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A clustering-based survival 
comparison procedure designed to 
study the Caenorhabditis elegans 
model
Paul-Marie Grollemund1,2,4, Cyril Poupet3,4, Élise Comte1, Muriel Bonnet2, 
Philippe Veisseire2 & Stéphanie Bornes2

Caenorhabditis elegans is highly important in current research, serving as a pivotal model organism 
that has greatly advanced the understanding of fundamental biological processes such as 
development, cellular biology, and neurobiology, helping to promote major advances in various 
fields of science. In this context, the survival of a nematode under various conditions is commonly 
investigated via statistical survival analysis, which is typically based on hypothesis testing, providing 
valuable insights into the factors influencing its longevity and response to various environmental 
factors. The extensive reliance on hypothesis testing is acknowledged as a concern in the scientific 
analysis process, emphasizing the need for a comprehensive evaluation of alternative statistical 
approaches to ensure a rigorous and unbiased interpretation of research findings. In this work, we 
propose an alternative method to hypothesis testing for evaluating differences in nematode survival. 
Our approach relies on a clustering technique that takes into account the complete structure of survival 
curves, enabling a more comprehensive assessment of survival dynamics. The proposed methodology 
helps to identify complex effects on nematode survival and enables us to derive the probability 
that treatment induces a specific effect. To highlight the application and benefits of the proposed 
methodology, it is applied to two different datasets, one simple and one more complex.

Keywords  Survival analysis, Clustering, Caenorhabditis elegans, Methodological development, Dataset 
complexity

Caenorhabditis elegansis a nonparasitic nematode found in soil, compost heaps, and rich humus1. It feeds on 
fungi and bacteria. The first work on this animal was carried out in 1900 by Maupas2, but it was in the 1960s, 
that this model was used in laboratories by Brenner for genetic studies. In 1998, it was the first multicellular 
organism whose genome was fully sequenced3. In 2000, Lai and colleagues showed, via comparative proteomic 
analysis, that C. eleganshas at least 83% (15,344 sequences out of 18,452 proteins) of human orthologs4. Genes, 
signaling pathways, and basic biological functions are therefore conserved5. This is the case for apoptosis6, 
immunological mechanisms7, stress response8, etc. The perfect knowledge of its genome has allowed the 
generation of more than 12,000 different genetically characterized mutants, which are available to the scientific 
community, mainly through the Caenorhabditis Genetics Center (Minneapolis, MN, United States of America) 
and the National Bioresource Project for the Experimental Animal "Nematode C. elegans" (Tokyo, Japan). C. 
elegansis also amenable to sophisticated yet convenient genetic techniques, such as RNAi feeding, transgenesis 
via microinjection, mutagenesis screening, and CRISPR/Cas9 genome editing9,10. This allowed mechanistic 
research to understand human diseases using the worm. Moreover, C. elegans has a transparent cuticula, and it 
is possible to visualize gene expression in transgenic strains with various fluorescent proteins in live organisms. 
It has many other advantages, including a short lifespan (2–3 weeks), the possibility of having a synchronized 
isogenic population, low-cost maintenance, and no ethical requirements.

In laboratories, its natural and diversified diet is substituted by Escherichia coli OP50 or by microorganisms 
and/or the extract and the active ingredient of interest. Depending on the study, phenotypes such as lifespan, 
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longevity, and mobility are observed. Over the past thirty years, 38,446 publications have referenced the 
National Center for Biotechnology Information (NCBI) for the nematode C. elegans. In the same time interval, 
we reference 96,488 publications with the keyword lifespan, including 4,702 for the worm. Nematodes have 
been used in many fields, including those related to aging11, immunity12, abiotic stresses such as oxidative 
stress13, hypoxia14, heat stress15, cold tolerance16, osmotic stress17, UV light18, heavy metal stress19, biotic stress 
(pathogenic bacteria20and fungi21), toxicity testing22 and lifespan measurement. It is a setting widely used in 
biology to visualize the effect of a treatment on an organism. For example, the selection of a new probiotic 
strain is based on in vitro and in vivo tests before human experiments for the last stages of research. In vivo tests 
involving laboratory animals such as mice, rats, rabbits, and C. elegans are among these models, particularly in 
the screening and identification of therapeutic targets conserved in humans23.

Longevity and survival analyses are key tools for the study of new live therapeutic products24. In this case, live 
worms were counted daily. The lifespan curves represent the evolution of the number of living nematodes over 
time. In nematodes, as in other preclinical models and human clinical studies, the effect of a treatment can be 
monitored and analyzed with specific statistical methods.

For a range of experiments, the resulting data are counts of living nematodes over time for which a survival 
analysis can be used to address standard problems. For example, evaluating the potential impact of a given 
drug is performed by comparing the survival function of a treatment group against that of a control group. A 
standard approach was described and studied by Petrascheck and Miller25, consisting of deriving the Kaplan‒
Meier method26to obtain survival curve estimates and comparing them according to the log-rank test to 
evaluate significant differences between curves (which reflects the difference between two underlying hazard 
functions)27,28.

The log-rank test is a widely used method in survival analysis for comparing survival curves between groups. 
It is asymptotically valid but may perform rather poorly when the proportional hazards (PH) assumption does 
not hold29 and suffers from its inability to handle competing risks or time-dependent covariates. It can be 
determined that PH does not hold according, for instance, by computing Schoenfeld residuals; nevertheless, 
having survival functions that cross each over is strong evidence of PH violation. In that case, the power of 
the log-rank test is reduced by PH violation, which increases the possibility of incorrectly detecting significant 
differences between two survival functions.

To overcome these limitations, several extensions of the log-rank test have been developed. These extensions 
include, for instance, the stratified log-rank test for adjusting for covariates, the weighted log-rank test for 
incorporating weights, and the generalized log-rank test for accommodating nonproportional hazards. These 
advancements in statistical techniques enhance the applicability and robustness of survival analysis, providing 
insights into the relationships between covariates and survival outcomes. However, each alternative method 
is not straightforward. The tuning parameters, such as the relevant periods over which the survival curves are 
compared, must be fixed, which could be challenging to determine.

As another limitation in this framework, when several drugs are tested, multiple combinations of pairwise 
log-rank tests must be computed to obtain an overview of the relative effects of each drug, for example21,. 
The performance of multiple tests on the same dataset drastically increases the risk of the testing procedure 
and promotes false positive results. Although numerous approaches, such as the Bonferonni correction, have 
been developed to overcome this issue, recent works support the systematic reliance on this type of approach. 
Moreover, pairwise comparisons provide only a partial view, whereas we aim to discern broader differences 
among multiple survival curve groups. In other words, tests that compare pairs of conditions fail to consider the 
overall joint structure of survival curves.

Another limitation is that the log-rank test does not indicate the direction of any potential difference. While 
some may argue that this is not the test’s intended purpose and that defining a comparison of survival function 
is unclear, we stress that such considerations are integral to statistical analysis. Typically, they are addressed 
through graphical interpretation or by comparing summaries such as the half-life time. Depending solely on 
one-dimensional summaries to compare high-dimensional quantities such as survival functions may yield 
inconsistent results.

Finally, we highlight that relying mainly on statistical significance to distinguish between positive and negative 
results is not recommended30. Moving beyond statistical significance is induced by recent works30–32, which 
are currently part of various scientific fields, such as Hayat et al.33, Erickson and Rattner34, Campitelli35, and 
Ciapponi et al.36. This movement is also motivated by recalling historical aspects of significance testing37, which 
highlight the limitations and misinterpretations often associated with solely relying on statistical significance as 
a measure of scientific validity.

In this work, we aimed to assess the different impacts of various treatments on nematode survival to determine 
the benefits of (i) the use of the probiotic strain Lacticaseibacillus rhamnosus Lcr35® for the treatment of Candida 
albicansinfection38,39or (ii) the administration of extracts from a fermented matrix (cheese) on the longevity of 
the nematode40. These studies required the use of the Kaplan‒Meier model and the log-rank test to determine 
significant differences between the experimental conditions. However, owing to the limitations presented above, 
the performance of these approaches is not sufficient for a detailed understanding of biological mechanisms. 
The log-rank test only allows for the detection of an overall significant difference between two experimental 
conditions and does not provide precise information regarding potential differences in specific portions of 
the survival curves, such as young versus older. Moreover, in cases where the curves intersect, the test may be 
insufficiently sensitive in detecting a difference that is present, leading to a loss of information regarding the 
understanding of underlying mechanisms. To address these issues, further developments are necessary to enable 
comparisons between survival curves while overcoming the mentioned limitations. In particular, comparing 
survival curves in scenarios with more than two groups requires the implementation of a method that extends 
beyond traditional hypothesis testing to complement the log-rank test.
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To perform a survival analysis and determine the differences induced by experimental drugs, in this paper, 
we propose the transition from the null hypothesis testing (NHT) paradigm to a method based on a clustering 
approach. A clustering-based method offers a viable approach that allows for a comprehensive analysis of the 
data while circumventing the limitations associated with traditional test procedures. This proposal is inspired 
by ideas such as those proposed by Kamary and colleagues, which involve reframing hypotheses as components 
of a mixture model41. In this context, the use of an unsupervised classification method involves the use of a 
nonparametric version of this paradigm. Clustering is used in this context as a method of mapping possible effects 
and then determining how the treatments studied fit into an estimated cluster distribution. The proposed method 
should be viewed as a complement to the log-rank test by providing an additional perspective on the type and 
scale of observed survival differences. Overall, the proposed approach offers a robust and flexible methodology 
for comparing survival curves in scenarios involving more than two groups, enabling comprehensive analysis of 
complex survival data.

Materials
As the method is designed for nematode data analysis, it is tested on two different nematode experiments (see 
following subsections). The aim is to include both simple (from two experiments) and complex datasets in terms 
of outcomes. The first database refers to the work of Poupet and colleagues38,39, whereas the second relates to the 
research of Cardin and colleagues40.

Treatment of candidiasis in C. elegans with L. rhamnosus Lcr35®
C. albicans fungal infection was induced in C. elegans at the L4/young adult stage, and preventive or curative 
treatments were administered via E. coli OP50 or L. rhamnosus Lcr35®. The survival assay was conducted 
according to the methodology described by de Barros et al.42, with certain modifications.

For the control groups, monotypic contamination was induced in C. elegans by placing them on plates 
containing only C. albicans (BHI plates), L. rhamnosus Lcr35® (NGM plates), or E. coli OP50 (NGM plates). For 
preventive treatment, worms were placed on plates containing L. rhamnosus Lcr35® or E. coli OP50. The worms 
were subsequently washed with M9 buffer to remove bacteria before being transferred to C. albicans plates. For 
curative treatment, worms were initially placed on C. albicans plates and then transferred to L. rhamnosus Lcr35® 
or E. coli OP50 plates after washing. All the incubations were carried out at 20 °C. The nematodes were exposed 
to C. albicans for 2 h, while for E. coli OP50 and L. rhamnosus Lcr35®, various incubation times were tested (2, 
4, 6, and 24 h). All plates were supplemented with 0.12 mM 5-fluorodeoxyuridine to maintain a synchronous 
population.

The infected nematodes were washed off the plates with M9 buffer and transferred to a 6-well microtiter 
plate, with approximately 50 worms per well. Each well contained 2  ml of BHI/M9 (20%/80%) liquid assay 
medium supplemented with 0.12 mM 5-fluorodeoxyuridine (Sigma, Saint-Louis, United States). The microtiter 
plates were then incubated at 20 °C.

The nematodes were observed daily, and they were considered dead when they did not respond to gentle 
mechanical stimulation. This assay was conducted as three independent experiments, with three wells per 
condition.

The data analyzed in this paper are derived from our previous work38,39.

Effect of cheese extracts on C. elegans longevity
The effects of dry milk extracts on the lifespan of the C. elegansN2 strain were assessed through a longevity assay. 
An agar medium was prepared by dissolving 3 g of NaCl and 6 g of agarose in 1 L of water. The medium was 
heated to 40 °C and then supplemented with dried milk extracts, following a procedure described elsewhere40, 
and 0.12 mM FUdR was added. The supplemented medium was added to a 24-well plate at 40 °C. To inhibit 
significant fungal growth, the aliquot was further supplemented with amphotericin B at a final concentration of 
1.6 µg/mL. After being poured, the wells were immediately transferred onto ice to solidify the agar, which was 
subsequently stored at 4 °C until use. Synchronous L4/young adult stage worms were placed in each well, with 
approximately 20 worms per well, on supplemented agar medium (or agar medium for the control condition). 
The worms were fed heat-killed E. coli OP50 and maintained at 20  °C throughout the experiment. Food 
supplementation was performed every 3 days to prevent starvation (20 μL of 100 mg/mL suspension).

The nematodes were observed daily, and they were considered dead when they did not respond to gentle 
mechanical stimulation. This assay was conducted as three independent experiments, with three wells per 
condition.

The data analyzed in this paper are derived from our previous work40.

Methods
R software version 4.1.2 was used to implement the proposed methodology. The different steps of the proposed 
pipeline analysis are described below and are summarized in Fig. 1, which takes, as inputs, experimental data 
(detailed above 1. Materials section) and the calibration data outlined in Sect. 2.2. The implemented procedure 
is available at the following address: https:​​​//gith​ub.​com/pmgrolle​mund/sur​vival_cl​ustering.

Data augmentation
Nematode survival data are acquired through manual counting under a microscope, which is a meticulous 
process yielding uncertain outcomes. For example, in situations with numerous nematodes in a sample, a 
nematode may inadvertently be recounted. Additionally, determining a nematode’s vitality is not always 
definitive and is typically based on movement or characteristic morphology. Consequently, the data exhibit 

Scientific Reports |        (2024) 14:28257 3| https://doi.org/10.1038/s41598-024-79913-y

www.nature.com/scientificreports/

https://github.com/pmgrollemund/survival_clustering
http://www.nature.com/scientificreports


uncontrolled variability, notably influenced by the experimenter’s judgment. Moreover, nematode survival 
experiments typically involve multiple observers over several days. The counting ability of each experimenter 
influences raw data and statistical analysis outcomes. Accounting for experimenter effects is challenging, and we 
propose a method in this section to address this issue. The aim is to ensure that the observed survival differences 
between experimental conditions are not partly attributed to the presence of multiple experimenters or their 
respective counting performances. To address this problem in our analysis, we propose adding simulated data to 
the dataset to mimic this variability. These simulated data reflect what might have been collected by the same or 
another experimenter and then allow us to model experimenter effects. In the following, these simulated data are 
used to assess the robustness of the experimental data, particularly by determining whether the simulated data 
for a specific treatment align similarly to the experimental data for the same treatment.

Prior to obtaining calibration data, the variability in the experimenters’ counts must be measured to simulate 
synthetic data. Therefore, an experiment must be conducted to determine the variability in counting by the 
experimenters, in which the experimenters counted the same pit over several days and several times a day. This 
results in a dataset referred to as calibration data. Studying calibration data enables us to infer the distribution 
of counting errors on the basis of the number of nematodes in the well. By characterizing the distribution of 
counting errors by experimenters, the aim is to consider the intensity of these errors concerning the analysis 
of data from other experiments. To accomplish this, we propose in this work to proceed with simulation to 
augment the database with survival curves that could have plausibly been observed under similar experimental 
conditions. To achieve this goal, we have developed an algorithm that simulates counting errors on the basis 
of the estimated distribution while ensuring that a count on the same day cannot be strictly greater than the 
previous count for the same well. For each datum at a given time point, a counting error is simulated on the basis 
of the empirical distribution of counting errors. For further details, refer to the GitHub repository containing all 
the code for this method.

Data preparation
Survival curves are estimated according to a standard Kaplan‒Meier procedure (with the R package survminer 
0.4.9). To compare the curves for each time, an interpolation is performed so that survival curves are evaluated 
on the same temporal grid. As the monotonicity of the survival curves is an important feature to preserve, 
the interpolation method chosen is constrained spline estimation43, which is performed with the R package 
ConSpline 1.2. As the aim of this study was to measure the difference in terms of survival between experimental 
conditions and a control group, we computed the average survival curve (ASC) of the control group, and we 
derived the deviance survival curve for a given survival curve S(.) as ASC(t)—S(t), at each time t of the overall 
considered time period.

Functional clustering
The deviance survival curves are clustered with the discriminative functional mixture model44by using the R 
package funFEM 1.2. To obtain relevant results, covariance models and several clusters are chosen according 
to the ICL criterion45. In this case, the resulting clusters can be viewed as being sufficiently different for certain 
factors and can therefore be seen as evidence of difference in the same way as a log-rank test. As a major difference, 
the log-rank test and these weighted alternatives evaluate the difference in (weighted) average survival curves, 
whereas a functional clustering approach can detect differences at different temporal locations and different 
temporal scales. In practice, the range of possible cluster numbers is from 2–10, avoiding large numbers since a 
large cluster number negatively impacts the ability to interpret the results. Note that clustering is performed only 
on experimental data, not on simulated data, ensuring that the number and simulation method of simulated data 
do not influence the clusters found. The simulated data are solely used for the postprocessing phase described 
in Sect. 2.3

To facilitate interpretation, a label is assigned to each cluster, corresponding to the way the survival curve 
deviates from ASC. For the sake of interpretation, determining deviation consists of segmenting the time domain 
into distinct intervals and evaluating whether the average difference from the ASC for each interval exceeds a 
given threshold s. For instance, a cluster with an average curve D is labeled “ + / + + /-/ = ” if

	
s <

∫

I1

D (t) dt ≤ 2s and 2s <

∫

I2

D (t) dt and − 2s ≤
∫

I3

D (t) dt < −s and − s ≤
∫

I4

D (t) dt ≤ s

Fig. 1.  Pipeline for the proposed survival data analysis.
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where the indexed intervals I1 to I4 correspond to four default intervals used for segmenting the time domain of 
survival curves. These intervals are predefined but can be manually adjusted as needed. According to the range 
of survival variation, the parameter s is by default fixed as 0.15.

Assessing probability allocation
Survival deviation clusters allow us to define the different patterns of variation occurring in the database, 
considering the temporal dimension of the data. In other words, clusters correspond to “effect groups”, or in 
other words, to groups representing various potential effects on nematode survival. To link these effect groups 
with experimental conditions and then determine the impact of treatments on nematode survival, we must 
ascertain how treatments are distributed across the detected clusters by providing a degree of association 
between a treatment and the set of detected possible effects. This degree of association is computed via the 
clustering method since it involves a probabilistic model (Gaussian mixture model), from which we derive the 
probability of each curve belonging to each cluster. The association of a treatment with a cluster is defined 
as the average degree of association of each survival curve in the cluster. Note that considering augmented 
data allows us to more robustly determine the probability of assigning a treatment to a cluster. Indeed, taking 
into account the variability in counting errors helps to put into perspective the degree of association to which 
treatment is effectively associated with a possible effect on nematode survival. In practice, such computations 
rely on the ability to compute the probability of cluster allocation for data not used to fit the clustering model 
(simulated data), but the current implementation of the method (funFEM 1.2) is not able to compute the cluster 
allocation probability for this type of data. We then implement a new prediction procedure by retrieving the 
estimated matrix representation of the functional data and by using the hidden function “.estep” of the R package 
funFEM to obtain the cluster allocation probability. The newly implemented procedure allows us to indicate how 
each treatment probably distributes on the estimated clusters, according to variability in experimenter counting 
performance.

Results
Variability in experimenter counts
To incorporate experimenter variability into the data analysis, an additional experiment was conducted. 
During this experiment, two experimenters counted the number of nematodes in the same wells multiple times 
a day. The experiment spanned 15  days, with 10 counts per day per experimenter. By calculating the mean 
counts per well, an approximation of the true number of nematodes in the well was obtained, allowing for 
the determination of counting errors at each attempt. Specifically, it was estimated that the wells contained a 
maximum of 35 nematodes at the beginning of the experiment and a minimum of 10 nematodes at the end. 
This is not concerning if the results do not exceed these thresholds since laboratory experiments rarely exceed 
the maximum threshold, and in addition, we consider that counting errors are minimal below ten nematodes.

The number of counting errors estimated in this manner ranged from −8 to 11, which was consistently 
observed across both tested experimenters. Notably, the intensity of counting errors only marginally increases 
with an increase in the number of nematodes in the well. When the estimated number of nematodes is lower 
than 15, the standard deviation of the counting error is approximately 1.363, and when the estimated number 
of nematodes is greater than 30, the standard deviation is approximately 2.606. Furthermore, the distribution of 
counting errors is quite symmetrical: 31.88% of underestimation counts and 34.06% of overestimation counts. 
Additionally, Fig. 2 provides a graphical representation of the distribution of counting errors on the basis of 
the estimated number of nematodes in the well. To produce this heatmap, two steps were undertaken. The first 
step involved estimating the error distribution on the basis of the estimated number of nematodes in the well. 

Fig. 2.  Heatmap of the counting error distribution based on the estimated number of nematodes in the well. 
The light color represents a high probability, whereas the dark color indicates a low probability.
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The obtained distributions were subsequently smoothed to ensure the continuity of the results as the number of 
nematodes varied.

Survival clustering
In our study, we employed two distinct datasets to evaluate the performance of our statistical analysis model. 
Through conventional log-rank analysis, one dataset proved straightforward for interpretation, yielding robust 
and significant differences. Conversely, the other dataset posed a more intricate challenge because of the crossing 
survival curves, making interpretation complex. In cases where survival curves are intertwined, the log-rank 
test loses its power and becomes less suited for analysis. The underlying objective was to ascertain whether 
clustering analysis could streamline result interpretation, especially in scenarios where traditional log-rank 
analysis encounters limitations.

Analysis of the impact of incubation time on worm survival
Figure 3 illustrates the impact of varying incubation times (2, 4, 6, and 24 h) with the nonpathogenic E. coli OP50 
strain on the survival of C. elegans. Figures 3A and D illustrate the evolution of the nematode survival probability 
for each experimental condition, and it becomes apparent that the incubation time with the bacterium does not 
seem to have a discernible impact, with the average curves crossing. This outcome is particularly evident following 
the categorization analysis of the data. As depicted in Fig. 3C, we observed that the four experimental conditions 
were consistently grouped into four clusters. Within cluster 1, the “6  h” condition predominates, whereas 
the “4 h” and “24 h” conditions are represented at similar levels. In cluster 2, the “2-h” and “24-h” conditions 
constitute the majority at approximately 50%, whereas the other two conditions constitute approximately 25%. 
The last two clusters are at relatively weak levels for every condition, especially for the “2 h” condition in cluster 
3 and the “6 h” and “24 h” conditions in cluster 4.

Examining the profiles of the various clusters’ curves (Fig. 3B and E), we note that cluster 4 leads to a subtle 
rise in the probability of nematode population survival for later times, specifically beyond 8–10 days. In contrast, 
cluster 2 is more conducive to shorter durations, approximately 5 days. Moreover, clusters 1 and 3 exhibit an 
intermediate trend, falling between the characteristics of clusters 2 and 4.

In conclusion, the outcomes derived from the clustering tool suggest that incubation time with the control 
bacterium has no discernible effect on nematode survival. The curves representing different incubation periods 
overlap consistently, indicating that any chosen incubation time yields indistinguishable results. This implies 
that, from a survival perspective, the nematode is resilient regardless of the specific duration of exposure to the 
control bacterium. Importantly, the clustering results align with our previous research38, where we utilized the 
conventional log-rank method for analysis. This consistency in interpretation underscores the robustness of 
the clustering approach, demonstrating its effectiveness in yielding results comparable to those of established 
methodologies. This finding reinforces the notion that irrespective of the analytical tool employed, the lack of 
significant differences in survival probabilities remains a consistent finding across various incubation times with 
the control bacterium.

Figure 4 shows the effects of various incubation times (2, 4, 6, and 24 h) with the probiotic L. rhamnosus 
Lcr35® on the survival of C. elegans. As depicted in Fig. 4A, all the conditions resulted in increased longevity 
compared with the control condition. However, this increase is not uniform, suggesting the presence of a 
hierarchy among the experimental conditions.

As shown in Fig. 4E, both the 2-h and 4-h conditions clustered together in groups 2, and 3 at relatively similar 
levels. Notably, the 2-h condition predominates in Group 3, whereas the 4-h condition prevails in Groups 2. 
Concerning the survival curves, it is apparent that the two conditions display similar patterns. Compared with 
that of the control, the difference in survival was equal, peaking after approximately 7.5 days (Fig. 4D). However, 
in groups 2 and 3, there was a noticeable discrepancy in survival, with Group 2 exhibiting a more pronounced 
and slightly delayed effect. This distinction becomes particularly evident during intermediate and longer time 
intervals, roughly between 5 and 15 days (Fig. 4B).

In contrast, incubation with L. rhamnosus Lcr35® for 6 h resulted in a moderate decrease in longevity compared 
with the previous experimental conditions. Categorization, however, is intricate, as four subpopulations appear 
to cluster relatively evenly in groups 1, 2, 3, and 4. This finding suggests that this experimental condition 
represents a pivotal incubation time, marking a transition between optimal incubation times for the nematode 
and those where the impact is still positive but not relevant.

Notably, the condition corresponding to a 24-h incubation time stands out distinctly from the other 
conditions. According to Fig. 4E, this condition predominantly resides in Group 4, which also includes the 6-h 
incubation condition, comprising approximately 95% of the group. Graphically, (Fig. 4A-D and, in comparison 
to the control group, this group had a relatively low probability of survival or a difference in survival from early 
time points (approximately 0 to 5 days) and significantly reduced levels compared with those of the control 
groups at intermediate time points (5 to 10 days).

Consequently, it can be inferred that, from a host benefit perspective, the 24-h incubation time is not relevant. 
The same conclusion applies to the 6-h condition, which is further clustered within multiple groups. Owing to 
their high similarity, the 2-h and 4-h conditions can ultimately be considered without statistical distinctions.

In conclusion, the findings suggest that the variation in incubation time with the probiotic L. rhamnosus Lcr35® 
has a discernible effect on the survival of C. elegans. The nuanced differences observed among the experimental 
conditions, particularly the distinctive patterns in groups 1, 3, and 4, highlight the intricate relationship 
between incubation duration and nematode longevity. Notably, the 24-h incubation time stands out as having 
a significantly different effect, leading to reduced survival probabilities compared with shorter incubation 
periods. Importantly, the clustering of the 6-h condition within multiple groups further emphasizes its complex 
categorization, suggesting a transitional impact. Interestingly, despite the subtleties uncovered through detailed 
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Fig. 3.  Impact of incubation time with E. coli OP50 on the survival of C. elegans. (A) Survival curves 
(observed and simulated) for nematodes, with each curve color-coded according to incubation time (2, 4, 6, 
and 24 h). The mean curve for each incubation time is highlighted, and it is calculated on the basis of both 
observed and simulated data. (D) Same as in Plot A, except curves are color-coded on the basis of the allocated 
cluster. (C) Correspondence between each experimental condition and each cluster, indicating how frequently 
a curve associated with a specific incubation time is allocated to a particular cluster. (B) Deviations of survival 
curves (observed and simulated) from the mean curve of the control group, with each curve color-coded 
according to incubation time. (E) Same as in Plot D, except curves are color-coded on the basis of the allocated 
cluster. This evaluation helps assess the likelihood of experimental conditions coinciding with a type of effect 
on nematode survival identified with a specific estimated cluster.
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Fig. 4.  Impact of incubation time with L. rhamnosus Lcr35® on the survival of C. elegans. (A) Survival curves 
(observed and simulated) for nematodes, with each curve color-coded according to incubation time (2, 4, 6, 
and 24 h). The mean curve for each incubation time is highlighted, and it is calculated on the basis of both 
observed and simulated data. (B) Same as in Plot A, except curves are color-coded on the basis of the allocated 
cluster. (C) Correspondence between each experimental condition and each cluster, indicating how frequently 
a curve associated with a specific incubation time is allocated to a particular cluster. (D) Deviations of survival 
curves (observed and simulated) from the mean curve of the control group, with each curve color-coded 
according to incubation time. (E) Same as in Plot D, except curves are color-coded on the basis of the allocated 
cluster. This evaluation helps assess the likelihood of experimental conditions coinciding with a type of effect 
on nematode survival identified with a specific estimated cluster.
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analysis, the ultimate host benefits appear to align with those obtained through traditional statistical methods, 
such as log-rank analysis, as reported in previous research38. This finding supports the robustness and reliability 
of the statistical clustering approach in yielding results that are consistent with established methodologies.

Comparative analysis of a complex dataset for the characterization of cheese extracts.
The adult nematodes were exposed to various extracts of goat cheese under two control conditions: heat-
inactivated E. coli OP50 and heat-inactivated E. coli OP50 supplemented with an antifungal agent (some samples 
being nonsterile). The results are presented in Fig. 5.

Figure  5A depicts the survival probability of nematodes under the experimental conditions. Only the 
lipid and ethanol fractions presented survival curves that were significantly different from those of the other 
fractions, particularly from those of the control samples. Specifically, the lipid fraction shows a relative increase 
in survival (approximately the 12th day), whereas the ethanol fraction leads to a decrease in survival during 
the early stages (approximately the first five days). This fact is indeed very clear in the curve in Fig. 5B. For 
the remaining experimental conditions, no clear trend emerged from the analysis of their survival curves. The 
overall appearances of the two control conditions (OP50 and OP50AF) were similar. However, examination of 
the differences in relative survival presented in Fig. 5D revealed that there was still a discernible difference in 
behavior induced by the two experimental conditions. The condition of heat-inactivated E. coli OP50 in the 
presence of the antifungal agent appeared to promote better population survival. Thus, although both conditions 
are classified among the controls (Fig. 5E), it seems unlikely that they can be interchangeably substituted for one 
another.

Examining the corresponding median curves of the various experimental groups revealed distinct patterns. 
Compared with the control group, Group 1 tended to have a decreased survival probability, whereas Group 2 had 
the opposite outcome, with an increased survival probability. By visually comparing the curves of the clusters 
(Fig. 5B and C) with those of the experimental conditions, we observe that the curves of group 1 closely overlap 
with those of the conditions corresponding to the ethanol fraction, whereas those of group 2 closely overlap 
with the conditions of the lipid fraction. These findings demonstrate that these fractions are the predominant 
representatives of their respective groups.

Unlike the results obtained with the previous dataset (i.e., incubation time with E. coli OP50 and L. rhamnosus 
Lcr35®), Fig. 5E illustrates a markedly different classification of experimental conditions. In this case, our model 
highlights only two distinct experimental clusters, with six experimental conditions grouped alongside the two 
controls. According to the model, only cheese extracts obtained from ethanol treatment and the lipid fraction 
were predominantly found in different clusters, specifically cluster 1 and cluster 2, respectively. Thus, the 
obtained classification indicates that the majority of cheese extracts do not impact the longevity of nematodes, 
as they exhibit statistically similar behavior to that of the control.

Comparing the classification obtained from our new analytical model with the interpretation we provided 
in a previous article40 regarding the two control conditions (OP50 and OP50AF), we previously reported that 
the addition of amphotericin B resulted in a significant difference, according to the log-rank test, promoting the 
impact of this molecule on population survival. However, our initial analysis did not reveal that, overall, the two 
experimental conditions were very similar, as we demonstrated here. For the other experimental conditions, 
our initial approach involved pairwise comparisons against the control to highlight significant differences. 
Consequently, we were unable to perform a comprehensive comparative analysis such as the one conducted in 
the present study.

Discussion
A major contribution of this work is the proposal of a new approach for survival data analysis, which is 
specifically tailored to experiments conducted on the nematode C. elegans. By addressing the nuances of 
complex datasets and potential pitfalls in conventional methods, our approach aims to provide a more insightful 
and accessible framework for drawing meaningful conclusions from diverse datasets. This approach avoids the 
use of the conventional hypothesis testing framework, which typically includes the log-rank test. Instead, we 
propose employing a clustering method to group data into coherent clusters to identify survival effect profiles. 
By assessing the correspondence between these clusters and the experimental condition groups (defined by 
treatments), the potential treatment effects and their likelihood intensities are determined. In addition, the 
integration of simulated data (based on the experimenter’s counting performance) helps to account for a source 
of variability that is commonly ignored in the analysis of nematode survival, even though it may be significant.

As demonstrated earlier in this article, our new method of statistical analysis for survival data provides a 
significantly more robust approach, facilitating a clearer interpretation of underlying biological mechanisms. 
When a dataset reveals easily identifiable significant differences through the log-rank test, our derived classification 
further reinforces these findings. Notably, for complex datasets requiring in-depth analysis, where conventional 
tests may prove insufficiently powerful or adaptable, our innovative methodology overcomes these challenges 
by offering visual classification. This greatly streamlines the work for researchers, making the comprehension 
and thorough exploration of intricacies within complex data much more accessible. This study contributes to a 
deeper understanding of the temporal dynamics of probiotic‒nematode interactions and validates the efficacy of 
statistical clustering as an alternative analytical tool in this context. Moreover, our current approach allows us to 
obtain new results and deduce a different interpretation, offering an alternative perspective that leads to partially 
different conclusions.
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Fig. 5.  Impact of goat cheese extracts on the longevity of the nematode. (A) Survival curves (observed and 
simulated) for nematodes, with each curve color-coded according to cheese extract level (control OP50; 
control OP50AF with antifungal, raw cheese, cheese residual, lipid fraction, ethanol extraction, extraction 
at 40 °C (1), extraction at 40 °C (2) and extraction at 70 °C). The mean curve for each cheese extract level is 
highlighted, and it is calculated on the basis of both observed and simulated data. (B) Same as in Plot A, except 
curves are color-coded on the basis of the allocated cluster. (C) Correspondence between each experimental 
condition and each cluster, indicating how frequently a curve associated with a specific cheese extract level is 
allocated to a particular cluster. (D) Deviations of survival curves (observed and simulated) from the mean 
curve of the control group, with each curve color-coded according to cheese extract level. (E) Same as in Plot 
D, except curves are color-coded on the basis of the allocated cluster. This evaluation helps assess the likelihood 
of experimental conditions coinciding with a type of effect on nematode survival identified with a specific 
estimated cluster.
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Conclusion
In conclusion, our innovative approach to survival comparison using clusters emerges as a robust alternative 
to traditional hypothesis testing in the study of the C. elegans model. This methodology provides a thorough 
interpretation of results, addressing pivotal questions about whether the survival curve differs from the control 
curve and, if so, in what manner.

The primary advantage of our procedure lies in its ability to circumvent biases and limitations inherent in 
conventional hypothesis-testing approaches. On the basis of this work, a comprehensive procedure involves 
implementing the log-rank test along with the functional clustering process proposed in this paper. The resulting 
analysis provides a range of relevant evidence for analyzing differences between survival curves, especially when 
multiple experimental conditions are tested. This proves particularly beneficial for complex datasets, preserving 
the integrity of log-rank results while providing supplementary insights to inform decisions regarding the 
experimental condition’s effect compared with the control.

Furthermore, as another major advantage, our method considers external sources of variability absent in a 
standard database concerning nematode lifetime, especially by incorporating experimenter variability into the 
procedure for determining differences between survival curves. Its adaptability and potential for improvement 
in future experiments underscore its efficacy as an analytical tool of choice for survival studies involving the C. 
elegans model. In summary, this approach makes a significant contribution to survival analysis methodology, 
paving the way for deeper investigations and a more nuanced understanding of results across diverse experimental 
contexts.

Our model is poised for evolution to address various forms of variability, considering factors such as 
individual experimenters and the integration of datasets. The aim is to create a more robust control condition 
by merging datasets, thereby enhancing the reliability and generality of our findings. Additionally, the model 
will undergo refinement to normalize variability, considering diverse sources of variation, which may arise in 
merging databases resulting from the work of different experimenters. This involves developing mechanisms to 
systematically account for experiment-to-experiment variations, enabling a more comprehensive understanding 
of the experimental landscape. By continually adapting to the intricacies of different experimental setups and 
datasets, our evolving model is geared toward establishing a standardized and versatile platform for survival 
analysis in the C. elegans model. This forward-looking approach ensures that our methodology remains at the 
forefront of addressing the complex and dynamic nature of biological experiments, ultimately contributing to 
more accurate and interpretable outcomes in future studies.

One current limitation of this work, which could inspire further research, is that the method for classifying 
survival curves is not specific to survival curves but applies more generally to any dataset containing functional 
data. However, survival curves are a particular type of functional data because they are constrained through 
their integral value, representing a specific subset of the functional data space. The purpose would then be to 
develop a functional clustering approach that takes this constraint into account to better discriminate survival 
curves. In our view, this should not necessarily involve working with a parametric version of survival curves, as 
this would significantly reduce the richness of survival curves. One potential approach could be to investigate 
the constraints this would impose on the coefficients of a suitable basis function, such as those in a B-spline 
basis. This could help determine the representation of survival curves in a coefficient space specific to survival 
data analysis. It may then be possible to use a standard clustering method on the coefficients of survival curves 
expressed in this specific basis function space.

Another lead of work involves deploying the proposed analysis into a more comprehensive and automated 
analysis process. This process aims to define a protocol for conducting experiments on nematode lifetime and to 
build a database to collect experimental results. This will include assessing experimenter counting performance, 
log-rank test results, and the complete analysis conducted in this article. Additionally, it involves searching 
for databases where the experimental conditions for the control group are similar. This is intended to enable 
comparison with results from other experiments and to augment the control group with new data, thereby 
enhancing the ability to effectively discriminate survival curves. Notably, including control group data from 
other experiments or comparing different experiments can be facilitated by normalizing databases on the basis 
of experimenter count performance.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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