

MEASUREMENT OF STRAY LIGHT IN THE LISA INSTRUMENT

MARCO NARDELLO, AMAËL ROUBEAU-TISSOT, MICHEL LINTZ CNRS ARTEMIS, OBSERVATOIRE DE LA CÔTE D'AZUR

LISA mission

- Laser Interferometer Space Antenna
- ESA-NASA mission for detection of gravitational waves
- Launch in 2035
- Spacecraft, 2.5 million km triangular formation, solar orbit
- Separation of free-floating reference surfaces in each satellite is measured using laser interferometry
- Distance variations (tens of pm) caused by a passing gravitational wave are measured
- Science objectives:
 - Study the formation and evolution of compact binary stars
 - Trace the origin, growth and merger of massive black holes

LISA instrument

On each spacecraft:

- 2 telescopes
 - expand the generated beam and direct it towards the distant spacecrafts
 - collects the beam coming from the distant spacecraft
- 2 optical benches carrying each:
 - 1 laser beam directed towards another spacecraft to measure SC-SC displacements
 - ▶ 1 laser beam coming from a distant spacecraft
 - I reference laser to measure SC-test mass displacements
 - several optical elements
 - 2 science interferometers, 2 reference interferometers, 2 test mass interferometers

Stray light in LISA

- Stray light influences the interferometric measurement
- Light superposed to nominal with different phase on detector
- Detected phase shifted by
 - $\Delta \psi_{Het} = \varepsilon_{SL} sin\left(\frac{2\pi}{\lambda}\Delta L\right)$
 - \triangleright ε_{SL} = stray light amplitude ratio
 - > ΔL = optical pathlength difference (OPD)

SL measurement at system level: method

SL-OGSE instrument

- Aim: To determine the presence, amplitude and OPD of coherent stray light in a complex optical system
- FMCW (Frequency Modulated Continuous Wave) method : laser swept in frequency
- Test all injectors one by one
- Data collected from every photoreceivers: photoreceivers of the system and added photodiodes
 - Signals recorded while frequency is scanned
 - ► Fourier transform \rightarrow frequency spectra

Measurement principle

Stray light gives interference fringes in the spectra: $f_{itf} = \frac{\Delta L}{c} \frac{\Delta v_{opt}}{\Delta t}$

- $\Delta L = SL$ to nominal OPD
- Δv_{opt} = SL_OGSE laser frequency scan rate
- Resolution required for instrumentation: $\Delta(\Delta L) < 2mm$
- Noise floor for the measurement of the fractional signal amplitude $SL/nom = 2\varepsilon_{SL} < 2.2 \cdot 10^{-6}$

SL-OGSE prototype scheme

- Frequency swept laser: 1064.5 nm laser diode swept over 2 nm (30°C)
- Injection on DUT
- Frequency ramp monitoring (calibrator): check the quality of the ramp with a stable fibered IFO
- Frequency scan rate measurement: beat note with a fixed frequency laser
- Control of the frequency ramp: Phase lock during the scan using a MZ heterodyne IFO

Measurement example: calibrator signal

- Calibrator principle same as any DUT
 - ► Fibered interferometer
 - "Nominal" light goes directly to detector
 - "SL" arrives at the detector after n loops
 - Each loop corresponds to 1 SL peak on the plot
- 2 different frequency scans
 - Conversion f/OPD
 - SL peaks superposed
 - Not superposed peaks are parasites (electric grid)

Zerodur InterFerOmeters (ZIFO)

- Check phase measurement stability in a system as complex as the MOSA
- ► 3 heterodyne interferometers
- ► 36 signals: 8 QPRs (ABCD segments), 4 SEPRs
- 2 main injectors (beam 1 and 2)

SL recordings with ZIFO

- SL-OGSE laser injected at the 2 injectors alternatively
- Air and under vacuum
- 2 scan rates (5.1 and 5.3GHz/s)
- 2nm frequency range (around 1064.5 nm)
- Scan duration 100 s

Results interpretation

Measured OPDs need to be linked to SL paths

11/24

- ► Where is SL originated
- Which directions it takes
- ► How can we stop it?

Simulations needed to calculate those paths

Optical simulations

- Ray tracing simulations (FRED)
- On ZIFO optomechanical setup
 - Source: 50x50 rays on a grid with gaussian power profile
 - Laser injection at injector 1
 - Mechanics: absorbing
 - Side surfaces: blocking path
 - Nominal paths: Red and green. SL: blue
 - QPR2 not tilted

Simulation results

- Simulation output (automatic script)
 - For each detector, a table with (#, P, OPL, OPD, # of rays, # of interactions
- Optical path images

	А	В	С	D	E	F	
1	Path #	P (W)	OPL	OPD	# of rays	# of interaction	ons
2	19	8.8808E-05	499.704108	0	1876	15	
3	1501	3.581E-10	501.210693	1.506585	1876	17	
4	1510	3.581E-10	501.210693	1.506585	1876	17	
5	3548	3.8988E-12	508.693684	8.98957577	190	17	
6	3791	5.0719E-14	1348.60168	848.89757	38	51	
7	3834	1.0636E-14	1356.2141	856.509994	36	51	
8	15986	5.0618E-14	1348.60168	848.89757	38	53	
9	15987	5.0719E-14	1348.60168	848.89757	38	51	
10	15988	5.0821E-14	1348.60168	848.89757	38	49	
11	16068	1.0615E-14	1356.2141	856.509994	36	53	
12	16080	1.0636E-14	1356.2141	856.509994	36	51	
13	16092	1.0658E-14	1356.2141	856.509994	36	49	
14	29493	1.1143E-08	1347.09483	847.390725	36	49	
15	30456	4.4571E-14	1348.60142	848.897309	36	51	
16	30457	2.233E-11	1310.10273	810.39862	40	47	
17	30458	2.2285E-11	1339.09504	839.390933	37	49	
18	30459	1.112E-08	1347.09483	847.390725	36	51	
19	30461	1.1143E-08	1347.09483	847.390725	36	49	
20	30464	3.5066E-14	1287.48322	787.779116	36	41	
21	30466	2.2375E-11	1318.10234	818.398235	39	45	
22	30470	1.1165E-08	1347.09483	847.390725	36	47	
23	30479	4.4571E-14	1348.60142	848.897309	36	51	
24	30489	5.5602E-12	1376.0874	876.383291	35	53	
25	30494	5.5713E-12	1376.0874	876.383291	35	51	
26	30497	5.5713E-12	1355.09484	855.390727	35	51	
27	30498	5.5825E-12	1355.09484	855.390727	35	49	
28	30499	1.1143E-14	1376.0874	876.383291	35	51	
29	30500	5.5602E-12	1384.08732	884.383213	35	53	
30	30501	5.5713E-12	1384.08732	884.383213	35	51	
21	35704	4 4482E-14	1348 60142	848 897309	36	53	

Comparison with measurements

Measurement results

- ► On air, injector 1, 5.1GHz/s
- Post-treatment analysis gives list of peaks (OPD, amplitudes) for each detector > 1^e-5
- On the same plot
 - Measured peaks positions (orange circles)
 - Simulated peaks positions (blue triangles)
- Amplitudes
 - Qualitatively they match
 - No exact match (no exact simulation parameters)

4/24

► OPDs?

Good matches

Simulations not matching

- Only because of thresholding
 - Low amplitudes on measurements covered by noise and/or discarded

Measurements not matching

- Simulation parameters re-evaluation
 - Some parameter are difficult to estimate
 - There is a deviation from the nominal setup

New parameters

- Reflection on mechanical elements
- Sides of beam splitters transparent
- Reflection on the thermal shield
- Reflection on lenses
- Reflection on not tilted components

BS sides

Some peaks explained

Many unrealistic paths created

Detector 7 not tilted

Lenses

- Difficult to simulate lens curvature with a discrete number of rays
- Fake plane added to simulation
 - Some peaks explained
 - Not existent path created

Not tilted polarizers

Coincidence?

QPR8

 ∇

 ∇

0

 \forall

 ∇

W

800

600

 ∇

1000

Simulated

Measured

₩

1200

1400

Overall results

Peaks	QPR1	QPR2	QPR3	QPR4	QPR5	QPR6	QPR7	QPR8
Measured	23	35	20	20	21	20	19	21
Starting (nominal) parameters	7	7	10	9	9	11	10	10
% match	30	20	50	45	43	55	53	48
Final parameters	10	19	14	13	13	15	15	18
% match	43	54	70	65	62	75	79	86

Conclusions

- The SL-OGSE instrument is an effective tools to measure SL at system level
- Data interpretation relies on ray tracing simulations
- Simulations give a good view of the nominal setup
- Deviation from nominal can be investigated
 - Parameter choice must be made with caution
 - Experimental verification advisable
 - 100% explanation not guaranteed

Extra slides

Control of the frequency ramp

- Beatnote in the MZ interf. (freq F)
- Phase lock control of frequency
- Sweep: 25m delay moves the beatnote at F+ΔF
- Phase lock to keep $F+\Delta F = const$

Constant ramp

 \rightarrow

Frequency measurement

Interference with a fixed frequency laser

Beatnote frequency measured

Variable Opt.