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Abstract

We consider bias-corrected estimation of the extreme value index of a Pareto-type distri-

bution in the censoring framework. The initial estimator is based on a Kaplan–Meier integral

from which we remove the bias under a second-order framework. This estimator depends on

a suitable external estimation of second-order parameters which is also discussed. The weak

convergence of the bias-corrected estimator is established. It has the nice property to have

the same asymptotic variance as the initial estimator. This nice feature is illustrated on a

simulation study where our estimator is compared to alternatives already introduced in the

literature. Finally, our methodology is applied on an insurance dataset.

1 Introduction

Let X1, . . . , Xn be a sample of independent and identically distributed (i.i.d.) random variables

with distribution function F of Pareto-type, i.e., such that for some γF ą 0

1´ F pxq “ x
´ 1
γF `F pxq, x ą 0, (1)
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where `F denotes a slowly varying function at infinity, i.e., a positive measurable function such

that

`F ptxq

`F ptq
ÝÑ 1 as tÑ8 for all x ą 0.

The parameter γF is called the extreme value index and it governs the tail behavior, with larger

values indicating heavier tails. This model (1) is completely equivalent to the following model

for the tail quantile function UF pxq :“ infty : F pyq ě 1´ 1{xu, x ą 1 :

UF pxq “ xγF `U pxq, (2)

where `U is also a slowly varying function at infinity.

Several estimators of γF have been proposed in the literature, among them the Hill estimator

(see [23]), defined as

HXpkq “
1

k

k
ÿ

i“1

logXn´i`1,n ´ logXn´k,n,

where X1,n ď . . . ď Xn,n denote the order statistics associated to the X´sample and k “ kn is

an intermediate sequence, i.e., a sequence such that

kn Ñ8 and kn{nÑ 0.

This estimator is the most famous one since it can be interpreted in different ways, e.g., as an

estimator of the slope in a Pareto quantile plot, or also as the uniformly minimum variance

unbiased estimator of γF based on the pk ` 1q´upper order statistics of a sample in case of a

strict Pareto model (i.e., a model with `F pxq “ 1 in (1)), see [1].

Under the first-order framework (2) and if k is an intermediate sequence, we can prove that

HXpkq is consistent in probability for the estimation of γF . However, if we want to establish

asymptotic normality of HXpkq, assuming Model (2) is not enough, and we need a second-

order condition which measures the rate of convergence of UF ptxq{UF ptq towards its limit xγF .

There are different types of second-order conditions, some expressed in terms of F , UF or their

logarithms. The one used in this paper can be formulated as follows:
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Condition (SOC). There exist a positive or negative function Ap.q with Aptq Ñ 0 as t Ñ 8,

and a parameter ρ ď 0 such that the tail quantile function of F satisfies for all x ą 0

lim
tÑ8

UF ptxq
UF ptq

´ xγF

Aptq
“ xγF hρpxq,

with

hρpxq :“

ż x

1
uρ´1 du “

$

&

%

xρ´1
ρ if ρ ­“ 0

log x otherwise.

Under Condition (SOC) and for an intermediate sequence k, we have the following asymptotic

representation

HXpkq
d
“ γF ` γF

Nk
?
k
`
Apnk q

1´ ρ
` oP

´

A
´n

k

¯¯

, (3)

where Nk follows asymptotically a standard normal distribution. Equation (3) shows that HXpkq

is asymptotically normally distributed with variance γ2
F {k and a dominant asymptotic bias term

given by Apn{kq{p1 ´ ρq. Since under Condition (SOC), |Ap.q| is regularly varying with index

ρ, this means that as k increases, the bias also increases, while the variance decreases and vice

versa. Thus, the choice of k is a question of trade-off between bias and variance. Also, the closer

ρ is to 0, the more prominent the bias.

This bias problem in the Hill estimator or other tail parameters’ estimators has been extensively

studied in the literature, e.g., by [3], [13], [18] or [25]. They proposed second-order reduced-bias

extreme value index estimators, but at the cost of an increase in variance, larger than or equal

to rγF p1´ρqs
2{pρ2 kq when ρ ă 0. To overcome this drawback, [9], [16] and [19] have introduced

estimators which present the advantage to reduce the bias without increasing the asymptotic

variance, which is kept, e.g., for the Hill estimator at γ2
F {k. They are called minimum-variance

reduced-bias (MVRB) estimators and due to these nice properties, they obviously outperform

the original estimator (i.e., without bias-correction), in terms of mean squared error. Those

estimators are defined when the function Ap.q in Condition (SOC) is of the form Aptq “ γF β t
ρ

with pβ, ρq P pR,R´q suitably estimated externally. This particular form of the function Ap.q

is not really restrictive because it is very usual in extreme value theory to assume instead of
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Model (2), the following Hall-type model (see [21], [22]):

UF ptq “ C tγF
"

1` γFβ
tρ

ρ
` o ptρq

*

, tÑ8, (4)

where C ą 0, β ­“ 0 and ρ ă 0. In that case, Condition (SOC) is satisfied with Aptq “ γFβ t
ρ.

Note that most of the usual heavy-tailed models belong to this class, e.g., the Fréchet, Burr or

generalized Pareto models. The most simple MVRB-type estimator, introduced by [9], is of the

form

pγBCpkq :“ HXpkq

˜

1´
pβpk1q

1´ pρpk1q

´n

k

¯

pρpk1q

¸

, (5)

for suitable external estimators of the second-order parameters pβ, ρq based on a new interme-

diate sequence k1 such that k “ opk1q. The specific form of (5) comes from the specific form of

the function Ap.q together with an estimator of the dominant asymptotic bias term of the Hill

estimator which is subtracted from it.

The idea of this paper is to adapt this bias-corrected estimator (5) to the censoring framework.

As far as we know, this topic is completely new in the literature, although it has many applica-

tions, e.g., in insurance.

The remainder of the paper is organized as follows. In Section 2, after a presentation of two

different approaches concerning the construction of an estimator of γF in the case of censoring,

we explain how to derive a bias-corrected estimator in that context. This requires estimators of

the second-order parameters pβ, ρq adapted to the censoring framework which are also discussed

and for which some asymptotic properties are derived. Then, in Section 3, we examine the finite

sample performance of our bias-corrected estimator of γF through a simulation experiment,

while in Section 4, we illustrate the method on a real dataset. All the proofs are postponed to

Section 5.

2 Estimators of tail parameters in the censoring framework

The general random right censoring framework is the following: additionally to the X´sample,

consider Y1, . . . , Yn a second sample, also based on i.i.d. random variables from some distribution
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G, and assume that the two samples, X and Y , are independent. We only observe pZi, δiq,

i “ 1, . . . , n, where Zi :“ minpXi, Yiq and δi :“ 1ltXiďYiu. If H denotes the distribution function

of Z, due to the independence between the two samples, we have

1´Hpxq “ p1´ F pxqqp1´Gpxqq.

A consistent estimator of F is the Kaplan–Meier estimator (see [24]) defined as

Fnpxq “ 1´
n
ź

i“1

„

1´
δri:ns

n´ i` 1

1ltZi,nďxu

,

where Z1,n ď . . . ď Zn,n are the order statistics of the Z´sample and δri,ns, i “ 1, . . . , n, are the

concomitants, i.e., δri,ns “ δj iff Zi,n “ Zj .

In that censoring framework, if we assume that G is also of Pareto-type with index γG, then the

Hill estimator based on the observations Z1, . . . , Zn, i.e., HZpkq, estimates the extreme value

index of H, that is γH :“ γF γG
γF`γG

, but not γF . To solve this issue, [4] and [12] proposed to divide

this Hill estimator by the proportion of non-censored observations in the k-largest observations,

i.e., they proposed to consider

Hpcqpkq :“
HZpkq

1
k

řk
i“1 δrn´i`1,ns

as an estimator of γF .

Very recently, [7] proposed an alternative approach based on Kaplan–Meier integrals of the form

Sk,npϕq :“

ż

ϕdFk,n,

where ϕ is a measurable function, F´square integrable and almost everywhere continuous on

r1,8q, and Fk,n is the extreme Kaplan–Meier estimator defined as

Fk,npxq “ 1´
k
ź

i“1

„

1´
δrn´i`1:ns

i

1ltZn´i`1,n{Zn´k,nďxu

.

In this paper, we consider the particular function ϕpxq :“ ϕ`pxq :“ plog xq`, with ` a positive

integer, and we define

Mp`q
n pkq :“

ż 8

1
ϕ` dFk,n,
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as a consistent estimator in probability for

M p`q :“

ż 8

1
ϕ` dF

˝,

with F ˝pxq :“
´

1´ x
´ 1
γF

¯

1ltxě1u as soon as γG ą γF (see Theorem 3.2 in [7]). Thus, when

` “ 1, Mp1q
n pkq can be interpreted as a Hill-type estimator adapted to the censoring framework.

2.1 A bias-corrected estimator of γF

Our aim in this paper is to reduce the bias of Mp1q
n pkq, without increasing its variance. To reach

that goal, we establish the following asymptotic representation, similar to (3)

Mp1q
n pkq

d
“ γF ` γF

c

γG
γG ´ γF

N
pcq
k?
k
`
A
`

r1´ F pUH pn{kqqs
´1
˘

1´ ρ

`oP

ˆ

A

ˆ

”

1´ F
´

UH

´n

k

¯¯ı´1
˙˙

,

when γG ą γF and where N
pcq
k follows asymptotically a standard normal distribution (see Lemma

5.1). This result shows that Mp1q
n pkq has a dominant asymptotic bias term ofA

`

r1´ F pUH pn{kqqs
´1
˘

{p1´

ρq and an asymptotic variance of γ2
FγG{prγG´ γF s kq. The bias can be estimated, as soon as we

have estimators for ρ, 1´F pUH pn{kqq and Ap.q adapted to the censoring framework. Concern-

ing 1´F pUH pn{kqq, this can be done easily by replacing F by the Kaplan–Meier estimator Fn

and UH pn{kq by its empirical counterpart Zn´k,n. This leads to the estimator 1´ Fn pZn´k,nq.

It thus remains to find estimators for pβ, ρq since we assume Model (4), and therefore the spe-

cific form for the function Ap.q. Proposing such estimators is already a new contribution of the

paper. If we denote them by ppβpcqpk1q, pρ
pcqpk1qq, then, following the construction idea of [9], we

introduce

pγ
pcq
BCpkq :“Mp1q

n pkq

˜

1´
pβpcqpk1q

1´ pρpcqpk1q
r1´ FnpZn´k,nqs´pρpcqpk1q

¸

, (6)

as our bias-corrected Hill-type estimator adapted to the censoring framework.

Our main result, stated in the following theorem, is the weak convergence of our estimator

pγ
pcq
BCpkq, correctly normalized.
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Theorem 2.1 Consider Model (4) with F continuous, and assume that G is of Pareto-type with

index γG ą γF . Let k and k1 be two intermediate sequences such that k “ opk1q and

?
k A

´

r1´ F pUHpn{kqqs
´1
¯

ÝÑ λ P R.

Then, for ppβpcqpk1q, pρ
pcqpk1qq any estimators of pβ, ρq such that

log

ˆ

”

1´ F
´

UH

´n

k

¯¯ı´1
˙

´

pρpcqpk1q ´ ρ
¯

“ oPp1q (7)

and

pβpcqpk1q

β
“ 1` oPp1q, (8)

we have
?
k
´

pγ
pcq
BCpkq ´ γF

¯

d
ÝÑ N

ˆ

0,
γG γ

2
F

γG ´ γF

˙

.

Remark that Condition (7) involves both the sequences k and k1.

As is clear from this theorem, pγ
pcq
BCpkq is an asymptotically unbiased estimator of γF in the

sense that its limiting distribution has a zero mean whatever the value of λ. Note also that the

variance of pγ
pcq
BCpkq is the same as the variance of the original Mp1q

n pkq estimator, given in [7]

(see also our Lemma 5.1), which means that our estimator pγ
pcq
BCpkq can be seen as a MVRB-type

estimator, as defined in [9], but adapted to the censoring framework.

2.2 Estimator of ρ

In this section, we provide an estimator of ρ and since we want to show its weak convergence,

we need to strengthen condition (SOC) into a third-order condition, given by:

Condition (TOC). There exist a positive or negative function Bp.q with Bptq Ñ 0 as t Ñ 8,

and a parameter ξ ď 0 such that the tail quantile function of F satisfies for all x ą 0

lim
tÑ8

1

Bptq

$

&

%

UF ptxq
UF ptq

´ xγF

Aptq
´ xγF hρpxq

,

.

-

“ xγF hρ`ξpxq.
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The estimation of the second-order parameter ρ has been considered in the literature in the case

where there is no censoring, see, e.g., [8], [14], [15] or [17]. In particular, in [14], the following

estimator has been introduced

pρpk1q :“
3T

pτq
n pk1q ´ 3

T
pτq
n pk1q ´ 3

provided T
pτq
n pk1q P r1, 3q,

with τ ą 0, where

T pτqn pk1q :“
rM

p1q
n pk1qs

τ ´ r12 M
p2q
n pk1qs

τ
2

r12 M
p2q
n pk1qs

τ
2 ´ r16 M

p3q
n pk1qs

τ
3

with, for α P R`,

M pαq
n pk1q :“

1

k1

k1
ÿ

i“1

rlogXn´i`1,n ´ logXn´k1,ns
α.

Note that M
p1q
n pk1q is nothing else than the Hill estimator HXpk1q.

Under Condition (SOC) with ρ ă 0 and with an intermediate sequence k1 such that
?
k1Apn{k1q Ñ

8, [14] proved the consistency in probability of pρpk1q (see their Theorem 2.1). Also, un-

der a third-order condition similar to Condition (TOC) with ρ ă 0 but expressed in terms

of log UF ptxq
UF ptq

instead of UF ptxq
UF ptq

, as well as
?
k1Apn{k1q Ñ 8,

?
k1A

2pn{k1q Ñ λ1 P R and
?
k1Apn{k1qBpn{k1q Ñ λ2 P R, their estimator pρpk1q, correctly normalized, is asymptotically

normally distributed (see Theorem 3.1 in [14]).

Our aim in this section is to adapt this estimator to the censoring framework by introducing

pρpcqpk1q :“
3Tpτqn pk1q ´ 3

Tpτqn pk1q ´ 3
provided Tpτqn pk1q P r1, 3q,

with

Tpτqn pk1q :“
rMp1q

n pk1qs
τ ´ r12 M

p2q
n pk1qs

τ
2

r12 M
p2q
n pk1qs

τ
2 ´ r16 M

p3q
n pk1qs

τ
3

.

The asymptotic normality of our estimator pρpcqpk1q is given in the following theorem:
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Theorem 2.2 Assume that F and G are of Pareto-type with index γF and γG, respectively,

such that γG ą γF . Under the third-order condition (TOC) with ρ, ξ ă 0, for an intermediate

sequence k1 satisfying

a

k1A
`

r1´ F pUH pn{k1qqs
´1
˘

ÝÑ 8,
a

k1A
2
`

r1´ F pUH pn{k1qqs
´1
˘

ÝÑ λ1 P R,
a

k1A
`

r1´ F pUH pn{k1qqs
´1
˘

B
`

r1´ F pUH pn{k1qqs
´1
˘

ÝÑ λ2 P R,

we have

a

k1A

˜

„

1´ F

ˆ

UH

ˆ

n

k1

˙˙´1
¸

!

pρpcqpk1q ´ ρ
)

d
ÝÑ N

`

m,σ2
˘

,

where

m :“

"

´
2p1´ ρq3

p1´ 2ρq3
`
ρ2p7´ 20ρ` 16ρ2 ´ 4ρ3q

2p1´ 2ρq2p1´ ρq2
1

γF
`
ρp3´ 2ρqp3´ ρq

12p1´ ρq2
τ

γF

*

λ1

`
ξp1´ ρq3pρ` ξq

ρp1´ ρ´ ξq3
λ2

σ2 :“
γG γ

2
F p1´ ρq

6

ρ2pγG ´ γF q5
 

p2ρ2 ´ 2ρ` 1qγ4
G ´ 2ρp2´ ρqγ3

GγF

`2pρ2 ´ 2ρ` 2qγ2
Gγ

2
F ´ 2ργGγ

3
F ` γ

4
F

(

.

Note that in the particular case where γG Ñ8 we recover the variance in the uncensored case,

see (3.18) in [14]. Remark also that this estimator satisfies Condition (7) of our Theorem 2.1 as

soon as

log
´

“

1´ F
`

UH
`

n
k

˘˘‰´1
¯

?
k1A

ˆ

”

1´ F
´

UH

´

n
k1

¯¯ı´1
˙ “ op1q. (9)
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2.3 Estimator of β

Now, we discuss the estimation of β adapted to the censoring framework. Using a similar

approach as for the estimation of ρ, we propose the following estimator of β

pβpcqpk1q :“
κ

1
κ´1 τ´1

1
θ1 pρpcqpk1q

"

´

1
1´pρpcqpk1q

¯` θ1
´ 1

*

´ 1
θ2 pρpcqpk1q

"

´

1
1´pρpcqpk1q

¯` θ2
´ 1

*

ˆ

¨

˚

˚

˚

˚

˝

«

ˆ

Mp`θ1qn pk1q

Γp` θ1`1q

˙
τ
θ1

´

ˆ

Mp`θ2qn pk1q

Γp` θ2`1q

˙
τ
θ2

ffκ

ˆ

Mp`θ1qn pk1q

Γp` θ1`1q

˙
τ
θ1
κ

´

ˆ

Mp`θ2qn pk1q

Γp` θ2`1q

˙
τ
θ2
κ

˛

‹

‹

‹

‹

‚

1
κ´1

r1´ FnpZn´k1,nqs
pρpcqpk1q.

Since we only need consistency in probability in Condition (8), we work under Model (4) instead

of Condition (TOC).

Theorem 2.3 Consider Model (4) with F continuous, and assume that G is of Pareto-type with

index γG ą γF . For an intermediate sequence k1 satisfying

log

ˆ

”

1´ F
´

UH

´

n
k1

¯¯ı´1
˙

?
k1A

ˆ

”

1´ F
´

UH

´

n
k1

¯¯ı´1
˙ “ op1q, (10)

we have
pβpcqpk1q

β
P
ÝÑ 1.

Note that (10) is similar to (9), and since k “ opk1q in Theorem 2.1, if (9) is satisfied, this is also

the case for (10). In other words if pγ
pcq
BCpkq in (6) is based on the estimators of pβ, ρq defined in

Sections 2.2 and 2.3, then Conditions (7) and (8) can be simply replaced by Condition (9).

3 Simulation study

We consider a simulation study where X and Y follow a Burr distribution whose distribution

function is of the form

Dpxq “ 1´
´

1` xϑ
¯´λ

, x ą 0, (11)
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where λ ą 0, ϑ ą 0 and D is either F or G. In that case, F satisfies the Hall-type model

(4) with an extreme value index γF “ 1{pλϑq and a second order parameter ρ “ ´1{λ. We

consider three Burr distributions for X corresponding to pλ, ϑq in (11) equal to p1{2, 4q, p1, 2q and

p2, 1q. This gives the same tail index γF “ 0.5 and a second order parameter ρ “ ´2,´1,´0.5,

respectively. For the censoring variable Y , also three Burr distributions are considered with

parameters p1{9.5, 1q, p1{4.5, 1q and p1{2, 1q, leading to tail indices γG “ 9.5, 4.5, 2, respectively,

and thus an asymptotic proportion of censoring, given by γF {pγF ` γGq, of 5%, 10% and 20%,

respectively.

We consider N “ 1 000 simulation replicates of size n “ 500. For each of the nine combinations,

we construct three preliminary plots of the mean of pρpcqpk1q as a function of k1, one for each

τ “ 0.5, 1, 2, and we choose first the τ that provides the most stability and then select the

largest k1 value within the stable region. This provides nine chosen tuples of pτ, k1q, which

are then considered fixed in the remainder of the study. We then compute the bias-reduced

Hill estimator adapted to the censoring framework, given by pγ
pcq
BCpkq and defined in (6), and

where the estimator of β is evaluated with pκ, `, θ1, θ2q “ p2, 1, 1, 2q. We compare our estimator

with two alternative ones: the estimator Mp1q
n pkq proposed in [7] which is not asymptotically

unbiased, and a bias-corrected estimator proposed in [2] in case a parameter, denoted β˚ (given

under model (4) as the smallest value of the ϑ-parameters between the distributions of F and

G), is assumed known. Note that bias-correction is achieved by this estimator only when β˚

is known (see Theorem 1 in [2]), but since, as far as we know, this estimator is the only one

already existing in the literature which is asymptotically unbiased in the context of censoring,

we used it here. In our plots, since β˚ is unknown, we follow the recommendation given in [2]

by replacing it by ρ˚k{p
řk
i“1 logZn´i`1,n´ logZn´k,nq, with ρ˚ “ ´1{2,´1,´2. Then, the best

performing of the three choices is shown in our figures.

The comparison between the three estimators is shown in Figures 1, 2 and 3 for the three

different Burr distributions for X, where the mean and mean squared error (MSE) of the three

estimators of γF are plotted as a function of k, for k between 0.05n and k1. This guarantees the

constraint k ď k1. The horizontal line on the left panel of each figure corresponds to the true

value of γF and the three rows to the three Burr distributions of Y , leading to the asymptotic
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proportion of censoring 5%, 10% and 20%, from the top to the bottom.

As is well-known in extreme value theory, if ρ is close to zero, the bias of the extreme value index

estimator can be large. On the contrary, when |ρ| increases, it tends to become less severe. Since

in Figure 1, ρ “ ´2 which is far away from 0, we expect almost no bias for Mp1q
n pkq, and thus

bias-correction will not improve the estimator considerably. This is exactly what we observe in

Figure 1, where roughly the three estimators work similarly in terms of minimum MSE, with

a better behavior for the estimator defined in [2] in terms of bias. In Figure 2, ρ “ ´1 which

is still not too close to 0, but nevertheless a bias already appears for Mp1q
n pkq, which increases

quickly with k. In that case bias reduction is useful and our estimator pγ
pcq
BCpkq performs very

well in terms of bias and MSE, with a long stability of the sample paths as a function of k. It

is clearly the best estimator among the three. In Figure 3, ρ “ ´0.5, which is close to 0 and

in that case our estimator pγ
pcq
BCpkq outperforms drastically the two alternatives, in terms of bias

for the Mp1q
n pkq estimator, but more importantly in terms of MSE against the two alternatives,

with again a long stability as a function of k. This is a nice feature of our estimator, since in

that case the choice of k is not so crucial.

In our simulation, we observed that the method of [2] is rather sensitive to the choice of the

ρ˚ hyperparameter, which can also be seen in Figure 2 of [2], while our method is significantly

more insensitive to the choice of pτ, k1q.

4 Real data application

We consider a dataset of 109 992 claims settlement observations corresponding to a damage

guarantee of a French issuer from 1992 to 2007, publicly available through the R-package

CASdatasets, listed as the dataset freclaimset3dam9207. Some observations are right cen-

sored since claims are not fully settled at the date of data collection. This may happen, for

instance, if legal proceedings are ongoing. The dataset is illustrated in Figure 4 (top left) where

log-claim sizes above 10ke are depicted in chronological order, closed claims being the black

circles while open claims are the red triangles. As expected, the more recently arrived claims

show more censoring than older claims. Note that this dataset has already been analyzed in the

extreme value literature (see [5] and [6]), but with emphasis on covariates and goodness of fit,

12



Figure 1: Mean (left panels) and MSE (right panels) of pγ
pcq
BCpkq (solid blue line), Mp1q

n pkq (dashed

red line) and the estimator from [2] (dotted orange line) based on N “ 1 000 simulations of size

n “ 500, as a function of k. The parameters of the Burr distribution of X are p1{2, 4q while

those for Y correspond to 5%, 10% and 20% of censoring, from the top to the bottom panels.
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Figure 2: Mean (left panels) and MSE (right panels) of pγ
pcq
BCpkq (solid blue line), Mp1q

n pkq (dashed

red line) and the estimator from [2] (dotted orange line) based on N “ 1 000 simulations of size

n “ 500, as a function of k. The parameters of the Burr distribution of X are p1, 2q while those

for Y correspond to 5%, 10% and 20% of censoring, from the top to the bottom panels.
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Figure 3: Mean (left panels) and MSE (right panels) of pγ
pcq
BCpkq (solid blue line), Mp1q

n pkq (dashed

red line) and the estimator from [2] (dotted orange line) based on N “ 1 000 simulations of size

n “ 500, as a function of k. The parameters of the Burr distribution of X are p2, 1q while those

for Y correspond to 5%, 10% and 20% of censoring, from the top to the bottom panels.
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instead of bias correction.

To begin with, we check the validity of the assumption that the underlying distribution of

the claim sizes is of Pareto-type by plotting on Figure 4 (top right) the Kaplan–Meier Pareto

Quantile plot introduced in [4] as

p´ log p1´ FnpZn´j`1,nqq , logZn´j`1,nq , j “ 1, ..., n´ 1.

The linear pattern in the largest observations confirms an underlying Pareto-type distribution.

Then in the bottom of Figure 4, we plot the empirical proportion of non-censored observations

in the k-largest observations, i.e., 1
k

řk
i“1 δrn´i`1,ns as a function of k. This proportion is stable,

around 91%, and thus the condition γG ą γF is clearly satisfied. Next, we estimate ρ similarly as

in the simulation study. Namely, we plot pρpcqpk1q as a function of k1, for τ “ 0.5, 1 and 2, and we

select the value of τ for which we obtain the longest stable region. Then, the selected k1´value

is the tipping point where the stability starts to degrade. This strategy is illustrated on Figure 5

(left) and leads to pτ, k1q “ p0.5, 19 000q. With these parameter values, we plot on the right

panel of Figure 5 our bias-corrected estimator pγ
pcq
BCpkq (solid blue line) as a function of k, as well

as the two alternative estimators Mp1q
n pkq (dashed red line) and the estimator introduced in [2]

computed with their recommended algorithm to select β˚ (dotted orange line). The estimator

Mp1q
n pkq has a clearly increasing behavior as a function of k without stability, which indicates

a probable presence of bias and a value of ρ also probably close to 0. Regarding the estimator

introduced in [2], it is stable only for the second half of the range of values of k, after a long

increase on the first half. On the contrary, our estimator exhibits long stability for almost all

k-values at a level which is close to the one where the three estimators were similar, i.e., for very

small values of k.

5 Proofs

5.1 Proof of Theorem 2.2.

In the sequel ζ is a random variable from a strict Pareto(1) distribution, independent of the

Z´sample. Let V ˝ be a random variable from a strict Paretop1{γHq distribution and δ˝ a

16



Figure 4: French damage insurance. Top left panel: open claim sizes (red triangles) and closed

claim sizes (black circles), top right panel: Kaplan–Meier Pareto quantile plot, bottom panel:

empirical proportion of non-censored observations in the k-largest observations.
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Figure 5: French damage insurance. Left panel: pρpcqpk1q as a function of k1, for τ “ 0.5, 1, 2

(solid, dashed, dotted lines, respectively). Right panel: pγ
pcq
BCpkq (solid blue line), Mp1q

n pkq (dashed

red line) and the estimator from [2] (dotted orange line) as a function of k.

random variable from a BernoullipγG{pγF ` γGqq distribution, with V ˝ and δ˝ independent. We

use the same notations as in [7], in particular

F tpxq :“
F pxtq ´ F ptq

1´ F ptq
, for x ě 1,

γ˝0pxq :“ x
1
γG ,

γ˝1pxq :“
1

γF
x

1
γH

ż 8

x
ϕ`pzqz

´ 1
γF
´1
dz,

γ˝2pxq :“
1

γFγG

ż 8

1

ż 8

1
1ltvăminpx,zquϕ`pzq z

´ 1
γF
´1
v

1
γH
´1
dv dz.

We consider the decomposition
ż 8

1
ϕ` dFk1,n “

ż 8

1
ϕ` dF

˝ `

ż 8

1
ϕ` d

`

Fk1,n ´ F
Zn´k1,n

˘

`

ż 8

1
ϕ` d

`

FZn´k1,n ´ F ˝
˘

, (12)

and we define the random variable

W ˝pϕ`q “ ϕ`pV
˝qγ˝0pV

˝qδ˝ ` γ˝1pV
˝qp1´ δ˝q ´ γ˝2pV

˝q. (13)
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According to Theorem 3.4 in [7], when γG ą γF , we have

σp`qG
p`q
k1

:“
a

k1

ż 8

1
ϕ` d

`

Fk1,n ´ F
Zn´k1,n

˘ d
ÝÑ N p0, rσp`qs2q, (14)

where

rσp`qs2 :“ V arpW ˝pϕ`qq.

Now, using the notations

µpsq :“ Erϕ`pups, ζqqs,

µp8q :“ Erϕ`pup8, ζqqs,

ups, ζq :“
UF psζq

UF psq
,

up8, ζq :“ ζγF ,

we have the representation

ż 8

1
ϕ` d

`

FZn´k1,n ´ F ˝
˘

“ µ
`

r1´ F pZn´k1,n´qs
´1
˘

´ µp8q.

For a fixed s, by a Taylor expansion, we have

µpsq ´ µp8q “ E
“

ϕ1`pζ
γF q tups, ζq ´ up8, ζqu

‰

`
1

2
E
”

ϕ2` pu
˚psqq tups, ζq ´ up8, ζqu2

ı

, (15)

where u˚psq is an intermediate random value between ups, ζq and up8, ζq.

To handle ups, ζq ´ up8, ζq, we need to use Condition (TOC), which is equivalent to

lim
tÑ8

1

Bptq

"

`U ptxq ´ `U ptq

Aptq `U ptq
´ hρpxq

*

“ hρ`ξpxq.

Now, according to Proposition 1.3 in [10], there exist functions a0 and B0 such that

lim
tÑ8

1

B0ptq

"

`U ptxq ´ `U ptq

a0ptq
´ hρpxq

*

“ hρ`ξpxq (16)

and for any ε, δ ą 0, there exists a t0 “ t0pε, δq ą 0 such that for all t, tx ě t0
ˇ

ˇ

ˇ

ˇ

1

B0ptq

"

`U ptxq ´ `U ptq

a0ptq
´ hρpxq

*

´ hρ`ξpxq

ˇ

ˇ

ˇ

ˇ

ď ε xρ`ξ maxtxδ, x´δu. (17)
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Now (16) is also equivalent to

lim
tÑ8

1

B0ptq

$

&

%

UF ptxq
UF ptq

´ xγF

a0ptq
`U ptq

´ xγF hρpxq

,

.

-

“ xγF hρ`ξpxq,

which, in view of Condition (TOC) implies that A „ a0
`U
“: A0 and B „ B0.

Now, we consider the decomposition

ups, ζq ´ up8, ζq “ A0psqζ
γF hρpζq `A0psqB0psq ζ

γF hρ`ξpζq

`A0psqB0psq

»

–

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

fi

fl .

Combined with (15), this implies that

µpsq ´ µp8q

“ A0psqE
“

ϕ1`pζ
γF q ζγF hρpζq

‰

`A0psqB0psqE
“

ϕ1`pζ
γF q ζγF hρ`ξpζq

‰

`
1

2
A2

0psqE
“

ϕ2` pu
˚psqq ζ2γF h2

ρpζq
‰

`A0psqB0psqE
“

ϕ1`pζ
γF q

ˆ

¨

˝

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

˛

‚

fi

fl

`A2
0psqB0psqE

“

ϕ2` pu
˚psqq ζ2γF hρpζqhρ`ξpζq

‰

`A2
0psqB0psqE

“

ϕ2` pu
˚psqq ζγF hρpζq

ˆ

¨

˝

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

˛

‚

fi

fl

`
1

2
A2

0psqB
2
0psqE

“

ϕ2` pu
˚psqq ζ2γF h2

ρ`ξpζq
‰

`
1

2
A2

0psqB
2
0psqE

“

ϕ2` pu
˚psqq

ˆ

¨

˝

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

˛

‚

2fi

fl

`A2
0psqB

2
0psqE

“

ϕ2` pu
˚psqq ζγF hρ`ξpζq

ˆ

¨

˝

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

˛

‚

fi

fl
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“: A0psqE
“

ϕ1`pζ
γF q ζγF hρpζq

‰

`A0psqB0psqE
“

ϕ1`pζ
γF q ζγF hρ`ξpζq

‰

`
1

2
A2

0psqE
“

ϕ2` pu
˚psqq ζ2γF h2

ρpζq
‰

`

6
ÿ

i“1

Tipsq.

We can show that, as sÑ8,

E
“

ϕ2` pu
˚psqq ζ2γF h2

ρpζq
‰

ÝÑE
“

ϕ2` pζ
γF q ζ2γF h2

ρpζq
‰

, (18)

using the continuity of ϕ2` combined with Potter’s inequalities (see, e.g., [20], Proposition B.1.9.5)

and the dominated convergence theorem. Now, concerning T1psq, we can use (17), according

which, for all ε, δ ą 0, there exists s0 “ s0pε, δq such that @s ě s0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

»

–ϕ1`pζ
γF q

¨

˝

1

B0psq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

´ ζγF hρ`ξpζq

˛

‚

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď E
„

ˇ

ˇϕ1`pζ
γF q ζγF

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

B0psq

"

`U psζq ´ `U psq

a0psq
´ hρpζq

*

´ hρ`ξpζq

ˇ

ˇ

ˇ

ˇ



ď εE
”

ˇ

ˇϕ1`pζ
γF q

ˇ

ˇ ζγF`ρ`ξ`δ
ı

.

Since the expectation in the last line is finite we have that T1psq “ opA0psqB0psqq. Similar

arguments yield that all the expectations in Tipsq, i “ 2, . . . , 6, are bounded, from which we

deduce that

µpsq ´ µp8q “ A0psqE
“

ϕ1`pζ
γF q ζγF hρpζq

‰

`A0psqB0psqE
“

ϕ1`pζ
γF q ζγF hρ`ξpζq

‰

`
1

2
A2

0psqE
“

ϕ2` pζ
γF q ζ2γF h2

ρpζq
‰

` o pA0psqB0psqq ` o
`

A2
0psq

˘

“: A0psqE
p`q
1 `A0psqB0psqE

p`q
2 `

1

2
A2

0psqE
p`q
3

`o pA0psqB0psqq ` o
`

A2
0psq

˘

.

Thus, from our decomposition (12)

Mp`q
n pk1q “ M p`q ` σp`q

G
p`q
k1?
k1
`A0

`

r1´ F pZn´k1,n´qs
´1
˘

E
p`q
1

`A0

`

r1´ F pZn´k1,nqs
´1
˘

B0

`

r1´ F pZn´k1,nqs
´1
˘

E
p`q
2

`
1

2
A2

0

`

r1´ F pZn´k1,nqs
´1
˘

E
p`q
3

`oP
`

A0

`

r1´ F pZn´k1,nqs
´1
˘

B0

`

r1´ F pZn´k1,nqs
´1
˘˘

`oP
`

A2
0

`

r1´ F pZn´k1,nqs
´1
˘˘

,
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where we have also used that for Pareto-type distributions p1 ´ F px´qq{p1 ´ F pxqq Ñ 1 as

xÑ8, along with the regular variation properties of |A0| and |B0|. From the above, we deduce

by a Taylor expansion that for τ P R` and θ P N
˜

Mp`θq
n pk1q

M p`θq

¸τ{θ

“ 1`
τ

θ

σp`θq

M p`θq

G
p`θq
k1?
k1
`
τ

θ

E
p`θq
1

M p`θq
A0

`

r1´ F pZn´k1,n´qs
´1
˘

`
τ

θ

E
p`θq
2

M p`θq
A0

`

r1´ F pZn´k1,nqs
´1
˘

B0

`

r1´ F pZn´k1,nqs
´1
˘

`
1

2

τ

θ

E
p`θq
3

M p`θq
A2

0

`

r1´ F pZn´k1,nqs
´1
˘

`
1

2

τ

θ

´τ

θ
´ 1

¯

«

E
p`θq
1

M p`θq

ff2

A2
0

`

r1´ F pZn´k1,nqs
´1
˘

`oP
`

A0

`

r1´ F pZn´k1,nqs
´1
˘

B0

`

r1´ F pZn´k1,nqs
´1
˘˘

`oP
`

A2
0

`

r1´ F pZn´k1,nqs
´1
˘˘

` oP

ˆ

1
?
k1

˙

. (19)

Define now

dp`,θ1,θ2q “
E
p`θ1q
1

θ1M p`θ1q
´

E
p`θ2q
1

θ2M p`θ2q
,

W p`,θ1,θ2q
n “

σp`θ1q

θ1M p`θ1q
G
p`θ1q
k1

´
σp`θ2q

θ2M p`θ2q
G
p`θ2q
k1

,

vp`,θ1,θ2q “
E
p`θ1q
2

θ1M p`θ1q
´

E
p`θ2q
2

θ2M p`θ2q
,

up`,θ1,θ2,τq “
1

2

#

E
p`θ1q
3

θ1M p`θ1q
´

E
p`θ2q
3

θ2M p`θ2q

`pτ ´ θ1q

«

E
p`θ1q
1

θ1M p`θ1q

ff2

´ pτ ´ θ2q

«

E
p`θ2q
1

θ2M p`θ2q

ff2
,

.

-

,

and introduce

D
p`,θ1,θ2,τq
k1,n

:“

˜

Mp`θ1q
n pk1q

M p`θ1q

¸τ{θ1

´

˜

Mp`θ2q
n pk1q

M p`θ2q

¸τ{θ2

.
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Clearly from (19), we have

D
p`,θ1,θ2,τq
k1,n

τ A0 pr1´ F pZn´k1,n´qs
´1q

“ dp`,θ1,θ2q `
1

?
k1A0 pr1´ F pZn´k1,nqs

´1q
W p`,θ1,θ2q
n

`A0

`

r1´ F pZn´k1,nqs
´1
˘

up`,θ1,θ2,τq

`B0

`

r1´ F pZn´k1,nqs
´1
˘

vp`,θ1,θ2q

`oP
`

A0

`

r1´ F pZn´k1,nqs
´1
˘˘

`oP
`

B0

`

r1´ F pZn´k1,nqs
´1
˘˘

`oP

ˆ

1
?
k1A0 pr1´ F pZn´k1,nqs

´1q

˙

.

Since M p`q “ γ`F Γp`` 1q, we have

Tpτqn pk1q “
D
p1,1,2,τq
k1,n

D
p1,2,3,τq
k1,n

“
dp1,1,2q

dp1,2,3q

#

1`
1

?
k1A0 pr1´ F pZn´k1,nqs

´1q

«

W
p1,1,2q
n

dp1,1,2q
´
W
p1,2,3q
n

dp1,2,3q

ff

`A0

`

r1´ F pZn´k1,nqs
´1
˘

«

up1,1,2,τq

dp1,1,2q
´
up1,2,3,τq

dp1,2,3q

ff

`B0

`

r1´ F pZn´k1,nqs
´1
˘

«

vp1,1,2q

dp1,1,2q
´
vp1,2,3q

dp1,2,3q

ff

`oP
`

A0

`

r1´ F pZn´k1,nqs
´1
˘˘

` oP
`

B0

`

r1´ F pZn´k1,nqs
´1
˘˘

`oP

ˆ

1
?
k1A0 pr1´ F pZn´k1,nqs

´1q

˙*

.
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We can now deduce that, under our assumptions,

a

k1A0

`

r1´ F pZn´k1,nqs
´1
˘

#

Tpτqn pk1q ´
dp1,1,2q

dp1,2,3q

+

“
dp1,1,2q

dp1,2,3q

«

W
p1,1,2q
n

dp1,1,2q
´
W
p1,2,3q
n

dp1,2,3q

ff

`
a

k1A
2
0

`

r1´ F pZn´k1,nqs
´1
˘ dp1,1,2q

dp1,2,3q

«

up1,1,2,τq

dp1,1,2q
´
up1,2,3,τq

dp1,2,3q

ff

`
a

k1A0

`

r1´ F pZn´k1,nqs
´1
˘

B0

`

r1´ F pZn´k1,nqs
´1
˘

ˆ
dp1,1,2q

dp1,2,3q

«

vp1,1,2q

dp1,1,2q
´
vp1,2,3q

dp1,2,3q

ff

`oPp1q

“
dp1,1,2q

dp1,2,3q

«

W
p1,1,2q
n

dp1,1,2q
´
W
p1,2,3q
n

dp1,2,3q

ff

`
a

k1A
2
`

r1´ F pZn´k1,nqs
´1
˘ dp1,1,2q

dp1,2,3q

«

up1,1,2,τq

dp1,1,2q
´
up1,2,3,τq

dp1,2,3q

ff

`
a

k1A
`

r1´ F pZn´k1,nqs
´1
˘

B
`

r1´ F pZn´k1,nqs
´1
˘

ˆ
dp1,1,2q

dp1,2,3q

«

vp1,1,2q

dp1,1,2q
´
vp1,2,3q

dp1,2,3q

ff

`oPp1q.

Now, since |A|, |B|, F and UH are regularly varying, we have, with ζn´k1,n denoting order

statistic pn´ k1q in an i.i.d. sample of size n from a strict Pareto(1), that

A0

`

r1´ F pZn´k1,nqs
´1
˘

A pr1´ F pUHpn{k1qqs
´1q

d
“

A0

`

r1´ F pZn´k1,nqs
´1
˘

A pr1´ F pZn´k1,nqs
´1q

A
`

r1´ F pUHpζn´k1,nqqs
´1
˘

A pr1´ F pUHpn{k1qqs
´1q

P
ÝÑ 1,

and, similarly,

B
`

r1´ F pZn´k1,nqs
´1
˘

B pr1´ F pUHpn{k1qqs
´1q

d
“
B
`

r1´ F pUHpζn´k1,nqqs
´1
˘

B pr1´ F pUHpn{k1qqs
´1q

P
ÝÑ 1.

Direct computations yield

E
p1q
1 “

1

1´ ρ
, E

p2q
1 “ 2 γF

2´ ρ

p1´ ρq2
, E

p3q
1 “ 6 γ2

F

3´ 3ρ` ρ2

p1´ ρq3
,
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which, combined with our Lemma 5.1, leads to

a

k1A
`

r1´ F pUHpn{k1qqs
´1
˘

"

Tpτqn pk1q ´
3p1´ ρq

3´ ρ

*

d
ÝÑ N

`

mT, σ
2
T
˘

,

where

mT :“

"

12p1´ ρq3

p1´ 2ρq3p3´ ρ2q
´

3ρ2p7´ 20ρ` 16ρ2 ´ 4ρ3q

p1´ 2ρq2p1´ ρq2p3´ ρq2
1

γF
´

ρp3´ 2ρq

2p1´ ρq2p3´ ρq

τ

γF

*

λ1

´
6ξp1´ ρq3pρ` ξq

ρp1´ ρ´ ξq3p3´ ρq2
λ2,

σ2
T :“

36γG γ
2
F p1´ ρq

6

ρ2p3´ ρq4pγG ´ γF q5
 

p2ρ2 ´ 2ρ` 1qγ4
G ´ 2ρp2´ ρqγ3

GγF

`2pρ2 ´ 2ρ` 2qγ2
Gγ

2
F ´ 2ργGγ

3
F ` γ

4
F

(

.

Finally, using the delta-method, Theorem 2.2 follows.

5.2 Proof of Theorem 2.3

We follow the lines of proof of Theorem 2.2, but this time only under Model (4), i.e., a second-

order framework. In that case, for a fixed s, by a Taylor expansion, we have

µpsq ´ µp8q “ E
“

ϕ1`pu
˚psqq tups, ζq ´ up8, ζqu

‰

“ A0psqE
“

ϕ1`pu
˚psqq ζγF hρpζq

‰

`A0psqE

»

–ϕ1`pu
˚psqq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

fi

fl

where u˚psq is an intermediate random value between ups, ζq and up8, ζq.

Similarly as for (18), we can show that, as sÑ8,

E
“

ϕ1`pu
˚psqq ζγF hρpζq

‰

ÝÑE
“

ϕ1`pζ
γF q ζγF hρpζq

‰

.

Now, according to Theorem 2.3.9 in [20], for all ε, δ ą 0, there exists s0 “ s0pε, δq such that

@s ě s0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

»

–ϕ1`pu
˚psqq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď εE
”

ˇ

ˇϕ1`pu
˚psqq

ˇ

ˇ ζγF`ρ`δ
ı

,
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and hence, since the latter expectation is finite, we have, for sÑ8

E

»

–ϕ1`pu
˚psqq

$

&

%

UF psζq
UF psq

´ ζγF

A0psq
´ ζγF hρpζq

,

.

-

fi

fl “ op1q.

Thus, under Model (4), we have

µpsq ´ µp8q “ E
p`q
1 Apsq ` opApsqq,

from which we deduce that

Mp`q
n pk1q “ M p`q ` σp`q

G
p`q
k1?
k1
`A

`

r1´ F pZn´k1,nqs
´1
˘

E
p`q
1

`oP
`

A
`

r1´ F pZn´k1,nqs
´1
˘˘

.

Now, assuming
?
k1A

`

r1´ F pUHpn{k1qqs
´1
˘

Ñ8 which is implied by Condition (10), we have

ˆ

Mp`θ1qn pk1q

Mp`θ1q

˙
τ
θ1

´

ˆ

Mp`θ2qn pk1q

Mp`θ2q

˙
τ
θ2

τ r1´ F pZn´k1,nqs
´ρ

“

«

γF
θ1

E
p`θ1q
1

M p`θ1q
´
γF
θ2

E
p`θ2q
1

M p`θ2q

ff

β ` oPp1q,

and
ˆ

Mp`θ1qn pk1q

Mp`θ1q

˙
τ
θ1
κ

´

ˆ

Mp`θ2qn pk1q

Mp`θ2q

˙
τ
θ2
κ

τ κ r1´ F pZn´k1,nqs
´ρ

“

«

γF
θ1

E
p`θ1q
1

M p`θ1q
´
γF
θ2

E
p`θ2q
1

M p`θ2q

ff

β ` oPp1q.

This implies that
»

—

–

ˆ

Mp`θ1qn pk1q

Mp`θ1q

˙

τ
θ1
´

ˆ

Mp`θ2qn pk1q

Mp`θ2q

˙

τ
θ2

τ r1´F pZn´k1,n
qs´ρ

fi

ffi

fl

κ

ˆ

Mp`θ1qn pk1q

Mp`θ1q

˙

τ
θ1

κ

´

ˆ

Mp`θ2qn pk1q

Mp`θ2q

˙

τ
θ2

κ

τ κ r1´F pZn´k1,n
qs´ρ

“

«

γF
θ1

E
p`θ1q
1

M p`θ1q
´
γF
θ2

E
p`θ2q
1

M p`θ2q

ffκ´1

βκ´1 ` oPp1q,

which is equivalent to
»

—

–

ˆ

Mp`θ1qn pk1q
Γp` θ1`1q

˙

τ
θ1
´

ˆ

Mp`θ2qn pk1q
Γp` θ2`1q

˙

τ
θ2

τ r1´F pZn´k1,n
qs´ρ

fi

ffi

fl

κ

ˆ

Mp`θ1qn pk1q
Γp` θ1`1q

˙

τ
θ1

κ

´

ˆ

Mp`θ2qn pk1q
Γp` θ2`1q

˙

τ
θ2

κ

τ κ r1´F pZn´k1,n
qs´ρ

“

«

1

θ1 ρ

#

ˆ

1

1´ ρ

˙` θ1

´ 1

+

´
1

θ2 ρ

#

ˆ

1

1´ ρ

˙` θ2

´ 1

+ffκ´1

βκ´1

`oPp1q. (20)
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Using (20) combined with Theorem 2.2 and Condition (10), it is easy to see that

pβpcqpk1q

β
“ r1´ FnpZn´k1,nqs

pρpcqpk1qr1´ F pZn´k1,nqs
´ρ p1` oPp1qq

“

„

1´ FnpZn´k1,nq

1´ F pZn´k1,nq



pρpcqpk1q

r1´ F pZn´k1,nqs
pρpcqpk1q´ρ p1` oPp1qq

“ 1` oPp1q,

since, according to [11], we have
ˇ

ˇ

ˇ

ˇ

1´ FnpZn´k1,nq

1´ F pZn´k1,nq
´ 1

ˇ

ˇ

ˇ

ˇ

ď sup
xďZn´k1,n

ˇ

ˇ

ˇ

ˇ

1´ Fnpxq
1´ F pxq

´ 1

ˇ

ˇ

ˇ

ˇ

“ OP

ˆ

1
?
k1

˙

, (21)

when F is assumed continuous.

5.3 Proof of Theorem 2.1.

Using Lemma 5.1 combined with (14) and the assumptions of our theorem, we have the decom-

position:

?
k
´

pγ
pcq
BCpkq ´ γF

¯

“
?
k
´

Mp1q
n pkq ´ γF

¯

´
Mp1q
n pkq pβpcqpk1q

1´ pρpcqpk1q

?
k t1´ FnpZn´k,nqu´pρpcqpk1q

“ σp1qG
p1q
k `

1

1´ ρ

?
k A

ˆ

”

1´ F
´

UH

´n

k

¯¯ı´1
˙

` oPp1q

´
Mp1q
n pkq pβpcqpk1q

1´ pρpcqpk1q

?
k t1´ FnpZn´k,nqu´pρpcqpk1q

“ σp1qG
p1q
k ` oPp1q

`
?
k A

ˆ

”

1´ F
´

UH

´n

k

¯¯ı´1
˙"„

1

1´ ρ
´

1

1´ pρpcqpk1q



´
1

1´ pρpcqpk1q

«

Mp1q
n pkq

γF

pβpcqpk1q

β
´ 1

ff

´
1

1´ pρpcqpk1q

Mp1q
n pkq

γF

pβpcqpk1q

β

ˆ

«

„

1´ F pZn´k,nq

1´ F pUHpn{kqq

´pρpcqpk1q
ˆ

1´ FnpZn´k,nq
1´ F pZn´k,nq

˙´pρpcqpk1q

ˆ

”

1´ F
´

UH

´n

k

¯¯ıρ´pρpcqpk1q

´ 1

*

“ σp1qG
p1q
k ` oPp1q,

by (21). This achieves the proof of Theorem 2.1.
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5.4 An auxiliary result and its proof

Lemma 5.1 Assume that F and G are of Pareto-type with index γF and γG, respectively, such

that γG ą γF . Under the second-order condition (SOC) and if
?
kA

`

r1´ F pUH pn{kqqs
´1
˘

Ñ

λ P R, we have

?
k
´

Mp1q
n pkq ´ γF ,Mp2q

n pkq ´ 2 γ2
F ,Mp3q

n pkq ´ 6 γ3
F

¯1 d
ÝÑ N pλ b,Σq ,

where

b :“

¨

˚

˚

˚

˝

b1

b2

b3

˛

‹

‹

‹

‚

and Σ :“

¨

˚

˚

˚

˝

σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3

˛

‹

‹

‹

‚

,

with

b1 :“
1

1´ ρ
,

b2 :“
2 γF p2´ ρq

p1´ ρq2
,

b3 :“
6 γ2

F p3´ 3ρ` ρ2q

p1´ ρq3
,

σ1,1 :“
γG γ

2
F

γG ´ γF
,

σ1,2 :“
2 γG γ

3
F p2 γG ´ γF q

pγG ´ γF q2
,

σ1,3 :“
6 γG γ

4
F p3 γ

2
G ´ 3 γG γF ` γ

2
F q

pγG ´ γF q3
,

σ2,2 :“
4 γG γ

4
F p5 γ

2
G ´ 4 γG γF ` γ

2
F q

pγG ´ γF q3
,

σ2,3 :“
12 γG γ

5
F p9 γ

3
G ´ 10 γ2

G γF ` 5 γG γ
2
F ´ γ

3
F q

pγG ´ γF q4
,

σ3,3 :“
36 γG γ

6
F p19 γ4

G ´ 24 γ3
G γF ` 16 γ2

G γ
2
F ´ 6 γG γ

3
F ` γ

4
F q

pγG ´ γF q5
.

Proof of Lemma 5.1. This lemma is an extension of Lemma E.1 in [7], where we use the fact
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that the random variable W ˝pϕ`q, defined in (13), is given for ` “ 1, 2, 3 by

W ˝plogq “ rV ˝s
1
γG pγG ´ γF δ

˝q ` γF ´ γG,

W ˝plog2q “ 2 rV ˝s
1
γG plog V ˝q pγG ´ γF δ

˝q ´ 2 rV ˝s
1
γG

`

γ2
G ´ γF γG ` γ

2
F δ

˝
˘

`2
`

γ2
G ´ γF γG ` γ

2
F

˘

,

W ˝plog3q “ 3 rV ˝s
1
γG plog V ˝q2 pγG ´ γF δ

˝q

´6 rV ˝s
1
γG plog V ˝q

`

γ2
G ´ γF γG ` γ

2
F δ

˝
˘

`6 rV ˝s
1
γG

`

γ3
G ´ γF γ

2
G ` γ

2
F γG ´ γ

3
F δ

˝
˘

´6
`

γ3
G ´ γF γ

2
G ` γ

2
F γG ´ γ

3
F

˘

.

Tedious computations then achieve the proof of Lemma 5.1.
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