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Abstract—This paper investigates the application of generative
models in simulating radar images, highlighting their capacity
in generating realistic images from text description. To overcome
the usual limitation of image size constraint, we propose a model
operating through a series of blocks to progressively enhance
the image’s resolution and details by leveraging a pre-trained
latent diffusion model. This cascading architecture, structured
into three levels, is augmented by integrating a latent scaling
technique, enabling a gradual improvement in the scale of
the image, thus allowing the generation of larger images. Our
method also stands out for incorporating the ControlNet model,
maintaining content consistency during the multi-resolution pro-
cess. After training on aerial SAR images from the ONERA
SETHI sensor, we compare our architecture with alternative
methods for large-scale image generation using larger pre-trained
models and outpainting methods. The results demonstrate a
clear enhancement in the scale of simulated radar images while
maintaining alignment with the contexts described by the text
descriptions.

Index Terms—Synthetic Aperture Radar (SAR), Generative
Model, Diffusion Model, Earth Observation

I. INTRODUCTION

Synthetic Aperture Radar (SAR) images provide invaluable
all-weather acquisition capabilities across various operational
scenarios, including environmental monitoring, change detec-
tion, and object recognition. However, their unconventional
acquisition geometry, phenomenological behavior, and statis-
tical characteristics pose challenges for analysis and interpre-
tation. Furthermore, high-resolution SAR image acquisition,
particularly in airborne configurations, remains costly and
restricted, necessitating the simulation of synthetic images for
effective algorithm assessment. In the SAR domain, generating
realistic images poses a significant challenge due to the distinct
physics involved in radar imagery compared to models pre-
trained on optical images. Recent advancements in text-to-
image models, such as Stable Diffusion (SD) [17], DALL-
E-2 [6], Midjourney[12], and Imagen[18], offer the potential
to produce synthetic images of relatively high quality and
resolution. Yet, their full potential remains largely unexplored
in terms of applications, computational efficiency, and eval-
uation metrics. Traditional generative models often encounter
computational efficiency issues, particularly with large images
and diffusion-based models in pixel space. Our study aims
to explore computationally efficient methods for producing

large scale high resolution SAR images using latent text-to-
image models. We compare two methods utilizing pre trained
model from [17] as a base model: a cascaded latent diffusion
architecture, and out-painting process. A last method based on
a large U-net architecture (SDXL) [14] attempting to generate
larger images directly.

These approaches balance computational resources, image
coherence, and resolution enhancement effectively. We create
training datasets using fine-tuned image-to-text models for
automated captionning applied to ONERA’s airborne SAR
images at various resolutions. The first methodology involves a
cascaded latent diffusion model comprising three blocks, each
contributing to process the images at different resolution. This
approach incorporates prompts to guide the learning process,
utilizing three distincts UNet trained at different resolutions,
a latent upscaler, and a ControlNet [20] for conditioning.
Comparative analysis of our three architecture models for
high-resolution image enlargement reveals the higher maturity
of the cascade architecture. Finally our work discuss the
lack of dedicated comparative analysis in existing literature,
aiming to investigate the ability of these methods to leverage
descriptive captions and translate precise textual structuring
into accurate spatial structuring in generated images.

After introducing the state of the art in image generative
models, this paper explores the diffusion model and stable
diffusion, and discusses high-resolution SAR generation, in-
cluding objectives, dataset, and methodology. The methodol-
ogy covers our cascaded latent diffusion architecture, Stable
Diffusion XL approach, and the outpainting approach. Finally,
we present our results, discuss the challenges of evaluation
methods for SAR image generation, and conclude the paper.

II. RELATED WORKS

Deep Generative Models Deep Generative models (DGMs)
merge generative models with deep neural networks to handle
various high-dimensional data types like time series, images,
text, and audio. The objective of any generative model is to
approximate the observed data distribution D, derived from
a finite set of samples drawn from the underlying distribu-
tion pdata. During training, the model discerns underlying
patterns and features, enabling it to generate new data in-
stances by sampling from this learned distribution. Model



selection hinges on task complexity, dataset characteristics,
and available computational resources. In computer vision,
deep generative models focus on generating realistic images
from scratch. Different approaches include image-to-image,
image-to-text, and text-to-image models, differing in input data
format and transformation process for producing the output.

Image-to-Image Approaches This approach transforms an
input image into a new output image by learning the high-
dimensional distribution of pixels constituting real images.
Variational Autoencoders (VAEs) [5] encode data efficiently
into compact representations, while Generative Adversarial
Networks (GANs) [1] generate high-fidelity images through a
min-max game. Studies in deep learning have explored SAR
image generation. Liu et al. [10], Jones et al. [4], and Mason et
al. [11] have highlighted the potential of GANs and recurrent
auto-encoder network architectures in generating realistic SAR
images.

Image-to-Text Approaches The image-to-text model com-
prehends visual content and context, generating coherent
textual descriptions that elucidate the relationship between
detected objects. Leading models include BLIP [8], BLIP2 [7],
VLM [16], and LLAVA [9]. BLIP employs a Vision-Language
Pre-training (VLP) approach and eliminates noisy samples to
generate high-quality captions. Trouvé et al. [19] found that
BLIP, pre-trained and fine-tuned on SAR imagery, enhances
semantic richness in generated captions.

Text-to-Image Approaches This method creates images
from textual descriptions, requiring a deep understanding of
language semantics and visual representation. Key models
include GANs and Diffusion Models (DMs). Stable Diffusion,
in particular, conducts diffusion on a latent representation,
producing diverse, high-quality samples [18]. While Stable
Diffusion has not been extensively studied in the SAR domain,
diffusion models like DDPM have improved SAR image
quality [3].

III. DIFFUSION MODEL AND STABLE DIFFUSION

Recent progress in image generation owes much to diffusion
models, especially Denoising Diffusion Probabilistic Models
(DDPMs) [2]. DDPMs advance by iteratively introducing
noise to an image and then learning to reverse this procedure.
Initially, DDPM’s forward process follows a Markov chain,
sequentially adding noise to an image over multiple steps. This
can be mathematically expressed as:

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

and
q(xt|xt−1) =

√
1− βtxt−1 +

√
βtϵt (2)

where βt represents the variance of the noise added at each
step (called scheduler), and ϵt is the noise. Different sched-
ulers for βt, such as linear and cosine schedules, have been
explored in the original paper [2]. The authors showed that the
cosine schedule offers superior performance with a smoother
degradation and less loss of information in the input image.

As T → ∞, xT is nearly an isotropic Gaussian distribution.
To express xt through x0, and simplify the training process
without computing each distribution, two additional terms have
been defined:

ᾱt =

t∏
i=0

αi and αt = 1− βt

xt =
√

α̂tx0 +
√

1− α̂tϵ (3)

ᾱt is a product of the variance terms that accumulate over the
diffusion process up to step t

The reverse process aims to reconstruct the original image
distribution q(x0) by learning the distribution q(xt−1|xt)
with a parameterized model. This is achieved using a neural
network, a UNet architecture, which predicts the noise added
at each step and reverses the process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

Indeed, during the forward process the noise added is Gaus-
sian, so we search for pθ to be Gaussian. Thus, the UNet
needs to learn the mean and variance of the previous distri-
bution at time step t. Therefore, the training process involves
minimizing the difference between the actual noise and the
noise predicted by the network, aiming to improve the fidelity
of the generated images.

Compared to DDPM, Stable Diffusion operates in latent
space rather than pixel space with a Variational Autoen-
coder (VAE), which encodes an image into a compact latent
representation. The latent space allows for more efficient
manipulation and generation of images during the forward and
reverse process:

z = E(x), x̃ = D(z) (5)

where E is the encoder, D is the decoder, and z is the latent
representation of image x. Images x are compressed by a
factor of 8 to obtain z.

Moreover, the text prompts - description of the scene we
want to generate - are converted into embeddings via CLIP’s
text encoder [15], resulting in a matrix where each token
(word) is a high-dimensional vector. The model is limited to
75 words plus 2 tokens for start and end, leading to 77 token
embeddings τθ(y).

Stable Diffusion [17] works entirely in the latent space
and learn to predict the noise added to the latent image
representation (during the forward process) and tries to denoise
it (reverse process) with a UNet network conditonned on the
timestep representation and text encoding τθ(y). Each timestep
t is converted into an embedding via a function such as the
sinusoidal position encoding (often used in transformers).

During the training process, the weights of the UNet and
any associated models (like the text encoder) are updated to
minimize the difference between the predicted noise and the
actual noise:

LLDM := Eϵ(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
(6)



where ϵθ represents the predicted noise, and τθ(y) denotes the
text embeddings. and

zt =
√
α̂tz0 +

√
1− α̂tϵ

In Stable Diffusion, the image generation conditioned by
the text embeddings, is made possible by an attention mecha-
nism within the UNet architecture. The mechanism computes
attention scores that determine how much each part of the
image’s latent representation should focus on different parts of
the text embedding. For instance, if the text mentions specific
objects, colors, or actions, the attention mechanism can guide
the model to emphasize these elements in the generated image.

During inference, the trained model starts by generating a
noisy latent image representation from a normal distribution.
It then iteratively refines this image representation through
a series of steps, each time reducing the noise slightly. At
each step, additional Gaussian noise may be added σtz,
and a the predicted noise component is subtracted ϵθ(xt, t),
combined with a variance term 1√

αt
. This iterative process

gradually transforms the initial noise into a coherent image
representation that aligns with the learned data distribution.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz (7)

Note that the specific formula used for each step can vary
depending on the sampling method employed. And after all
the T inference steps, we obtain the representation within the
latent space of the generated image x0. The VAE Decoder
produces the final image which is typically 512×512 pixels in
size for stable diffusion SD1.5.

IV. HIGH-RESOLUTION SAR GENERATION

A. Objectives

In this study, we explore methods for generating high-
resolution SAR images using latent diffusion models. Ac-
knowledging the pre trained model’s default limitation of a
512x512 image output, insufficient for large scale and high-
resolution applications, we investigate alternative approaches
to leverage its potential without starting from scratch. Our
approach begins with the creation of a labeled training sets,
derived from ONERA’s airborne images at square resolutions
of 160cm, 80cm, and 40cm. These datasets are used for fine-
tuning our image-to-text captioning models, to fine-tune Stable
Diffusion base model with pairs of SAR-text samples. Fine-
tuning is essential for aligning the distinctive characteristics
of SAR imagery, including speckle and bright spots, with the
generative model framework. Firstly, we implement a cascaded
latent diffusion architecture, integrating multiple resolutions in
a cascading manner to enhance image detail across various
scales. Following this, we assessed the potential of the Stable
Diffusion XL model, which generates larger-scale images
through an enlarged UNet model. Finally we explored an out-
painting strategy. The criteria for comparison include spatial
coherence and computational viability determined through
expert evaluations.

B. Dataset

A 15-year collection of X-band SAR images from southern
France, obtained via a Falcon 20 aircraft with the SETHI
system, was processed and segmented, resulting in over 25,000
image samples at resolutions of 40 cm, 80 cm, and 160 cm.
Matching optical images were paired with SAR images to
form datasets. The captioning model BLIP was fine-tuned with
optical images from the RSICD and UCM databases across
these resolutions. This adaptation enabled the generation of
textual captions for optical-SAR image pairs, culminating in
triplets of images and captions tailored for model fine-tuning
at each resolution.

C. Methodology

1) Cascaded latent diffusion architecture: As described in
Figure 1, our model uses a cascaded latent diffusion process
to produce high-resolution images from text, progressively
enhancing image resolution from low (160 cm at 512x512)
through intermediate (80 cm at 1024x1024) to high (40 cm
at 2048x2048) detail levels. The model is fine-tuned at each
stage on SAR images and captions, ensuring detailed SAR
image representation across different resolutions.

In our inference process, we generate SAR images through a
stepwise architecture, starting with the generation of a base la-
tent image vector from text prompts using the Stable Diffusion
model fine-tuned on 160 cm resolution SAR images (SD160).
This vector is then upscaled and transformed into a 512x512
image via a VAE Decoder, with the ControlNet model ensuring
textual fidelity and contextual accuracy. Next, the Intermediate
Refinement block, utilizing the Stable Diffusion model fine-
tuned on 80 cm resolution (SD80) and an Upscaler, enhances
the resolution to 2048x2048, adding finer details. Finally, the
process concludes with the Stable Diffusion model fine-tuned
on 40 cm resolution (SD40) and ControlNet, achieving the
highest quality and resolution. This multi-resolution approach
results in images that are highly detailed and accurately reflect
their textual prompts, with ControlNet maintaining consistency
during the multi-scale process.

For these generated examples in Figure 2, we used the
following prompts: promptpositive: ’city, buildings, roads’,
promptnegative: ’blurry, illustration, forest’.

In Figure 3, the following prompts were used to gener-
ate the respective images : ’a beach that is crowded with
tourists, the sea, and hotels in front of the beach’ (Example
1), ’forest, river’ (Example 2), ’A busy city with highways
between closely spaced buildings, displaying a lively urban
environment.’ (Example 3).

2) Stable Diffusion XL approach: The Stable Diffusion XL
(SDXL) model features a UNet backbone that is three times
larger than the one in Stable Diffusion SD1.5, primarily due
to additional attention blocks and an expanded cross-attention
context. This expansion is facilitated by a second text encoder,
enhancing SDXL’s capability to produce larger, more detailed,
and contextually accurate images based on the input text. The
model was not fully fine tuned due to hardware limitations :
a low rank training method was instead used.



Fig. 1: Cascaded Latent Diffusion Architecture

(a) Block 512x512 (b) Block 1024x1024 (c) Block 2048x2048

Fig. 2: Model 1: Enhancing image resolution from low (160
cm at 512x512) through intermediate (80 cm at 1024x1024)
to high (40 cm at 2048x2048) detail levels - Block generated
outputs

(a) Example 1 (b) Example 2 (c) Example 3

Fig. 3: Model 1 - Different examples of generated images
of size 2048x2048 generated with our cascade model using
different prompts

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 4: Model 2 - Different examples of generated images of
size 2048x2048 generated with SDXL and LoRA model using
different prompts



In the Figure 4, we used the following prompts to generate
2048x2048 images size with SDXL model : ’rugged mountain
with sparse vegetation’(Example 1), ’large road surround by
multiple buildings’ (Example 2), ’a dense forest with sparse
clearings’ (Example 3), ’various fields with a small serpentine
road’ (Example 4).

While the results show the model ability to directly generate
large realistic images, the texture (ie speckle) appears to be less
faithful to the training material. Further works would involve
training the full model to assess if those limitations are due
to LoRa’s method limitations, the base model itself, or the
training set.

3) Outpainting approach: Outpainting, a variant of in-
painting, involves editing a partially noised latent image to
integrate it seamlessly with surrounding content according to
a prompt, focusing on the expansion of an image’s borders.
This process, more complex due to its extrapolative nature,
places the input image on a larger, artificially noised can-
vas to extend its dimensions. The study utilizes a basic U-
net model, trained on fully noised images, for foundational
inpainting, noting enhanced performance with training on
images masked randomly. Examples demonstrate the method’s
ability to horizontally expand an image from 1024x1024 to
1024x2048 pixels effectively, though it falls short in overall
coherence compared to other methods, suggesting the need for
a specialized inpainting model to improve results.

In the provided examples in the Figure 5, an initial image
measuring 1024x1024 pixels is horizontally expanded to create
a 1024x2048 image. The conditional prompt used is ’city,
buildings, roads’. These instances confirm the effectiveness
of our method, highlighting its ability to expand images
without introducing visible seams or artifacts at the junction
of the original image and its extension. However, the overall
coherence of the final image does not match the level achieved
by other methods. Developing a specialized inpainting model
would be required to further advance this concept.

D. Results

The first version of the pre-trained model from [17] faces
challenges with model correlations and word placement in
prompts, often limiting image diversity by linking specific
attributes to certain themes. In contrast, SDXL performs better
at generating large images without common distortions like
’double-heading,’ handling larger dimensions more effectively.
While SD1.5 can still produce detailed images, SDXL outper-
forms the model with the use of negative prompts and filters.
Despite its superior composition, it still struggles with SAR
texture quality, possibly due to the use of a compressed latent
space and our fine-tuning approach with a single LoRA layer.
This issue is exacerbated by a dataset size that is insufficient
for the required scale of upscaling, needing significantly more
data than provided. Additionally, while the outpainting diffu-
sion method offers improved control over image expansion, it
faces challenges in maintaining consistency and coherence at
larger scales without training a dedicated model. More results,
including examples of our three models’ comparisons with

different prompts and continuous seeds, are visible on the
ONERA simulator Emprise website [13].

E. Challenges of evaluation methods

Evaluating the realism of Synthetic Aperture Radar (SAR)
images generated by stable diffusion models presents unique
challenges. Conventional evaluation metrics provide insights
into the quality, diversity, and fidelity of generated images, but
they often fall short in capturing the distinct characteristics of
SAR data.

Score-based techniques like Precision and Recall and the
Inception Score offer a preliminary assessment of image
quality and variety. However, these methods do not adequately
address the SAR-specific features that are crucial for realistic
image generation. To evaluate the similarity between real
and synthetic images, the Fréchet Inception Distance (FID)
measures the distributional distance between features of real
and generated images. Additionally, classifier-based evalua-
tions can be trained to predict the realism of SAR images,
focusing on complex noise patterns like speckle, which are
inherent in SAR data. Further, some methods aim to evaluate
the consistency and predictability of changes in generated
images as we navigate the model’s latent space. For example,
the Perceptual Path Length (PPL) indicates a structured latent
space if it is low, which is vital for ensuring that variations
in generated images are coherent. However, these methods do
not integrate the physical characteristics of SAR images into
the evaluation process.

However, human judgments are still crucial, as statistical
metrics alone cannot fully capture the complexity of realism
perception. A survey mixing ONERA’s SETHI data with
images generated by our model can assess the perceptual
judgment on realism from both experts and non-experts.

V. CONCLUSION

The use of latent representations in the latent diffusion
architecture significantly boosts denoising and sampling pro-
cesses, enhancing speed and robustness in image synthesis.
Conditioning mechanisms like text prompts and ControlNet
prove highly effective in guiding the generative process. The
potential to condition on optical images or SAR imagery’s
physical properties opens new avenues for realism enhance-
ment. Despite these successes, challenges persist in reproduc-
ing high-resolution SAR imagery. The gaussian distribution’s
mean parameter settings in forward diffusion models can
disrupt white-level or very dark SAR images. Additionally,
speckle poses a dual challenge, degrading image quality while
contributing to SAR image realism, complicating its treatment
in the generative process. Developing and applying metrics
to evaluate simulated SAR image realism remains one of the
main challenge.

In the field of high-resolution SAR image simulation using
deep learning models, our exploration of three architectures
— outpainting, Stable Diffusion XL (SDXL), and cascaded
latent diffusion — reveals both promise and challenges. We
assess compositional quality and texture fidelity, focusing on



(a) Real SAR Image (b) Outpainted image: example 1 (c) Outpainted image: example 2

Fig. 5: Initial image on the left, 1024 x 1024, followed by two outpainted versions, each corresponding to different generation
seeds, resulting in images sized 1024 x 2048.

image coherence, adherence to textual prompts, and compu-
tational efficiency. Qualitative evaluation with SAR experts
from ONERA indicates the higher maturity of the cascad-
ing architecture in enhancing resolution while maintaining
coherence and fidelity. While SDXL enhances composition
quality, texture fidelity requires refinement, suggesting the
need for model improvement and dataset expansion. Outpaint-
ing, though versatile, requires careful context management
to prevent loss. Our analysis underscores the importance of
metrics in advancing generative models for SAR imagery
synthesis, unlocking their potential for diverse applications in
remote sensing and environmental monitoring.
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