider Ω⊥ to be one of the variables Ωj>1, and we’ll ignore all others, effectively considering
a state with spectral amplitude Fk(Ω1)G(Ω⊥). In this case, Eq. (7) becomes

|ψ⟩ =
∫
dΩ1dΩ⊥Fk(Ω1)G(Ω⊥) |ω1, ..., ωn⟩ . (8)

There are different ways to express both variables Ω1 and Ω⊥ according to the measured protocol at hand. In the
present contribution, we considered that TF GKP states are perfectly prepared in variable Ω1 and function G is a

Gaussian spectral width, so Fk(Ω1)G(Ω⊥) = (
∑∞

s=−∞ δ(Ω1 − (2s + k)Ωo))e
− (Ω⊥−ωo

⊥)2

σ2 . We considered for simplicity
that the TF GKP states are perfect in variable Ω1, but we can express this variable using different variables as, for
instance, Ω1 = cos θΩ′

1 − sin θΩ′
⊥, and Ω⊥ = cos θΩ′

⊥ + sin θΩ′
1. State (8) can thus be re-expressed as

|ψ⟩ =
∫
dΩ′

1dΩ
′
⊥Fk(cos θΩ

′
1 − sin θΩ′

⊥)G(cos θΩ
′
⊥ + sin θΩ′

1) |ω1, ..., ωn⟩ . (9)

Consider that we have wrongly prepared a TF GKP, meaning that instead of preparing state (8) or, equivalently,
state (9), we have prepared a TF GKP state in variable, say Ω′

1, is equivalent to considering that we have correctly
prepared the TF GKP but we’re measuring it in a wrong basis, say, Ω′

1. Using (9) we’ll rather consider this case. We
can write

Fk(cos θΩ
′
1 − sin θΩ′

⊥)G(cos θΩ
′
⊥ + sin θΩ′

1) =

∞∑
s=−∞

δ(cos θΩ′
1 − sin θΩ′

⊥ − (2s+ k)Ωo)e
− (cos θΩ′

⊥+sin θΩ′
1−ωo

⊥)2

σ2 (10)
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For θ = −π/2 (according to the chosen reference frame), we have that the measured states is a Gaussian of width σ,
corresponding to the original distribution in variable Ω⊥. In order to have a better physical insight of the meaning of
this expression, we’ll consider ωo

⊥ = 0 to simplify the discussion but this constant can be inserted with no aditional
difficulty. Indeed, state (10) can be seen as a perfect TF GKP states but with a displacement sin θΩ′

⊥/ cos θ that is
distributed according to a Gaussian of width σ. This displacement can be seen as an error, and since the variables
are rotated, the widths of the error probability depend on the original variables and on the angle of rotation. Thus,
the distribution of amplitudes of the displacement Ω′

⊥ is such that it transforms the delta function into a distribution
of width σ sin θ, as we can see by analyzing it for instance at point Ω′

⊥ = − sin θΩ′
1/ cos θ ± σ/ cos θ. We have then,

from the delta function, that cos θΩ′
1 = (2s+ k)Ωo − sin2 θΩ′

1/ cos θ± σ sin θ/ cos θ, or Ω′
1 = (2s+ k)Ωo cos θ± σ sin θ.

FIG. 2: Effects of imperfect state preparation (or measurement) in the rotated variables Ω′
1 and Ω′

⊥. The TF GKP
state in variable Ω′

1 is represented by the red lines. The peak’s width are broadened by a factor sin θσ and the peak
interspacing becomes 2Ωo cos θ in Ω1.

We have then a re-scaling of the distance between peaks and as well as the increasing of the effective peak’s width
(see Fig. 2). Since now σ sin θ plays the role of an effective width for θ ̸= nπ, we need to keep sin θσ ≪ Ωo cos θ/4, or
equivalently, tan θ ≪ Ωo/(4σ), otherwise the code will have a too large error rate. On the other hand, if we want that
the change of the effective peak distance keeps the state in the code space, we need to have that Ωo(1−cos θ) ≪ σ sin θ,
that leads us to tan θ ≪ sin θ/(1− cos θ). Of course, we can add the spectral width ∆ to the discussion, but this will
not change the results qualitatively.

If we now see the effect of the spectral width in the collective variable T1, we will obtain a similar result: F̃k(cos θT
′
1−

sin θT ′
⊥)G̃(cos θT

′
⊥+sin θT ′

1) =
∑∞

s=−∞ e−σ2 (T ′
1+to⊥ sin θ−(2s+k)Toπ cos θ)2

sin2 θ , where F̃k and G̃ are the Fourier transforms of Fk

and G respectively, so the width of G̃ is σ−1. We see that, in this case, the condition guaranteeing the low error rate
of the TF GKP state is different from the one previously obtained. We have now that tan θ ≪ σToπ/4 = σπ/(4Ωo).
The conditions for the state to remain in the code are also the analogous to the previously obtained ones, and we
obtain the same conditions on θ.

The obtained conditions on θ set the limit of the correctable errors of state preparation. In systems as SPDC, we
have in general that σ ≪ Ωo, so the restrictions set by the collective time variables are more restrictive than the ones
on frequency measurements. In addition, errors due to state preparation are negligeble.

Notice that the type of imperfection discussed here is a good model for the effects of non-perfect separability
between variables Ω1 and Ω⊥, as discussed for instance in [101] in the context of quantum metrology.

Errors and stabilizers

We discuss in detail the error diagnosis and correction procedure based on the measurement of different stabilizers.
We start by recalling some basic principles of the GKP states, that are stabilized by operators of the type X̂2m

and Ẑ2m (X̂ and Ẑ are defined in the main text) where m are integers. Starting from a perfect GKP state such
that Fk(Ω1) =

∑∞
s=−∞ δ(Ω1 − (2s + k)Ωo), we can understand the error detection and correction as follows: we

suppose that a displacement D̂ωj
(δtj ) = eiω̂jδtj occurs, so that the function Fk(Ω1) → F̃k(Ω1) =

∑∞
s=−∞ δ(Ω1− (2s+

k)Ωo)e
i((2s+k)Ωoδtj /

√
n). Applying the stabilizer X̂2m consists of transforming s → s +m in the delta function. By

doing so, one has that X̂2m(D̂ω̂j
(δtj )

∣∣k̄〉) = e−2imΩoδtj /
√
n(D̂ω̂j

(δtj )
∣∣k̄〉), so D̂ω̂j

(δtj )
∣∣k̄〉 is no longer an eigenstate

with +1 eigenvalue of the stabilizer and the error can be detected and corrected.
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An interesting point here is that there are many ways to construct the X̂(Ẑ) operators and consequently, the
stabilizers, and this comes of course from the errors they can correct for and the fact that states

∣∣k̄〉 are equally

robust to displacement of any photon j. We have thus, for instance, that X̂ = e−iΩoT̂1 has the same effect in
∣∣k〉 as

e−iΩo
√
nt̂j , or e−i

∑n/2
j=1 Ωo2t̂j/

√
n and many more, as long as one only considers the information contained in variable

Ω1. Consequently, the stabilizers can also be constructed in many ways, and this will prove to be useful in correcting
for photon losses as we’ll see in the next section.

Encoding information in variable Ω1

In this section, we detail some operations showing the equivalence between different operators acting on the code’s
subspace.

We start by computing the effect of operators Ĉ2
j = ei2ηToω̂j and D̂2

j = e2iχΩo t̂j to codewords when there is no
photon loss. We have that

ei2ηToω̂j

∑
s

∫
dΩ1dΩ⊥δ(Ω1 − (2s+ k)Ωo)G(Ω⊥) |ω1, ..., ωn⟩ =

∑
s

∫
dΩ1dΩ⊥e

i
2ηπ(2s+k)√

n δ(Ω1 − (2s+ k)Ωo)G̃(Ω⊥) |ω1, ..., ωn⟩ (11)

and

ei2χΩo t̂j
∣∣k〉 =∑

s

∫
dΩ1dΩ⊥δ(Ω1 − (2s+ k)Ωo)G(Ω⊥) |ω1, ...ωj + 2χΩo, ..., ωn⟩ =

∑
s

∫
dΩ1dΩ⊥δ(Ω1 − (2s+ k)Ωo − 2χΩo)G(Ω⊥ + Ω̄⊥) |ω1, ..., ωn⟩ , (12)

where G̃ and Ω are defined in the main text. We now combine the effect of both operations into
∣∣k〉, with η arbitrary

(an error) and χ =
√
n:

ei2Ωo
√
nt̂jei2ηToω̂j

∣∣k〉 = ei2Ωo
√
nt̂j
∑
s

∫
dΩ1dΩ⊥e

i
2ηπ(2s+k)√

n δ(Ω1 − (2s+ k)Ωo)G̃(Ω⊥) |ω1, ..., ωn⟩ =

∑
s

∫
dΩ1dΩ⊥e

i
2ηπ(2s+k)√

n δ(Ω1 − (2s+ k)Ωo)G̃(Ω⊥)
∣∣ω1, ...ωj + 2Ωo

√
n, ..., ωn

〉
= (13)

∑
s

∫
dΩ1dΩ⊥e

i
2ηπ(2s+k)√

n δ(Ω1 − (2s+ k)Ωo + 2Ωo)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ =

∑
s

∫
dΩ1dΩ⊥e

i
2ηπ2(s−1)+k)√

n δ(Ω1 − (2s+ k)Ωo)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ =

e
−i 4ηπ√

n

∑
s

∫
dΩ1dΩ⊥e

i
2ηπ(2s+k)√

n δ(Ω1 − (2s+ k)Ωo)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ (14)

that shows how the stabilizers using local operators are equivalent to the ones involving global operators Ω̂1 and T̂1
if one is only interested in the variables Ω1 and T1. It’s also useful to compute

ei2To
√
nω̂jei2ηΩo t̂j

∣∣k〉 = ei2To
√
nω̂j

∑
s

∫
dΩ1dΩ⊥δ(Ω1 − (2s+ k)Ωo)G(Ω⊥) |ω1, ..., ωj + 2ηΩo, ..., ωn⟩ =

∑
s

∫
dΩ1dΩ⊥e

i2To
√
nωjδ(Ω1 − (2s+ k)Ωo − 2

Ωoη√
n
)G(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ = (15)

∑
s

∫
dΩ1dΩ⊥e

i2ToΩ1δ(Ω1 − (2s+ k)Ωo − 2
Ωoη√
n
)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩

∑
s

∫
dΩ1dΩ⊥e

i2((2s+k)π+2 πη√
n
)
δ(Ω1 − (2s+ k)Ωo − 2

Ωoη√
n
)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ =

e
i 4ηπ√

n

∑
s

∫
dΩ1dΩ⊥δ(Ω1 − (2s+ k)Ωo − 2

Ωoη√
n
)G̃(Ω⊥ +Ω⊥) |ω1, ..., ωj , ..., ωn⟩ . (16)
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These relations can be directly applied to define the stabilizers detecting the photon loss.

Entangling gates

Entanglement between TF GKP states can be created using the tools introduced in [49], and more specifically, the
time-frequency (TF) version of the continuous variable CNOT gate Ĉ(i,1),(j,2) |ωi⟩(i,1) |ωj⟩(j,2) = |ωi⟩(i,1) |ωi + ωj⟩(j,2),
with Ĉ(i,1),(j,2) = eiω̂(i,1)⊗t̂(j,2) . We define D̂1,2 = ⊗n

i=1Ĉ(i,1),(i,2), that couples the photon in the i-th spatial mode of
the TF GKP qubit 1 (control qubit) to the photon in the i-th spatial mode of the TF GKP qubit 2 (target qubit).
Notice that modes (i, 1) and (i, 2) do not overlap. Taking two TF GKP states each characterized by a collective
variable Ω1 and Ω2, the action of the gate D̂1,2 on two TF GKP states with n photons each is given by:

D̂1,2

∣∣k1〉1 ∣∣k2〉2 = D̂1,2

(∫
dΩ1...dΩn

s1=∞∑
s1=−∞

δ(Ω1 − (2s1 + k1)Ωo)Π
n
i>1Gi(Ωi) |ω1⟩(1,1) ... |ωn⟩(n,1)

)
×(∫

dΩ′
1...dΩ

′
n

s2=∞∑
s2=−∞

δ(Ω′
1 − (2s2 + k2)Ωo)Π

n
i>1G

′
i(Ω

′
i) |ω′

1⟩(1,2) ... |ω
′
n⟩(n,2)

)
=(∫

dΩ1...dΩn

s1=∞∑
s1=−∞

δ(Ω1 − (2s1 + k1)Ωo)Π
n
i>1Gi(Ωi) |ω1⟩(1,1) ... |ωn⟩(n,1)

)
×(∫

dΩ′
1...dΩ

′
n

s2=∞∑
s2=−∞

δ(Ω′
1 − Ω1 − (2s2 + k2)Ωo)Π

n
i>1G

′
i(Ω

′
i − Ωi) |ω′

1⟩(1,2) ... |ω
′
n⟩(n,2)

)
, (17)

that explicits the dependency of the logical value of the target qubit 2 on the control’s one (qubit 1) through a
controlled change of parity.

In order to illustrate the working principles of the TF GKP CNOT gate with a simple example, we can study its
application to states as the one presented in Eq. (3) of the main text. We have that

D̂1,2

∣∣k1〉1 ∣∣k2〉2 = (18)
∞∑

s1,s=−∞

n⊗
m=1

∣∣∣∣2s1 + k1√
n

Ωo

〉
(m,1)

n⊗
p=1

∣∣∣∣2s+ k1 + k2√
n

Ωo

〉
(p,2)

=
∣∣k1〉1 ∣∣∣(k2 + k1) mod 2

〉
2
,

where we sum over the dummy variable s = s1 + s2. Using Eq. (18), we can reproduce for the TF GKP qubits
the CNOT truth table. In particular, we find that entanglement can be created by defining |+⟩i =

1√
2

(∣∣0〉
i
+
∣∣1〉

i

)
,

i = 1, 2, and using that D̂1,2 |+⟩1
∣∣0〉

2
= 1/

√
2
(∣∣0〉

1

∣∣0〉
2
+
∣∣1〉

1

∣∣1〉
2

)
.

An experiment implementing this type of controlled mode transformation was performed in [65] with frequency-
bin encoded qubits. The same type of controlled interaction implemented in [65], where the displacement of the
frequency of one photon is controlled by the frequency of the other would enable the implementation of the CNOT
gate between TF GKP qubits. In this reference, electro-optical modulation of photons and a frequency controlled
switch are combined and interference effects lead to implementation of the gate. In [63], another technique was used

to create entanglement between photons, which correspond to the TF beam-splitter like interaction ei
π
4 (ω̂1⊗t̂2+ω̂2⊗t̂1).

Finally, in [66], the authors also propose a frequency dependent interaction in a cavity QED set-up relying on the
scattering of photons by a quantum emitter.

Notice that in order to entangle two TF GKP states we only require photons to interact two by two, and that we
have a freedom of choice to determine which pairs interact. An example of a circuit involving two n photon TF GKP
states is shown in Fig. 3.

Finally, it would also be possible to implement a CNOT TF GKP gate using the interaction between only two
photons. This is a state dependent procedure (it depends on the function G) but in the case of states as (3) in
the main text, for instance, the conditional displacement of the TF GKP state can be implemented using only two
photons. Indeed, using, for instance, Ĉ11,12 = exp(inω̂(1,1)⊗ t̂(1,2)) (gate that couples mode 1 of both TF GKP states),

so that Ĉ(1,1),(1,2)
∣∣∣ 2s1+k1√

n
Ωo

〉
(1,1)

∣∣∣ 2s2+k2√
n

Ωo

〉
(1,2)

=
∣∣∣ 2s1+k1√

n
Ωo

〉
(1,1)

∣∣∣( 2s2+k2√
n

+ (2s1 + k1)
√
n
)
Ωo

〉
(1,2)

. This means

that a change of variables Ω′
1 → Ω′

1 − 2s1 − k1 can be performed, which is exactly the same change of variables that

is performed when gate D̂1,2 is applied to states of the type
∣∣∣ 2s1+k1√

n
Ωo

〉
(1,1)

∣∣∣ 2s2+k2√
n

Ωo

〉
(1,2)

. Hence, the effect of both
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FIG. 3: Representation of a CNOT gate D̂1,2 between two TF GKP (in blue and in red) states comprising n
photons distributed in n spatial modes each. Photons (represented by red and blue circles) interact two by two, and
each photon pair interact only once via a TF CNOT gate Ĉi,i (green box). Different combinations of photons in

spatial modes are possible (corresponding to different bijections j), the one represented in the figure is an arbitrary
choice of pairing that simplifies the notation and the presentation.

gates is the same in the global variable of the target TF GKP qubit. This geometrical effect is illustrated in Fig. 1
of the main text.

The effects of photon loss: adapting and restoring

There are two ways to cope with photon losses. We can adapt the code to a different effective peak interspacing,
as mentioned in the main text, for perfect GKP states (and the other states involved in the computation should
follow the same procedure). Alternatively, in the case of physical TF GKP states, we can consider that such effective
modification interspacing does not significantly affect the code if the conditions states in the main text are observed,
i.e., if the cumulated effective peak interspacing modification Tom/n in the whole state, that contains ≈ 1/(2∆To)
peaks, is within each peak’s half-width ∆. This leads to the condition 2Tom/n × 1/(2∆To) = m/(∆n) ≤ ∆, or
n/m ≥ 1/∆2 ≫ π/(ΩoTo) = 1. These errors propagate with the number of gates, and we provide here a simple
illustrative example of how this can be considered and corrected for.

We can for instance analyze Ẑ
∣∣0̃〉−1

:

Ẑ

∫
â1(ω)dω

∣∣∣k̃〉 =

∫
dΩ1...dΩnF̃k(Ω1)Π

n
i>1Gi(Ωi)

∣∣∣∣0, ω2 −
Ωo√
n
, ..., ωn − Ωo√

n

〉
=∫

dΩ1...dΩnF̃k(Ω1 +
Ωo(n− 1)

n
)Πn

i>1Gi(Ω
′
i) |0, ω2, ..., ωn⟩ = (19)∫

dΩ1...dΩnF̃(k+1)mod 2(Ω1 −
Ωo

n
)Πn

i>1Gi(Ω
′
i) |0, ω2, ..., ωn⟩ .

We can see that using Ω′
o = Ωon/(n − 1) in the definition of Ẑ would lead to the transformation Ẑ

∣∣∣k̃〉
−1

=
∣∣∣k̃〉

−1
.

However, the obtained state (19) can also be seen as a displaced TF GKP state, and it is easy to verify that if m
photons are lost we obtain

Ẑ
∣∣∣k̃〉

−m
=

∫
dΩ1...dΩnF̃(k+1)mod 2(Ω1 −

mΩo

n
)Πn

i>1Gi(Ω
′
i) |0, 0, ..ωm+1, ..., ωn⟩ (20)

and also that

Ẑm
∣∣∣k̃〉

−1
=

∫
dΩ1...dΩnF̃(k+1)mod 2(Ω1 −

mΩo

n
)Πn

i>1Gi(Ω
′
i) |0, ω2, ..., ωn⟩ (21)
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So, photon losses can be tolerated if the associated displacement do not significantly affect the code, and it can be
corrected for by applying displacement operators after the implementation of m gates if m is such that the cumulated
error leads to intolerable discrepancy of the code.

If one considers more complex gates, as entangling ones, errors will also be introduced by the lost photon, but
can be limited if one knows the mode from which the photon that has been lost, since we can adapt operations (as
entangling ones) so as not to include this mode. The best strategy is to add a new photon to the code, which can
be done using entangling gates as the ones introduced in [49] (and implemented in [63]) and temporal or frequency
displacements [77]. We can see that

∣∣∣k̃〉
r
= â1(ω

′)†
∣∣∣k̃〉

−1
= |ω′⟩1

∫
dΩ1...dΩnF̃k(Ω1)Π

n
i>1Gi(Ω

′
i) |ω2, ..., ωn⟩ , (22)

and that

eit̂1ω̂2

∣∣∣k̃〉
r
=

∫
dΩ1...dΩnF̃k(Ω1)Π

n
i>1Gi(Ω

′
i) |ω′ + ω2, ω2, ..., ωn⟩ . (23)

Since we have that ω1 =
∑

i αj1Ωj and ω2 =
∑

i αj2Ωj , recovering a perfect TF GKP state of n photons depend on
the functions G as well. For instance, when they are delta functions and we have a state as Eq. (3) of the main text,
we simply have to displace state in Eq. (23) of −ω′ in mode 1 to recover from the photon loss. In the general case, we
can think of more involved solutions but as a general message we have that for each photon loss model corresponds
a most suitable code (with corresponding functions G). In the present case, we considered a frequency independent
loss channel, and highly frequency correlated TF GKP codes are the most easily correctable for such photon losses.
If we had considered a monochromatic loss channel, this type of state would be completely destroyed by a photon
loss and could not be restored. One would have then to consider a TF GKP state with large temporal correlation.
So, depending on the experimental situation at hand, one can choose the most suitable way to encode information in
time and frequency variables so as to enable recovering from photon losses by photon addition.
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L. Midolo, J. Garćıa-Ripoll, A. Sørensen, and P. Lodahl, Dynamical photon–photon interaction mediated by a quantum
emitter, Nature Physics 18 (2022).

[64] This can be seen by comparing the error probability of a single photon comb-like state with interspacing 2ωo/
√
n.

[65] H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters, A. M. Weiner, and P. Lougovski, A controlled-not gate
for frequency-bin qubits, npj Quantum Information 5, 10.1038/s41534-019-0137-z (2019).
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