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The role of the adhesive thickness in the failure of bonded joints is a controversial issue. On the one hand, analytical and numerical models 
show that the bonding strength is improved as the adhesive thickness increases, on the other hand experimental observations lead to the 
opposite conclusion. Taking advantage of the thinness of the adhesive layer when com-pared to the overall dimensions of the structure, a 
matched asymptotic expansions proce-dure allows modeling the initiation of a debonding in a single or double lap joint assembly. If there 
is a perfect adhesion between the joint and the substrates, the conclusion is iden-tical to the first mentioned. In case of an imperfect 
bonding, i.e. if there is a micro-crack close to the end of the bonding zone, the trend is reversed and the conclusion meets the experimental 
observations. Special cases of thick and thin interfaces are highlighted as well as the sensitivity to flaw size.

1. Introduction

Adhesive bonding seems to be a promising way for assembling structural elements in transportation industries. It avoids

drilling holes to insert rivets or bolts which induce a drastic reduction of strength due to stress concentrations. However,

confidence in this technique must be improved by developing appropriate methods for the prediction of debonding.

Many parameters influence the failure mode and strength of bonded joints [1]. Among these, the role of the adhesive

thickness is a controversial issue [2,3]. Analytical models were recently reviewed in [4,5], they predict fracture when stress

or strain reaches a maximum in the adhesive. The direct conclusion that emerges is that strength increases with joint thick-

ness. In perfect agreement with these results, FE numerical simulations [6] or cohesive zone models (CZM) [7], allowing the

analysis of more complex geometries, lead to the same conclusion, while [8] does not report any thickness effect and [9]

notes a trend change according to the values of toughness and tensile strength of the interface.

Unfortunately, these conclusions are inconsistent with experimental observations [10–12], thin joints resist better than

thick ones. This disagreement is discussed and well argued in [13]. According to [14], the contradiction between analytical

and experimental approaches may be due to voids and micro-cracks that are more prevalent in thick adhesive layers and

ignored in the theoretical analysis. Based on fractography observations, another explanation is proposed in [15]: in thin

joints both interfaces with the substrates are involved and jumps occur from one to the other whereas only a single one

intervenes in thick joints where jumps are inhibited. The ductile behavior of the adhesives is also invoked, coupled either

with a plane stress or a plane strain state [4,5], to have a better agreement between analytical and experimental observa-

tions. From a numerical viewpoint, the traction-separation law of the CZM used in [16] must be adjusted according to the
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adhesive thickness to render the experimentally observed effects. Based on a Finite Fracture Mechanics approach and ana-

lytical expressions for the energy and the stress fields, [17] renders the expected thickness effect.

The previously mentioned analytical models are still a reference for researchers even if they present some limitations,

however they are not suitable to take into account models of increasing complexity without integrating a numerical ap-

proach. These stress or strain-based models seem to be well appropriate in homogeneous mechanical fields but they rapidly

become unsatisfactory in presence of edge effects. The use of an energy criterion issued from the linear elastic fracture

mechanics is satisfactory but is appropriate only to predict the propagation of a debonding, not the initiation. So the idea

of the so-called coupled criterion [18] consists in mixing the advantages of both stress and energy-based criteria without

the drawbacks. Together with a matched asymptotic procedure taking advantage of the smallness of the joint thickness com-

pared to the overall dimensions of the structure, this criterion is used to determine the influence of the adhesive thickness on

the strength of a bonded joint. The analysis is performed within the 2D elasticity framework and applies as well to the single

and double lap joint configurations or to a stiffened plate (Fig. 1).

2. The asymptotic model

We consider three configurations usually employed to test the strength of a bonded joint between two plates made of the

same isotropic elastic material: the traction on a single lap joint assembly, the traction on a double lap joint assembly and

the three-point bending on a plate with stiffener (Fig. 1). The thickness e of the adhesive (also assumed isotropic and elastic)

is small compared to the thickness of the plates e� h. It is reasonable to suppose that fracture starts from one of the corners

formed by the different assemblies. We focus on those marked with an arrow (Fig. 1) whose local geometry is the same in all

cases.

The matched asymptotic expansions approach offers a two-scale description of the specimens. Observed at a large dis-

tance (macro-scale), the adhesive layer is no longer visible (Fig. 2). The resulting simplified structures are so-called outer

domains, they can be considered in a way as the limit of the actual domains (Fig. 1) as e? 0. Under the assumption of plane

strain elasticity, the displacements U0 (the index 0 holds for e = 0) can be expanded in Williams’ series in a vicinity of the

corner under consideration as

U0ðx1; x2Þ ¼ C þ k1r
a1u1ðhÞ þ k2r

a2u2ðhÞ þ . . . ð1Þ

where x1, x2 and r, h are respectively the Cartesian and polar coordinates emanating from the corner tip, they are mixed in the

equations throughout this paper without confusion. The leading term C is an irrelevant constant. The exponents ai are solu-

tions to an eigenvalue problem (0 < ai < 1) with the ui ’s (MPa�1) as eigenvectors [19]. They depend only on the local geom-

etry, typically for a right angle corner in a homogeneous isotropic material a1 = 0.545 and a2 = 0.906 whatever the actual

Young modulus and Poisson ratio of the substrates. The coefficients k1 ðMPa m1�a1 Þ and k2 ðMPa m1�a2 Þ are the generalized

stress intensity factors (GSIF), they depend on the geometry of the specimens and on the mode and intensity of loading. In

the following the second term, corresponding to an exponent close to 1, will be neglected and the index 1 omitted (more

precisely, as shown in (3), it is the stress field generated by the omitted terms that is negligible).

U0ðx1; x2Þ ¼ C þ kr
a
uðhÞ þ . . . ð2Þ

According to the elastic constitutive law of the material forming the plates, the expansion for the stress field r (MPa) can be

derived from (2) (the following relation is used to define the tensor s function of a and h derived from the singular term

exhibited in (2)):

r0ðx1; x2Þ ¼ kr
a�1

sðhÞ þ ::: ð3Þ

Fig. 1. Traction on a single lap joint assembly, traction on a double lap joint assembly and 3-point bending on a plate with stiffener.
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This term is called singular because the associated stress field tends to infinity as r? 0, the exponent a characterizes the

stress concentration, smaller the exponent a, stronger the singularity. For a given test (Fig. 1), the GSIF k depends linearly

on the intensity of the remote load, in the following it will be denoted remote loading as well.

According to Fig. 2, note that the local geometry is unchanged, thus the same expansions (2) and (3) are valid in the three

cases, the GSIF k only changes. It is important to emphasize this point. All the developments that follow are unchanged in all

three cases and k is really the only factor, depending on the overall geometry and how the load is applied, which varies from

one geometry to another.

The actual solutions depend on e and can be expanded in a so-called outer expansion

Ueðx1; x2Þ ¼ U0ðx1; x2Þ þ small correction ð4Þ

The small correction is assumed to tend to zero with the adhesive thickness e, it does not play any role in the forthcoming

analysis.

After zooming-in (�1/e) near the corner under consideration, the global geometry of the specimens is no longer visible

but details (the adhesive thickness here) are highlighted (Fig. 3), it is the micro-scale. The corresponding domain is called

the inner domain, it is spanned by the dimensionless variables yi = xi/e (q = r/e), the adhesive thickness is now 1 and the do-

main becomes unbounded as e? 0.

In this domain, the actual solutions are expanded in a so-called inner expansion

Ueðx1; x2Þ ¼ Ueðey1; ey2Þ ¼ F0ðeÞV0ðy1; y2Þ þ F1ðeÞV1ðy1; y2Þ þ . . . ð5Þ

Using the change of variables mentioned above it is easy to write the equilibrium and constitutive equations as well as the

boundary conditions on the two faces of the corner for the successive terms Vi. Nevertheless, conditions prescribing behavior

at infinity are missing, they are provided by the matching rules between inner (5) and outer (4) expansions. Together with

(1) they give

F0ðeÞ ¼ 1; V0ðy1; y2Þ � C; F1ðeÞ ¼ ke
a
; V1ðy1; y2Þ � qauðhÞ ð6Þ

Fig. 2. The outer domains for the three assemblies, the adhesive thickness is no longer visible.

Fig. 3. The common inner domain spanned by y1, y2.
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Here � means ‘‘behaves like at infinity’’. And finally (5) can be written using a superposition principle

Ueðx1; x2Þ ¼ Ueðey1; ey2Þ ¼ C þ ke
a
V1ðy1; y2Þ þ ::: with V1ðy1; y2Þ ¼ qauðhÞ þ V̂

1ðy1; y2Þ ð7Þ

It is not possible to solve directly for V1 (MPa�1) because of its behavior at infinity, it grows indefinitely like qa (see (6)) and

thus has not a finite energy in the inner domain. It is necessary to proceed by superposition (7)2, where V̂
1
tends to 0 at infin-

ity. However, the well-posedness of the problem for V̂
1
is not obvious. The external forces in the variational formulation of

the problem in V̂
1
involve integrals within the unbounded thin adhesive layer and along its interfaces. Roughly, they con-

verge because the polar angle h within the layer behaves like 1/q as q tends to infinity.

In must be pointed out that V1 undergoes a singularity at O (and another at O0 but weaker and disregarded, Fig. 3) and can

be expanded in a Williams series

V1ðy1; y2Þ ¼ C1 þ jqbVðhÞ þ ::: ð8Þ

Only one singular exponent b is retained since the second one is often larger than 1 in this particular case where the lower

material (the adhesive) is more compliant than the upper one (the upper plate) (Fig. 3). Unlike a, b depends on the elastic

contrast between the plates and the adhesive. The GSIF j is dimensionless and independent of the global geometry and the

remote applied loads. Plugging (8) into (5) and using (6) lead to

Ueðx1; x2Þ ¼ :::þ jkea�b
rbVðhÞ þ ::: ¼ :::þ KrbVðhÞ þ ::: with K ¼ jkea�b ð9Þ

The actual GSIF K (MPa m1�b) of the singularity at the corner between the adhesive and the upper layer depends on the GSIF

k (function of the remote loading) and the adhesive thickness e. The relationship between k and K in (9) provides a matching

condition between the two a priori incompatible singularities characterized by the exponents a and b.

3. Crack initiation at the corner – the coupled criterion

In addition, we assume now that there is a short crack with length l starting from the corner and lying along the upper

interface because this is the most likely location for the initiation of rupture. Beside we assume that l is much smaller than h

(l� h). So there are now two small parameters e and l and if one of them is not infinitely smaller or larger than the other (see

Sections 4 and 5), asymptotic expansions can be carried out relatively to one or the other leading to strictly equivalent results

from the theoretical point of view.

From afar (outer domain), neither crack length nor adhesive thickness are visible, thus Williams’ expansion (2) and outer

expansion (4) are unchanged.

For practical reasons, it is more convenient to use again e as the small parameter involved in the asymptotics and to con-

sider the crack length as an additional variable

Ueðx1; x2; lÞ ¼ U0ðx1; x2Þ þ small correction ð10Þ

In the inner domain the dimensionless crack length is l = l/e (Fig. 4), and it is quite easy to vary this length by buttoning/

unbuttoning the nodes along the crack path in a conventional FE computation.

The inner expansion (7) can be written

Ueðx1; x2; lÞ ¼ Ueðey1; ey2; elÞ ¼ C þ ke
a½qauðhÞ þ V̂

1ðy1; y2;lÞ� þ ::: ð11Þ

The change in potential energy dW between an initial sound state and a final one embedding a short crack can be calculated

using the path independent integral W

Fig. 4. The inner domain spanned by y1, y2 with a short crack along the upper interface.
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 dW ¼ WðUeðx1; x2; l
R

Þ; Ueðx1; x2; 0ÞÞ
with by definition Wðf ; gÞ ¼ 1

2 C
ðrðf Þ:N:g � ðrðgÞÞ:N:f Þds ð12Þ

whereC is any contour encompassing the corner and the new crack and N its normal pointing toward the origin [19,20]. This

integral can be computed either in the outer or in the inner domain. Plugging (11) into (12) gives

dW ¼ k
2
e2aðAðlÞ � Að0ÞÞt þ ::: ð13Þ

Here t holds for the specimen width (plane strain assumption) and the function A(l) is extracted from V1 [21]

AðlÞ ¼ WðV1ðy1; y2;lÞ;qauðhÞÞ ð14Þ

The change in potential energy must be compared with the fracture energy Gclt where Gc (MPa mm) is the interface tough-

ness and lt the newly created crack surface. A necessary condition for the nucleation of a short crack straightforwardly

derives from an energy balance

k
2
e2a�1 AðlÞ � Að0Þ

l
P Gc ð15Þ

This inequality provides a lower bound for the admissible dimensionless crack lengths l. Indeed we should be

more precise on the definition of Gc, is it GIc, i.e. the mode I toughness, or do we have to take into account mode

mixity? At this step let us take Gc = GIc arguing that at the very beginning of onset the crack is almost in an open-

ing mode [22].

It has been shown that such a crack nucleation cannot be described by a sole energetic argument, two conditions

must be fulfilled simultaneously: one based on energy and involving the material toughness as above and another based

on stress and involving the material strength [18]. We are going to exploit this statement to describe the initiation of

the debonding.

Prior to crack nucleation, using the elastic constitutive law, (7) and (11), it comes

rðx1; x2Þ ¼ C : rxU
eðx1; x2;0Þ ¼ ke

a�1 ~rðy1; y2Þ þ ::: with ~rðy1; y2Þ ¼ C : ryV
1ðy1; y2;0Þ ð16Þ

where C is the elastic tensor either of the material forming the plates or of the adhesive depending on the location x1, x2 of

the point, rx and ry the gradient operators with respect to the xi’s and yi’s.

The stress condition states that failure occurs if the tensile stress component r (MPa) acting on the interface is greater

than the tensile strength rc (MPa) of the interface all along the pre-supposed crack path (as explained previously, initiation

being mainly in opening mode, rc is the out-of-plan tensile strength)

rðx1; 0ÞP rc for � l 6 x1 6 0 ) rð�l; 0ÞP rc or equivalently ke
a�1 ~rð�l;0ÞP rc ð17Þ

It should be noted that single or double lap joint experiments are often considered as testing the shear strength. It is

true when dealing with the study of the growth of a pre-existing long crack at the interface but wrong for crack initi-

ation where the opening mode I dominates. This was observed in [22,23]. Moreover, the shear stress often does not play

a big role in a fracture process except when mode II becomes much predominant and when the shear failure parameters

are low [24,25].

Since r is a decreasing function of the distance to the corner in its vicinity, the inequality (17) provides an upper bound

for the admissible values of l.
For small loadings (i.e. small k) the conditions (15) and (17) are incompatible. Increasing the load leads to a value of l for

which the two inequalities are just fulfilled

1

~rð�l;0Þ2
AðlÞ � Að0Þ

l
¼ 1

e

Gc

r2
c

ð18Þ

Let lc be the solution to (18), then the remote load at failure k
ðgÞ
c ((g) holds for general) is characterized by

k ¼ k
ðgÞ
c ¼ lcGc

AðlcÞ � Að0Þ

� �1�a rc

~rð�lc;0Þ

� �2a�1

ð19Þ

As claimed in [18] the crack initiation is a discontinuous process, the crack jumps the length lc = lce.

4. Particular case 1: a short crack jump (thick adhesive)

If the crack length l is very small compared to the adhesive thickness l� e (l� 1), the crack in the inner domain (Fig. 4)

can be considered as a small perturbation of the uncracked case (Fig. 3) and the matched asymptotic procedure can be iter-

ated. The ‘‘outer’’ expansion of V1 is (it is an outer expansion in the space spanned by y1, y2)

V1ðy1; y2;lÞ ¼ V1ðy1; y2;0Þ þ small correction ð20Þ
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And the Williams expansion of the leading term is given by (8). A new zooming-in (�1/l) can be carried out and a new un-

bounded (as l? 0) secondary inner domain spanned by z1, z2 (zi = yi/l, f = q/l) is defined (Fig. 5), it could be baptized ‘‘inner

inner’’. The new inner expansion can be written

V1ðy1; y2;lÞ ¼ V1ðlz1;lz2;lÞ ¼ G0ðlÞW0ðz1; z2Þ þ G1ðlÞW1ðz1; z2Þ þ . . . ð21Þ

With the previous notations, the new matching conditions are

G0ðlÞ ¼ 1; W0ðz1; z2Þ � C1; G1ðlÞ ¼ jlb; W1ðz1; z2Þ � fbvðhÞ ð22Þ

Then

V1ðy1; y2;lÞ ¼ V1ðlz1;lz2;lÞ ¼ C1 þ jlbW1ðz1; z2Þ þ ::: with W1ðz1; z2Þ ¼ fbvðhÞ þ Ŵ
1ðz1; z2Þ ð23Þ

Using again (12), the integral is now computed in the secondary inner domain and all calculations gives

dW ¼ k
2j2e2ða�bÞl

2b
Bt þ . . . with B ¼ WðW1ðz1; z2Þ; fbvðhÞÞ ð24Þ

And the energy condition becomes

k
2j2e2ða�bÞl

2b�1
BP Gc ð25Þ

With an obvious generalization of the previous notations (see (16)) the stress field can be written

rðx1; x2Þ ¼ kjea�bl
b�1 ~~rðz1; z2Þ þ ::: with ~~rðz1; z2Þ ¼ C : rzðfbvðhÞÞ ð26Þ

The stress condition for failure is

kjea�bl
b�1 ~~rðz1; 0ÞP rc for � 1 6 z1 6 0 ) kjea�bl

b�1 ~~rð�1;0ÞP rc ð27Þ

Knowing that, prior to crack nucleation (the following relation is used to define the tensor s function of b and h derived from

the singular term exhibited in (8) and (22))

~~rðz1; z2Þ ¼ C : rzðfbvðhÞÞ ¼ fb�1sðhÞ ð28Þ

It comes finally

kjea�bl
b�1sðh0ÞP rc ð29Þ

where h0 is the angular abscissa of the interface and s the tensile component of s. Bringing together (25) and (29), and using

(9) allow writing the coupled criterion as

lc ¼
Gc

B

sðh0Þ
rc

� �2

and K ¼ kjea�b ¼ Kc ¼
Gc

B

� �1�b rc

sðh0Þ

� �2b�1

ð30Þ

Fig. 5. The inner domain spanned by z1, z2.
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At this step, it is essential to check the validity of the initial assumption: is lc far smaller than e? It is clear that this will be

true if Gc is small and rc is big enough. Relation (30) is important, since k can be identified with the remote load intensity,

remote load at failure k
ðsÞ
c ((s) holds for short) depends on the adhesive thickness as

k
ðsÞ
c ¼ Kc

j
eb�a ð31Þ

Thus, if a < b the critical load at failure increases with the thickness while conversely, it decreases if a > b [23].

5. Particular case 2: a long crack jump (thin adhesive)

This particular case is easier to treat. If the crack jump l is large compared to e (l� e), let us carried out the matched

asymptotics (4) and (5) with respect to l instead of e. The outer expansion (4) and the Williams expansion (2) are unchanged.

After the change of variables ~yi ¼ xi=lð~q ¼ r=lÞ, the inner expansion takes obviously the form

Ueðx1; x2; lÞ ¼ Ueðl~y1; l~y2; lÞ ¼ C þ kl
a ~V

1ðl~y1; l~y2;1=lÞ þ ::: with ~V
1ðl~y1; l~y2;1=lÞ ¼ ~qauðhÞ þ ~̂V

1

ðl~y1; l~y2;1=lÞ ð32Þ

In the inner domain (Fig. 6), the dimensionless adhesive thickness 1/l is small (1/l� 1) and can be considered as a pertur-

bation of a homogeneous inner domain and then the ‘‘outer’’ expansion for ~V
1
is

~V
1ðl~y1; l~y2;1=lÞ ¼ ~V

1ðl~y1; l~y2;0Þ þ small correction ð33Þ

The energy and stress conditions now read (s is the tensile component of s, see (3))

k
2
l
2a�1~AP Gc; kl

a�1
sðh0ÞP rc with ~A ¼ Wð~V1ð~y1; ~y2;0Þ; ~qauðhÞÞ ð34Þ

Leading to a classical form of the coupled criterion [18]

lc ¼
Gc

~A

sðh0Þ
rc

� �2

; k ¼ k
ðlÞ
c ¼ Gc

~A

� �1�a rc

sðh0Þ

� �2a�1

ð35Þ

Again, validity of the reasoning is guaranteed if lc is by far larger than e (lc � e). That can be achieved if Gc is large and rc is

small. So, as expected these conditions are exactly opposite to those of the previous particular case.

Here, everything goes as if one could ignore the presence of the adhesive, except for the determination of the interface

parameters Gc and rc of course. The critical load at failure is almost independent of the adhesive thickness.

6. Numerical tests

In this section, we try to verify that the particular cases of Sections 4 and 5 are the two limits of the general case covered

by Section 3. The different terms of the expansions are computed using a conventional FE code and simple linear elements.

The unbounded inner domains are artificially bounded at a large (compared to the perturbation size) distance and the behav-

iors at infinity of the different inner terms are prescribed along this fictitious line. TheW integral is calculated using a home-

made post-processing. The parameters and functions involved in the singular terms of the Williams expansion are numer-

ically obtained using again a home-made code.

Fig. 6. The inner domain spanned by ~y1; ~y2 when l� e.
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To be realistic, the Young moduli contrast between the plates and the adhesive is taken equal to 0.04, resulting in

a = 0.545 (already mentioned in Section 2) and b = 0.692. This contrast can vary considerably from 0.5 for a brazed assembly

of Silicon Carbide rods [26] to 0.01 for the bonding of steel plates with an epoxy adhesive [5,23]. To fix the ideas 0.04 cor-

responds to Ep = 70,000 MPa (like glass or aluminum) and Ea = 2800 MPa (an epoxy resin), where Ep and Ea hold respectively

for the Young moduli of the plates and the adhesive [27,28]. For simplicity, the Poisson ratios are the same in the two mate-

rials mp = ma = 0.3 and close to the actual values, within a reasonable range (say 0.1–0.4) results do not change a lot. The inter-

face toughness is Gc = 0.15 MPa mm and the tensile strength rc = 50 MPa, these values correspond roughly to bulk

parameters of adhesives [5,27,28]. Here these values are also assigned to the interface implying a perfect bonding; however,

they can be significantly lower when the interface is imperfect and especially when the surfaces are not treated [29].

Fig. 7 shows the dimensionless crack length lc solution to (18) as a function of the adhesive thickness e, thicker the adhe-

sive and smaller the relative crack jump. We found that for e < 0.06 mm lc > 10 (i.e. lc > 0.6 mm) and for e > 0.9 mm (out of

the range of Fig. 7) lc < 0.1 (lc < 0.09 mm) out of these adhesive thickness bounds 0.06–0.9 mm, the crack length l can no

longer be considered of the same order than the adhesive thickness, it is either far larger or far smaller. As a consequence

thick adhesives (e > 0.9 mm and lc < 0.09 mm) enter in the particular case studied in Section 4 (short crack jump) and vice

versa thin adhesives (e < 0.06 mm and lc > 0.6 mm) are studied in Section 5 (long crack jump). The corresponding physical

crack jump length lc = elc is illustrated in Fig. 8. The convergences toward one of the above cases at the two ends of the thick-

ness domain are clearly visible.

The critical load at failure kc is calculated in the three cases: the complete model (Eq. (19) in Section 3), the short crack

jump case (thick adhesive) (Eq. (31) in Section 4) and the long crack jump case (thin adhesive) (Eq. (35) in Section 5). For a

short crack, the value of j is required, it is extracted from V1 (y1, y2) using again the W integral (12)

j ¼ WðV1ðy1; y2Þ;q�b
v

�ðhÞÞ
Wðqb

vðhÞ;q�b
v

�ðhÞÞ ð36Þ
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Fig. 7. The relative crack jump lc vs. the adhesive thickness e (mm). Superposed diamonds correspond to different meshes used to treat both short and long

cracks.
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It is shown in [19] that the W integral can be used both for the calculation of the potential energy change or for the calcu-

lation of the GSIF’s. In the first case, the extraction function (second argument of W) has a positive exponent (see (12)–(14))

and in the second a negative one (see (36)). The second use ofW is based on the peculiar following property: if b is one solu-

tion of the eigenvalue problem, then �b is too with its own eigenvector v-(h) [19].

One can note that the convergence is not really numerically guaranteed for short cracks, the complete calculations (dia-

monds) overestimate the limit case (dashed line) roughly by 6%. Indeed, when l is decreasing and becoming small, calcu-

lations are more difficult to achieve because, due to the buttoning procedure, there are less and less free nodes along the

crack in the inner domain, resulting in a reduced accuracy.

Fig. 9 shows that if long jumps occur (thin adhesive), the critical load at failure is almost insensitive to the adhesive thick-

ness. At the other end of the thickness range, the critical load at failure increases with the adhesive thickness according to

(31) since b > a. This result is in agreement with other analytical or numerical approaches cited in Section 1. It is not com-

pletely surprising since thick adhesive layers release the tensile stress better than thin ones. But, as already claimed (Sec-

tion 1), this result is inconsistent with experiments where it is shown that the critical failure load decreases as the

adhesive thickness increases.

Note that in Fig. 9 the adhesive thickness varies from 0 to 2 mm, this final thickness is large in practical cases, but it must

remain small compared to the thickness h of the substrate to ensure the validity of the asymptotic expansions.

7. A pre-existing flaw in the vicinity of the corner

As already emphasized, the main drawback of the above approach is that it is inconsistent with experiments where it is

observed that thicker the layer and less resistant the assembly at least for thick adhesive layers. The reason is that b > a in

(31). To overcome this drawback let us suppose that there is a lack of bonding along the interface near the corner. A crack

with length l0 (l0 = l0/e) is located at a short distance d0 (d0 = d0/e) of the corner (Fig. 10). Both l0 and d0 are known and
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Fig. 9. The critical load at failure kc (MPa mm1�a) vs. the adhesive thickness e (mm): complete model (diamonds) (Eq. (19)), short jump (dashed line) (Eq.

(31)), long jump (solid line) (Eq. (35)).

Fig. 10. A short flaw with dimensionless length l0 = l0/e along the interface at a short distance d0 = d0/l of the corner.
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assumed to be of the same order of magnitude than e (i.e. l0 and d0 close to 1). Statistically these micro-cracks are present

throughout the interface, but their role is enhanced in the vicinity of the end of the joint, due to stress concentrations at this

location, we neglect the interaction between them.

Under this assumption Williams’ expansion (2) and outer expansion (4) are unchanged. The inner domain spanned by y1,

y2 is illustrated in Fig. 10. The inner expansion is almost the same as (7) where V1 and V̂
1
now depend on l0 and d0

Ueðx1; x2; l0;d0Þ ¼ Ueðey1; ey2; el0; ed0Þ ¼ C þ ke
a
V1ðy1; y2;l0; d0Þ þ ::: with V1ðy1; y2;l0; d0Þ

¼ qauðhÞ þ V̂
1ðy1; y2;l0; d0Þ ð37Þ

The fracture problem has now a slightly different nature, it is no longer the study of a crack nucleation in a sound material

but the growth of a pre-existing crack. This crack has two tips located at T and T0 and V1 can be expanded in the vicinity of

these points using the classical Williams expansion near the tip of an interface crack [30]. They are similar at the two ends

and only one (say at T0) is presented (they are analogous to (9), q0 and h0 denote the polar coordinates emanating from T0)

V1ðy1y2;l0; d0Þ ¼ :::þ vq01=2þiewðh0Þ þ �vq01=2�ie �wðh0Þ þ ::: ð38Þ

Here, the exponent is complex with a real part 1/2 and an imaginary part e depending on the contrast between the materials

[31] (here e = 0.087), the associated eigenvector w is complex as well, the upper bar denotes the complex conjugate. The

complex dimensionless stress intensity factor (SIF) v depends on l0 and d0. According to (37), the actual complex SIF X of

the interface crack tip singularity at T0 is

X ¼ ke
a�1=2�iev ð39Þ

The energy release rate (ERR) G at the crack tip can be written [30,32]

G ¼ DX�X ¼ Dk
2
e2a�1v�v ð40Þ

where D is a real coefficient. Following the Griffith criterion, the pre-existing crack grows if

GP Gc ) kP k
ðf Þ
c ¼

ffiffiffiffiffiffiffiffiffiffi

Gc

Dv�v

s

e1=2�a ð41Þ

Now the role of the adhesive thickness e is reversed (1/2 � a < 0) and more consistent with experimental observations.

Note that in this section, it is not necessary to use the coupled criterion because the exponent, although complex, has a

real part equal to 1/2 and in this case the criterion merges with Griffith’s. To understand this point just look at the more sim-

ple case (30) with b = 1/2 (similar to a complex exponent with a real part 1/2). One sees immediately that the second term

that involves the tensile strength disappears and it remains a Griffith criterion under the Irwin form (i.e. a critical value of the

stress intensity factor).

8. Flaw at the corner – numerical simulations

To illustrate the previous section, a simplified model is treated: l0 = e/2 and d0 = 0. The flaw is directly located at the cor-

ner with a dimensionless length l0 = 1/2 (Fig. 11). This choice has been done purely to give an example. The vanishing lig-

ament width allows simplifying the calculations and reduces the number of parameters. The flaw size l0 is arbitrarily

selected to be small but not far smaller than the adhesive thickness.

Fig. 11. A zoom-in of the flaw at the corner (inner domain, l0 = 1/2).
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Although some quantities such as e and D are analytically known [30], we have chosen to use the numerical approach

developed in [19] which then facilitates the calculation of the complex SIF v. All the procedures initially planned for real

calculations can be formally extended and still work in complex including the integral W defined in (12). There is no

additional theoretical difficulties, the obstacles are purely of a technical nature and related to more complicated

expressions.

Unlike a crack kinking out of an interface [33], the rectilinear propagation along the interface is fairly easier to analyze.

Computing D requires solving, by superposition as before, a (real) problem in the inner domain illustrated in Fig. 12. The

solution Z must fulfil the classical equilibrium equations and boundary conditions on the two crack faces and, due to the

matching rules, the prescribed behavior at infinity is

Zðy1; y2Þ � Reðq1=2þiewðhÞÞ ð42Þ

Then

D ¼ 4WðZðy1; y2Þ;Reðq1=2þiewðhÞÞÞ ð43Þ

The inner term V1 (or V̂
1
see (7)) is solved in the domain defined in Fig. 11 instead of that of Fig. 3. Then, as in Section 6, the

complex SIF v is computed using the path independent integral W (see (36)) which still works for complex functions

v ¼ WðV1ðy1; y2Þ;q0�1=2�iew�ðh0ÞÞ
Wðq01=2þiewðh0Þ;q0�1=2�iew�ðh0ÞÞ ð44Þ

Note that the SIF v as well as D depend on the choice made to normalize the complex eigenvector w, but of course, the final

result leading to G (see (40)) no longer depends on this choice.

With the material data of Section 6, we get D = 0.075 (MPa�1) and v = 0.265 + i 0.162. A comparison of the critical load at

failure k
ðf Þ
c (41) with its counterpart k

ðgÞ
c (19) in case of a sound bonding is shown in Fig. 13. The trend reversal related to the

role of the adhesive thickness is visible, the critical load increases in the sound case while it decays in the presence of a

defect.

Except for thin adhesive layers, in presence of the defect of size l0 = e/2 the load at failure is lower than that of the sound

bonding, this means that the assembly is sensitive to this flaw size.

In (41) and in Fig. 13, the smallest value the slope of the curve can reach is obtained for a = 1, i.e. when there is no stress

concentration. Then the critical load at failure behaves like 1=
ffiffiffi

e
p

: This is achieved for instance for an interface flaw far from

the ends of the adhesive layer or at the ends of a butt joint [26].

Fig. 12. The unbounded inner domain to analyze the crack growth along an interface.
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Fig. 13. Comparison of the critical load at failure of a sound adhesive bonding (diamonds, (Eq. (19)) and an imperfect bonding (solid line, Eq. (41)).

11



Acc
ep

te
d 

M
an

us
cr

ip
t

However, one should be extremely careful in the interpretation of Fig. 13, the flaw length l0 varies with the thickness e,

therefore the observed decay of the solid line takes into account two effects: the trend reversal and a growth of the flaw size

with the thickness. A simple way to confirm the validity of relationship (41) is to compare with experiments found in [12] on

a single lap assembly of steel plates. Steel plates are bonded together using the brittle adhesive Araldite AV138/HV998 from

Huntsman. Nevertheless, in the present reference, the adhesive thickness e (0.2, 0.5 and 1 mm) cannot really be considered

as small compared to the arms thickness h (2 mm) at least in the two last cases. Indeed, the smallness assumption has

emerged from a theoretical point of view to ensure the validity of the asymptotic expansions. It is clear that when the ratio

falls below 0.05 a good accuracy can be expected from the approach. It is still satisfactory when this ratio is 0.1 and the for-

mulas (frequently the only available) are often used for even larger values (0.25) in the hope that the error remains still

reasonable.

The elastic and failure properties are shown in Table 1 with the corresponding singularity exponent at the corner steel/

adhesive (Fig. 3).

Let us denote F (kN) the failure load, according to (41), the generic form of the relation between failure load and adhesive

thickness is

F ¼ K

ea�1=2
ð45Þ

The coefficientK (it has no special physical meaning except to be a scaling coefficient between the thickness and the load at

failure) is identified on the first experimental point e = 0.2 mm and Fig. 14 shows a satisfactory agreement knowing that the

adhesive AV 138 is reported to be very brittle. The adhesive EA 9361 is ductile and EA 9321 intermediate and the matching

between experiments and predictions are not so good. Note that there are only two available measures apart that used for

identification and it is obviously not enough to conclude definitively. Moreover, it is clear that the asymptotic assumption of

smallness of the adhesive thickness compared to the two arms thicknesses (2 mm) is no longer valid for e = 0.5 mm and a

fortiori for e = 1 mm. The goal is simply to show the trend reversal and a good agreement of this trend with the experimental

observations not to provide an accurate prediction of the mechanism.

9. Sensitivity to defects

We only consider the simplified case of Section 8, i.e. a short crack with length l0 emanating directly from the corner

(d0 = 0, Fig. 11).
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Fig. 14. Comparison of the experimental failure load F (kN) (diamonds and error bars) [12], with the predicted one (solid line) according to (45) and Table 2

for AV138/HV998.

Table 1

Elastic and fracture parameters of the substrates and the adhesive and singularity exponent at the corners steel/steel (Fig. 2) and steel/

adhesive (Fig. 3) [12,17].

E m rc Gc a b

Steel 210,000 0.3

AV138 4590 (MPa) 0.35 41 (MPa) 0.38 (MPa mm) 0.545 0.671
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On the one hand v changes a little for large flaw sizes (but still small compared to the overall dimensions of the structure).

If l0 varies from e/2 to 5 e, v increases slowly from 0.265 + i 0.162 (v�v ¼ 0:096) to 0.260 + i 0.198 (v�v ¼ 1:07). Thus according

to (41), remote load at failure depends mainly on the adhesive thickness and is almost insensitive to the flaw size.

On the other hand, smaller the flaw size and higher the failure load. If l0 � 1 (say l0 < 0.1 or less) following an analogous

reasoning to that of Section 4 leads to

v ¼ jlb�1=2�ie
0 g ð46Þ

where g is the complex SIF of the interface crack tip singularity in the inner domain spanned by z1, z2 (Fig. 5)

g ¼ WðW1ðz1; z2Þ; f�1=2�iew�ðhÞÞ
Wðf1=2þiewðhÞ; f�1=2�iew�ðhÞÞ

ð47Þ

Plugging (46) into (41) and using the definition of l0 leads to

k
ðf Þ
c ¼ 1

l
b�1=2
0

eb�a

j

ffiffiffiffiffiffiffiffiffiffi

Gc

Dg�g

s

ð48Þ

Obviously, the remote load at failure k
ðf Þ
c increases indefinitely when l0 diminishes, thus it can reach values that are not eli-

gible because higher than the remote load at failure k
ðgÞ
c obtained in the absence of defect. It is difficult to carry out the com-

parison directly with k
ðgÞ
c involving lc which is only implicitly known as the solution to (18), but it can be done in the two

particular cases of Sections 4 and 5.

If the adhesive layer is thick (Section 4), the model is insensitive to flaw size smaller than the following value

l
b�1=2
0 6

1

Kc

ffiffiffiffiffiffiffiffiffiffi

Gc

Dg�g

s

) l0 6 0:083 mm ð49Þ

where Kc is given by (30) and g = 0.902 + i 0.276. The initial assumption l0 < < 1 allows estimating the validity range of (49)

to e > 0.8 mm, while remaining smaller than h.

If the adhesive layer is thin (Section 5), it comes

l
b�1=2
0 6

eb�a

jkðlÞc

ffiffiffiffiffiffiffiffiffiffi

Gc

Dg�g

s

ð50Þ

where k
ðlÞ
c is given by (35). The limit flaw size depends now on the adhesive thickness e and is given in Table 2.Thicker the

adhesive layer and larger the flaw size tolerance, (49) is a limit value (independent of e) and it is possible to interpolate be-

tween this limit and Table 2 for intermediate thicknesses.

Note that this result is debatable because the initial assumption l0 � 1 setting the asymptotic validity of (46) is not

strictly true. We must once again hope that this result is not too affected by errors.

10. Conclusion

To achieve a model consistent with experimental observations, the need for taking into account defects along the inter-

face to predict initiation of debonding was evidenced in this work. Models of a perfect adhesion between the joint and the

substrates leads usually to a bonding reinforcement with increasing adhesive layer thickness, in disagreement with exper-

iments, whereas models based on an imperfect adhesion with micro-cracks leads to the opposite conclusion which is in a

better agreement with experiments. The main result lies in relationship (41) between the remote load at failure and the

adhesive thickness, consequences are shown in Figs. 13 and 14. When the defect size becomes very small the flawless case

is recovered. This allows introducing the concept of sensitivity to defects. The threshold below which a flaw has no longer

any influence on the remote load at failure depends on the thickness of the joint, thinner the joint and higher the sensitivity

(i.e. smaller the flaw size threshold). It should be emphasized that the notion of adhesive thinness is relative and closely re-

lated to the values of Gc and rc (see (18)). Joints are classified as thick or thin if Gc is small and rc is big enough or vice versa.
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Table 2

The flaw size sensitivity in case of a thin adhesive layer.

e (mm) 0.05 0.075 0.1 0.125 0.15 0.175 0.2

l0 (mm) 0.016 0.020 0.027 0.033 0.038 0.042 0.047
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