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Abstract

In historical studies, the older the sources, the more common it is to have access to data
that are only partial, and/or unreliable or imprecise. This can make it difficult, or even
impossible, to perform certain tasks of interest, such as the segmentation of some urban
space based on the location of its constituting elements. Indeed, traditional approaches to
tackle this specific task require knowing the position of all these elements before clustering
them. Yet, alternative information is sometimes available, which can be leveraged to address
this challenge. For instance, in the Middle Ages, land registries typically do not provide
exact addresses, but rather locate spatial objects relative to each other, e.g. x being to the
North of y. Spatial graphs are particularly adapted to model such spatial relationships, called
confronts, which is why we propose their use over standard tabular databases. However,
historical data are rich and allow extracting confront networks in many ways, making the
process non-trivial. In this article, we propose several extraction methods and compare them
to identify the most appropriate. We postulate that the best candidate must constitute an
optimal trade-off between covering as much of the original data as possible, and providing
the best graph-based approximation of spatial distance. Leveraging a dataset that describes
Avignon during its papal period, we show empirically that the best results require ignoring
some of the information present in the original historical sources, and that including additional
information from secondary sources significantly improves the confront network. We illustrate
the relevance of our method by partitioning the best graph that we extracted, and discussing
its community structure in terms of urban space organization, from a historical perspective.
Our data and source code are both publicly available online.

Keywords— Graph Extraction, Medieval History, Land Registries, Spatial Networks, Com-
munity Detection

Cite as: Margot Ferrand & Vincent Labatut, Approximating Spatial Distance Through Con-
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1 Introduction

To study urban spatiality in medieval history, it is necessary to cross-reference different types of
sources related to the morphology and use of space: written, planimetric, iconographic, and ar-
chaeological sources [1]. The relevant written sources are particularly numerous and can be of
various kinds: legal, tax or religious records, census data, chronicles and annals, correspondence,
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testaments... Among them, land documentation, which encompasses inventories of properties, ad-
ministrative surveys, terriers, censiers, and recognition books, is particularly useful when focusing
on the Middle Age, due to the state of medieval archives. Indeed, from the 13th century onwards,
this documentation increases considerably and constitutes a major part of the written records [3].
Regardless of the language in which they are written, these documents have common character-
istics. Each one of them contains a series of declarations in which tenants declare the properties
they hold under the direct domain of a lord and for which they must pay an annual fee.

However, historians encounter serious difficulties in dealing with land documentation, which
is too often confined to strictly accounting treatment, thereby overlooking what these sources
can reveal in terms of the uses and representation of urban space. The thorny issue with this
documentation is the spatialization of information, to which its incompleteness must often be
added. Indeed, historians who have studied this documentation have often tried to reconstruct
medieval parcels, i.e. to locate them as precisely as possible on a map [18]. But this task is almost
impossible: before the modern era, it is very rare for these sources to be accompanied by maps, and
the provided locations do not yet refer to precise addresses. They are only relative, and difficult
to interpret. In this interdisciplinary work combining History, Geography, Computer Science, and
Network Science, we show that this step is not mandatory to analyze the distribution of properties
recorded in the land documentation and to fully exploit these sources. Historical analysis at the
city scale does not need the land holdings to be precisely located but rather requires that relative
locations be possible, in order to interpret the distribution of masses, the filled and empty spaces,
proximities and distances, attractions, and separations.

In this article, we propose a graph-based approach to model the urban space based on historical
sources. Its main advantage is to focus on the spatial relationships between the represented objects,
e.g. x being to the North of y. By using such a relative way of locating these objects, our method
does not require estimating their absolute location on a map, which is a major issue of the standard
approach. As a consequence, our method can handle incomplete data that would provide the
absolute location of only a part of the described objects. The resulting graph is designed to encode
the notion of spatial proximity, and can be used as an approximate representation of the urban
space to conduct tasks such as spatial segmentation.

Our contributions are two-fold. On the methodological side, we propose several methods to
extract so-called confront networks from historical data taking the form of land registries. We
also propose two objective criteria to compare these extraction methods and identify the most
appropriate one. On the applications side, we present a dataset describing the city of Avignon
during the papacy, and use it as a benchmark for our methods. We extract and compare 12
different versions of the confront network, and select the most suitable to a spatial analysis. We
then show empirically its relevance by segmenting the urban space through community detection,
and discussing the historical value of the resulting subdivisions of the city.

The rest of this document is organized as follows. In Section 2, we provide further historical
background, especially regarding medieval Avignon. Section 3 describes how we built a geographic
database by combining the information coming from five primary historical sources. We then turn
to graphs, by highlighting the interest of such modeling approach in Section 4, and describing
in detail the proposed graph extraction methods in Section 5. We compare experimentally these
methods by applying them to our Avignon database in Section 6, a process that results in the
identification of the optimal confront network. We detect the communities of this graph, which
we discuss from a historical perspective in Section 7. Finally, Section 8 summarizes our main
contributions and findings, and identifies our most promissing research perspectives.

2 Historical Background

After the division of Provence in 1125 [25], the city of Avignon was subject to a complex seigniorial
fragmentation. Different powers manifested themselves in the city and many of them gradually
acquired rights over the land and urban property. Before the middle of the 14th century, these rights
were not clearly defined by all the land lords. Only the greatest of them, and more particularly
the Counts of Provence, had surveys carried out to identify the rights and property on their land.
It was with the arrival of the papacy in Avignon that all the land lords, whatever their importance
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in the city, expressed the need to precisely delimit the rights they possessed over the land. The
phenomenon became even more pronounced when Pope Clement VI bought the city from the
Countess of Provence, Queen Jeanne, in 1348. The local lords had to protect and guarantee their
rights, as they were an important source of economic income. It was therefore essential to be able
to clearly identify the plots of land that felt under their lordship.

Most of these plots were granted to third parties, called tenures. The landowner could indeed
transfer the beneficial domain of the property while retaining the eminent domain. The person
benefiting from the beneficial domain, whom we will call the tenant, could then sell, transfer, or
lease the property. The landowner received an annual fee, called cens, from the tenant, as well as
transfer fees in the event of the sale of the beneficial domain.

From the second half of the 14th century on, inventories of tenures multiplied, and census prac-
tices were perfected. An increasingly complex listing of the rights of the landed lords, cataloging all
the leased tenures under their lordship, was put in place. It took the form of various land registers,
the most successful of which, particularly from a legal standpoint, is known today as terrier [16].

In the rest of this section, we describe the main characteristics of these land registers (Sec-
tion 2.1), and the challenges related to their exploitation (Section 2.2).

2.1 Notion of Terrier

Starting from the 14th century, most landed lords commissioned the creation of land books. These
were real tools intended to manage, authenticate, and protect the rights of landed lords on their
properties. They list, in a serial and often stereotyped manner, the properties of those who had
to pay a fee to a lord, giving a certain amount of information on the tenant, the land and the
amount of the fees to be paid. Each land book consists of a series of declarations, presented as in
Figure 1 (left). Each declaration is constructed in the following way. The identity of the tenant
is given first (shown in red in Figure 1), and can be defined in different ways. In addition to the
person’s first and last names, it may contain, for example, their occupation, social status and may
be complemented by their family ties, familiarity (i.e. entourage) or professional ties.

Next, the property held by the taxpayer is mentioned (in orange in the figure). In most cases,
only the type of property is indicated (house, yard, garden, vineyard, undeveloped land). A more
precise description of the plot is sometimes given (state of conservation of the property, building
materials, size). The location of the property is then regularly indicated (in blue in the figure).
From the 14th century onwards, this location is increasingly precise, while always remaining relative.
The properties are first of all located in relation to the parish territory; then the street and the
confronts, i.e. the neighborhood, are mentioned. The due tax is generally indicated at the end of
the entry (in green in the figure). A number of different currencies can be used, and the census
can even be specified in kind. This makes it difficult to estimate its exact value and to compare
taxes from one entry to the other.

Whatever the internal organization of the declarations in the documents, it most often testifies
to the increased desire of the institutions to construct genuine management tools intended to
be regularly used as legal proof of their possession. These documents are also intended to be
archived. In addition to the legal function, most of these documents have a memorial function,
which is illustrated above all by their appearance. Some of them are indeed large and beautiful
registers, with an elaborate appearance, as shown in Figure 1 (right).

In a city that had become the seat of Christendom, where the Pope had been the true political
lord of the city since 1348, and in which numerous land lords held rights over the land, it was now
essential that everyone be able to legally assert their possessions. These registers are therefore as
much legal evidence as they are demonstrations of the power of the landed lords in relation to the
other powers present in the city.

It is impossible to provide an exhaustive list of landed lords who hold rights over urban land
in Avignon. While some lords are well known and their rights can be partly identified through
produced and preserved documentation, others remain completely unknown to us. Among the
most well-known and important landed lords are ecclesiastical institutions, which have multiplied
in the urban space of Avignon even before the arrival of the papacy in the city. Moreover, they have
shown an early willingness to archive their documentary production. Thus, their documentation
–especially that which is the focus of our study, namely the documentation produced by the
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Lord Bernard de la Vigne, a law graduate, gives and serves for the annual cens 
of a house located at this place, at the entrance of the aforementioned street of 
Vieille Pelleterie, facing south with the entrance of other houses or a dead end, 
and facing west with the aforementioned public and straight street of Vieille 
Pelleterie, and facing east with a house belonging to Master Pierre Blanc, also 
known as Bologne, a procurator, and facing north with the immediately follow-
ing house, the sum of three sous in good small tournois coins.

Figure 1: Top: Example of declaration retrieved from a terrier, Vaucluse Departmental Archives,
1G10 f.9v. It includes the original text (first frame) and its English translation (second frame).
Each color represents a different piece of information: tenant (red), property (orange), location
(blue, 5 different confronts here), and fees (green). Italics denote entities of interest. Diagram
available at 10.5281/zenodo.14175830 under CC-BY license. Bottom: Terrier of Bishop Anglic
Grimoard, Vaucluse Departmental Archives, 1G10 f.1.

bishopric, the cathedral chapter, the hospital of Saint-Jean de Jérusalem, the chapter of the Saint
Pierre collegiate church, the Sainte-Catherine monastery, and the House of Repentants– is still the
best preserved and most accessible in the archive holdings today. Alongside these institutions are
illustrious Avignonnais who have acquired significant land lordships through political and economic
opportunities. This is the case, for example, of Jean Cabassole, knight and advisor to the Count
of Provence Robert d’Anjou. The Count granted him the lordship of a strip of land parallel to the
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city walls in 1319. Like ecclesiastical land documentation, that produced by the urban community
is of considerable richness, and testifies to the manifest desire to preserve the traces of its history
and properties. Finally, when the Pope bought the city from the Countess of Provence Jeanne
d’Anjou, he became the only political lord of Avignon. On another scale, that of land ownership,
he was nonetheless one landed lord among others. The Pope did not have a land registry produced,
but we know all of his properties and rights thanks to the accounts of the city’s clavigers (a type of
municipal officer). These accounts list, in the same way as land registries, all the leased properties
belonging to the papal lordship and for which individuals paid a fee.

2.2 Limitations and Difficulties

Terriers are true multiple lists, whose content offers numerous possibilities of analysis. Historians
and geographers, particularly those from the Annales School, quickly became interested in studying
them [5]. However, they faced several obstacles in doing so: 1) quantity and incompleteness of the
data; 2) lack of data standardization; and 3) geographic uncertainty.

Data Incompleteness The medieval city is a fragmented territory governed by various inter-
twined and often opposing powers. The documentation reflects this reality: it is often incomplete
and fragmented, rarely covering the entirety of a territory. Studying a city based on these sources
therefore requires cross-referencing and comparing the entirety of this particularly extensive doc-
umentation. However, the volume of data to process makes this work particularly tedious, and
even challenging to approach using traditional historical methods. This extensive amount of data,
previously studied in isolation, can now be approached and examined with a fresh perspective
thanks to computer power and computational sciences. Moreover, researchers today have access to
a substantial number of edited and sometimes digitized written sources, which they can approach
in a serial manner.

In Avignon, the first cadastre covering the entire urban area was only created in the late 16th

century. Before this date, it was necessary to gather land books initiated by different lords, each
covering different parts of the territory, to obtain the most comprehensive view possible of the
urban space. Some areas of the city are better documented than others. Certain zones are not
covered by the documentation, either because it has been lost or because it never existed. Some
plots of land are indeed free of rights and are fully owned by their owners. In such cases, the
holders do not have to pay any fees to a land lord, and these properties are therefore not listed in
the land books mentioned above. In this sense, the systematic study of land documentation can
also highlight free zones within the city. However, studying these sources systematically requires
significant data preparation.

Data Heterogeneity Although terriers share many similarities, the data they contain are not
standardized. First, the documents are not all written in the same language. In the case of Avignon,
for instance, some are written in Latin while others are in Provençal (the local language at the
time). Therefore, the terminology used to refer to the same entity can be very different from one
document to another. In the Sainte-Catherine registry, written in Provençal, we encounter Juan
Teyseyre; but the same individual is named Johannes Textoris in the Anglic Grimoard registry
written in Latin. Moreover, in the medieval period, spelling was not standardized. Significant
variations exist even between documents written in the same language. While it is written as Juan
Teyseyre in the Sainte-Catherine registry, in the city registry, also written in Provençal, we find
the spelling Johan Teysseyre. Thus, considerable work is needed to extract the information from
the sources and formalize the data for serial analysis.

Geographic Uncertainty One crucial point that complicates the analysis of this documentation
lies in the geographic dimension of the information. Historians have long sought to reconstruct the
land division, considering it an essential step in analyzing terriers. This is a very long and tedious
task that can only be carried out for limited and particularly well-documented areas [8, 10]. If we
want to consider the entire urban space, as we have seen, it is necessary to take into account a
vast amount of data and cross-reference them: this work cannot be done manually. Moreover, due
to the available information, reliably accomplishing this reconstruction is practically impossible.
Indeed, property addressing, street name signage on panels, and street numbering only began to be
standardized in the 18th century, particularly following the Napoleonic conquests. Towards the end
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of the Middle Ages, informal street names became common; however, they were not standardized
and could vary from one person to another or from one document to another. The emergence of
street names primarily pertains to the roads that contribute to the political representation of the
city and its economic prosperity; the chosen toponyms are a direct testament to this. Most of the
names already in use in the 13th century continued to be used at the end of the medieval period.
Nevertheless, there were instances where they were no longer applied to the same street, or where
they encompassed multiple streets.

In the land documentation used for this study, the most precise information we have for locating
a property, after the street, is that of its boundaries or confronts. However, this information does
not always allow us to determine the exact position of the property. It provides a relative position.
It was probably very clear to its contemporaries and left little doubt about the location of the
declared parcels. However, today, out of its original context, it can sometimes be completely
elusive to us. In fact, when the position of a property is given by its confronts with properties
owned by various individuals and not with a building, a street, or any other fixed point whose
location is known to us, it can be extremely challenging, or even impossible, to precisely locate the
properties mentioned in the sources.

3 Geographic Database

The information contained in terriers can hardly be exploited directly, due to their structural and
textual heterogeneity, and to their complexity. In the context of this project, we design and apply
natural language processing (NLP) tools to extract the relevant information and store it in a proper
geographic database. The detail of this process, as well as the exact architecture of the resulting
database, are out of the scope of this article: they are provided in [13].

In this section, we first briefly summarize the process proposed to handle this task (Section 3.1),
then we describe the obtained spatial objects (Section 3.2) and the spatial relations between them
(Section 3.3), which populate our database. Finally, we explain how we complement this database
with additional secondary sources (Section 3.4).

3.1 Information Extraction

The comprehensive list of the historical sources used to constitute our database is available in
Appendix A. A thorough initial reading of these land registers reveals a certain level of regularity
in their structure and in the form of the information they contain. This observation, together
with the amount of text to process, the substantial number of edited or already transcribed texts,
and the unavailability of any appropriate tool able to handle Latin and Provençal, justifies the
elaboration of a custom semi-automatic process aiming at identifying information of interest in the
text, extracting it, and storing it in a relational database. Fully automating this process appears
unnecessarily difficult, which is why we adopt a method consisting in automating as much of it as
conveniently possible, while still relying on human verification and correction in order to control
the quality of the data produced in the end.

The first step consists in scanning the edited or transcribed terriers, as no digital editions exist,
before performing Optical Character Recognition (OCR) in order to get electronic versions of our
historical sources. A manual intervention is necessary to solve the errors introduced by the OCR
tool. Note that handwriting recognition tools were not yet sufficiently advanced at the beginning of
our study, so we focused on edited or, at a minimum, transcribed documentation that was already
substantial. However, handwriting recognition processes are becoming increasingly effective and
should soon enable the consideration of even larger documentation.

At this stage, we can apply our NLP tool, called Auto-Annot [13]. It relies on a fine-grained
categorical model defined based on the studied sources. It is built using a dual symbolic approach,
as it both takes advantage of a set of predefined rules describing recurrent patterns and external/in-
ternal clues, and of a manually constituted lexicon. The tool is designed to recognize multilingual
documents, distinguishing between Latin and Provençal. Entity-wise, it detects the information
previously described in Section 2.1 (cf. Figure 1): individuals, fees, properties and other spatial
objects. Some entities are described according to several traits, for instance individuals are likely
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to be described using a first name, family name, nickname, honorifics, hometown, health or legal
status. Relation-wise, our tool detects inter-individual links (e.g. family or professional relations)
as well as spatial relationships that allow the relative positioning of spatial objects (e.g. being
North of a church). The different types of entities and relations targeted in the text were identified
during our first reading of the historical sources, and were later complemented iteratively until
reaching a satisfying quality level.

The lexical variability characteristic of our historical sources is a major difficulty to detect
entities and their relations. The form of Latin used in the late Middle Ages tends to use fewer
declensions, but they are still present. Furthermore, the language is marked by processes of vernac-
ularization, including a greater flexibility in sentence construction. Finally, there is no orthographic
standardization; quite the opposite. The liberties taken by the writers in choosing vocabulary and
spelling are particularly significant. Not to mention the spelling of proper nouns, which sometimes
offers surprising variations. It is not uncommon to encounter several different spellings for the
same word, or different words used to refer to the same entity within a document. To solve these
issues, our tool includes a custom lemmatizer, and a post-processing step leverages Levenshtein’s
distance to detect similar strings, and more specifically homonyms.

The architecture of our database directly depends on the types of entities and relationships
extracted from the text. In addition, it allows storing some information that is not present in the
terriers, but rather comes from some secondary sources, such as the absolute location of certain
objects (under the form of GPS coordinates). This database allows us to represent geographic
information when we have sufficient indications about the location of a historical object and to
query the extracted data from the sources more precisely. We next list and discuss the different
types of entities and spatial relations between them, and how we exploit the secondary sources.

3.2 Spatial Objects

At the end of the extraction process, our database contains nine types of spatial objects, as listed
in Table 1 and detailed in the following.

Table 1: Types of spatial objects present in our database, with their main characteristics. Column
Nbr. shows their number of occurrences in the database, before graph extraction. Column Inv.
indicates whether the objects are invariants (cf. text).
Type Nbr. Description Inv. Dimension
Properties 3,021 Privately owned pieces of real-estate (declared and undeclared) No Punctual
Parishes / sectors 19 Parochial territories and geographical sectors No Surface
Boroughs 59 Extensions of urbanization outside the old city walls Yes Surface
Defensive system 7 Moats, ramparts, walls and towers Yes Linear
Gates 32 All forms of openings piercing the city walls Yes Punctual
Liveries 25 Residences granted to the cardinals Yes Surface
Geological landmarks 6 Points of reference such as rocks, rivers, and canals Yes Linear/Surface
Streets 326 All types of roads and ways Yes Punctual/Linear
Edifices 152 Institutional properties Yes Punctual

The first type corresponds to private properties, as their description is the main focus of the
terriers. It includes houses, backyards, shops, gardens, vineyards, fields, barns, cellars, and others.
Figure 2 (left) shows their distribution over the city, based on the historical sources. Some of these
properties appear as proper entries in a terrier, as they are explicitly declared by their tenants.
But some properties are undeclared, in the sense that they appear in the terriers only as confronts,
i.e. as spatial points of reference used to locate declared properties in a relative way. They might
be properly described in other, unavailable documents, though.

The second type of spatial object is Parishes and sectors. In the late Middle Ages, Avignon was
divided into seven parochial territories of varying sizes. The exact boundaries of these parochial
territories are not known to us, as no document references them. However, research conducted
by Pierre Pansier [29] and Anne-Marie Hayez [20] has allowed for a proposed reconstruction of
these boundaries, as shown in Figure 2 (right). Their cartography reveals significant differences in
territorial extent from one parish to another. With urban expansion and the construction of new
ramparts in the second half of the 14th century, some parochial territories experienced considerable
enlargement (such as the parishes of Saint-Pierre and Saint-Agricol), while for others, expansion

7 / 37



M. Ferrand & V. Labatut Approximating Spatial Distance Through Confront Networks

0 100 m Main buildings

14-17
10-13
  5-10
  2-5
  1-2

Design and production M. Ferrand

Concentration of
properties

14th-century block

Saint-Agricol

Saint-Didier 

Saint-Étienne
Saint-Symphorien

Saint-Pierre

Saint-Geniès

Notre-Dame 
la Principale

Rhône River

Saint-Bénézet 
Bridge

Outer Walls
(14th Century )

Rock 
of 

Doms

Inner Walls
(13th Century )

St.-Étienne
St.-Symphorien
St.-Pierre
St.-Geniès
N.-D. la Principale
St.-Didier
St.-Agricol

Parish churches

Parishes

0 100 m

Design and production by M. Ferrand & V. Labatut

Figure 2: Left: Density map of properties (declared and undeclared) in our dataset; location
by interpolation using the grid method. Right: seven parishes of Avignon, and main geological
landmarks. Plots available at 10.5281/zenodo.14175830 under CC-BY license.

was notably limited by the natural landscape (such as the parish of Saint-Étienne). To locate
the properties in most of the terriers, the scribes use parish affiliation. However, in some sources,
other sectors are used, such as the Jewish quarter, or the space between two gates of the communal
ramparts.

The seven remaining object types collectively constitute what we call invariants, in the sense
that they can be considered as the constants of the urban landscape [32]. This expression refers
to all objects that can be referenced in confronts, excluding properties (declared or undeclared).
This includes streets, buildings, geological landmarks such as rocks or canals, city gates, and others
similar objects.

Boroughs constitute our third object type. By definition, boroughs are “extensions of urban-
ization outside the city walls.” In her research, Anne-Marie Hayez identifies over seventy so-called
“bourgs” in Avignon at the end of the 14th century and locates them approximately. These are
subdivisions, meaning that the initially often agricultural lands were later divided to create mul-
tiple plots (in terms of housing units). Their size can vary from a few plots to several hundred.
Initially, these subdivisions primarily developed outside the walls of the 13th century. However,
in the second half of the 14th century, they became incorporated into the urban space with the
construction of the new city walls.

The fourth object type is the city defensive system. The communal ramparts consist of double
walls, an inner wall and an outer wall, likely constructed in the 13th century. Between the two
walls are the intermural spaces. A moat is also present in front of the outer wall. In the mid-14th

century, new ramparts were built at the initiative of the papacy and the urban community. Each
rampart is divided into multiple sections, and has towers. The city gates constitute the fifth type
of spatial objects. The outer wall of the double city ramparts is pierced by twelve gates. Eight of
them have corresponding gates on the inner walls, and in those cases, the facing gates bear the
same name. The 14th-century ramparts are also pierced by twelve gates.

The sixth type corresponds to Cardinal’s liveries. Since 1316 and the regulation of housing,
every cardinal who arrives in Avignon is granted a livery. These are rented residences that are
“delivered,” hence the name given to them. The space of a Cardinal’s livery’s is not limited to a
single dwelling that accommodates a cardinal and a few of his entourage. It can be considerable
and always contains multiple houses. The number of dwellings that a Cardinal’s livery’s represents
depends on the size and needs of a cardinal’s court. To delineate the space assigned to them, the
cardinals place barriers, called cancels, at the end of the streets that make up their livery. These
wooden barriers explicitly enclose the territory of the cardinal’s residence.

The seventh type gathers Geological landmarks, which correspond to geological points of refer-
ence, including rivers, channels, and rocks. The eighth type is streets, and it covers not only proper
streets, but also alleyways, squares, dead-ends, pathways, etc. Finally, the ninth type is edifices.
It gathers institutional properties, including administrative buildings, pyres, chapels, graveyards,
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convents, churches, hospitals, granaries, hospices, monasteries, bridges, wells, etc.
We also distinguish our spatial objects in terms of their dimensions. First, some are punctual

(or 0-dimensional) in the sense that they occupy a relatively compact surface. Most of these are
single buildings, such as houses, shops, churches, but also short streets. Second, some objects
are linear (or 1-dimensional), meaning they cannot be reduced to a single position in space, but
rather to a sequence of contiguous positions. These are mainly longer streets, as well as walls,
rivers and channels. Third, some objects are better modeled as shapes possessing a surface (2-
dimensional), because they are very large and/or are constituted of several adjacent buildings:
boroughs, parishes, cardinal’s liveries, and certain landmarks. Table 1 shows the dimensionality of
each type of object.

3.3 Spatial Relations

In the historical sources, we identify no fewer than 42 distinct types of spatial relationships between
these objects. Based on their semantics, one can gather them in six main categories:

• Cardinal relationships: being to the north, south, east or west of another object.
• Vertical relationships: being above or below another object (e.g. an apartment topping a
shop, in the same building).

• Horizontal relationships: being behind an object, facing an object.
• Street relationships: being at the beginning or end of a street, at the intersection of two
streets.

• Proximity relationships: being around or near an object, adjacent to an object.
• Hierarchical relationships: being inside an object (e.g. a building in a borough), surrounded
by an object, just outside an object.

The Hierarchical category corresponds approximately to one third of the relations present in the
database. It typically indicates that some punctual object is part (or not) of some 2-dimensional
object. By comparison, the remaining two thirds are flat relationships, in the sense that they
locate an object relative to another object without any notion of inclusion (e.g. West of ). A
comprehensive list of all 42 spatial relation types is provided in Appendix B (Table 6).

3.4 Additional Information

If all the objects described in the land registers, along with their relationships, are inventoried
in the database, it is not possible to determine their absolute spatial location, due to insufficient
information. Drawing on numerous studies focusing on the urban space of Avignon and using
a regressive approach to the landscape based on available planimetric sources and archaeological
data, the majority of the invariants, however, have been located in the literature. A proposal for
the restitution of the parish territory [20] and the medieval road network has been made [29], areas
of boroughs [19] and cardinalatial liveries [21] have been identified, and the extent and geographical
position of the main buildings have been highlighted. We leveraged these results, and then refined
and supplemented them.

We have georeferenced a large part of our spatial objects in a Geographic Information System:
50 out of 59 boroughs, all parishes and geographical sectors, the entire defensive system and city
gates from different eras, all geological landmarks, all Cardinal’s liveries, 162 our of 326 streets,
and 144 out of 152 edifices. It should be noted that while we have georeferenced these objects,
only a small portion of them are accurately located. The level of accuracy depends on whether
they are still in place, which is the case of certain churches and buildings, and on whether textual,
iconographic, and especially archaeological sources allow us to place them precisely. For the others,
we rely primarily on a hypothetical location made possible by the compilation of various sources
and historical studies.

We matched the declared properties identified in our corpus with the finest spatial reference for
which we had information (parish, borough, street), and then arranged them manually based on
additional information, particularly confronts. Out of 3,021 properties, 2,049 have been georefer-
enced. However, this property localization is highly uncertain because it relies on the localization
of all the invariants, which is often quite hypothetical. Therefore, it is nearly impossible to locate
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the properties without errors. It should be noted that we do not have addresses but only relative
positions. Attempting to precisely locate the properties inevitably leads to data degradation.

As a result, we decided to move away from georeferencing the properties and focus on the
main historical source of information, which is the topological relationship between the properties.
Building on existing historical research and various sources, including planimetric sources used
to spatialize certain objects, we were able to enrich our database and add certain relationships
between objects that are not present in the land documentation. Data related to the road network,
in particular, were enhanced with information about the connections between each street or square.
Finally, we also added information about the positioning of the buildings, specifying the street in
which each listed building is located. To refine the information, the streets were then divided into
segments, and each of these segments was linked in the database. Similarly, the Rock of the Doms,
a very important and frequently used landmark, was broken down into several pieces that were
interconnected in the database. This allowed for a more detailed topological refinement of the
original information.

In the rest of the document, we refer to the information extracted from the land registries as
primary data, whereas that produced from secondary sources through the process described above
is called additional data.

4 Graph-Based Modeling

To address the issues of data incompleteness and geographic uncertainty that affect terriers, we
leverage graph theory to model the urban space. In this section, we justify this methodological
approach (Section 4.1) before discussing the challenges it implies (Section 4.2).

4.1 Advantages of a Graph Model

Graphs are designed to represent relational information, therefore they are particularly well-suited
in our case, where the retrieved data are essentially a collection of spatial objects with spatial
relations between them. These objects can be modeled as vertices, and these relationships as edges
between them. Moreover, graphs enable us to overcome the need for precise property locations. If
the absolute position of a spatial object could be estimated, then this information can be included
as coordinates attached to the corresponding vertex, making the graph spatial. Otherwise, this
vertex simply does not have any known position. In addition, graphs even allow us to handle certain
contradictions present in the historical sources, e.g. some building being located to the North of
another in some terrier entry, whereas the latter is also declared to the North of the former in
another entry. When one does not know which piece of information is correct, keeping both seems
to be a reasonable approach. Finally, another important advantage of graphs, compared to the
more traditional modeling approach, is that they exempt us from the tedious (or even impossible)
task of reconstructing parcel divisions, mentioned in Section 2.2.

Not only does graph-based modeling not require reconstructing parcel divisions, but it even
allows partitioning the urban space at a higher-level. In the Middle Ages, one of Avignon’s char-
acteristics is the absence of any administrative subdivisions other than the parish. The parish is
indeed the religious subdivision of the city, but it is also the only civil division used simultaneously
from an administrative, fiscal, and military perspective. However, it is a fairly large territory,
directly affected by urban expansion, and ultimately not very representative of socio-spatial rela-
tionships. Two individuals can belong to the same parish without necessarily living in proximity.
Two people can be attached to the same parish without any actual connections. To study the
socio-spatial relationships of proximity and the resulting land uses, we must therefore use another
scale that is closer to the individual himself. A graph extracted from our database defines a certain
representation of the urban space, very close to the declarers’ perception, as it is based on spatial
relationships declared by the tenants themselves. In this regard, we will see that partitioning such
a graph by the means of a community detection method [15] allows for a more refined scale of
analysis. In this case, communities correspond to ad hoc neighborhoods, built upon the confront
relations. Here, we use the word neighborhood in the sense of a lived space, that is, as it is perceived
and practiced by individuals [24]; its definition is based on the topological relation defined in the
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sources. The neighborhood is therefore primarily understood as the everyday living space in which
relationships between individuals are the densest.

4.2 Graph Extraction Challenges

As we will see in Section 5, due to the richness of the data collected in our database, there are
a number of possible ways to extract graphs representing medieval Avignon. They differ mainly
in the data that they leverage: which part of the primary historical data to keep or remove, and
which additional secondary information to use. In order to make a choice, it is important to define
a method to compare them and identify the most appropriate for our use.

The first goal is to have a graph containing as many vertices as possible, so that it covers the
largest possible area. Put technically, we want to maximize the graph order. More precisely, we
want to maximize the number of properties it contains, as these spatial objects constitute our main
interest in this study. At the same time, we want this graph to be as dense as possible, so that
its structure reliably reflects the spatial organization of the city. Yet, as was observed empirically,
complex networks tend to be sparser as they get larger [4], which means that these two goals of
coverage and reliability may be opposed.

Finally, it is worth stressing that our database describes a number of very different spatial
relationships, with very different levels of reliability. Therefore, the extracted edges may not all
represent the spatial structure of the city equally, in terms of semantics, granularity, precision, etc.
Thus, another challenge is to determine how to build a graph structure that constitutes a good
approximation of the spatial structure, in order to produce a relevant partition of the city as a
final result.

5 Graph Extraction Methods

The most straightforward method to extract graphs from our database is to leverage the whole
information, and model each object by a vertex, and each relationship by an edge. This is illustrated
by a simple example in Figure 3. The left part of the Database block represents the spatial relations
described in the terrier, whereas its right part shows the absolute locations of the listed objects,
when available. Each color represents a unique spatial object, some of which are properties. In
the Terrier part, the left-hand squares are properties, associated (on their right) to their list of
declared confronts. Some objects appear only because they are cited as confronts, e.g. the yellow
one. The absolute spatial location of certain objects is unknown, e.g. the green property does not
appear in the right part of the Database block. Graph edges do not necessarily depend on spatial
proximity, since they reflect the confronts, i.e. the relationships that are explicitly described in
the database (left part). For instance, the magenta and yellow objects are spatially close, but not
connected by any confront, so there is no edge between the corresponding vertices.

Database

Spatial PositionsTerrier

RelationsPr.

Graph

Figure 3: Straightforward extraction of a graph, from our database. Each colored shape represents
a spatial object (e.g. a building). The edges depend on the spatial relations described in the
historical sources. Figure available at 10.5281/zenodo.14175830 under CC-BY license.

Our database describes various types of objects (e.g. buildings, cemeteries, walls, gardens,
parishes), spatially related in various ways (e.g. being near another object, containing another
object). Leveraging the entirety of this information results in a very heterogeneous graph, as
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it is simultaneously spatial [2], attributed [34], multimode [7], and multilayer [23]. It is shown
in Appendix C (Figure 11), for reference. However, not all of this information may be useful
to produce a graph that would provide a good approximation of the spatial distance. In fact,
the preliminary experiments that we conducted revealed that some of this information can even
be detrimental. Consequently, one of our methodological challenges consists in identifying which
part of the data should be discarded. On the contrary, it is possible to leverage some additional
information besides that strictly coming from the terriers, by using our secondary historical sources,
and possibly improve the quality of the extracted graphs. We implement these different approaches
under the form of several distinct extraction steps. These are not mutually exclusive, they can
be chained in various ways, resulting in a number of possible combinations. We consider some of
these steps to be compulsory, because the extracted graph is hardly usable at all without them: we
describe them in Section 5.1. Some are optional, and we later study how they affect the extracted
graph: these are the object of Section 5.2. Finally, we provide the reader with a convenient
summary of these methods in Section 5.3.

5.1 Systematic Steps

Both steps described below are systematically applied to all extracted graphs. They concern the
way we normalize relationships, and how we handle disconnected graphs.

5.1.1 Relationship Types

The number of distinct relationship types (42) is an issue, as they complicate the interpretation
and analysis of the network. Moreover, some of them are very infrequent, occurring only once or
twice out of the 6,129 relationships listed in the database. For this reason, we normalize these types
to make them coarser, retaining only 7 main types: being to the North/South/East/West of an
object (i.e. so-called cardinal relationships), being Inside/Outside an object, and being Around an
object (a general relationship gathering all the remaining types). The detail of this normalization
is provided in Appendix B (Table 6).

5.1.2 Minor Components

Generally speaking, real-world complex networks often contain a so-called giant component, i.e.
a very large maximally connected subgraph gathering almost all the vertices and edges, whereas
the rest are spread over several much smaller separate subgraphs [26]. It is also the case for all
the networks extracted from our database, whatever the extraction method. In this situation, the
standard approach adopted in the literature is to focus the analysis only on the giant component,
or on the few largest components, as the rest of the data are implicitly considered as less complete
or reliable. In our case, more particularly, approximating the spatial distance on these remote
and sparser parts of the network is likely to result in a poor estimation. For this reason, for
each extracted network, we filter out all vertices and edges located in minor components, including
isolates. For our data, we empirically determine that a lower threshold of 25 vertices is appropriate
to remove noisy data while preserving relevant information.

5.2 Optional Steps

We perform our extraction procedure by alternatively including and discarding the following steps,
in order to assess how they affect the extracted graphs. While describing these steps, we also
introduce the notation used later to refer to them and their different variants.

5.2.1 Non-Punctual Objects

The vertices representing 1- and 2-dimensional objects are likely to act as shortcuts in the network.
For instance, two buildings located at opposite ends of a street are just two hops away in terms
of graph distance, independently of the street length. The blue and pink buildings in Figure 4
illustrate this situation (Keep graph). This could strongly affect the way our confront graph
models the urban space. We propose two modifications of the extraction process to deal with this

12 / 37



M. Ferrand & V. Labatut Approximating Spatial Distance Through Confront Networks

issue: outright removing the concerned vertices (Remove graph in Figure 4), or splitting them
(Split graph).

Remove SplitKeep

RelationsPr.

Spatial PositionsTerrier

Database

Figure 4: The three strategies proposed to handle 1- and 2-dimensional objects such as the street
in this figure (shown in brown): removing it by not representing it at all in the graph, keeping
it as it is by modeling it through a single vertex, or splitting it and representing its constituting
pieces with several linearly connected vertices. Figure available at 10.5281/zenodo.14175830 under
CC-BY license.

Removal Removing all non-punctual objects is the most straightforward approach. However,
our experiments reveal that this causes the networks to be very segmented, i.e. it breaks them
down into many small components. Consequently, they may not be suitable to produce acceptable
approximations of the urban space.

A less radical approach consists in removing only the vertices representing the longest/largest
objects. Of course, this requires possessing the required spatial information, which is not always
the case. Our database contains the length of certain streets, and we are confident that this
information is missing only for the most minor streets, which are also the shortest. In addition, a
few relationships also specifically concern parts of streets (angle, beginning, end, etc.).

We experiment with two removal strategies1: 1) keep all streets (a strategy we denote streets);
2) remove the k longest streets, and keep the rest of the streets (noted k). In both strategies, we
outright remove the other types of 1- and 2-dimensional objects.

Split Alternatively, we consider splitting non-punctual objects instead of removing them, i.e.
breaking them down into smaller parts, each one represented by a specific vertex. This requires
injecting more knowledge in the database than the previous method, though. First, if the spatial
location of the original object is known, it is necessary to estimate those of its constituting pieces.
Second, to preserve continuity, we must introduce artificial relationships between the adjacent
pieces of the split object2. Third and finally, relationships that involve split objects must be
adjusted by identifying which piece of the original object they concern.

In our case, we are able to manually split all linear objects (streets, rivers, channels, walls)
in segments sufficiently small to be considered as punctual. We also break down the largest 2-
dimensional object (the so-called Rock of the Doms). We experiment with two splitting strategies:
1) split all streets (noted streets); and 2) split the k longest streets, and keep the rest of the
streets as single vertices (noted k). Like before, the rest of the non-punctual objects are removed.

We use the letters W (whole) and S (split) to denote whether or not a graph underwent such a
splitting step during extraction.

1We actually considered a third strategy consisting in removing only long streets and keeping short streets and
parts of streets. It is not presented here because the results are quite similar to the k method, but these are included
in our data repository.

2We iteratively remove vertices possessing exactly one such artificial relationship, though, as these leaves make
the graph unnecessarily larger without bringing any useful information.
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5.2.2 Hierarchical Relationships

As explained in Section 3.3, our database includes hierarchical and flat relationships. The issue
here is that 2-dimensional objects, which are involved in the former type of relations, are all very
large in our case. Including hierarchical relationships in the extracted graph results in the presence
of hubs corresponding to these objects, connected to many punctual objects. Some of these are very
far from each other in terms of spatial distance, but are very close in the graph, as one is only two
hops away from the other. Consequently, the graph is likely to constitute a poor approximation of
the urban space, as already observed when discussing the split of linear objects. This is illustrated
in Figure 5, which shows a parish (in gray) containing eight buildings (in colors). Independently
of the spatial distance between them, considering the hierarchical relationships leads to a graph
where they are all two hops away from each other, as they are all connected to the parish vertex.

FlatHierarchical

ParishRelationsPr.

Spatial PositionsTerrier

Database

Figure 5: The two strategies proposed to handle hierarchical relationships, such as a parish contain-
ing eight buildings in this figure: keep them and make the graph hierarchical, or remove them and
make it flat. The dotted edges show the hierarchical relationships. Figure available at 10.5281/zen-
odo.14175830 under CC-BY license.

We propose to experiment by outright deleting all hierarchical relationships when extracting
graphs, a strategy which we note F for flat, whereas keeping all relationships is noted H for hier-
archical. It is worth stressing that even when focusing on flat relationships only, the membership
information can still be retained in a non-structural way, by integrating it in the graph under the
form of vertex attributes. For instance, a given vertex can be labeled with the district, parish or
borough to which it belongs.

5.2.3 Additional Relationships

As explained in Section 2.1, the terriers list and describe only certain declared properties, and only
indirectly mention other objects for the purpose of locating them. They therefore ignore objects
that were not recognized during this period —these could be properties belonging to another lord
for which no such document is preserved, or properties free from feudal jurisdiction-– or objects
that were never mentioned in these documents (such as certain religious and civil buildings, for
example). Furthermore, a relationship extracted from a terrier necessarily concerns a property
declared in the terrier and some object mentioned in the same terrier. This description is likely
incomplete: the authors may not list all possible relationships but only the few necessary to
accurately locate the property. Additionally, there is no relationship between two objects that are
not declared in these documents, for example, two streets. In summary, our primary historical
sources provide an incomplete view of the city.

The question is to know whether this is enough to get a reliable estimation of the spatial
distance through the extracted network. In order to answer this question, we leverage the additional
information described in Section 3.4, in order to complement our graphs with two types of missing
relationships: between adjacent streets, and between edifices and adjacent streets. Figure 6 shows
how this affects the graphs. The pink part of the Database block corresponds to the additional
data used to extract additional edges, shown in red in the Extended version of the graph. Our goal
here is to study the effect of this extra information on the estimation of the distance. We note R
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ExtendedRaw

RelationsPr.

Invariant 

Streets

Spatial Positions

RelationsInv.
Terrier

Additional
Data

Additional DataDatabase

Figure 6: Extending the perimeter of the considered historical sources allows including additional
relationships, represented here in red, between streets and other invariants. Figure available at
10.5281/zenodo.14175830 under CC-BY license.

(for Raw data) the version of our networks without this information, and E (for Extended data)
the version that includes it.

Table 2: List of the different methods proposed to extract spatial graphs from our database, with
the processing steps they rely upon. The letters in the code stand for: use only raw data (R)
vs. extend them with additional relationships (E); use only flat relationships (F) vs. include also
hierarchical ones (H); split large objects (S) vs. keep them whole (W).
Method Additional Hierarchical Non-Punctual
Code Relationships Relationships Objects
RHW all No Keep all Keep all
RFW all No Remove all Keep all remaining non-punctal objects
RFW streets No Remove all Keep only streets, remove other non-punctual objects
RFW k No Remove all Remove k longest streets and other non-punctual objects
EHW all Yes Keep all Keep all
EFW all Yes Remove all Keep all remaining non-punctal objects
EFW streets Yes Remove all Keep only streets, remove other non-punctual objects
EFW k Yes Remove all Remove k longest streets and other non-punctual objects
RHS all No Keep all Split all
RFS all No Remove all Split all remaining non-punctal objects
RFS streets No Remove all Split only streets, remove other non-punctual objects
RFS k No Remove all Split k longest streets, keep other streets, remove the rest
EHS all Yes Keep all Split all
EFS all Yes Remove all Split all remaining non-punctal objects
EFS streets Yes Remove all Split only streets, remove other non-punctual objects
EFS k Yes Remove all Split k longest streets, keep other streets, remove the rest

5.3 Overview

The optional processing steps described in this section are not mutually exclusive: on the contrary,
they are meant to be combined. This results in a number of possible methods to extract a network
from our databases. The goal of our experimental work is to identify which one is the most in
line with our objectives. Table 2 summarizes the combinations of these steps that we consider
in our experiments, with the code that we use in the rest of the article to refer to them. We do
not consider all possible combinations, because some result in relatively similar effects, even if not
exactly identical. For instance, removing all 2-dimensional objects is very similar to removing all
hierarchical relationships, as all of the latter involve the former. In the rest of the article, we use
a wildcard · to denote any variant over some column(s) of Table 2. For instance, R·W all denotes
collectively RHW all and RFW all.
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6 Method Comparison and Selection

We apply all 16 variants of the extraction process described in Table 2, and get as many versions
of the network representing medieval Avignon. All of them are shown in Appendix C (Figures 12
and 13), as well as the full graph (Figure 11), for reference. The latter is the graph extracted
when using the raw dataset, without any vertex or edge removal, or any transformation. Table 3
shows the main topological properties of these graphs. In the following, we first discuss methods
to measure the coverage of the extracted graphs, and their ability to reliably model the spatial
structure of the data (Section 6.1). We then assess separately the effect of each optional processing
step described in Section 5.2: hierarchical relationship filtering (Section 6.2), non-punctual object
filtering (Section 6.3), vertex splitting (Section 6.4), and data extension (Section 6.5). Finally,
based on these results, we select the most appropriate graph to perform our analysis (Section 6.6).

Table 3: Main topological characteristics of the networks extracted from our database: numbers of
vertices (n) and edges (m), density (δ), number of property vertices and proportion of such vertices
relative to the database (Properties), number of components (C(G)), diameter (dmax), harmonic
mean of the graph distance (⟨d⟩), Spearman’s correlation between the graph and spatial distances
(ρd).

Method n m δ # Properties C(G) dmax ⟨d⟩ ρd
Full graph 3,173 6,619 0.0007 2,693 100,00% 110 16 6.75 0.22
RHW all 2,867 6,415 0.0008 2,397 89.01% 1 16 5.51 0.29
RFW all 2,174 4,290 0.0009 1,807 67.10% 5 45 13.12 0.03
RFW streets 2,003 3,980 0.0010 1,673 62.12% 12 33 38.22 0.48
RFW k 1,903 3,750 0.0010 1,597 59.30% 14 40 45.10 0.49
EHW all 2,919 6,840 0.0008 2,427 90.12% 1 15 5.46 0.34
EFW all 2,390 4,895 0.0009 1,959 72.74% 1 26 8.28 0.48
EFW streets 2,268 4,647 0.0009 1,862 69.14% 1 30 9.37 0.74
EFW k 2,167 4,382 0.0009 1,782 66.17% 2 31 11.28 0.80
RHS all 3,074 6,630 0.0007 2,397 89.01% 1 21 6.19 0.47
RFS all 2,381 4,505 0.0008 1,807 67.10% 5 75 21.57 0.27
RFS streets 2,032 4,017 0.0010 1,673 62.12% 12 34 40.79 0.49
RFS k 2,020 3,578 0.0009 1,673 62.12% 12 33 40.32 0.49
EHS all 3,146 7,072 0.0007 2,427 90.12% 1 22 6.13 0.48
EFS all 2,617 5,127 0.0007 1,959 72.74% 1 51 11.25 0.74
EFS streets 2,317 4,701 0.0009 1,862 69.14% 2 34 11.86 0.69
EFS k 2,294 4,208 0.0008 1,862 69.14% 1 37 10.32 0.80

6.1 Measuring Coverage and Reliability

The numbers of vertices (n) and edges (m) vary significantly between the different versions of
the graph. On the contrary, their densities (δ) are comparable, showing a level of sparsity that
is on par with what is often observed in general real-world networks of the same order [4, 12].
The Properties column contains two values: the number of vertices representing properties in the
considered graph, and the proportion of properties in the whole database that this number amounts
to. As such, these statistics are related to our graph coverage criterion described in Section 4.2:
we want these values to be as large as possible. The number of connected components (C(G)) is
largely affected by the filtering step, as shown by the marked difference between the full graph
(110 components) and the other graphs (at most 14 components). A large number of components
reflects a very segmented representation of the city space, so this metric is related to how reliably
the graph models this spatial organization.

At first sight, the diameter (dmax), which is the largest geodesic distance observed in the
graph, could be considered as related to graph coverage: a large value means the graph is “wide”.
However, it is not the case for two reasons. First, this width is only topological, and not necessarily
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spatial: removing certain vertices can make a graph more linear, thereby increasing its diameter
without covering more space. Second, the geodesic distance is traditionally computed by discarding
pairs of vertices located in different components, as they are conventionally considered as infinitely
distant. Therefore, removing certain vertices from a network can also result in splitting it in several
components, thereby decreasing the diameter without necessarily changing its spatial coverage.
Both situations appear in Table 3, which confirms that the diameter is not an appropriate metric
in our case. The average geodesic distance (⟨d⟩) is more interesting, provided one computes the
harmonic mean instead of the traditional arithmetic mean. As noted by Newman [26], it allows
taking into account infinite distance values in the computation.

The simplest way to assess how reliably the graph models the spatial structure of the data is
probably to measure the statistical association between the spatial distance, i.e. the Euclidean
distance between the spatial objects themselves, and the graph distance, i.e. the distance on
the graph between the vertices representing these objects. We experiment with Kendall’s τ and
Spearman’s ρ coefficients, both widespread in the literature, because such rank correlation measures
allow taking infinite values into account (unlike the more widespread Pearson’s coefficient). We
get qualitatively similar results with both of them, so in the rest of the article we only present the
results obtained with the latter, which is faster to compute. These values are shown in the last
column of the table (ρd), and it appears that the graphs exhibit a wide range of correlation values.
The full graph, which, by construction, has maximal coverage, reaches only a 0.22 score, whereas
some of the smaller graphs get 0.80 scores.

In the following, we discuss how each extraction step presented in Section 5.2 affect the coverage
and reliability of the graphs.

6.2 Flat vs. Hierarchical Relationships

We first consider whether to keep or remove hierarchical relationships, i.e. edges that model the
inclusion of some spatial object into some other object, e.g. a building belonging to a parish.
In each of the four parts of Table 3, the first two rows compare these two options (·H· all vs.

·F· all). Independently of the other extraction steps, retaining the hierarchical relationships
results in a much higher number of properties, i.e. a much better coverage. For the reliability, on
the contrary, it depends on whether we stick to the raw data or leverage the additional relationships
(R·· all vs. E·· all): in the former case, the distance correlation, and thus the reliability of the
graph, is higher when using hierarchical relationships, whereas in the latter case it is lower. But
even when the hierarchical relationships bring a better distance correlation, we must stress that
this value is not satisfying, as it is closer to zero than to one.

Explaining these observations is quite straightforward by looking at the other statistics. When
using only the raw data, removing the hierarchical relationships segments the graphs in several
separated components (see C(G)). Many of them are small, and thus discarded at the filtering
step, which causes the lower coverage. Moreover, the removal of the hierarchical edges also breaks
shortcuts, as shown by the largely increased diameter (dmax) and average distance (⟨d⟩). This is
quite visible when considering the full graph (Figure 11), as it shows how the pink edges modeling
these relationships connect local hubs (parishes and boroughs) to their neighborhoods. The graph
representations from Figure 12 use a geographic instead of an algorithmic layout, and shows that
these relationships have a very long range, spatially speaking. This means that they connect
spatially remote vertices, making them closer in the graph than they should be, as hypothesized
in Section 5.2.1. This is the cause for the relatively low distance correlation.

In summary, hierarchical relationships allow a very good coverage, but seriously hinder the
reliability of the graph. We conclude that it is preferable to ignore this type of relationships during
graph extraction. In the rest of this section, we focus our discussion on the flat graphs (·F· ·).
6.3 Keeping vs. Removing Non-Punctual Objects

The next extraction step is the possible removal of non-punctual objects. As a consequence, we
focus on the top half of Table 3, which corresponds to whole vertices (·FW ·), by opposition to
split vertices in the bottom half, because splitting induces a different processing of non-punctual
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objects. Such objects include a few 2D entities (e.g. parishes), but there are predominantly linear
objects (i.e. 1D), and more particularly streets (see Table 1).

We first compare between retaining all such objects (·FW all) vs. removing all non-punctual
objects except streets (·FW streets). This removal causes a significant decrease of the graph
coverage: this is expected, as deleting parishes and other 2D objects indirectly results in the
removal of the hierarchical edges, and therefore yields the same effect as observed in Section 6.2.
This effect is even stronger as one removes more vertices and edges. When using only the raw
data (RFW streets), the number of components and the average distance increase notably, which
is not the case when using the additional relationships (EFW streets). In both cases though,
the distance correlation is much higher compared to the graphs obtained when retaining all non-
punctual objects (0.03 vs. 0.48, and 0.48 vs. 0.74, respectively). The explanation is the same as
before: non-punctual vertices are likely to connect objects that are spatially very distant, thereby
decreasing the graph reliability. The Rhône river constitutes an extreme case of this issue, see the
top-left vertex in the graphs of Figure 12.

Some of the streets are quite long, and likely to cause the same problem, which is why we
experiment with their controlled removal through methods ·FW streets. As explained in Sec-
tion 5.2.1, they consist in removing the k longest streets (in addition to the other non-punctual
objects) while keeping the shorter streets. In order to determine the best value of k, we rank all
streets by decreasing length and iteratively remove an increasing number of streets while comput-
ing the same metrics as in Table 3. Simultaneously maximizing coverage and distance correlation
is a bi-objective optimization problem. The corresponding plots are provided in Appendix D.1
(Figure 14). The most appropriate solutions appear to be the removal of the k = 6 and 7 longest
streets for RFW k and EFW k, respectively. When comparing the former to RFW streets (i.e. keeping
all streets), the difference is hardly noticeable: a small decrease in coverage (−5%) and a small
improvement in distance correlation (+2%). However, when comparing EFW k to EFW streets, we
see a comparable decrease in coverage (−4%) and a much improved correlation (+8%).

In summary, removing all the non-punctual objects except streets leads to a slightly lower
coverage, but a much improved reliability. Removing also the longest streets has not much effect
when dealing with the raw data, but improves the results further when using the extended data.

6.4 Whole vs. Split Vertices

Next, we consider the splitting process described in Section 5.2.1: it consists in using several
separate vertices to represent portions of 1D and 2D objects, instead of just removing them outright.
We focus on the bottom half of Table 3, that shows the results involving this optional step (·FS ·).
A street is sometimes the only vertex connecting a property to the rest of the graph. Thus, removing
a vertex representing a street may indirectly lead to the deletion of properties from the network.
For this reason, our expectation is that splitting instead of removing will allow improving the
coverage. Moreover, splitting a spatially large object into several vertices increases the length of
the concerned paths on the graph, which is likely to improve the distance correlation, too.

We first consider both methods that split all non-punctual objects (·FS all). As expected,
when compared to their counterparts that keep all these objects whole (·FW all), it appears that
splitting has no noticeable effect on coverage, as the proportions of properties are identical: 67.10%
for both RFW all and RFS all, and 72.74% for both EFW all and EFS all. On the contrary, there
is a clear increase of the distance correlation: 0.03 vs. 0.27 (RF· all), and 0.48 vs. 0.74 (EF· all).
This is because splitting object such as long streets increases the length of certain paths on the
graph, as exemplified by the ramparts that appear clearly in Figure 13 (as yellow edges around the
city). When we split only the streets and remove the other non-punctual objects (·FS streets),
the observations are roughly the same.

We now focus on the last methods (·FS k), which consist in splitting the k longest streets,
keeping the shorter ones, and removing the rest of the non-punctual objects. Unlike with the
methods based on vertex removal (·FW ·), estimating the best value of k is not a bi-objective
optimization problem, because splitting an increasing number of streets does not affect the coverage
(cf. Figure 15). Consequently, we just select the values that maximize distance correlation: k = 6
(RFS k) and k = 7 (EFS k). Compared to their counterpart methods that remove the longest
streets instead of splitting them, we observe a better coverage while retaining the same distance
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correlation.
To conclude, our experiments show that splitting non-punctual objects instead of removing

them allows preserving the property coverage, and sometimes even improving it, while increasing
the distance correlation when it is low, or preserving it when it is already high.

6.5 Raw vs. Extended Data

It is possible to complement the data extracted from the original sources with some additional
information (cf. Section 3.4) in order to insert extra relationships in the graphs (cf. Section 5.2.3).
However, this operation has a cost. Hence, the interest of assessing whether such effort allows
improving the extracted graph. For this purpose, in this section we compare the 1st and 3rd parts
of Table 3 (R· · k) with their extended counterparts in the 2nd and 4th parts (E· · k) of the same
table.

The effects are the same independently of the other optional steps, and they are quite strong.
First, using the extended dataset considerably improves the coverage: the increase ranges from 5
to 7 percentage points. Second, this operation also greatly improves the reliability, as the increase
in distance correlation ranges from 0.26 to 0.45. This improvement also shows in the number
of components (C(G)), diameter (dmax), and average graph distance (⟨d⟩), which systematically
decrease.

In conclusion, our experimental results show that making the effort of gathering the additional
data describing spatial relationships between objects that are not properties, allows to significantly
improve the extracted graph, whatever other optional steps are used during this process.

6.6 Concluding Remarks

Based on the analysis conducted in this section, we can now identify the best graph extraction
methods among the proposed variants. Our main observations are as follows:

1. Hierarchical relationships are largely detrimental to network reliability, and should be re-
moved.

2. Additional relationships always improve coverage and reliability, and should be used when
available.

3. Removing non-punctual objects strongly improves reliability while only slightly decreasing
coverage, provided streets are kept whole.

4. Splitting non-punctual objects instead of removing them leads to much better reliability, for
the same coverage.

5. Splitting only the longest streets, keeping the remaining streets whole, and removing the rest
of the non-punctual objects, seems to be the best trade-off when using additional relation-
ships.

We use Figure 7, which shows how each method performs in terms of coverage (number of
properties in the graph) and reliability (distance correlation) as a visual aid to make our final
decision. To go beyond distance correlation, Figure 16 (Appendix D.2) shows the relation between
graph and spatial distances. We consider that the method exhibiting the best trade-off overall is
EFS k (extended relationships, flat relationships only, split the longest streets, keep the shortest,
and remove the rest of the non-punctual object), and we will discuss the corresponding graph in
the next section. However, this method requires some extra data, both to split the streets and to
include additional relationships. In case one is not able to perform the split step (methods shown
in blue in the figure), we consider that the next best choice is EFW k. If no additional relationship
is available (in green), then graph quality seriously drops, and the most conservative approach
seems to be the best choice: RHS all. Finally, if it is not possible to split nor use the extended
relationships, then RFW streets seems to be the best method, even if it requires removing many
vertices before reaching a passable reliability.

7 Segmentation of the Spatial Graph

At this stage, we have identified the most appropriate method (EFS k, see Section 6.6) to extract a
spatial graph representing the city of Avignon in medieval times. We now proceed with the analysis
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Figure 7: Left: Comparison of the methods from Table 3 based on coverage (number of ver-
tices representing properties) and reliability (distance correlation). Right: best confront graph
according to our criteria, shown using the Yifan-Hu layout [22]. Figure available at 10.5281/zen-
odo.14175830 under CC-BY license.

of this graph at a meso scale, i.e. from the perspective of its community structure. Our goal here
is to partition the confront network into spatial zones representative of the tenants’ perception and
of the use of urban space. For this purpose, we rely on the traditional modularity function [28]
to assess the quality of the partition, but we also consider more subjective aspects, in order to
take into account our objective of interpreting the detected communities. First, we want to get a
reasonable number of communities, as it would not be practically feasible to interpret hundreds of
spatial segments. Second, we want the community size to be relatively uniform: getting a single
giant community and many very small ones would be of any help.

We assess seven standard community detection algorithms implemented in the igraph [11] R
library: Edge-betweenness [28], FastGreedy [9], Leading Eigenvectors [27], LabelPropagation [31],
WalkTrap [30], InfoMap [33], and Louvain [6]. According to our criteria, the Louvain method
provides the most relevant partition of the graph. It reaches a modularity of 0.93, and contains
31 communities, whose main characteristics are described in Table 4. Each statistic is computed
by considering only the subgraph induced by a community. Community size ranges from 13 to
168 vertices, including 67% to 91% of properties. The average distance is relatively homogeneous,
ranging from 1.93 to 4.35, but the diameter is more heterogeneous, ranging from 3 to 13. The
distance correlation is very heterogeneous, ranging from 0.03 to 0.78, showing that space is not
modeled in all communities with the same reliability.

In the following, in order to illustrate the historical relevance of the communities detected in
our confront network, we discuss a few particularly interesting examples, both in terms of how they
are distributed over the city space (Section 7.1), and of the types of spatial objects that constitute
them (Section 7.2).

7.1 Organization of the Communities

The spatial distribution of communities generally aligns with the logic of parochial territory, as
shown in Figure 8. However, while some communities consist of properties that depend on a single
parish, others are quite revealing of uncertain boundaries or the interweaving of parishes. One
community, which spreads through the heart of the city, comprises properties associated with five
different parishes (C18), while three communities include properties from three distinct parishes
(C8, C10, and C17), and nine from two parishes. See Figure 17 in Appendix E for further details.

Here, it is not the parish that defines the neighborhood, but primarily the spatial proximity and
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Table 4: Main topological characteristics of the communities identified in the selected spatial graph:
numbers of vertices (n) and edges (m), density (δ), number of property vertices and proportion
of such vertices relative to the community (Properties), diameter (dmax), harmonic mean of the
graph distance (⟨d⟩), Spearman’s correlation between the graph and spatial distances (ρd).
Com. n m δ # Properties dmax ⟨d⟩ ρd
1 156 429 0.0177 132 84.62% 11 3.78 0.75
2 89 239 0.0305 73 82.02% 8 2.92 0.52
3 90 160 0.0200 62 68.89% 10 3.60 0.50
4 20 24 0.0632 16 80.00% 6 2.27 0.32
5 163 449 0.0170 132 80.98% 9 3.55 0.57
6 31 70 0.0753 24 77.42% 6 2.28 0.56
7 52 82 0.0309 42 80.77% 10 3.22 0.36
8 126 283 0.0180 105 83.33% 8 2.97 0.34
9 168 278 0.0099 135 80.36% 10 3.79 0.48
10 41 54 0.0329 32 78.05% 7 3.04 0.50
11 33 49 0.0464 29 87.88% 6 2.63 0.21
12 132 210 0.0121 105 79.55% 9 3.72 0.53
13 31 34 0.0366 27 87.10% 3 1.93 0.27
14 61 100 0.0273 55 90.16% 7 2.91 0.22
15 115 144 0.0110 105 91.30% 9 3.56 0.03
16 55 56 0.0189 39 70.91% 13 3.89 0.78
17 120 154 0.0108 90 75.00% 12 4.35 0.61
18 91 120 0.0147 78 85.71% 10 3.88 0.75
19 99 148 0.0153 89 89.90% 10 3.57 0.38
20 28 35 0.0463 23 82.14% 8 2.69 0.11
21 91 111 0.0136 69 75.82% 12 4.21 0.52
22 106 153 0.0137 95 89.62% 6 3.09 0.29
23 96 179 0.0196 86 89.58% 7 3.26 0.48
24 13 21 0.1346 11 84.62% 5 1.97 0.31
25 49 68 0.0289 33 67.35% 13 3.62 0.24
26 26 27 0.0415 20 76.92% 7 2.93 0.60
27 28 30 0.0397 20 71.43% 9 3.14 0.36
28 40 136 0.0872 36 90.00% 5 1.97 0.54
29 21 21 0.0500 16 76.19% 8 2.77 0.63
30 68 126 0.0277 46 67.65% 10 3.24 0.63
31 55 91 0.0306 37 67.27% 10 3.41 0.32

what it implies. Parish boundaries do not segment the perceived space of the tenants. They are not
physically visible in the city, which partly explains why they do not reflect in the spatial distribution
of some communities. These boundaries are inevitably less significant than a very concrete and
physical division of urban space, such as the old city walls, even if they have disappeared for
several generations. In this sense, the mental division of urban space, inherited from the old city
delineation, is quite perceptible in the structure of the detected communities.

Out of the 31 communities, only five include properties located both within the old intra-
muros and beyond the old city walls (C17, C21, C25, C29, C31), as shown in Figure 9. These
are located at the border of the two spaces. The perception of individuals does not depend on
a pre-established order based on the official division of the city. It is primarily founded on the
spatial proximity of properties and, by extension, of individuals. More than its relation to the
administrative subdivision of the city, the division highlighted by the communities aligns with that
drawn by the oldest and most structuring streets of the city, constrained by the very topography
of the places and inherited spaces. Thus, the distribution of communities is constrained by certain
elements that concretely segment the space: the topography with the Rock of the Doms, the canals,
and the old walls. These elements clearly separate properties located near each other. When they
are not connected by bridges, they hinder communication and, consequently, sociability between
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Figure 8: Distribution of the communities over the 7 historical parishes of Avignon. Each vertex
color represents a specific community. The vertices are placed depending on their spatial position
(known or estimated). Figure available at 10.5281/zenodo.14175830 under CC-BY license.

individuals.
Beyond spatial proximity, it is also the interactions of individuals around common places that

truly create the community, in this case, the neighborhood.

7.2 Composition of the Communities

The communities exhibit a wide diversity of composition. As shown in Table 4 and illustrated in
Figure 10, they contain mainly properties, whose characteristics may vary from one neighborhood
to another, and invariants — more or less numerous and attractive depending on the case. Different
rationales of construction can be identified, that are primarily related to the uses of space, their
evolution, or, on the contrary, their persistence and stability.

7.2.1 Within the Old Walls

Depending on the neighborhoods, certain elements are predominantly used by the owners to locate
and identify their properties, occupying a central place in the construction of individuals’ lived
spaces. In the old intra-muros of the city, that of the 13th century, it is often the main roads
of the city, those that have structured the city since antiquity. These are main arteries that
traverse the neighborhood, punctuating exchanges and social interactions. Many communities
are built around these streets, though not all of these communities have the same characteristics.
While some communities are more residential, others are resolutely oriented towards craftsmanship
and commerce, or even towards accommodating travelers. The places that unite them are often
revealing of their typology.
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Figure 9: Distribution of property location over communities, in terms of parochial membership
(left) and relative to the old walls (right). Figure available at 10.5281/zenodo.14175830 under
CC-BY license.

Given its location near the Pont Saint-Bénézet and the Rhône river, C21, for example, has
many inns, which are significant social places and important topographical landmarks, often with
very conspicuous signs. Like the inns, the bathhouses are places of social interaction and notable
landmarks in a neighborhood. Alongside the most structuring streets of the community and the
inns, it is thus a bathhouse that holds one of the highest degrees in this community.

Neighborhoods with a much more residential aspect than the one we just mentioned also aggre-
gate around many roads. Community C5 is a good example. Rue des Ortolans plays an important
role in the life of the neighborhood and in the perception the owners have of it. It has long been
dominated by the presence of a prominent Avignonese family, who gave its name to the street
and who settled in the city well before the arrival of the popes. The residential character of this
neighborhood is notably based on the fact that it is a recently constructed area, at least more
recent than the heart of the city further north.

A bit further north of C5, community detection reveals a particularly imposing neighborhood
both in the number of nodes it contains and its extent (C1). It has an obvious residential character
and includes notably beautiful and large residences. Until 1370, one house is particularly used by
contemporaries to situate themselves in this area: it is that of Tymburge Vayrane, a property
owner with a rich real estate portfolio throughout the city. This house is mentioned as a landmark
more often than some streets. This illustrates how much the neighborhood and social interactions
directly influence the perception of the users.

Like the ones we just mentioned, C8 is a very good example of the centrality of streets in the
composition and definition of neighborhoods. The community has a relatively small diameter (8)
given the number of its nodes (126). Spatially speaking, it is particularly dense, which is quite
revealing of the very genesis of the neighborhood and its development from the 11th century. The
extent of this community corresponds very likely to that of the bishop’s boroughs called Scofaria
and Pelliparia. The regularity of the plots around the churches, especially to the south of the main
street, suggests that the bishop, holder of the borough, had certainly intervened very precisely in
the subdivision of certain parts of the area.

Community C18 has a very different characteristic, much less residential. It is located in the
heart of the city, spanning several parishes. It is built around the most important and oldest
commercial areas and marketplaces of the city. This neighborhood is resolutely commercial, and
this is particularly evident in the profile of the individuals one encounters and the types of properties
they own. Thus, in addition to their houses, the owners declare numerous shops or stalls, two types
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Figure 10: Simplified representation of the communities: each node represents a community from
the original network. Node size and link width are proportional to the numbers of vertices consti-
tuting the original communities, and to the number of edges between them in the original graph,
respectively. The pie charts show the composition of the communities in terms of types of spatial
objects. Figure available at 10.5281/zenodo.14175830 under CC-BY license.

of properties not found in more residential neighborhoods like C5. Conversely, certain features of
residences found in other neighborhoods are completely absent here: there are no gardens or
courtyards; the space is primarily used by and for commerce.

If the streets are at the heart of neighborhood construction, it is primarily because they are the
sites of social interactions. These streets are organized around a significant and unifying household,
host commercial and artisanal activities, and are central to the city’s political representation. Each
neighborhood also has essential elements for the daily lives of individuals, such as wells, ovens, and
cemeteries, which contribute to the construction of individuals’ perception of places. These are
undeniable landmarks of the urban landscape, places of sociability, exchanges, and meetings. As
such, they are often the vertices with the highest degree in communities. In the city, burial sites
are thus privileged and central spaces for exchanges and sociability. They must also be associated
with public places such as streets or even more so, squares. Community 13 is a very good example.
It is very small and particularly concentrated (31 vertices for a diameter of 3). All these properties
are connected to the Saint-Symphorien cemetery. The degree of centralization of the community
is, in this respect, quite high. Here, the cemetery is the spatial reference par excellence, and the
neighborhood is entirely built around the burial site.

7.2.2 Beyond the Old Walls

Within the old walls, communities are thus constructed by the proximity relationship between
properties and individuals and by the presence of topographical landmarks that shape the percep-
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tion and usage of individuals in the neighborhood. The neighborhoods located outside the walls
of the 13th century follow very diverse logics, which differ in several ways from the communities
studied so far.

The largest neighborhood detected in this area corresponds to C2. At first glance, it might seem
to follow the same construction logics as those located within the old walls. However, it has certain
characteristics specific to its location and its distance from the historical center of the city. To
locate their properties, the owners refer not only to the streets but also to recent urbanization: the
numerous boroughs developed in this area on former agricultural land. Alongside these boroughs,
many gardens are still present. People frequently use these gardens as reference points. This
neighborhood has another unique characteristic: in addition to its semi-rural aspect, created by
the number of gardens adjoining the new houses of the boroughs, it houses the dependencies of
many services from the old intra-muros. It is likely that this community also hosts the pleasure
homes of certain prelates, as suggested by the number of residences described as large and beautiful,
accompanied by gardens, courtyards, or wells. This neighborhood also has a significant presence
of artisans and merchants. The presence of large gardens still cultivated at the end of the 14th

century must have given a rural appearance to the place, sharply contrasting with the old intra-
muros, which was very densely built and populated. As such, it is overall not densely built. Two
other communities (C19 and C30), located outside the 13extsuperscriptth century walls, share
characteristics with C2 and could thus be described as semi-rural neighborhoods. They retain the
marks of significant rurality while being partly occupied by recent urbanization in certain areas.

Finally, a specific typology of community outside the 13extsuperscriptth century walls must
be highlighted. These are what could be called the borough communities, such as C15. Here,
the borough forms the neighborhood. This is quite noticeable when looking at the elements to
which individuals refer to situate themselves in this space. Firstly, it is the straight street of the
borough that is used: it unites the community built around it, suggesting the planning of the road
in the borough’s subdivision project. Although less used, another street is mentioned; it is called
the “vicinal street” of the borough; there is also a cross street, a dead-end, and a square. In all
cases, the attachment of these elements to the borough is specified. These details remind us that
while these streets are not structuring at the city level, they are strongly so at the neighborhood
and borough level. Whereas the boundaries of the previously studied neighborhoods were more
difficult to perceive, especially for those within the 13th century walls, here the neighborhood
space is clearly delineated. It is no longer just a perceived, subjective space with fuzzy boundaries,
constructed by the proximity and sociability of individuals around various places and inherited
spaces. In the case of the ”borough neighborhood,” the boundaries are tangible and inherent to
the very genesis of the place. Proximity and sociability are indeed present, as evidenced by the
presence of a large borough well to which the owners sometimes refer. However, the neighborhood is
built here around a predefined space, not an unplanned process inherited from an ”already existing
space.” The typology of the declared properties once again highlights this, forming a particularly
homogeneous neighborhood.

The graph extracted using our method is a sufficiently good approximation of spatial distance
for the communities to correspond to spatial segments representative of real neighborhoods in the
sense of lived space. In this regard, the detection of communities in the graph shows a partition of
the city consistent with social practices. The elements that define the communities are multiple and
complementary (livability, buildings, neighborhoods, commerce) and they are essentially places of
sociability or symbolic markers of the urban landscape. They pace and define spatial perceptions.
These perceptions are primarily based on the layering of heritages, with evolutions being integrated
only slowly.

8 Conclusion

In this article, we tackled the problem of segmenting a historical urban space based on incomplete
data. We focused on the specific case of medieval Avignon, during the papacy. On the one hand,
historical sources rarely provide the exact locations of the buildings constituting the city, but on the
other hand, they describe how they are located relative to each other. We adopted a graph-based
approach to take advantage of this relational information while modeling the city, and proposed
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several methods to extract such confront networks. We designed two conflicting objective criteria
to select the optimal extraction method: data coverage and distance correlation. It turns out
the best method requires discarding some of the information provided by the original historical
sources in order to preserve the spatial proximity encoded in the graph. Moreover, our results show
that leveraging certain information from secondary sources can considerably improve the quality
of the graph. Finally, we partitioned the best confront network through community detection,
in order to perform a qualitative analysis of the resulting segmentation of the urban space. Our
discussion showed that the communities are completely consistent with historical knowledge, and
help understand how people perceived urban space at the time.

We identify mainly two perspectives to extend our work. First, the land registries that we
used in this article are very common in historical studies, especially during the Medieval Ages.
However, they do not always take exactly the same form, and can also vary in content from
one city to the other, depending on the local practices. We want to assess the robustness of
our extraction approach by applying it to other cities, which will require some adaptation. For
example, in the case of the city of Orleans [14], the spatial relationships partly differ from those
described in Section 3.3 and Table 6 for Avignon: there are only very few cardinal relationships.
But this could be compensated by leveraging other types of information, for instance regarding
the notaries and families involved, and their social relationships. The second perspective concerns
the estimation of the missing absolute positions. In the case of Avignon, the position of certain
spatial objects is known with reasonable certainty, and can be leveraged together with the spatial
relationships encoded in the confront networks, to interpolate the position of the other objects.
A simple baseline consists in averaging the position of the neighboring objects, but this does not
account for the semantics of the spatial relationships. We want to take advantage of Graph Neural
Networks [17] to perform a better prediction, possibly also using the many vertex attributes at our
disposal.

Resource Availability

The source code written to implement our extraction methods and experiments is available online at
https://github.com/CompNet/MedievalAvignon. The input data are included in this repository,
whereas all the files produced during their processing are available at https://doi.org/10.5281/
zenodo.14175830.
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Sicard de Fraisse. Comité des Travaux Historiques et Scientifiques, Paris, FR, 1993. URL
https://gallica.bnf.fr/ark:/12148/bpt6k6431727c.texteImage.

[21] A.-M. Hayez. Livrées avignonnaises de la période pontificale. Mémoires de l’Académie de
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A Historical Sources

Table 5 lists of all the documents used as primary historical sources in the present work. The
conservation reference numbers include the following acronyms:

• AAV: Apostolic Archives of the Vatican;
• AMA: Avignon Municipal Archives;
• DABdR: Departmental Archives of Bouches-du-Rhône;
• DAV: Departmental Archives of Vaucluse;
• PACB: Private Archives of the Château de Barbentane.

The Accounts of the City’s Clavigers lists the properties belonging to the Pope since 1348.

Table 5: List of documents used as the main historical sources in the present work. See the main
text for the meaning of the acronyms used in column CRN (Conservation Reference Numbers).

Document Date CRN Language
Terrier of Bishop Anglic Grimoard 1366 DAV, 1G10 Latin
Terrier of the Provost of the Cathedral 1366 DAV, G536 Latin
Terrier of Sainte-Catherine 1366 DAV, 71H5 Provençal
Terrier of the Urban Community 1362 AMA Latin
Terrier of the Repenties of Notre-Dame des Miracles 1395 DAV, 107H15 Latin
Terrier of the Collegiate Chapter of Saint-Pierre 1380 DAV, 9G2 Latin
Accounts of the City’s Clavigers 1384 AAV Latin
Terrier of the Hospital of Saint-John of Jerusalem 1350 DABdR Provençal
Terrier of the Cabassoles 1319 PACB Latin

B Relationship Normalization

Table 6 lists the relationships between objects that appear in the historical sources, with their
English translation, and how we normalize them to ease graph extraction.

For certain relationships, the normalization depends on whether the considered object is two-
dimensional, by opposition to punctual (building, shop...) and linear (streets, channels...) objects.
Two-dimensional objects include boroughs, parishes, and cardinal’s liveries.

Relationship Egal (i.e. Same as) is particular, as it does not appear explicitly in the land
registers, but is inferred manually. It connects two surface forms representing the same real-world
entity: we merge them during the normalization.

C Extracted Graphs

Figure 11 shows the full graph, i.e. the graph extracted without discarding any vertex or edge, and
without inserting any additional relationship. Vertex location is determined using the Yifan-Hu
layouting algorithm [22].

Figures 12 and 13 show the graphs extracted through all the optional steps considered in the
article. The layout corresponds to the spatial position of the vertices: exact when it is known, and
estimated when it is unknown.

D Extraction Statistics

D.1 Long Streets

Figure 14 shows the plots used to select the optimal value of parameter k during the extraction
process of graphs RFW k (raw data, flat relations, whole vertices, top k streets removed) and EFW k

(same thing, but with extended data). This parameter corresponds to the number of streets re-
moved during the extraction process. The removal starts with the longest streets (cf. Section 5.2.1).
The y axis corresponds to Spearman’s correlation between the graph and spatial distances. The
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Table 6: Types of relationships appearing in the land registers to position properties relatively
to other spatial objects, their translation in English, and how they are normalized before graph
extraction.
Occurrences Relationship Translation Normalized Form

73 Iuxta Near... Related to...
250 Juxta
82 Prope
2 Proxime
3 In Angulo At the corner of... Street: Related to...
1 In Cantono 2D objects: Inside of...
13 In Compito Sive Cantono
8 In Introytu At the entrance of... Street: Related to...

Others: Inside of...
91 Extra Outside of... Outside of...

2,009 In Inside of... 2D objects: Inside of...
4 Intra Others: Related to...
2 Ab Opposito Opposite to... Related to...
1 Ex Opposit
10 In Capite At the beginning of... 2D objects: Inside of...

Others: Related to...
18 Super Above... Related to...
9 Supra

521 A Orient West of... West of...
535 A Occident East of... East of...
511 A Circio South of... South of...
1 Ab Aura Recta

548 A Meridie North of... North of...
2 A Una Part One side facing... Related to...

1,208 Ab Una Part
4 A Duabus Part Two sides facing... Related to...
1 A Tribus Part Three sides facing... Related to...
21 A Parte Retro Rear side facing... Related to...
17 A Part Ante Front side facing... Related to...
1 A Part Inferiori Lower side facing... Related to...
2 A Parte Lateris Lateral side facing... Related to...
5 A Part Posteriori Rear side facing... Related to...
1 Sive Ab Una Part One side may face... Related to...
1 Conjuncto Adjacent to... Related to...
15 Contigu
2 Contiguo
35 Retro Behind... Related to...
59 Ante Before... Related to...
3 Egal Same as... (Merge vertices)
6 Infra Below... Related to...
29 Subtus
8 Ad Towards... Related to...
4 Apud
13 Versus
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Vertex Types

Property
Other object

Edge Types

West of...
East of...

South of...
North of...

Related to...
Inside of...
Outside of...
Artificial

Full graph

Figure 11: Full graph extracted from our database. It contains all the available raw data (but no
additional relationships), without any vertex filtering. The layout is obtained using the Yifan-Hu
method [22]. Figure available at 10.5281/zenodo.14175830 under CC-BY license.
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Figure 12: Graphs extracted using the whole vertex approaches (W). Vertices are positioned de-
pending on their geographic location. Those whose spatial position is unknown are not shown. The
left-hand column shows the graphs based on the raw data (R), whereas the right-hand one contains
the extended versions that leverage additional relationships (E). The two top rows show the graphs
that focus on all types of vertices, with both flat and hierarchical relations (H) for the first and
only flat edges for the second (F). The two bottom rows also show flat graphs, but without the
non-punctual objects except the streets (street) and the shorter streets (k), respectively. Figure
available at 10.5281/zenodo.14175830 under CC-BY license.
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Figure 13: Graphs extracted using the split vertex approaches (S). Vertices are positioned de-
pending on their geographic location. Those whose spatial position is unknown are not shown.
The left-hand column shows the graphs based on the raw data (R), whereas the right-hand one
contains the extended versions that leverage additional relationships (E). The two top rows show
the graphs that focus on all types of vertices, with both flat and hierarchical relations (H) for the
first and only flat edges for the second (F). All non-punctual objects are split. The two bottom
rows also show flat graphs, but without the non-punctual objects except the streets (street) and
the shorter streets (k), respectively, which are split. Figure available at 10.5281/zenodo.14175830
under CC-BY license.
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x axis shows the number of vertices that model properties and are still present in the graph after
removing its longest streets. Each point shows both metrics for a specific value of k, indicated by
its color. The dotted line materializes the Pareto front, which includes the solid dots.
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Figure 14: Selection of the optimal value of parameter k for the RFW k (left) and EFW k (right)
extraction methods (see Section 6.3). Figure available at 10.5281/zenodo.14175830 under CC-BY
license.

Figure 15 shows the evolution of our two criteria, as a function of the proportion of longest
streets that undergo the removal from methods ·FW k (solid lines) or the splitting from methods
·FS k (dotted lines): on the left, the proportion of properties left in the produced graph, and on
the right, Spearman’s correlation between spatial and graph distances. Red lines show the results
obtained on the raw data, whereas blue lines represent the extended data. Increasing k when
splitting has little effect on coverage, hence the horizontal dotted lines in the left plot. Street
removal (solid lines) causes the deletion of all the properties that happen to be connected only to
the deleted streets, hence the decrease in coverage. For distance correlation (right plot), increasing
k has not much effect when processing the raw data (red lines), be it through street removal or
splitting. On the contrary, there is a clear effect when using the extended data: removing too
many streets tend to decrease the distance correlation.

D.2 Distance Comparison

Figure 16 shows the comparison of the graph and spatial distances, for each graph extracted using
one of the methods considered in the article. The colors are the same as in Figure 7: red for R·W ·,
blue for E·W ·, green for R·S ·, and purple for E·S ·. The lines represent the means and the areas
are the standard deviations.

The separated dot that appears on the right side of certain plots (ex. RFW all), reveals the
existence of separated components in the corresponding graph, as the graph distance between
vertices located in different components is infinite. Ideally, there should be a single component,
and if there are several ones, then the spatial distances matching an infinite graph distance should
be the largest of all.

Visually, a good result corresponds to a relatively straight line (ex. EFW k), or at least a
monotonous function (ex. RFW k), with low dispersion. Some plots exhibit an increasing then
decreasing trend (ex. RFS all), which means that large graph distances are associated with small
spatial distances. This means that the graph is too linear: some shortcuts are missing to correctly
encode the spatial distance.

Spanning a wide range of graph distances is also a good thing (ex. EFS k), as it suggests a
better “distance resolution” on the graph (i.e. a better chance that two distinct spatial distances
are not associated to the same graph distance). Graphs that include too many shortcut vertices
tend to exhibit a very narrow range (ex. RHW all).

34 / 37

http://doi.org/10.5281/zenodo.14175830


M. Ferrand & V. Labatut Approximating Spatial Distance Through Confront Networks

0 20 40 60 80 100

0
20

40
60

80
10

0

Proportion of removed/split streets (%)

P
ro

po
rt

io
n 

of
 p

ro
pe

rt
ie

s 
am

on
g 

ve
rt

ic
es

 (
%

)

Method

RFW_k
EFW_k
RFS_k
EFS_k

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of removed/split streets (%)

D
is

ta
nc

e 
co

rr
el

at
io

n

Method

RFW_k
EFW_k
RFS_k
EFS_k

Figure 15: Evolution of the coverage (left) and distance correlation (right) as functions of the
proportion of longest streets considered for removal or splitting in extraction methods ·F· k (see
Section 6.4). Figure available at 10.5281/zenodo.14175830 under CC-BY license.

E Community Structure

Figure 17 provides additional visualization of the community structures, in addition to those pre-
sented in Section 7 of the main text. It shows two so-called community networks, representing
the community structure in a simplified way, where each node represents a whole community in
the original graph. The left plot uses the same vertex colors as in Figure 8 to show the relative
position and importance of the communities. The right plot uses the colors of the parishes, as in
Figures 8 and 9, to represent the distribution of properties over parishes, for each community.
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Figure 16: Comparison of graph and spatial distances, for all graphs. Figure available at
10.5281/zenodo.14175830 under CC-BY license.
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Figure 17: Two versions of the community network: each node represents a community from
Section 7, its size is proportional to the number of vertices in the community, and the thickness of
a link connecting two nodes corresponds to the number of edges between the matching communities
in the original graph. Top: each community is represented using a unique color, as in Figure 8.
Bottom: each community is represented by a pie chart showing how the parochial membership
of its constituting properties is distributed. Figure available at 10.5281/zenodo.14175830 under
CC-BY license.
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