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Rationality of extended unipotent characters

Olivier Dudas and Gunter Malle

Abstract. We determine the rationality properties of unipotent characters
of finite reductive groups arising as fixed points of disconnected reductive
groups under a Frobenius map. In the proof, we use realisations of char-
acters in �-adic cohomology groups of Deligne–Lusztig varieties as well as
block theoretic considerations.

Mathematics Subject Classification. 20C08, 20C15, 20C33.
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1. Introduction. The work of George Lusztig has shown the singular impor-
tance of unipotent characters in the representation theory of finite reductive
groups and hence of finite simple groups of Lie type. Recent research has fo-
cussed on rationality properties of characters of almost simple groups, and this
naturally leads to the problem of understanding fields of values, and fields of
realisation, of extensions of unipotent characters to groups of Lie type extended
by graph or graph-field automorphisms. The latter can be viewed as groups
of rational points of suitable disconnected algebraic groups. While the ratio-
nality properties of unipotent characters themselves have long been known,
due to the work of Lusztig [13] and Geck [5] (see e.g. [8, Cor. 4.5.6]), their
extensions to disconnected groups have so far not been studied systematically;
Digne–Michel [4, Thm II.3.3] considered characters in the principal series and
[14, Prop. 2] dealt with SU3(q).

The field of values Q(ρ) of a unipotent character ρ is generated by its
Frobenius eigenvalue (see [8, Prop. 4.5.5]). Here, we show that this Frobenius
eigenvalue also governs the field of values of extensions of ρ. Our first result
concerns cuspidal characters:
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Theorem 1. Let G be a simple algebraic group with a Frobenius map F and
a commuting non-trivial graph automorphism σ. Then any cuspidal unipotent
character ρ of G = GF has an extension ρ̂ to G〈σ〉 with Q(ρ̂) = Q(ρ), unless
G = 2An−1(q) with n =

(

t
2

) ≡ 2, 3 (mod 4) for some t ≥ 3, in which case
Q(ρ̂) = Q(

√−q).
In particular, Q(ρ̂) is generated by a δth root of the Frobenius eigenvalue

of ρ, where δ ≥ 1 is minimal such that F δ acts trivially on the Weyl group of
G.

Using earlier results on Frobenius–Schur indicators exhibits the following
connection:

Corollary 2. In the situation of Theorem 1, ρ has a rational extension to G〈σ〉
if and only if ρ has Frobenius–Schur indicator +1.

For arbitrary unipotent characters, we obtain:

Theorem 3. Let G be a simple algebraic group with a Frobenius map F and a
commuting non-trivial graph automorphism σ. Then any σ-invariant rational
unipotent character ρ of G = GF has a rational extension to G〈σ〉, unless one
of:
(1) G = An−1(q), q is not a square, and ρ is labelled by a partition λ =

(λ1, . . . , λr) of n with
∑

i

(

λi

2

)

−
∑

i

(

λ′
i

2

)

+
(

n

2

)

≡ 1 (mod 2),

where λ′ = (λ′
1, . . . , λ

′
s) is the partition conjugate to λ;

(2) G = E6(q), q is not a square, and ρ is one of φ64,4 or φ64,13; or
(3) ρ lies in the Harish–Chandra series of a cuspidal unipotent character of

a group of type 2An−1(q) labelled by a 2-core of size n ≡ 2, 3 (mod 4).
In cases (1) and (2), the extensions have character field Q(

√
q), in the third

Q(
√−q).

The case of cuspidal characters is settled in Sect. 2, where we also give a
reduction to simple groups, and in Sect. 3, we derive the general case from
the cuspidal one, thus proving Theorem 3. In Sect. 4, we discuss extensions of
groups of types B2, G2, and F4 by an exceptional graph automorphism.

2. Cuspidal unipotent characters. We consider the following setup. Let G be
a connected reductive linear algebraic group with a Frobenius endomorphism
F : G → G defining an Fq-structure, and set G := GF , the finite group
of F -fixed points. We further assume that G has a graph automorphism σ

commuting with F . We set ̂G = G〈σ〉 the semidirect product of G with σ,
and ̂G := ̂GF = G〈σ〉 the corresponding extension of G.

2.1. Deligne–Lusztig varieties and unipotent characters. Let B be the flag
variety of G, that is, the variety of Borel subgroups of G. The actions of F
and σ on G induce commuting endomorphisms of B. The group G acts by
simultaneous conjugation on B × B and the orbits are parametrized by the
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elements of the Weyl group W of G. Given w ∈ W , we denote by O(w) the
corresponding orbit and we define the Deligne–Lusztig variety as in [12, 3.3]
by

Xw = {B ∈ B | (B, F (B)) ∈ O(w)}.

The action of G on B×B restricts to an action of the finite group G on Xw.
Furthermore, F (resp. σ) induces a finite morphism (resp. an isomorphism)
between Xw and XF (w) (resp. Xσ(w)). Consequently, if δ is the smallest integer
such that F δ acts trivially on W , then any Deligne–Lusztig variety has an
action of F δ commuting with G.

For � a prime not dividing q, we denote by Rw the corresponding Deligne–
Lusztig character of G, given by

Rw(g) =
∑

i∈Z

(−1)i Tr
(

g | Hi
c(Xw,Q�)

)

for g ∈ G.

This generalised character of G does not depend on � (see e.g. [12, 1.2]). The
complex-valued characters which appear as constituents of the various Rw are
called the unipotent characters of G; we denote them Uch(G). By a result of
Lusztig [12, 3.9], for any unipotent character ρ of G, F δ acts by the same
eigenvalue of Frobenius ωρ on any ρ-isotypic component Hi

c(Xw,Q�)ρ of any
�-adic cohomology group of any Xw, up to multiplication by integral powers
of qδ.

2.2. Reduction to simple groups. Here we follow the arguments in
[8, Rem. 4.2.1] building upon [8, 1.5.9−1.5.13]. The centre Z(G) is character-
istic in G, so σ induces a graph automorphism on (G/Z(G))F . As unipotent
characters have Z(G)F in their kernel, for the purpose of studying rationality
of extensions of unipotent characters, we may therefore assume G is semisim-
ple. Let Gsc and Gad be simply connected respectively adjoint groups of the
same type as G. Then these possess corresponding graph automorphisms again
denoted σ. Furthermore, there are natural F - and σ-equivariant epimorphisms
Gsc → G → Gad such that the images of the respective F -fixed points contain
the derived subgroup of the F -fixed points of the target. Now unipotent char-
acters have the centre in their kernel and restrict irreducibly to the derived
subgroup. Since σ stabilises the centre and the derived subgroup, the rational-
ity properties of extensions of unipotent characters of GF agree with those of
any group isogenous to it. By passing to a group of adjoint type, we see that
we may hence assume for our purposes that G is simple (of a chosen isogeny
type), which we do from now on.

In particular, we can always assume that δ ∈ {1, 2, 3} and F = σr in its
action on W , for some r ∈ {1, 2, 3} with one of r or δ being equal to 1.

2.3. Eigenvalues of F and character extensions. We keep the above setting.
We first look at the extensions over local fields given by the �-adic cohomology
of Deligne–Lusztig varieties.

Proposition 2.1. Let d be the order of σ (recall that d ∈ {2, 3}). Let ρ ∈ Uch(G)
be rational-valued and σ-invariant. Assume that there is w ∈ W such that



458 O. Dudas and G. Malle Arch. Math.

(1) the 〈F 〉-orbit of w has length δ and is σ-stable; and
(2) the multiplicity of ρ in Rw is not divisible by d.
Then for every extension ρ̂ of ρ to G〈σ〉, the field of values Q�(ρ̂) is contained
in the splitting field of xd − ω

d/δ
ρ over Q�. Furthermore, there is at least one

extension ρ̂ which is Q�-valued if and only if there is a δth root of ωρ in Q�.

Remark 2.2. Observe that the conclusion of Proposition 2.1 is well-defined
since the Frobenius eigenvalue ωρ is uniquely determined up to integral powers
of qδ.

Proof. We consider the subvariety

X = Xw 	 XF (w) 	 · · · 	 XF δ−1(w)

of B. By (1), it has an action of both F and σ and for all i, we have

Hi
c(X)ρ

∼= Hi
c(Xw)ρ ⊕ Hi

c(XF (w))ρ ⊕ · · · ⊕ Hi
c(XF δ−1(w))ρ

as Q�G-modules with F cyclically permuting the δ summands. By (2), there
is some i for which the multiplicity of ρ in Hi

c(Xw)ρ is not divisible by d. Thus
there also is a generalised eigenspace Hi

c(Xw)ρ,μ for an eigenvalue μ of F δ on
Hi

c(Xw)ρ with the same property. Here, as cited above, μ differs from ωρ by
an integral power of qδ. First assume δ = 1. Then H := Hi

c(Xw)ρ,μ is a Q�
̂G-

module in which not all extensions of ρ can occur with the same multiplicity.
Since d ∈ {2, 3}, at least one of the extensions must then be distinguished
by its multiplicity and thus have values in Q�. The others are obtained by
tensoring with linear characters of ̂G/G, which have values in the splitting
field of xd − 1, so of xd − ωd

ρ .
Now assume δ = d. Then F has characteristic polynomial (xd − μ)m in

its action on
⊕δ−1

j=0 Hi
c(XF j(w))ρ,μ, with m = dimHi

c(Xw)ρ,μ and m/ρ(1) not
divisible by d. Let K be the splitting field of xd −μ over Q�. Then Gal(K/Q�)
permutes the generalised F -eigenspaces as it permutes the eigenvalues, that
is, as it acts on the roots of xd − μ. If Q� contains a zero of xd − μ, there
is a Q�-rational eigenspace and we can argue as before to see that ρ has a
Q�-rational extension.

If xδ − ωρ has no zero in Q�, then K/Q� is an extension of degree δ (recall
that δ ≤ 3) and the δ different generalised eigenspaces of F are Galois conju-
gate over Q�. Thus, the same holds for the δ different extensions of ρ. �

We now lift the rationality properties to Q.

Lemma 2.3. Let ρ be a rational-valued unipotent character of G. Assume that
for all but finitely many �, ρ has an extension ρ̂� to ̂G which takes values in
Q�. Then ρ has an extension to ̂G which takes values in Q.

Proof. We argue by contradiction. Assume all extensions of ρ are defined over
a proper extension K of Q, generated by a root of f ∈ Q[x], say. Since the
sum of the extensions has values in Q and δ ∈ {2, 3}, this means that K (and
hence f) has degree δ over Q. Note that K/Q is abelian. Thus, by Dirichlet,
there are infinitely many primes � such that f is also irreducible over Q�, that
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is, its roots generate an extension of degree δ. Hence for those �, ρ does not
have any Q�-rational extension, contradicting our assumption. �

2.4. Extensions of cuspidal unipotent characters. We keep the above setting.
For the classification and properties of unipotent characters, we refer the reader
to [8, §§4.3−4.5]. Recall that cuspidal unipotent characters have values in
Q(ωρ).

Proposition 2.4. Let G be simple of type Dn or E6, σ a graph automorphism
of G, and F a commuting Frobenius map with δ = 1. Then any cuspidal
unipotent character ρ of G = GF has an extension to ̂G = G〈σ〉 defined over
Q(ρ).

Proof. We consider the various cases according to Lusztig’s classification of
cuspidal unipotent characters. By [8, Thm 4.5.11], they are all σ-invariant. If
G is of type Dn with n = (2t)2 for some t ≥ 1 and o(σ) = 2, then the class
of W labelled by the bi-partition (−; 4t − 1, 4t − 3, . . . , 1) contains σ-stable
elements (since the centraliser in W of σ, of type Bn−1, contains the class
labelled (−; 4t − 1, 4t − 3, . . . , 3)), and by [13, Prop. 2.14], the unique cuspidal
unipotent character ρ occurs exactly once in the corresponding Deligne–Lusztig
character. Thus Proposition 2.1 applies to show that ρ has rational extensions.
If G is of type D4 with o(σ) = 3, then there exists a σ-stable element w ∈ W in
the class labelled by the bi-partition (−; 31), and using Chevie [15], the unique
cuspidal unipotent character ρ of G appears with multiplicity 1 in Rw. Thus
Proposition 2.1 applies again.

Finally, for G of type E6, there are two cuspidal characters E6[θ], E6[θ2]
with Frobenius eigenvalue a primitive third root of unity θ, respectively θ2.
Let w ∈ W be in class E6. Then w can be chosen σ-stable. Again using [15],
both E6[θ] and E6[θ2] occur in Rw with multiplicity 1. Let H be a cohomology
group of Xw containing ρ with odd multiplicity, for � a prime with � ≡ 1
(mod 3), so

√−3 ∈ Q�. Since σ fixes w, it acts on H and so the Q�
̂G-module

Hρ contains the two extensions ρ1, ρ2 of ρ to ̂G with different multiplicities.
Thus, they must be Q�-rational. Since this is true for all � ≡ 1 (mod 3), the
character field of ρi is contained in Q(θ) = Q(ρ), hence equal to Q(θ). �

We now turn to the twisted groups, where δ > 1.

Proposition 2.5. Let G = 2An−1(q) where n =
(

t+1
2

)

with t ≥ 2, and let ρ be
the cuspidal unipotent character of G. Let σ be the graph-field automorphism
of G of order 2. Then the two extensions of ρ to ̂G = G〈σ〉 are rational-valued
if

(

n
2

)

is even, and are algebraically conjugate over Q(
√−q) if

(

n
2

)

is odd.

Proof. The cuspidal unipotent character of 2An−1(q) is labelled by the stair-
case partition λ = (t, t − 1, . . . , 1) (see e.g. [8, Prop. 4.3.6]). By [12, Rem. (a)
after Thm 3.34] and [8, Prop. 4.3.7]), the Frobenius eigenvalue of ρ is ωρ =
(−q)(

n
2) (up to multiplication by powers of q2). An application of the

Murnaghan–Nakayama rule shows that the irreducible character of Sn labelled
by λ takes value ±1 on elements w ∈ W = Sn of cycle type (2t−1, 2t−5, . . .).
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Since the multiplicities of unipotent characters in Deligne–Lusztig characters
in type An−1 are given by the character table of W (see [8, Cor. 2.4.19]), this
means that ρ has multiplicity ±1 in the Deligne–Lusztig character Rw. Also, no
conjugate of w is centralised by σ, hence neither by F . Thus the assumptions
of Proposition 2.1 are satisfied with δ = 2 and the conclusion follows. �
Remark 2.6. Alternatively, by the arguments given for the principal series case
in the proof of Theorem 3 below, the conclusion of Proposition 2.5 would follow
if the full endomorphism algebra of the cohomology of Xw0 , where w0 ∈ W
is the longest element, is indeed the Iwahori–Hecke algebra of type An−1 at
parameter −q as speculated in [12, 3.10(b)] (see also the general conjectures
in [1, 1B]).

Proposition 2.7. Let G be simple of type Dn or E6, σ a graph automorphism
of G, and F a commuting Frobenius map with δ = o(σ). Then any cuspidal
unipotent character ρ of G = GF has an extension to ̂G = G〈σ〉 with field of
values Q(ρ).

Proof. First assume that G = 2Dn(q) where n = (2t + 1)2 with t ≥ 1, and let
ρ be the cuspidal unipotent character of G. Let w ∈ W be in the class (−; 4t+
1, 4t − 1, . . . , 1). An application of Asai’s formula [8, Thm 4.6.9] shows that ρ
appears with multiplicity ±1 in Rw (see also [13, 2.19]). By [7, Thm 4.11], the
Frobenius eigenvalue of ρ is ωρ = 1, up to multiplication by integral powers
of q2, so an application of Proposition 2.1 allows us to conclude.

Now assume G = 3D4(q), with σ the graph-field automorphism of G of
order 3. If ρ is the cuspidal unipotent character 3D4[−1] of G, then (using
Chevie [15]) ρ occurs with multiplicity 1 in Xw for w of type F4. The class of
w is not F -stable, so Proposition 2.1 applies. In this case, the eigenvalue of F 3

for ρ equals ωρ = −1 (up to integral powers of q3) by [11, (7.3)]. Next, let ρ be
the cuspidal unipotent character 3D4[1], with Frobenius eigenvalue ωρ = 1, by
[7, Rem. 4.9]. It occurs with multiplicity 1 in Xw for w of type F4(a1), which
can be chosen not σ-invariant. Again Proposition 2.1 applies.

Finally, let G = 2E6(q). The cuspidal unipotent character ρ = 2E6[1] with
ωρ = 1 (by [7, Rem. 4.9]) appears with multiplicity 1 in the Deligne–Lusztig
character Rw for w in class 3A2. Choosing w not σ-stable, we conclude as
in the previous case. Let now ρ be one of the cuspidal unipotent characters
2E6[θ], 2E6[θ2] of G with ωρ = θ, θ2 respectively [11, (7.4)(e)]. For these, the
claim follows precisely as for the non-rational cuspidal unipotent characters of
E6(q) in the proof of Proposition 2.4. �

We are now ready to show our first main result:

Proof of Theorem 1. All relevant cases are covered by Propositions 2.4, 2.5,
and 2.7. �
Proof of Corollary 2. If ρ is not real-valued, the assertion holds trivially. We
now discuss the real-valued cuspidal unipotent characters. All of them are ra-
tional by [8, Cor. 4.5.6]. The Frobenius–Schur indicators of all these characters
of untwisted groups are +1 by Lusztig [13, Thm 0.2], and by Proposition 2.4,
they possess rational extensions.
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By Ohmori [16], the cuspidal unipotent character ρ of the unitary group
G = SUn(q) with n = t(t + 1)/2 has Frobenius–Schur indicator (−1)�n/2�.
Now 
n/2� is the Fq-rank of G, which in turn is congruent modulo 2 to the
exponent i in the Frobenius eigenvalue ωρ = (−q)i of ρ by [12, Rem. (a) after
Thm 3.34]. The claim in this case thus follows from Proposition 2.5, observing
that 
n/2� and

(

n
2

)

have the same parity.
For the orthogonal group G = SO−

2n(q) where n = (2t+1)2, the Frobenius–
Schur indicator of the cuspidal unipotent character equals +1 by [13, 1.13], the
Frobenius–Schur indicator of the cuspidal unipotent character 2E6[1] of 2E6(q)
is +1 by [5, 6.2], and similarly the indicators of the two cuspidal unipotent
characters of 3D4(q) are also +1 by [11, (7.6)] and [5, 6.2]. So for the latter
groups, we may conclude by Proposition 2.7. �
3. Harish–Chandra theory. We now consider arbitrary unipotent characters.

Proof of Theorem 3. Let ρ ∈ Uch(G) be σ-invariant, so it has an extension ρ̂ to
̂G = G〈σ〉. First assume ρ lies in the principal series, so it occurs as constituent
in the permutation module Q�[G/B], whence ρ̂ occurs in M := Q�[ ̂G/B].
Now as a Q�

̂G × End
Q�

̂G(M)-bimodule, M decomposes as the direct sum of
irreducible submodules Mφ indexed by φ ∈ Irr(End

Q�
̂G(M)) affording χφ ⊗ φ

for some χφ ∈ Irr( ̂G) in the principal series. Clearly, any Galois automorphism
of Q� permutes the Mφ as it permutes the characters φ, and hence it permutes
the χφ in the same way. So the rationality statement for ρ̂ follows from the
corresponding one for the extended Hecke algebra in [4, Thm II.3.3]. (See also
the proof of [5, Prop. 5.5].)

Now assume we are not in that case. Let L ≤ G be a (split) Levi subgroup
and λ a cuspidal unipotent character of L such that ρ lies in the Harish–
Chandra series of λ, so 〈ρ,RG

L (λ)〉 �= 0. Thus, ρ corresponds to a character φ
of the relative Weyl group W ′ := WG(L, λ) (see [8, Thm 3.2.5]). It is known
that this relative Weyl group is of type A2, Bn, G2, or F4 in the cases we
consider and that L can also be chosen to be σ-stable (see e.g. [8, Table 4.8]).
Moreover, as λ is the unique cuspidal unipotent character of L, it is also σ-
stable. Furthermore, σ acts trivially on W ′ except possibly if W ′ has type A2.
By [9, Thm 3.3 and (3.6)], any such φ is of parabolic type, that is, there is a
parabolic subgroup W ′

1 of W ′ such that 〈1W ′
W ′

1
, φ〉 = 1. Note that we may assume

W ′
1 is proper in W ′ if W ′ �= 1. This is clear if φ �= 1W ′ , and φ = 1W ′ occurs

with multiplicity 1 in the permutation character on any parabolic subgroup.
Let M ≥ L be the Levi subgroup of G corresponding to W ′

1 and χ be the
unipotent character of M in the Harish–Chandra series (L, λ) corresponding
to 1W ′

1
. Then by the comparison theorem [8, Thm 3.2.7], this means that

〈RG
M (χ), ρ〉 = 1.
First assume σ has order 2 and let ρ1, ρ2 be the two extensions of ρ to ̂G.

We claim that ρ1 has the same rationality property as some extension λ1 of λ

to ̂L = L〈σ〉. If W ′ = 1, then L = G and the claim is obvious. If W ′ �= 1, then
W ′

1 < W ′ as argued above. Exclude for the moment the case that W ′ has type
A2. Then σ stabilises (W ′

1, χ), so χ has two extensions χ1, χ2 to ̂M = M〈σ〉.
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Then

〈R ̂G
̂M

(χ1 + χ2), ρ1〉 = 〈R ̂G
̂M

(Ind
̂M
Mχ), ρ1〉 = 〈Ind

̂G
GRG

M (χ), ρ1〉 = 〈RG
M (χ), ρ〉 = 1

and thus (after possibly interchanging ρ1 and ρ2) 〈R ̂G
̂M

(χ1), ρ1〉 = 1 and

〈R ̂G
̂M

(χ1), ρ2〉 = 0. Consequently ρ1 has the same rationality properties as
χ1, which by induction has the same rationality properties as λ1, showing our
claim. Now, we obtain the desired conclusion from the rationality properties
of extensions of the cuspidal unipotent character λ discussed in Sect. 2.

Now assume that W ′ has type A2. Then by [8, Table 4.8], we have G =
E6(q) and λ is the cuspidal unipotent character of L of type D4. Of the three
characters ρ of G in this Harish–Chandra series, two have multiplicity one in
RG

L (λ) and thus by our previous argument, possess rational extensions to ̂G.
The Deligne–Lusztig character Rw for w in the class E6 (with characteristic
polynomial Φ3Φ12) contains the third character D4,r with multiplicity −1.
Since the class E6 contains elements centralised by σ, Proposition 2.1 shows
that D4,r has a rational extension to ̂G.

If σ has order 3, then necessarily G has type D4 or 3D4. Here, only the
cuspidal characters do not lie in the principal series, and for those, the claim
was shown above. �

Example 3.1. Let ρ be any of the two unipotent characters of G = 2E6(q) in
the Harish–Chandra series of type 2A5. Then the extensions of ρ to ̂G have
character field Q(

√−q) by Proposition 2.5 in conjunction with Theorem 3.
These are Ennola-dual to the principal series characters φ64,4 and φ64,13 of
E6(q), thus we see that the occurring irrationalities in Theorem 3 do obey the
Ennola principle.

We can also understand completely the situation for groups of type D4

extended by its full group of graph-automorphisms:

Corollary 3.2. Let G = D4(q) and Γ ∼= S3 its full group of graph automor-
phisms. Then all Γ-invariant unipotent characters of G possess a rational ex-
tension to ̂G = G.Γ.

Proof. Let ρ ∈ Uch(G) be Γ-invariant. Let σ ∈ Γ have order 3. By Proposi-
tion 2.4, ρ has one rational extension ρ1 to G〈σ〉 and two algebraically con-
jugate ones. Thus ρ1 must be Γ-invariant as well and further extends to two
characters ρ̂1, ρ̂2 of ̂G. The restrictions of these to G〈τ〉, where τ ∈ Γ has or-
der 2, are the two extensions of ρ to G〈τ〉, so rational again by Proposition 2.4.
But then ρ̂1, ρ̂2 must also be rational-valued. �

4. Exceptional graph automorphisms. The groups B2(22f+1), G2(32f+1),
F4(22f+1) with f ≥ 0 possess exceptional outer graph automorphisms of or-
der 2 not induced by an automorphism of the ambient algebraic group (in
particular one can not use the results in Sect. 2). In the smaller two cases,
the rationality properties of extended unipotent characters were determined
by Brunat:
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Proposition 4.1 (Brunat).
(a) For G = B2(22f+1), all four invariant unipotent characters have rational

extensions to the extension of G by the exceptional graph automorphism.
(b) For G = G2(32f+1), eight unipotent characters are invariant under the

exceptional graph automorphism. Of these, the characters labelled
φ1,0, φ2,1, φ1,6, and G2[−1] have rational extensions, φ2,2 has an extension
with character field Q(

√
3), while G2[1], G2[θ], and G2[θ2] have extensions

with character field Q(
√−3).

Proof. The first statement follows by inspection of [2, Table 6], the second from
[3, Table 11]. For the characters in the principal series, this also already follows
from [6, Table IV], using the arguments in the proof of Theorem 3. (Note that
the entries in the first rows of both tables in loc. cit. should correctly read
ul(w), as confirmed by the authors.) �

The following observation will be used to handle the case of F4; it would
also apply to prove rationality in some of the earlier cases.

Lemma 4.2. Let G � ̂G with ̂G/G cyclic, � a prime not dividing | ̂G : G|, and
P a Sylow �-subgroup of G. Assume that ̂G = GC

̂G(P ). Then any irreducible
character in the principal �-block B0 of G has an extension to ̂G with the same
character field.

Proof. The assumptions imply that any ρ ∈ Irr(B0) has a unique extension ρ̂ in
the principal �-block B̂0 of ̂G. Since Irr(B̂0) can be defined in terms of orthog-
onality relations on �′-elements, it is stable under all Galois automorphisms,
which implies Q(ρ̂) = Q(ρ), as claimed. �

Proposition 4.3. For G = F4(q) with q = 22f+1 and σ the exceptional graph
automorphism, twenty-one unipotent characters are σ-invariant. Of these, the
characters

φ1,0, φ4,1, φ9,2, φ12,4, φ6,6′ , φ6,6′′ , φ4,8, φ9,10,

φ4,13, φ1,24, B2,1, B2,r, B2,ε, F I
4 [1], F II

4

possess rational extensions to ̂G = G〈σ〉. The character φ16,5 has extensions
with character field Q(

√
2), the cuspidal characters F4[±i] have extensions

with character field Q(i), the cuspidal characters F4[θ], F4[θ2] have extensions
with character field Q(

√−3), and F4[−1] has extensions with character field
Q(

√−2).

Proof. Let G be of type F4 with a Steinberg endomorphism F0 such that
G = GF for F = F 2

0 . We may assume that F0 induces σ on G. For the
characters in the principal series, the claim follows from the character table
of the extended Hecke algebra in [6, Table VI] as in the proof of Theorem 3.
For the characters B2,1, B2,ε, we can also argue as in the proof of Theorem 3
since they are parametrised in their Harish–Chandra series by linear characters
of the relative Weyl group, of type B2 (see [8, Table 4.8]), which thus have
multiplicity 1 in its regular character.
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Now let w ∈ W be a σ-invariant element, and μ be an eigenvalue of F on
H = Hi

c(Xw) for some i. Let λ =
√

μ be a root of μ. Then the action of G on
̂H := (H ⊗Q�

Q�(λ))μ extends to an action of ̂G where σ acts as λ−1F0 and
the traces of all gσ, for g ∈ G, lie in λQ�. Thus, any Galois automorphism
sending λ to −λ will interchange the multiplicities in ̂H of the two extensions
of any irreducible character ρ of G. In particular, if ρ has odd multiplicity in
H, then its two extensions are only defined over Q�(λ). Now the eigenvalues of
F can be computed by evaluating [4, III, Prop. 1.2 with Thm 1.3] with Chevie
[15]. Specifically, if w ∈ W is a σ-invariant regular element of order 8, then
F4[−1] occurs with odd multiplicity in some Hi

c(Xw) and with an eigenvalue of
F equal to −q3. Since q is an odd power of 2, we have Q�(

√

−q3) = Q�(
√−2)

and the previous argument shows that F4[−1] has an extension in ̂H with
character field Q(

√−2).
For the two characters ρ = F4[±i], we use the same element w. In that

case, the eigenvalues of F are ±iq3. As before, this means that both characters
possess extensions to ̂G with values in Q(

√
2i). Now note that

√
2i = ±(1 + i)

lies in Q(i), the character field of ρ.
Next, the two cuspidal characters F I

4 [1], F II
4 [1] appear with odd multiplicity

in the q6-eigenspace of F on Hi
c(Xw) for w a σ-stable element in class D4(a1).

Arguing as before, we see that these characters possess rational extensions.
For ρ one of F4[θ], F4[θ2], or B2,r, we use a block theoretic argument. Let

� > 2 be a prime dividing q4−q2+1. Then GF0 = 2F4(22f+1) contains a Sylow
�-subgroup P of G, so ̂G = GC

̂G(P ). Since ρ lies in the principal �-block (see
e.g. [10, Thm 2.1(4)]), Lemma 4.2 shows it has an extension to ̂G with the
same character field. �

Remark 4.4. Block theory also offers a way to see that the cuspidal unipotent
character F4[−1] of G = F4(q) has non-real extensions to ̂G: Let � > 2 be
a prime dividing q4 + 1 and P a Sylow �-subgroup of G. Then P has larger
automiser in ̂G than in G. Thus the Brauer tree of the principal �-block B̂0

of ̂G is obtained by unfolding the Brauer tree of the principal �-block of G
around the exceptional vertex. Since F4[−1] and the trivial character of G lie
on opposite sides of the exceptional vertex by [10, Thm 2.1(3)] and the trivial
character certainly has real extensions to ̂G, the extensions of F4[−1] cannot
lie on the real stem of the Brauer tree of B̂0 and thus can not be real-valued.
This does, however, not exhibit the precise character field.

Mutatis mutandis, this consideration also applies to the cuspidal unipotent
characters of 2A2(q) and 2A5(q), and to G2[1] of G2(q) (with suitably chosen �).

Remark 4.5. In the spirit of Ennola-duality, the character fields of the exten-
sions of φ2,2 and G2[1] in type G2, as well as of φ16,5 and F4[−1] in type
F4 should be considered as being Q(

√±q), respectively, since these pairs of
characters are mutually Ennola-dual.
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